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ABSTRACT 

This thesis integrates stereo-vision into existing NPS robot architecture. It 

demonstrates that image cross correlation can be used to measure ranges as theory 

predicts. It also demonstrates that objects can be ranged and stored into a database map 

for later use as common reference points in position determination.   

Small Unmanned Ground Vehicles (UGV), developed using commercial-off-the-

shelf (COTS) technologies are of particular interest for this robotic vision application.  To 

perform their designated missions, these devices require accurate position information.  

Most devices will determine that position using a Global Positioning System (GPS) 

receiver; however, the signal is vulnerable to jamming and becomes degraded when not 

provided a clear view of the sky.  Similarly, the error in dead reckoning (DR) systems 

increases with time if not reset using a known reference.  The fusion of stereo vision 

technology with GPS and DR systems is ideal for use in the design of a command and 

control module of an unmanned vehicle that is capable of operating autonomously in an 

environment where traditional position determination loses satellite signals or requires a 

known reference point to reset uncertainty in position.   
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I. INTRODUCTION  

The exponential growth of computing power, development of Micro Electro 

Mechanical Systems (MEMS), micro sensors, and improved battery capacity have made 

it possible to replace a person with a robotic solution for the performance of a task in a 

hazardous location.  The military community is particularly interested in the concept of 

autonomy, since the demands placed on the operator of even a semi-autonomous robot 

reduce situational awareness and safety.  In response, ongoing research in robotic 

technology has developed capabilities for Proximal Autonomy in which robots conduct 

missions in the vicinity of their human leaders; however, the integration of sensors and 

systems within these advanced platforms is still in development [1].  

This thesis integrates a stereo vision system into the existing architecture of the 

Naval Postgraduate School’s Applied Physics laboratory robot designs.  Specifically, the 

system is evaluated for object localization and ranging.  Accurate object localization and 

ranging is vital for developing autonomous site mapping and navigation routines.   

A. MILITARY INVESTMENT IN MAN PORTABLE AUTONOMOUS 
ROBOTS 

Recently, due to the nature of the conflicts in Iraq and Afghanistan, there has been 

significant investment in removing the human element from dangerous tasks such as 

Explosive Ordinance Disposal and scouting potentially hostile urban environments.  

Unmanned Ground Vehicles (UGV) are employed at an increased rate but remain mostly 

at the semi-autonomous level.  The iRobot, PACBOT, and TALON robots are current 

examples.  The sensors required for small UGVs to operate with full and proximal 

autonomy are readily available.  While the current trend of robotics research is in the 

development of algorithms to integrate sensors for improved situational awareness, 

obstacle avoidance and position determination continue to be high priorities [2].  

Specifically, if the robot cannot tell where it is or where it has been then it is impossible 

for it to intelligently determine where it is going in order to best compliment the needs of 

its operator. 
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B. ACTIVE RESEARCH WITHIN THE DoD 

Global Positioning Systems (GPS) are good for determining position while Dead 

Reckoning (DR) can be accurate for systems under the right circumstances.  UGVs 

designed to operate in urban environments can expect degraded GPS signals, which in 

turn affects the ability to DR, since a reliable reset position is not always available.  

Therefore, neither GPS nor DR is sufficient under these conditions.   

Funded research in robotic vision is expected to fill the gap that occurs in DR 

systems when GPS is degraded to where it no longer provides a reference position to 

reduce position uncertainty.  A search of the DoD Technical Information Center (DTIC) 

showed that funding is being provided for research into the topics of sensor resetting and 

normalization based on environment, ranging based on focus characteristics, advanced 

object identification algorithms, and many others at various academic institutions.  

Similarly, SPAWAR Systems Center is funding VisionRobotics Corp to research stereo 

vision scene mapping for Explosive Ordinance Disposal (EOD) Unmanned Ground 

Vehicles (UGV) [3].  Success in this area of research would provide a significant 

improvement in position mapping and object recognition for use in future autonomous 

applications.   

 



II. CONCEPT OF FUNCTIONAL DESIGN 

The concept of stereo vision in robotics is an extension of organic stereo vision 

that occurs naturally in most animals.  The major components of the organic vision 

system are modeled with a mechanical device capable of performing a similar function.  

Evolution decided the placement and sensitivity of the organs used in organic vision, 

while the system designer of the robotic solution has greater flexibility in choosing 

components that best meet objectives. 

A. ORGANIC MODEL OF VISION SYSTEMS 

A simple model of an organic vision system includes two sensors, the eyes, 

connected to the brain by a tightly packed bundle of nerves.  For this application, the 

design priority is to simplify the control and processing functions such that computation 

demands are within the capabilities of the onboard UGV processor.  Therefore, in this 

model, the two eyes will remain stationary with respect to each other so that the acuity of 

the image is a function of: (1) the number of organic sensing cells, (2) field of view 

(FOV), and (3) distance to the object. 

 

Figure 1.   Diagram of simplified Organic Vision System 

Figure 1 shows that image correlation can be performed in the area of FOV overlap. 
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1. Sensitivity of the Human Eye 

The human eye varies from person to person based on an individual’s unique 

body structure.  To compare the acuity between differing sets of eyes, a standard, referred 

to as the Snellen Acuity, was adopted by eye care professionals.  Under this standard, the 

average human eye has 20/20 vision with approximately the following characteristics: 

 
 Concentration of cones on retina is 2180,000 mm at center and decreases 

to less than 25000 mm as the image approaches the periphery of the field 
of view [4]. 

 Depth of the eye, from cornea to retina, is approximately 20 mm [5]. 

 

Similarly, the ability of the eye to focus and the FOV will be unique based on the 

individual.  Because the concentration of cones in the eye decreases as the image extends 

outward, only a small FOV has a high degree of acuity.  Research at the University of 

Texas Austin goes into much greater detail on this subject.  It discusses how the 

information perceived using the eye is processed to develop a composite picture, 

however, the useful concept for this project is that only a small portion of a human’s 

FOV is at high resolution [6]. 

 

Figure 2.   Perceived variable resolution of fixed image (from [6]) 

The first image of Figure 1 shows that the human eye has a high resolution 

response under only a small FOV.  The second image is a visual representation of points 

in the image that were focused on by a test subject to gather the full image at full 

resolution. 
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2. Calculated Acuity of the Human Eye 

For the calculated resolution of the human eye, we will only consider 

concentration of cones on the retina since they are the receptors that distinguish color and 

most closely correlate to the pixels of a modern CMOS sensor.  Figure 3 shows that the 

FOV for maximum resolution is approximately10-12 degrees.  Outside of that FOV the 

resolution remains consistently low. 

 

Figure 3.   Relative Concentration of Cones in eye by FOV (from [7]) 

Therefore, given that the depth of the eye is approximately 20 mm and there are 

approximately two general areas of resolution, given by cone concentrations of 

for high resolution and 2180,000 cones mm 25,000 cones mm for low resolution, see 

Figure 4, the actual resolution of the eye can be calculated from the following: 

 

Figure 4.   Diagram of optical acuity (from [7]) 

2 2
2# sensing areas (20 tan )

3 3

C C
r mm    

 (1.1) 

Equation 1.1 assumes equal distribution of cones (C) over the area of FOV is divided by 

three to account for red, yellow, and green cones and is then sensed by the retina .  2( )r
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It can then be calculated that for an 11 degree FOV, high resolution sight 

( ) will use approximately 0.7 million sensing areas, like pixels in a 

digital camera, and low resolution sight (

2180,000 cones mm

25,000 cones mm ) will use 18,000 sensing 

areas. 

B. MACHINE MODEL OF VISION SYSTEMS 

A machine model of a vision system, Figure 5, is comparable to that of an organic 

vision system in that it has two primary sensors, transmissions lines from the sensors to 

the main processor, and a central processing unit to evaluate incoming data.  The most 

important feature for this application is the sensitivity and acuity of the sensor employed 

in object identification and ranging.  Greater sensitivity equates to a better ability to 

discern variations in color but comes at a cost of increased calculations per image.  

Similarly, increased acuity, more pixels per image, allows for better range resolution but 

at a cost of increased calculations when processing the images. 

 

Figure 5.   Diagram of Machine Vision System 

1. Sensitivity and Acuity of Available CMOS Cameras 

Advancements in fabrication technology has brought the acuity of commercially 

implemented sensors from 0.3 Megapixels in 1981 [8] to a height of 60 Megapixels that 

is scheduled for release in 2009 [9].  Similarly, sensitivity of image capture has improved 

as more capable onboard processing made it possible to perform real time calculations on 

images with higher bits per pixel ratios.  Ideally, only the most sensitive and highest pixel 
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ratio sensors would be employed on the UGV in order to achieve the best range accuracy.  

In order to provide real time processing for a UGV, the sensor must not overwhelm the 

onboard processor with an abundance of information.  The following sections will show 

that a reasonable level of accuracy can be obtained using sensors of relatively low 

resolution. 

2. Calculation of Robotic Vision Acuity 

Equation 1.1 calculated the number of sensing areas used by the eye for an image 

based on FOV, which is equivalent to the pixels stored in an image.  For robotic vision, 

the number of pixels in the image is given by the characteristics of the installed sensor 

and the accuracy of the range calculation is determined using geometry. 

 

 

Figure 6.   Diagram of angles used in Machine Vision range calculation 
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Figure 7.   Diagram for calculation of interior angle 1  of range triangle 

 

 

Figure 8.   Diagram for calculation of interior angle 2  of range triangle 
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From the diagrams of Figures 6, 7, and 8, the following can be said about the 

interior angles that are made by the triangle formed from an object in the image plane and 

the two focal points of the installed cameras.   

 1
1 1

1
1 90 (1 ) 90 ( )

2 2

L L

T T

        
  (1.2)

 

 2
2 2

1
2 90 ( ) 90 ( )

2 2 offset

R R

T T

         
 (1.3)

 

 1 2

1 1
3 180 1 2 ( ) ( )

2

L R

T T
         

2   (1.4)
 

The variables , for the left sensor, andL R , for the right sensor, refer to the 

number of pixels that the object being ranged is from the leftmost side of the image 

frame.   is then the total number of horizontal pixels that appear in the image.  From the 

ratio between L or R and T, the interior angles can be calculated.  

T

Using the relationships from Equations 1.2, 1.3, and 1.4, the minimum range that 

the system can determine is,  

 3
min

2 tan( )2

D
R 

 (1.5)

 

Then, looking more closely at the triangle formed by the object and the two focal points 

of the cameras and applying the Law of Sines, the range to the object can be calculated. 

2 1 3

sin( 1)sin( 2)
R sin( 1) sin( 2)

sin( 3)object D D D  
  

  (1.6)
 

This range calculation takes into account many variables and can be applied in the case 

where the sensor is moved in order to lengthen the value of as is depicted in Figure 9.   3D
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Figure 9.   Diagram for range calculation after sensor repositioning. 

Moving the sensor platform to lengthen the value of can significantly increase 

the utility of stereo vision by extending its effective range.  However, you should also see 

in Figure 9, that repositioning the platform changes the point at which the calculated 

range is measured from.  In some instances, as is shown in Figure 9, the reference point 

from which range is calculated does not even lie on the robot platform.  Another issue 

that arises with the range calculation of Equation 1.6 after the sensor platform is 

repositioned, is that multiple calculations of sine functions must be made before a range 

is determined.  Since there is inherent error in each of the angle and range measurements 

of Equation 1.6, the determined range will have four individual sources of error making it 

less reliable.   

3D
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A solution to these problems is to simplify parameters so that the entire sensor is 

evaluated using similar triangle techniques.  By doing this, you will see that the source of 

measurement error reduces to one parameter, actual range, with all other parameters 

remaining constant.  It will also fix the point from which range is calculated to the same 

point on the robot at all times.  This is shown in the next section as Equation 1.8.  The 

constant of Equation 1.8 will be determined experimentally using a best fit of measured 

data in Chapter IV. 



C. FURTHER SIMPLIFICATION OF STEREO VISION RANGE 
CALCUALTION 

To simplify the control requirements of sensor operation, we eliminate the 

dynamic movements that normally accompany organic vision.  To do this, two cameras 

are mounted on a circuit board which eliminates the variation between the orientation of 

the respective cameras and fixes the value of .  Similarly, fixed focal length lenses are 

used.  Once the lenses are installed and adjusted such that both cameras use the same 

FOV, the range (R) to an object in the image plane is calculated using a scaled ratio of 

the total number of horizontal pixels (C) divided by the horizontal shift between the left 

image (L) and right image (R).   

3D

 

Figure 10.   Range Calculation using Similar Triangles 

 
3 ( )

R R F
L RD W T T





 (1.7)

 

Solving for R and rearranging we have: 

 3
( tan )

1
,   where cons t

D FT
R C C

L R W
 

  (1.8)
 

The values for distance between sensors (D3), focal length (F), total number of pixels 

across width of sensor (T), and width of sensor (W) that make up the constant (C) are 

depicted in Figure 10. 
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D. DATA PROCESSING TO OBTAIN POSITION INFORMATION USING 
MACHINE SYSTEM  

Now that range has been determined mathematically, the problem becomes one of 

discerning individual objects from the recorded image frame from both cameras and 

matching the objects between images.  This is where the greatest processing load is put 

on the UGV processor.   

1. Object Recognition and Ranging 

For object identification, two dimensional cross correlation must be performed for 

each object in one image with all the other objects in the other until a match is found or it 

can be determined that there is not a sufficient match.  The steps to perform this function 

can be found in Appendix B and C and are discussed in detail in Chapter IV.  Following 

this, a simple conversion from cylindrical to polar coordinates is performed to map out 

the image space in Cartesian coordinates. 

2. Scene Mapping 

Stored images retrieved from the onboard cameras provided relative bearings and 

ranges to objects in the FOV.  To make sense of this in the earth frame, we need to 

transform from the sensor frame, We simply convert from cylindrical coordinates to 

Cartesian coordinates and assign a GPS value to the area of each object, see Figure 11. 

 

Figure 11.   Converting range data to Cartesian coordinates 
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The conversion from cylindrical to Cartesian coordinates is simply done by the following 

equations: 

 cos( )x r   (1.9) 

 sin( )y r   (1.10) 

   (1.11) z z

To simplify the problem of mapping a curved coordinate plane to a square grid pattern 

we assume that all objects are flat and fall on the plane that is exactly r distance away 

from the sensor.  This is a good assumption for objects that fill only small angles in the 

FOV or are far away.  Since, we expect the object identified in this application to be both 

relatively close and fill a significant portion of the FOV, the mapped scene will contain 

range error.  That range error will mostly be a function of object thickness that cannot be 

measured directly using the ranging techniques described within this thesis.  However, 

multiple measurements on the same object from different angles may provide the 

additional information to determine object depth as well as range. 

Finally, the x, y, z coordinates are referenced to the current position of the robot 

platform to give GPS coordinates of the object.  The code used to perform this conversion 

is provided in Appendix D. 

 13
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III. EXPERIMENTAL DESIGN 

The implementation of this concept was done such that it could be easily 

incorporated into the existing architecture of the NPS Applied Physics robotics lab.  After 

careful evaluation, it was determined that the constraint this requirement imposed was 

that it be compatible with the onboard Rabbit BL2600 processor. 

A. SENSOR 

The primary sensor for this application is a commercially available camera 

module that is capable of RS-232 communication through a UART interface.  It is a 

standalone device that is designed to be easily implemented in electronic designs.  

However, to better suit the particular requirements of this project, the manufacturer’s 

installed lens was replaced with one that had an adjustable FOV and an interface board 

was constructed due to the voltage differences of the Rabbit processor and camera 

module.   

1. Camera 

The primary sensor used for this evaluation was a C328R Camera Module using 

an OmniVision VGA color digital CameraChip [10].  The Omnivision color digital  

 

Figure 12.   C328R Camera Module 

 

Camera Chip is a CMOS sensor with on chip image processing, see Figure 12.  The 

additional hardware adds onboard memory and converts the interface to UART for 
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simplified command based image processing and transfer.  Sensor Options include 

grayscale or color images up to 16 bit and a resolution of raw images up to 160x120 

pixels [11]. 

2. Lens 

The lens was chosen to provide selectable focal lengths between 4 to 9 mm so that 

narrow and wide FOVs could be evaluated.  This lens also provides a convenient 

mounting location when the internal iris is removed, as can be seen in Figure 13. 

 

Figure 13.   Variable Focal Length Lens 

3. Circuit Design 

One configuration issue that came up during the initial stages of sensor evaluation 

and testing was that of differing signal requirements for the camera and the Rabbit 

processor.  The initial review of documentation for the C328R camera module indicated 

that specifications for the device were for a UART interface using an RS-232 

communication protocol.  The expectation was that the transmit and receive wires would 

be directly connected to the appropriate fittings for the desired channel to be used; 

however, figures in the C328R user manual indicated that the camera module actually 

monitored for TTL signals.  The difference between the two is that one is the inverse of 

the other as shown in Figure 14.   
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Figure 14.   Communication protocol for Rabbit processor and C328R camera (from [12]) 

To perform this conversion, a simple Schmitt Trigger circuit was designed and integrated 

into the mounting platform for the sensor.  The circuit effectively separates the reference 

voltages of the two electronic devices and inverts the signal using LM6132 Rail-to-Rail 

I/O Operational Amplifier.  The circuit diagram is shown in Figure 15. 

 

 
 

Figure 15.   RS-232 to TTL Signal Conversion Circuit (See diagram in Appendix F) 

B. PHYSICAL CONSTRUCTION 

Construction of the test platform to evaluate this sensor configuration required a 

stable platform, see Figure 16,  and hard mounts for fixing the relative distance ( ) 

between left and right camera modules.  Also, to maintain high signal quality during 

communication between hardware devices, the prototyped circuit boards were etched 

after verification that they met design parameters.  This step became integral in 

maintaining communications at the maximum allowed rate for the camera modules at 

115,200 bps. 

3D
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1. Sensor Platform 

 

Figure 16.   Sensor Platform 

Maintaining the relative positions of the two stereo vision sensors constant is very 

important if the simplified equation from 1.8 is to be implemented.  Figure 16 shows how 

removing the lens iris provided a mounting location for the attached camera module.  

Also, the circuit board that was used to convert the command and data signals between 

the Rabbit Processor and the C328 camera module made an ideal surface mount to 

maintain  constant. 3D

2. Power Bus 

 

Figure 17.   Power Bus 

The circuitry built into the sensor platform, from Figure 15, steps voltage down 

from the supply voltage to power the camera at 3.3 V and the communications lines at 
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5V, however, the integrated sensor platform included a Rabbit processor and 

communications modem.  This leads to the need to design a power bus.  The power bus is 

simply a set of three 12V voltage regulators with capacitors across the output to minimize 

fluctuations during times of high but short current demand.  It allows each component to 

be turned on separately during startup and, more importantly, allowed the cycling of 

power to individual devices if required for troubleshooting. 

3. Communications Bus 

 

Figure 18.   Communications Bus 

Early in the design phase, it was apparent that the onboard processing of the 

Rabbit was not sufficient to handle the computations required for cross correlation of 

digital images, so a communications bus was added to transfer data from the camera 

modules to a stand-alone laptop.  Based on the mobile design of the sensor assembly, the 

laptop could be connected wirelessly and perform the necessary computations remotely 

before sending commands back to the UGV control unit. For sensor implementation in 
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the UGV, it might become necessary to attach the laptop to the UGV chassis so it can 

perform all the heuristic algorithm computations on a device with greater processing 

speed and maintain the assignment of hardware control and monitoring functions to the 

Rabbit. 

4. Assembly 

 

Figure 19.   Sensor Housing 

A plastic enclosure was constructed to protect and house the components of the 

stereo vision sensor unit.  When implemented as a sensor on the UGV, only the sensor 

platform of Figure 16 is necessary but, during testing, a Rabbit processor and router were 

required to transfer data to the laptop.  The arrangement of the components is shown in 

Figure 19 and assembled structure is shown in Figure 20. 

 

Figure 20.   Stereo Vision Data Acquisition Module 
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IV. EXPERIMENTAL RESULTS 

A. OBJECT IDENTIFICATION 

Object recognition is well developed for a person who uses vision as a significant 

method to sense their environment.  But this process is not easily quantified using lines of 

code and streaming data.  For this, a heuristic process was implemented that first 

identified images in each image frame and saved those images as arrays with pixel values 

of either one or zero.  Then the arrays defining the identified images were cross 

correlated to identify matches.  The heuristic in this application used the MATLAB 

operator “contour.m,’ which establishes boundaries for objects along lines of similar 

levels of pixel intensity.  To speed up processing, each pass of the contour.m operation 

across the image applies a series of user generated contour maps that were found to best 

identify objects for the local environment.  The user generated contour maps define the 

bounds that contour.m function follows when it creates object boundaries and were 

determined using trial and error for the lab environment.  In any other environment, the 

user generated contour maps may or may not render arrays that result in correlated 

objects; however, the automatic generation of ideal contour mapping based on 

environment is not required to demonstrate the functionality of stereo vision and could be 

an area of future research.  Finally, the portions of the image that produce range results 

are deleted from the image prior to subsequent passes.   

 

Figure 21.   Example of Stereo Vision Image Capture 
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Figure 21 shows a raw image with two objects placed approximately 4 feet from 

the sensor.  Figure 22 then shows how the first pass identifies a set of objects that could 

correlate between the two image frames. 

 

 

Figure 22.   Object Identification using edge detection of pixel intensity level 

Next, the arrays of objects for each image frame are cross correlated to identify 

matches.  Figure 23 shows an instance where an object piece is correlated between the 

left and right image frames.  Observe that the left image, in this case the 11th object array 

created using contour.m, has a ‘high’ correlation value with the 8th object array of the 

right image.  The definition of ‘high’ correlation is subjective and was defined to be 0.7 

to 1.3 of the value for self-correlation.  This window for correlation values was found to 

provide an acceptable probability of correlation while preventing false correlation. 
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Figure 23.   Object Cross Correlation 

The code used to perform this operation is provided in Appendix B. 

B. RANGE ACCURACY 

Now that the object pieces in each image frame are correlated, it is simple to 

determine range.  The object piece from the left image frame is self correlated and the x 

coordinate of the maximum value is stored as the L position of that object.  Next, the 

object pieces are cross correlated and the x coordinate of the maximum value is stored as 

the R position of the object.  If the constant C from Equation 1.8 is known, and the 

relationships of Figure 10 are applicable then range is quickly determined.  Figure 23 also 

shows that range is calculated at the same time the images are correlated using a best fit 

line described in the following paragraph.   
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Determination of C, by estimating a best fit line, was done by performing a series 

of measurements on objects placed at intervals from two to thirteen feet as shown in 

Figure 24.  The code used to perform these measurements is included as Appendix G.  

The graph of Figure 24 shows that a best fit line for the data points has a slope of 293 

Feet per inverse pixel separation and an intercept of -0.7 Feet.   

 

Figure 24.   Table of Range Calculations for Objects with Linear Best-Fit Line 

Figure 25 is another plot of the data points from Figure 24.  In this graph, a 

quantized-best-fit line takes into account finite pixel ratios and replaces the linear best fit 

line.  If you zoom in on the plot at ranges near 9 feet, Figure 26, you can clearly observe 

that the quantized-best-fit line accounts for the range deviation that occurred with the 

linear-best-fit equation. 
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Figure 25.   Range VS. Pixel Separation (with Quantized Best-Fit Line) 

 

Figure 26.   Range VS. Pixel Separation (zoom in on Figure 25) 

When quantization is introduced, a range window develops for each value of pixel 

separation.  As can be observed in Figure 25 and 26, that window grows in size as the 

separation between pixels is reduced.  Therefore, there is increased error in range 
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calculations the further away from the object that the UGV is.  Acceptable range error is 

subjective; however, by extrapolating Figure 25, range can be determined up to about 40 

feet with 80% accuracy.  

 

 

Figure 27.   Object Range Determination Outside of Laboratory  

Figure 27 shows that an object that is physically at a range of 38.76 feet, exactly on the 

line between pixel shift points, could have an error in pixel shift measurement (L-R) of 

one unit that causes it to register either 45.87 or 33.42 feet.  In either case, the measured 

range is within 20% of actual. 
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C. SCENE MAPPING 

Mapping the objects that were identified in the scene and correlated for range is a 

fairly simple process.  Figure 27 shows how the equations of Chapter II paragraph B.2 

were implemented in the Matlab code from Appendix D to map the images of the fire 

extinguisher, water bottle, and rear wall of the room as pictured.  

 

Figure 28.   Scene Mapping Results 

The sensor was placed 15 feet from the wall with the fire extinguisher and water bottle on 

a platform approximately 8 feet away.   

The simple scene mapping algorithm created for this project was successful; 

however, there are observable errors that occur such as the object that is identified in 

Figure 27 to be at approximately 2 feet from the sensor.  Similarly, there is a distant 

object, not shown on the figure that would be placed an additional 25 feet beyond the 

wall.  Removing these measurement errors from a stored database could be done by 

comparing the history of measurements and maps created as the UGV navigates a space 

and ignoring any object that does not periodically map to the same position within the 

error of measurement, as shown in Figure 25. 
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V. FUTURE WORK AND CONCLUSIONS 

A. FUTURE WORK 

The stereo vision system developed in this report is not very mature and could 

benefit from an assortment of future research or upgrades.  They include things such as 

upgraded sensors, improved heuristics for object identification, and the development of a 

database for storage and recovery object information.  These areas of future work have 

the greatest potential of moving the sensor that was successfully developed and tested in 

the laboratory to one that could be successfully employed on a UGV. 

1. Implementation of Better Cameras 

A sensor that was purchased, but not implemented in this design, was a 1.3 

Megapixel Micron Camera on Chip device.  It would attach to the lens mounts exactly in 

the same way.  The main difference in this upgraded camera is not that it has better pixel 

resolution but that it transmits data on 8 channels, so image transmission occurs much 

more quickly.  The downside of this upgrade is that it will take up more ports on the 

Rabbit unless an interface is created to change its output to serial but then, if that 

happens, it becomes just like the C328R.  

2. Develop Heuristic Hierarchy for Dynamic Environments 

When the sensor was moved from the lab to alternate environments, the results 

that were obtained in the controlled environment of the lab were not readily obtained 

without manipulation of the user defined contour mapping array.  However, once a 

contour mapping array was found that worked to identify an object in its environment, it 

continued to work.  For that reason, it would be useful to develop a catalog of user 

defined contour mapping arrays that are intelligently chosen based on the sensed 

environment.  

3. Database Storage and Recall 

Ultimately, the goal of an autonomous UGV is to operate and interact with its 

environment.  For that to happen, it must be capable of recognizing objects that leave the 
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immediate area and be able to return later to reacquire the same object.  For that to 

happen, the UGV requires a database for the storage of object information and 

characteristics. 

B. CONCLUSION 

The tools to record images using two cameras for stereo vision were successfully 

created with results following what was predicted in Figure 25, where range is a function 

of pixel separation between peaks in the cross-correlation of object arrays.  Similarly, the 

heuristic process that employed user defined contour maps for object identification was 

sufficient to pick out objects from a controlled lab experiment in which the test objects 

are uniform in color and contrast significantly from the background.   

Acceptable range error for a stereo vision system is a function of user preference 

but it was shown that the range error increases at an increasing rate as object are moved 

farther away.  To improve range error, the user could pick a sensor with a higher pixel 

count because the calculated range was dependent on the pixel shift (L-R).  A sensor with 

more pixels would reduce the error for an object at a given range.  

When the sensor was moved from the controlled environment of the lab to an 

environment that contained more objects and color textures, such as an open courtyard, 

the number of false detects and failure to detect on objects increased.  Similarly, as the 

complexity of the images increased resulting in the number of objects being compared 

using cross-correlation increased, processing the images took more time.  Although these 

problems did not contradict the observations made in the lab, it was apparent that a more 

developed system to identify objects is required for autonomous operations. 

1. Recommendations Prior to Utilization on UGV 

Despite the setbacks observed as image complexity increases, the C328 camera 

module performed as predicted and could be used on a UGV for scene mapping in simple 

environments.  The sensor is small, lightweight, and fully compatible with the Rabbit 

processor used on NPS Physics Department Robotics Lab platforms.  Prior to 

implementation, it is recommended that improvements in object identification and the 
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development of an object database for storing and recalling the position of objects as they 

are identified be made in order for the sensor to be effective.   Similarly, the object 

database should be called on by the processor to aid in the selection of contour maps that 

are likely to identify objects predicted to be in the field of view. 
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APPENDIX A – MASTER MATLAB CODE 

% Keith Baravik 
% Naval Post Graduate School Thesis 2009 
% Main Program file for Stereo Vision 
  
%% Establish Global variables 
clear all 
NUM_PIXEL_THRESHOLD =20; % # points required to be considered as 
possible object 
% R-G-B pixel maps 
PR1(1:120,1:160)=0;PR2(1:120,1:160)=0;PR3(1:120,1:160)=0; 
PL1(1:120,1:160)=0;PL2(1:120,1:160)=0;PL3(1:120,1:160)=0; 
% Greyscale pixel map 
  
%% Gather Digital Data from Camera (or import files for testing) 
IMPORT_DATA_FILES 
% convert to grayscale for test 
PL1=rgb2gray(picL); 
PR1=rgb2gray(picR); 
%% Process image files for stereo vision 
IDENTIFY_OBJECTS 
COMPARE_MATRICES 
%    clear RobjectR 
%    clear RobjectL 
%    clear RtempObj 
%    clear L_OBJECT 
%    clear R_OBJECT 
%    clear cL 
%    clear hL 
%    clear cR 
%    clear hR 
%IDENTIFY_OBJECTS 
%COMPARE_MATRICES 
%    clear RobjectR 
%    clear RobjectL 
%    clear RtempObj 
%    clear L_OBJECT 
%    clear R_OBJECT 
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APPENDIX B – OBJECT RECOGNITION MATLAB CODE 

% Keith Baravik 
% Naval Post Graduate School Thesis 2009 
% Identify Objects in images 
  
CONTOUR_MAP=[5 65 95 150 190 256]; 
subplot(1,2,1) 
PL1a = medfilt2(PL1,[2 2]); %filters out noise 
PL1b = medfilt2(PL1a,[2 2]); %filters out noise 
PL1A = medfilt2(PL1b,[2 2]); %filters out noise 
[cL,hL] = contourf(PL1A,CONTOUR_MAP); clabel(cL,hL), colorbar 
subplot(1,2,2) 
PR1a = medfilt2(PR1,[2 2]); %filters out noise 
PR1b = medfilt2(PR1,[2 2]); %filters out noise 
PR1A = medfilt2(PR1b,[2 2]); %filters out noise 
[cR,hR] = contourf(PR1A,CONTOUR_MAP); clabel(cR,hR), colorbar 
[a,LengthMat]=size(cR); 
  
n=1; 
ROBJ=1; 
disp('Right Image') 
while n<(LengthMat-1) 
    %if cR(2,n)==1 
    %    n=3; 
    %end 
    for J=(n+1):(cR(2,n)+n) 
        if isnan(cR(1,J))==1 
            cR(1,J)=(cR(1,J-1)+cR(1,J+1))/2; 
            cR(2,J)=(cR(2,J-1)+cR(2,J+1))/2; 
        end 
    end 
    for J=(n+1):(cR(2,n)+n) 
        RobjectR{ROBJ}(1,J-n)=cR(1,J); 
        RobjectR{ROBJ}(2,J-n)=cR(2,J); 
    end 
    RobjectR{ROBJ}(3,1)=cR(1,n); 
    RobjectR{ROBJ}(3,2)=cR(2,n); 
    RobjectR{ROBJ}(3,1:2); 
    n=n+cR(2,n)+1; 
    ROBJ=ROBJ+1; 
end 
     
[a,LengthMat]=size(cL); 
n=1; 
ROBJ=1; 
disp('Left Image') 
while n<(LengthMat-1) 
    %if cR(2,n)==1 
    %    n=3; 
    %end 
    for J=(n+1):(cL(2,n)+n) 
        if isnan(cL(1,J))==1 
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            cL(1,J)=(cL(1,J-1)+cL(1,J+1))/2; 
            cL(2,J)=(cL(2,J-1)+cL(2,J+1))/2; 
        end 
    end 
    for J=(n+1):(cL(2,n)+n) 
        RobjectL{ROBJ}(1,J-n)=cL(1,J); 
        RobjectL{ROBJ}(2,J-n)=cL(2,J); 
    end 
    RobjectL{ROBJ}(3,1)=cL(1,n); 
    RobjectL{ROBJ}(3,2)=cL(2,n); 
    RobjectL{ROBJ}(3,1:2); 
    n=n+cL(2,n)+1; 
    ROBJ=ROBJ+1; 
end     
     
%% Creat MAT for objects in LEFT image  
figure 
MAT_L(1:120,1:160)=0; 
[z,Lindexmax]=size(RobjectL); 
for Lindex=1:Lindexmax 
    
L_OBJECT{Lindex}(:,:)=poly2mask(RobjectL{Lindex}(1,:),RobjectL{Lindex}(
2,:),120,160); 
    MAT_L=MAT_L(:,:)+L_OBJECT{Lindex}(:,:); 
end 
    imagesc(MAT_L); 
    drawnow; 
             
%% Creat MAT for objects in RIGHT image 
figure 
MAT_R(1:120,1:160)=0; 
[z,Rindexmax]=size(RobjectR); 
for Rindex=1:Rindexmax 
    
R_OBJECT{Rindex}(:,:)=poly2mask(RobjectR{Rindex}(1,:),RobjectR{Rindex}(
2,:),120,160); 
    MAT_R=MAT_R(:,:)+R_OBJECT{Rindex}(:,:); 
end 
    imagesc(MAT_R); 
    drawnow; 
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APPENDIX C – RANGE CALCUALTION MATLAB CODE 

% Keith Baravik 
% Naval Post Graduate School Thesis 2009 
% Identify Objects in images 
  
CONTOUR_MAP=[5 65 95 150 190 256]; 
subplot(1,2,1) 
PL1a = medfilt2(PL1,[2 2]); %filters out noise 
PL1b = medfilt2(PL1a,[2 2]); %filters out noise 
PL1A = medfilt2(PL1b,[2 2]); %filters out noise 
[cL,hL] = contourf(PL1A,CONTOUR_MAP); clabel(cL,hL), colorbar 
subplot(1,2,2) 
PR1a = medfilt2(PR1,[2 2]); %filters out noise 
PR1b = medfilt2(PR1,[2 2]); %filters out noise 
PR1A = medfilt2(PR1b,[2 2]); %filters out noise 
[cR,hR] = contourf(PR1A,CONTOUR_MAP); clabel(cR,hR), colorbar 
[a,LengthMat]=size(cR); 
  
n=1; 
ROBJ=1; 
disp('Right Image') 
while n<(LengthMat-1) 
    %if cR(2,n)==1 
    %    n=3; 
    %end 
    for J=(n+1):(cR(2,n)+n) 
        if isnan(cR(1,J))==1 
            cR(1,J)=(cR(1,J-1)+cR(1,J+1))/2; 
            cR(2,J)=(cR(2,J-1)+cR(2,J+1))/2; 
        end 
    end 
    for J=(n+1):(cR(2,n)+n) 
        RobjectR{ROBJ}(1,J-n)=cR(1,J); 
        RobjectR{ROBJ}(2,J-n)=cR(2,J); 
    end 
    RobjectR{ROBJ}(3,1)=cR(1,n); 
    RobjectR{ROBJ}(3,2)=cR(2,n); 
    RobjectR{ROBJ}(3,1:2); 
    n=n+cR(2,n)+1; 
    ROBJ=ROBJ+1; 
end 
     
[a,LengthMat]=size(cL); 
n=1; 
ROBJ=1; 
disp('Left Image') 
while n<(LengthMat-1) 
    %if cR(2,n)==1 
    %    n=3; 
    %end 
    for J=(n+1):(cL(2,n)+n) 
        if isnan(cL(1,J))==1 
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            cL(1,J)=(cL(1,J-1)+cL(1,J+1))/2; 
            cL(2,J)=(cL(2,J-1)+cL(2,J+1))/2; 
        end 
    end 
    for J=(n+1):(cL(2,n)+n) 
        RobjectL{ROBJ}(1,J-n)=cL(1,J); 
        RobjectL{ROBJ}(2,J-n)=cL(2,J); 
    end 
    RobjectL{ROBJ}(3,1)=cL(1,n); 
    RobjectL{ROBJ}(3,2)=cL(2,n); 
    RobjectL{ROBJ}(3,1:2); 
    n=n+cL(2,n)+1; 
    ROBJ=ROBJ+1; 
end     
     
%% Creat MAT for objects in LEFT image  
figure 
MAT_L(1:120,1:160)=0; 
[z,Lindexmax]=size(RobjectL); 
for Lindex=1:Lindexmax 
    
L_OBJECT{Lindex}(:,:)=poly2mask(RobjectL{Lindex}(1,:),RobjectL{Lindex}(
2,:),120,160); 
    MAT_L=MAT_L(:,:)+L_OBJECT{Lindex}(:,:); 
end 
    imagesc(MAT_L); 
    drawnow; 
             
%% Creat MAT for objects in RIGHT image 
figure 
MAT_R(1:120,1:160)=0; 
[z,Rindexmax]=size(RobjectR); 
for Rindex=1:Rindexmax 
    
R_OBJECT{Rindex}(:,:)=poly2mask(RobjectR{Rindex}(1,:),RobjectR{Rindex}(
2,:),120,160); 
    MAT_R=MAT_R(:,:)+R_OBJECT{Rindex}(:,:); 
end 
    imagesc(MAT_R); 
    drawnow; 
% Compare matrices and Range using Cross Correlation 
  
disp('COMPARING MATRICES') 
%check ach matrix against all others from other image for correlation 
CORR_NUMBER=1; 
REMOVE_MAT_L(1:120,1:160)=0; 
REMOVE_MAT_R(1:120,1:160)=0; 
for N=1:(Lindexmax-1) 
    % 
    [SELF_COR,X_left_img]=max(max(xcorr2(double(L_OBJECT{N})))); 
    for M=1:(Rindexmax-1) 
        %[V,Xrng]= 
        
[CROSS_COR,X_right_img]=max(max(xcorr2(double(L_OBJECT{N}),double(R_OBJ
ECT{M})))); 
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        if 
(sum(sum(L_OBJECT{N}(:,:)))<8000)&&(sum(sum(R_OBJECT{M}(:,:)))<8000)&&(
sum(sum(L_OBJECT{N}(:,:)))>50)&&(sum(sum(R_OBJECT{M}(:,:)))>50) 
        if (CROSS_COR>(SELF_COR*0.7))&&(CROSS_COR<(SELF_COR*1.3))&& 
(sum(sum(L_OBJECT{N}(:,:))))>(sum(sum(R_OBJECT{M}(:,:)))*0.7)&&(sum(sum
(L_OBJECT{N}(:,:))))<(sum(sum(R_OBJECT{M}(:,:)))*1.3) 
            disp('CORRELATE') 
            Range=X_right_img-X_left_img; 
            
[SELF_COR,Y_left_img]=max(max(xcorr2(double(L_OBJECT{N}')))); 
            
[CROSS_COR,Y_right_img]=max(max(xcorr2(double(L_OBJECT{N}'),double(R_OB
JECT{M}')))); 
            if Range>0 
            figure %new figure 
            
            subplot(1,3,1) 
            imagesc(L_OBJECT{N}) 
            Z={'Left Image Index Number =' num2str(N)}; 
            xlabel(Z) 
            subplot(1,3,3) 
            imagesc(R_OBJECT{M}) 
            Z={'Right Image Index Number =' num2str(M)}; 
            xlabel(Z) 
            subplot(1,3,2) 
            mesh(xcorr2(double(L_OBJECT{N}),double(R_OBJECT{M}))); 
            Z={'Range =' num2str(Range)}; 
            xlabel(Z) 
            title('Object Cross Correlation between left and Right 
images') 
            CORR_NUMBER = CORR_NUMBER+1; 
            REMOVE_MAT_L=L_OBJECT{N}(:,:)+REMOVE_MAT_L(:,:); 
            REMOVE_MAT_R=R_OBJECT{M}(:,:)+REMOVE_MAT_R(:,:); 
            end 
        end 
        end 
    end 
end 
figure 
REMOVE_MAT_L2=(sign(imcomplement(REMOVE_MAT_L*256))+1)/2; 
REMOVE_MAT_R2=(sign(imcomplement(REMOVE_MAT_R*256))+1)/2; 
subplot(1,3,2) 
imshow(REMOVE_MAT_L2); 
title('Remove these pixels from base image and start again') 
subplot(1,3,1) 
PL1=PL1.*uint8(REMOVE_MAT_L2); 
imshow(PL1) 
subplot(1,3,3) 
PR1=PR1.*uint8(REMOVE_MAT_R2); 
imshow(PR1) 
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APPENDIX D – SCENE MAPPING MATLAB CODE 

%MAP_TO_GRID 
 
L=size(Grid_Piece_Range); 
 
subplot(3,3,2) 
imshow(picL); 
title('Stereo Vision Mapping of Objects'); 
subplot(3,3,8) 
axis([-20 20 0 20]); 
title('Range Plot of Correlated Pixels'); 
hold on 
for p=1:L(2) 
    for q=81:-1:2 
        plot([(q-81)*Grid_Piece_width{p}(q)*(261/Grid_Piece_Range(p)-
1.58)*cosd(11)/160,(q-82)*Grid_Piece_width{p}(q-
1)*(261/Grid_Piece_Range(p)-
1.58)*cosd(11)/160],[(261/Grid_Piece_Range(p)-
1.58),(261/Grid_Piece_Range(p)-1.58)],'-b','LineWidth',4); 
    end 
    for q=1:81 
        plot([abs(q)*Grid_Piece_width{p}(q)*(261/Grid_Piece_Range(p)-
1.58)*cosd(11)/160,abs(q+1)*Grid_Piece_width{p}(q+1)*(261/Grid_Piece_Ra
nge(p)-1.58)*cosd(11)/160],[(261/Grid_Piece_Range(p)-
1.58),(261/Grid_Piece_Range(p)-1.58)],'-b','LineWidth',4); 
    end 
    
end 
subplot(3,3,5) 
imshow(REMOVE_MAT_L2); 
title('Remove these pixels from base image and start again') 
  
figure 
axis([-10 10 0 20]); 
title('Range Plot of Correlated Pixels'); 
hold on 
for p=1:L(2) 
    for q=81:-1:2 
        plot([(q-81)*Grid_Piece_width{p}(q)*(261/Grid_Piece_Range(p)-
1.58)*cosd(11)/160,(q-82)*Grid_Piece_width{p}(q-
1)*(261/Grid_Piece_Range(p)-
1.58)*cosd(11)/160],[(261/Grid_Piece_Range(p)-
1.58),(261/Grid_Piece_Range(p)-1.58)],'-b','LineWidth',4); 
    end 
    for q=1:81 
        plot([abs(q)*Grid_Piece_width{p}(q)*(261/Grid_Piece_Range(p)-
1.58)*cosd(11)/160,abs(q+1)*Grid_Piece_width{p}(q+1)*(261/Grid_Piece_Ra
nge(p)-1.58)*cosd(11)/160],[(261/Grid_Piece_Range(p)-
1.58),(261/Grid_Piece_Range(p)-1.58)],'-b','LineWidth',4); 
    end 
end 
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APPENDIX E – DYNAMIC C CODE 

// Dynamic C Code used to transfer data from camera to laptop 

#define CINBUFSIZE  4095 

#define COUTBUFSIZE 15 

#define FINBUFSIZE  4095 

#define FOUTBUFSIZE 15 

#define TCPCONFIG 1 

#memmap xmem 

#define PORT 23 

#use "dcrtcp.lib" 

tcp_Socket echosock; 

 //  Located at C:\DCRABBIT_9.62\Lib\tcpip\tpc_config.lib 

 //  #define _PRIMARY_STATIC_IP    "192.168.2.50" 

 //  #define _PRIMARY_NETMASK      "255.255.255.0" 

//   #define MY_NAMESERVER      "192.168.2.1" 

//   #define MY_GATEWAY         "192.168.2.1" 

//---------- VARIABLES ------------------------// 

const long baud_rate = 115200L; 

char buffer[2048]; 

char Line[12]; 

unsigned int cmd[3]; 

unsigned int rec[6]; 

char Picc[4000]; 
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int status,state,a,i,j,k,recRESP; 

unsigned long int T; 

unsigned long int To; 

//---------- MAIN PROGRAM --------------------// 

void main(){ 

brdInit(); //initialize board 

sock_init(); 

serCopen(baud_rate); 

serFopen(baud_rate); 

serMode(0); 

while(1) { 

//--------Continuous Loop inside MAIN PROGRAM 

tcp_listen(&echosock,PORT,0,0,NULL,0); 

sock_wait_established(&echosock,0,NULL,&status); 

sock_mode(&echosock,TCP_MODE_BINARY); 

while(tcp_tick(&echosock)) { 

sock_wait_input(&echosock,0,NULL,&status); 

if(sock_gets(&echosock,buffer,2048))strcpy(Line,buffer); 

// SYNC command received from laptop 

if(strncmp(Line, "L_SYNC", 4) == 0) 

{serCwrFlush(); serCrdFlush();To=MS_TIMER; 

while (1){recRESP=0; 

// sends SYNC command to camera 
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cmd[0] = 0x0DAA;cmd[1] = 0x0000;cmd[2] = 0x0000;  

if(recRESP==0){serCwrite(cmd,sizeof(cmd)); 

T=MS_TIMER;while((MS_TIMER-T)<200); 

for (i=0;i<6;i++){rec[i] = serCgetc();} // waits for start of response 

if(rec[0]==0xAA && rec[1]==0xE && rec[2]==0xD){recRESP=1;} 

if((MS_TIMER-To)>10000){sock_puts(&echosock,"L_SYNC FAILED\n"); break;} 

}  //ACK verified 

// waits for start of response 

if(recRESP==1) {while((rec[0]=serCgetc()) != 0xAA); 

for (i=1;i<6;i++){rec[i] = serCgetc();} // checks for SYNC command 

if(rec[0]==0xAA && rec[1]==0xD && rec[2]==0x00 && rec[3]==0x00 && 

rec[4]==0x00 && rec[5]==0x00) 

{cmd[0] = 0x0EAA;cmd[1] = 0x000D;cmd[2] = 0x0000; // sends ACK command 

serCwrite(cmd,sizeof(cmd)); 

sock_puts(&echosock,"L_SYNC COMPLETE\n"); 

strcpy(Line,"End"); 

break;}}}} 

if(strncmp(Line, "R_SYNC", 4) == 0) 

{serFwrFlush(); serFrdFlush(); To=MS_TIMER; 

while (1){recRESP=0; 

cmd[0] = 0x0DAA;cmd[1] = 0x0000;cmd[2] = 0x0000; // sends SYNC command 

if(recRESP==0){serFwrite(cmd,sizeof(cmd)); 

T=MS_TIMER;while((MS_TIMER-T)<200); 

for (i=0;i<6;i++){rec[i] = serFgetc();} // waits for start of response 
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if(rec[0]==0xAA && rec[1]==0xE && rec[2]==0xD){recRESP=1;} 

if((MS_TIMER-To)>10000){sock_puts(&echosock,"R_SYNC FAILED\n");break;} 

}  //ACK verified 

// waits for start of response 

if(recRESP==1) {while((rec[0]=serFgetc()) != 0xAA); 

for (i=1;i<6;i++){rec[i] = serFgetc();} // checks for SYNC command 

if(rec[0]==0xAA && rec[1]==0xD && rec[2]==0x00 && rec[3]==0x00 && 

rec[4]==0x00 && rec[5]==0x00) 

{cmd[0] = 0x0EAA;cmd[1] = 0x000D;cmd[2] = 0x0000; // sends ACK command 

serFwrite(cmd,sizeof(cmd)); 

sock_puts(&echosock,"R_SYNC COMPLETE\n"); 

strcpy(Line,"End"); 

break;}}}} 

// CHANGE BAUD RATE 

if(strncmp(Line, "L_BAUD", 6) == 0) 

{serCwrFlush(); serCrdFlush(); To=MS_TIMER; 

while (1){ 

if(strncmp(Line, "L_BAUD0", 7) == 0){cmd[0] = 0x07AA;cmd[1] = 0x010f;cmd[2] = 

0x0000;} 

if(strncmp(Line, "L_BAUD1", 7) == 0){cmd[0] = 0x07AA;cmd[1] = 0x011f;cmd[2] = 

0x0000;} 

serCwrite(cmd,sizeof(cmd));T=MS_TIMER;while((MS_TIMER-T)<200); 

while((rec[0]=serCgetc()) != 0xAA); // waits for start of response 

for (i=1;i<6;i++){rec[i] = serCgetc();} 
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if(rec[0]==0xAA && rec[1]==0xE){sock_puts(&echosock,"L_Baud rate 

115200\n");strcpy(Line,"End");break;}  //ACK verified 

if((MS_TIMER-To)>5000){sock_puts(&echosock,"L_Baud rate FAILED\n");break;}}} 

if(strncmp(Line, "R_BAUD", 6) == 0) 

{serFwrFlush(); serFrdFlush();To=MS_TIMER; 

while (1){ 

if(strncmp(Line, "R_BAUD0", 7) == 0){cmd[0] = 0x07AA;cmd[1] = 0x010f;cmd[2] 

=0x0000;} 

if(strncmp(Line, "R_BAUD1", 7) == 0){cmd[0] = 0x07AA;cmd[1] = 0x011f;cmd[2] = 

0x0000;} 

serFwrite(cmd,sizeof(cmd));T=MS_TIMER;while((MS_TIMER-T)<200); 

while((rec[0]=serFgetc()) != 0xAA); // waits for start of response 

for (i=1;i<6;i++){rec[i] = serFgetc();} 

if(rec[0]==0xAA && rec[1]==0xE){sock_puts(&echosock,"R_Baud rate 

115200\n");strcpy(Line,"End");break;}  //ACK verified 

if((MS_TIMER-To)>5000){sock_puts(&echosock,"R_Baud rate FAILED\n");break;}}} 

// initialize Resolution and COLOR choice 

if(strncmp(Line, "L_RES160x120_GRAYSCALE", 22) == 0) 

{serCwrFlush(); serCrdFlush();To=MS_TIMER; 

while(1){ 

cmd[0] = 0x01AA;cmd[1] = 0x0300;cmd[2] = 0x0303; 

serCwrite(cmd,sizeof(cmd));T=MS_TIMER;while((MS_TIMER-T)<200); 

while((rec[0]=serCgetc()) != 0xAA); // waits for start of response 

for (i=1;i<6;i++){rec[i] = serCgetc();} 
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if(rec[0]==0xAA && rec[1]==0xE && 

rec[2]==0x1){sock_puts(&echosock,"L_Resolution 

160x120\n");strcpy(Line,"End");break;}  //ACK verified 

if((MS_TIMER-To)>5000){sock_puts(&echosock,"L_RES160x120 

FAILED\n");break;}}} 

if(strncmp(Line, "R_RES160x120_GRAYSCALE", 22) == 0) 

{serFwrFlush(); serFrdFlush();To=MS_TIMER; 

while(1){ 

cmd[0] = 0x01AA;cmd[1] = 0x0300;cmd[2] = 0x0303; 

serFwrite(cmd,sizeof(cmd));T=MS_TIMER;while((MS_TIMER-T)<200); 

while((rec[0]=serFgetc()) != 0xAA); // waits for start of response 

for (i=1;i<6;i++){rec[i] = serFgetc();} 

if(rec[0]==0xAA && rec[1]==0xE && 

rec[2]==0x1){sock_puts(&echosock,"R_Resolution 

160x120\n");strcpy(Line,"End");break;}  //ACK verified 

if((MS_TIMER-To)>5000){sock_puts(&echosock,"L_RES160x120 

FAILED\n");break;}}} 

if(strncmp(Line, "L_RES160x120_COLOR", 18) == 0) 

{serCwrFlush(); serCrdFlush();To=MS_TIMER; 

while(1){ 

cmd[0] = 0x01AA;cmd[1] = 0x0600;cmd[2] = 0x0303; 

serCwrite(cmd,sizeof(cmd));T=MS_TIMER;while((MS_TIMER-T)<200); 

while((rec[0]=serCgetc()) != 0xAA); // waits for start of response 

for (i=1;i<6;i++){rec[i] = serCgetc();} 
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if(rec[0]==0xAA && rec[1]==0xE && 

rec[2]==0x1){sock_puts(&echosock,"L_Resolution 

160x120\n");strcpy(Line,"End");break;}  //ACK verified 

if((MS_TIMER-To)>5000){sock_puts(&echosock,"L_RES160x120 

FAILED\n");break;}}} 

if(strncmp(Line, "R_RES160x120_COLOR", 18) == 0) 

{serFwrFlush(); serFrdFlush();To=MS_TIMER; 

while(1){ 

cmd[0] = 0x01AA;cmd[1] = 0x0600;cmd[2] = 0x0303; 

serFwrite(cmd,sizeof(cmd));T=MS_TIMER;while((MS_TIMER-T)<200); 

while((rec[0]=serFgetc()) != 0xAA); // waits for start of response 

for (i=1;i<6;i++){rec[i] = serFgetc();} 

if(rec[0]==0xAA && rec[1]==0xE && 

rec[2]==0x1){sock_puts(&echosock,"R_Resolution 

160x120\n");strcpy(Line,"End");break;}  //ACK verified 

if((MS_TIMER-To)>5000){sock_puts(&echosock,"L_RES160x120 

FAILED\n");break;}}} 

//Set Snapshot style & acquire data (uncompressed) 

if(strncmp(Line, "L_UNCOMPRESSED", 12) == 0) 

{serCwrFlush(); serCrdFlush(); To=MS_TIMER; 

while(1){ 

cmd[0] = 0x05AA;cmd[1] = 0x0001;cmd[2] = 0x0000; 

serCwrite(cmd,sizeof(cmd)); T=MS_TIMER;while((MS_TIMER-T)<200); 

while((rec[0]=serCgetc()) != 0xAA); // waits for start of response 

for (i=1;i<6;i++){rec[i] = serCgetc();} 
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if(rec[0]==0xAA && rec[1]==0xE && rec[2]==0x5 && rec[4]==0x0 && 

rec[5]==0x0){sock_puts(&echosock,"L_Uncompressed Snapshot 

Mode\n");strcpy(Line,"End");break;}  //ACK verified 

if((MS_TIMER-To)>5000){sock_puts(&echosock,"L_UNCOMPRESSED 

FAILED\n");break;}}} 

if(strncmp(Line, "R_UNCOMPRESSED", 12) == 0) 

{serFwrFlush(); serFrdFlush(); To=MS_TIMER; 

while(1){ 

cmd[0] = 0x05AA;cmd[1] = 0x0001;cmd[2] = 0x0000; 

serFwrite(cmd,sizeof(cmd)); T=MS_TIMER;while((MS_TIMER-T)<200); 

while((rec[0]=serFgetc()) != 0xAA); // waits for start of response 

for (i=1;i<6;i++){rec[i] = serFgetc();} 

if(rec[0]==0xAA && rec[1]==0xE && rec[2]==0x5 && rec[4]==0x0 && 

rec[5]==0x0){sock_puts(&echosock,"R_Uncompressed Snapshot 

Mode\n");strcpy(Line,"End");break;}  //ACK verified 

if((MS_TIMER-To)>5000){sock_puts(&echosock,"R_UNCOMPRESSED 

FAILED\n");break;}}} 

//NOCONVERSION 

//ODRER to process PICTURE and send data!!! IN GRAY 

if(strncmp(Line, "L_RAWSNAPSHOT_GRAY", 18) == 0) 

{serCwrFlush(); serCrdFlush(); To=MS_TIMER; 

while(1){ 

cmd[0] = 0x04AA;cmd[1] = 0x0001;cmd[2] = 0x0000; 

serCwrite(cmd,sizeof(cmd));T=MS_TIMER;while((MS_TIMER-T)<200); 

while((rec[0]=serCgetc()) != 0xAA); 
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for (i=1;i<6;i++){rec[i] = serCgetc();} 

if(rec[0]==0xAA && rec[1]==0xE && rec[2]==0x4 && rec[4]==0x0 && 

rec[5]==0x0){ 

strcpy(Line,"End"); 

//Record and transmit data 

while((rec[0]=serCgetc()) != 0xAA); 

for (i=1;i<6;i++){rec[i] = serCgetc();} 

if(rec[0]==0xAA && rec[1]==0xA && rec[2]==0x1){/*printf("Pixel data 

incoming...\n\n");*/} 

j=0;k=0; 

for (i=0;i<5;i++) 

{a=0; 

for(k=0;k<3840;k++) 

{while((serCpeek()==-1)){if((MS_TIMER-

To)>5000){sock_puts(&echosock,"L_RAWSNAPSHOT FAILED TO 

TRANSMIT\n");break;}} 

Picc[k]=serCgetc(); /*printf("received %d or %c \n",Picc[k],Picc[k]);*/} 

k=sock_write(&echosock,Picc,3840);j++;} 

cmd[0] = 0x0EAA;cmd[1] = 0x000D;cmd[2] = 0x0000; 

serCwrite(cmd,sizeof(cmd)); 

sock_puts(&echosock,"L_File Done!\n");break;}}} 

if(strncmp(Line, "R_RAWSNAPSHOT_GRAY", 18) == 0) 

{serFwrFlush(); serFrdFlush(); To=MS_TIMER; 

while(1){ 

cmd[0] = 0x04AA;cmd[1] = 0x0001;cmd[2] = 0x0000; 
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serFwrite(cmd,sizeof(cmd));T=MS_TIMER;while((MS_TIMER-T)<200); 

while((rec[0]=serFgetc()) != 0xAA); 

for (i=1;i<6;i++){rec[i] = serFgetc();} 

if(rec[0]==0xAA && rec[1]==0xE && rec[2]==0x4 && rec[4]==0x0 && 

rec[5]==0x0){ 

strcpy(Line,"End"); 

//Record and transmit data 

while((rec[0]=serFgetc()) != 0xAA); 

for (i=1;i<6;i++){rec[i] = serFgetc();} 

if(rec[0]==0xAA && rec[1]==0xA && rec[2]==0x1){/*printf("Pixel data 

incoming...\n\n");*/} 

j=0;k=0; 

for (i=0;i<5;i++) 

{a=0; 

for(k=0;k<3840;k++) 

{while((serFpeek()==-1)){if((MS_TIMER-

To)>5000){sock_puts(&echosock,"L_RAWSNAPSHOT FAILED TO 

TRANSMIT\n");break;}} 

Picc[k]=serFgetc(); /*printf("received %d or %c \n",Picc[k],Picc[k]);*/} 

k=sock_write(&echosock,Picc,3840);j++;} 

cmd[0] = 0x0EAA;cmd[1] = 0x000D;cmd[2] = 0x0000; 

serFwrite(cmd,sizeof(cmd)); 

sock_puts(&echosock,"R_File Done!\n");break;}}} 

//ODRER to process PICTURE and send data!!! IN COLOR 

if(strncmp(Line, "L_RAWSNAPSHOT_COLOR", 19) == 0) 
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{serCwrFlush(); serCrdFlush(); To=MS_TIMER; 

while(1){ 

cmd[0] = 0x04AA;cmd[1] = 0x0001;cmd[2] = 0x0000; 

serCwrite(cmd,sizeof(cmd));T=MS_TIMER;while((MS_TIMER-T)<200); 

while((rec[0]=serCgetc()) != 0xAA); 

for (i=1;i<6;i++){rec[i] = serCgetc();} 

if(rec[0]==0xAA && rec[1]==0xE && rec[2]==0x4 && rec[4]==0x0 && 

rec[5]==0x0){ 

strcpy(Line,"End"); 

//Record and transmit data 

while((rec[0]=serCgetc()) != 0xAA); 

for (i=1;i<6;i++){rec[i] = serCgetc();} 

if(rec[0]==0xAA && rec[1]==0xA && rec[2]==0x1){/*printf("Pixel data 

incoming...\n\n");*/} 

j=0;k=0; 

for (i=0;i<10;i++) 

{a=0; 

for(k=0;k<3840;k++) 

{while((serCpeek()==-1)){if((MS_TIMER-

To)>5000){sock_puts(&echosock,"L_RAWSNAPSHOT FAILED TO 

TRANSMIT\n");break;}} 

Picc[k]=serCgetc(); /*printf("received %d or %c \n",Picc[k],Picc[k]);*/} 

k=sock_write(&echosock,Picc,3840); 

j++;} 

cmd[0] = 0x0EAA;cmd[1] = 0x000D;cmd[2] = 0x0000; 
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serCwrite(cmd,sizeof(cmd)); 

sock_puts(&echosock,"L_File Done!\n");break;}}} 

if(strncmp(Line, "R_RAWSNAPSHOT_COLOR", 19) == 0) 

{serFwrFlush(); serFrdFlush(); To=MS_TIMER; 

while(1){ 

cmd[0] = 0x04AA;cmd[1] = 0x0001;cmd[2] = 0x0000; 

serFwrite(cmd,sizeof(cmd));T=MS_TIMER;while((MS_TIMER-T)<200); 

while((rec[0]=serFgetc()) != 0xAA); 

for (i=1;i<6;i++){rec[i] = serFgetc();} 

if(rec[0]==0xAA && rec[1]==0xE && rec[2]==0x4 && rec[4]==0x0 && 

rec[5]==0x0){ 

strcpy(Line,"End"); 

//Record and transmit data 

while((rec[0]=serFgetc()) != 0xAA); 

for (i=1;i<6;i++){rec[i] = serFgetc();} 

if(rec[0]==0xAA && rec[1]==0xA && rec[2]==0x1){/*printf("Pixel data 

incoming...\n\n");*/} 

j=0;k=0; 

for (i=0;i<10;i++) 

{a=0; 

for(k=0;k<3840;k++) 

{while((serFpeek()==-1)){if((MS_TIMER-

To)>5000){sock_puts(&echosock,"L_RAWSNAPSHOT FAILED TO 

TRANSMIT\n");break;}} 

Picc[k]=serFgetc(); /*printf("received %d or %c \n",Picc[k],Picc[k]);*/} 
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k=sock_write(&echosock,Picc,3840); 

j++;} 

cmd[0] = 0x0EAA;cmd[1] = 0x000D;cmd[2] = 0x0000; 

serFwrite(cmd,sizeof(cmd)); 

sock_puts(&echosock,"R_File Done!\n");break;}}} 

}//Closes Echosock while loop 

//-----close Main & While loops 

sock_err: 

switch(status) { 

case 1: /* foreign host closed */ 

break; 

case -1: /* timeout */ 

break;}//end socket error 

}//closes while loop 

}//------------------ MAIN CLOSED ----------------------- 
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APPENDIX F – TTL SIGNAL CONVERSION CIRCUIT DIAGRAM 
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APPENDIX G – MATLAB CODE FOR GRAPHING DATA 

%Keith Baravik 
%Code for potting recorded data 
% Range determination 
for N=1:36 
    if N==1 
        Dist(N)=2; 
        picL=imread('C:\Documents and Settings\ADMIN_ACCOUNT\My 
Documents\THESIS\Software\Data_Folder\200_picL.png'); 
        picR=imread('C:\Documents and Settings\ADMIN_ACCOUNT\My 
Documents\THESIS\Software\Data_Folder\200_picR.png'); 
    elseif N==2 
        Dist(N)=2.25; 
        picL=imread('C:\Documents and Settings\ADMIN_ACCOUNT\My 
Documents\THESIS\Software\Data_Folder\225_picL.png'); 
        picR=imread('C:\Documents and Settings\ADMIN_ACCOUNT\My 
Documents\THESIS\Software\Data_Folder\225_picR.png'); 
    elseif N==3 
        Dist(N)=2.5; 
        picL=imread('C:\Documents and Settings\ADMIN_ACCOUNT\My 
Documents\THESIS\Software\Data_Folder\250_picL.png'); 
        picR=imread('C:\Documents and Settings\ADMIN_ACCOUNT\My 
Documents\THESIS\Software\Data_Folder\250_picR.png'); 
    elseif N==4 
        Dist(N)=2.75; 
        picL=imread('C:\Documents and Settings\ADMIN_ACCOUNT\My 
Documents\THESIS\Software\Data_Folder\275_picL.png'); 
        picR=imread('C:\Documents and Settings\ADMIN_ACCOUNT\My 
Documents\THESIS\Software\Data_Folder\275_picR.png'); 
    elseif N==5 
        Dist(N)=3; 
        picL=imread('C:\Documents and Settings\ADMIN_ACCOUNT\My 
Documents\THESIS\Software\Data_Folder\300_picL.png'); 
        picR=imread('C:\Documents and Settings\ADMIN_ACCOUNT\My 
Documents\THESIS\Software\Data_Folder\300_picR.png'); 
    elseif N==6 
        Dist(N)=3.25; 
        picL=imread('C:\Documents and Settings\ADMIN_ACCOUNT\My 
Documents\THESIS\Software\Data_Folder\325_picL.png'); 
        picR=imread('C:\Documents and Settings\ADMIN_ACCOUNT\My 
Documents\THESIS\Software\Data_Folder\325_picR.png'); 
    elseif N==7 
        Dist(N)=3.5; 
        picL=imread('C:\Documents and Settings\ADMIN_ACCOUNT\My 
Documents\THESIS\Software\Data_Folder\350_picL.png'); 
        picR=imread('C:\Documents and Settings\ADMIN_ACCOUNT\My 
Documents\THESIS\Software\Data_Folder\350_picR.png'); 
    elseif N==8 
        Dist(N)=3.75; 
        picL=imread('C:\Documents and Settings\ADMIN_ACCOUNT\My 
Documents\THESIS\Software\Data_Folder\375_picL.png'); 
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        picR=imread('C:\Documents and Settings\ADMIN_ACCOUNT\My 
Documents\THESIS\Software\Data_Folder\375_picR.png'); 
    elseif N==9 
        Dist(N)=4; 
        picL=imread('C:\Documents and Settings\ADMIN_ACCOUNT\My 
Documents\THESIS\Software\Data_Folder\400_picL.png'); 
        picR=imread('C:\Documents and Settings\ADMIN_ACCOUNT\My 
Documents\THESIS\Software\Data_Folder\400_picR.png'); 
    elseif N==10 
        Dist(N)=4; 
        picL=imread('C:\Documents and Settings\ADMIN_ACCOUNT\My 
Documents\THESIS\Software\Data_Folder\4002_picL.png'); 
        picR=imread('C:\Documents and Settings\ADMIN_ACCOUNT\My 
Documents\THESIS\Software\Data_Folder\4002_picR.png'); 
    elseif N==11 
        Dist(N)=4.25; 
        picL=imread('C:\Documents and Settings\ADMIN_ACCOUNT\My 
Documents\THESIS\Software\Data_Folder\425_picL.png'); 
        picR=imread('C:\Documents and Settings\ADMIN_ACCOUNT\My 
Documents\THESIS\Software\Data_Folder\425_picR.png'); 
    elseif N==12 
        Dist(N)=4.5; 
        picL=imread('C:\Documents and Settings\ADMIN_ACCOUNT\My 
Documents\THESIS\Software\Data_Folder\450_picL.png'); 
        picR=imread('C:\Documents and Settings\ADMIN_ACCOUNT\My 
Documents\THESIS\Software\Data_Folder\450_picR.png'); 
    elseif N==13 
        Dist(N)=4.75; 
        picL=imread('C:\Documents and Settings\ADMIN_ACCOUNT\My 
Documents\THESIS\Software\Data_Folder\475_picL.png'); 
        picR=imread('C:\Documents and Settings\ADMIN_ACCOUNT\My 
Documents\THESIS\Software\Data_Folder\475_picR.png'); 
    elseif N==14 
        Dist(N)=5; 
        picL=imread('C:\Documents and Settings\ADMIN_ACCOUNT\My 
Documents\THESIS\Software\Data_Folder\500_picL.png'); 
        picR=imread('C:\Documents and Settings\ADMIN_ACCOUNT\My 
Documents\THESIS\Software\Data_Folder\500_picR.png'); 
    elseif N==15 
        Dist(N)=5.5; 
        picL=imread('C:\Documents and Settings\ADMIN_ACCOUNT\My 
Documents\THESIS\Software\Data_Folder\550_picL.png'); 
        picR=imread('C:\Documents and Settings\ADMIN_ACCOUNT\My 
Documents\THESIS\Software\Data_Folder\550_picR.png'); 
    elseif N==16 
        Dist(N)=6; 
        picL=imread('C:\Documents and Settings\ADMIN_ACCOUNT\My 
Documents\THESIS\Software\Data_Folder\600_picL.png'); 
        picR=imread('C:\Documents and Settings\ADMIN_ACCOUNT\My 
Documents\THESIS\Software\Data_Folder\600_picR.png'); 
    elseif N==17 
        Dist(N)=6.5; 
        picL=imread('C:\Documents and Settings\ADMIN_ACCOUNT\My 
Documents\THESIS\Software\Data_Folder\650_picL.png'); 
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        picR=imread('C:\Documents and Settings\ADMIN_ACCOUNT\My 
Documents\THESIS\Software\Data_Folder\650_picR.png'); 
    elseif N==18 
        Dist(N)=7; 
        picL=imread('C:\Documents and Settings\ADMIN_ACCOUNT\My 
Documents\THESIS\Software\Data_Folder\700_picL.png'); 
        picR=imread('C:\Documents and Settings\ADMIN_ACCOUNT\My 
Documents\THESIS\Software\Data_Folder\700_picR.png'); 
    elseif N==19 
        Dist(N)=7.5; 
        picL=imread('C:\Documents and Settings\ADMIN_ACCOUNT\My 
Documents\THESIS\Software\Data_Folder\750_picL.png'); 
        picR=imread('C:\Documents and Settings\ADMIN_ACCOUNT\My 
Documents\THESIS\Software\Data_Folder\750_picR.png'); 
    elseif N==20 
        Dist(N)=8; 
        picL=imread('C:\Documents and Settings\ADMIN_ACCOUNT\My 
Documents\THESIS\Software\Data_Folder\800_picL.png'); 
        picR=imread('C:\Documents and Settings\ADMIN_ACCOUNT\My 
Documents\THESIS\Software\Data_Folder\800_picR.png'); 
    elseif N==21 
        Dist(N)=8.5; 
        picL=imread('C:\Documents and Settings\ADMIN_ACCOUNT\My 
Documents\THESIS\Software\Data_Folder\850_picL.png'); 
        picR=imread('C:\Documents and Settings\ADMIN_ACCOUNT\My 
Documents\THESIS\Software\Data_Folder\850_picR.png'); 
    elseif N==22 
        Dist(N)=8.75; 
        picL=imread('C:\Documents and Settings\ADMIN_ACCOUNT\My 
Documents\THESIS\Software\Data_Folder\875_picL.png'); 
        picR=imread('C:\Documents and Settings\ADMIN_ACCOUNT\My 
Documents\THESIS\Software\Data_Folder\875_picR.png'); 
    elseif N==23 
        Dist(N)=9; 
        picL=imread('C:\Documents and Settings\ADMIN_ACCOUNT\My 
Documents\THESIS\Software\Data_Folder\900_picL.png'); 
        picR=imread('C:\Documents and Settings\ADMIN_ACCOUNT\My 
Documents\THESIS\Software\Data_Folder\900_picR.png'); 
    elseif N==24 
        Dist(N)=9.125; 
        picL=imread('C:\Documents and Settings\ADMIN_ACCOUNT\My 
Documents\THESIS\Software\Data_Folder\912_picL.png'); 
        picR=imread('C:\Documents and Settings\ADMIN_ACCOUNT\My 
Documents\THESIS\Software\Data_Folder\912_picR.png'); 
    elseif N==25 
        Dist(N)=9.25; 
        picL=imread('C:\Documents and Settings\ADMIN_ACCOUNT\My 
Documents\THESIS\Software\Data_Folder\925_picL.png'); 
        picR=imread('C:\Documents and Settings\ADMIN_ACCOUNT\My 
Documents\THESIS\Software\Data_Folder\925_picR.png'); 
    elseif N==26 
        Dist(N)=9.375; 
        picL=imread('C:\Documents and Settings\ADMIN_ACCOUNT\My 
Documents\THESIS\Software\Data_Folder\937_picL.png'); 
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        picR=imread('C:\Documents and Settings\ADMIN_ACCOUNT\My 
Documents\THESIS\Software\Data_Folder\937_picR.png'); 
    elseif N==27 
        Dist(N)=9.5; 
        picL=imread('C:\Documents and Settings\ADMIN_ACCOUNT\My 
Documents\THESIS\Software\Data_Folder\950_picL.png'); 
        picR=imread('C:\Documents and Settings\ADMIN_ACCOUNT\My 
Documents\THESIS\Software\Data_Folder\950_picR.png'); 
    elseif N==28 
        Dist(N)=9.625; 
        picL=imread('C:\Documents and Settings\ADMIN_ACCOUNT\My 
Documents\THESIS\Software\Data_Folder\962_picL.png'); 
        picR=imread('C:\Documents and Settings\ADMIN_ACCOUNT\My 
Documents\THESIS\Software\Data_Folder\962_PicR.png'); 
    elseif N==29 
        Dist(N)=9.75; 
        picL=imread('C:\Documents and Settings\ADMIN_ACCOUNT\My 
Documents\THESIS\Software\Data_Folder\975_picL.png'); 
        picR=imread('C:\Documents and Settings\ADMIN_ACCOUNT\My 
Documents\THESIS\Software\Data_Folder\975_picR.png'); 
    elseif N==30 
        Dist(N)=9.875; 
        picL=imread('C:\Documents and Settings\ADMIN_ACCOUNT\My 
Documents\THESIS\Software\Data_Folder\987_picL.png'); 
        picR=imread('C:\Documents and Settings\ADMIN_ACCOUNT\My 
Documents\THESIS\Software\Data_Folder\987_picR.png'); 
    elseif N==31 
        Dist(N)=10; 
        picL=imread('C:\Documents and Settings\ADMIN_ACCOUNT\My 
Documents\THESIS\Software\Data_Folder\1000_picL.png'); 
        picR=imread('C:\Documents and Settings\ADMIN_ACCOUNT\My 
Documents\THESIS\Software\Data_Folder\1000_picR.png'); 
    elseif N==32 
        Dist(N)=10.5; 
        picL=imread('C:\Documents and Settings\ADMIN_ACCOUNT\My 
Documents\THESIS\Software\Data_Folder\1050_picL.png'); 
        picR=imread('C:\Documents and Settings\ADMIN_ACCOUNT\My 
Documents\THESIS\Software\Data_Folder\1050_picR.png'); 
    elseif N==33 
        Dist(N)=11; 
        picL=imread('C:\Documents and Settings\ADMIN_ACCOUNT\My 
Documents\THESIS\Software\Data_Folder\1100_picL.png'); 
        picR=imread('C:\Documents and Settings\ADMIN_ACCOUNT\My 
Documents\THESIS\Software\Data_Folder\1100_picR.png'); 
    elseif N==34 
        Dist(N)=11.5; 
        picL=imread('C:\Documents and Settings\ADMIN_ACCOUNT\My 
Documents\THESIS\Software\Data_Folder\1150_picL.png'); 
        picR=imread('C:\Documents and Settings\ADMIN_ACCOUNT\My 
Documents\THESIS\Software\Data_Folder\1150_picR.png'); 
    elseif N==35 
        Dist(N)=12; 
        picL=imread('C:\Documents and Settings\ADMIN_ACCOUNT\My 
Documents\THESIS\Software\Data_Folder\1200_picL.png'); 
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        picR=imread('C:\Documents and Settings\ADMIN_ACCOUNT\My 
Documents\THESIS\Software\Data_Folder\1200_picR.png'); 
    elseif N==36 
        Dist(N)=13; 
        picL=imread('C:\Documents and Settings\ADMIN_ACCOUNT\My 
Documents\THESIS\Software\Data_Folder\1300_picL.png'); 
        picR=imread('C:\Documents and Settings\ADMIN_ACCOUNT\My 
Documents\THESIS\Software\Data_Folder\1300_picR.png'); 
    end 
    %Red Ranging 
figure 
subplot(3,2,1) 
image(picL); 
subplot(3,2,2) 
image(picR) 
  
Rthresh=25; 
  
RpicL=picL; 
subplot(3,2,3) 
RpicL(:,:,2)=0; 
RpicL(:,:,3)=0; 
for i=1:120 
    for j=1:160 
        if 
(picL(i,j,1)<(picL(i,j,2)+Rthresh))|(picL(i,j,1)<(picL(i,j,3)+Rthresh)) 
            RpicL(i,j,1)=0; 
       nd  e
    end 
end 
imagesc(RpicL); 
RpicR=picR; 
subplot(3,2,4) 
RpicR(:,:,2)=0; 
RpicR(:,:,3)=0; 
RpicR(:,:,1)=picR(:,:,1); 
for i=1:120 
    for j=1:160 
        if 
(picR(i,j,1)<(picR(i,j,2)+Rthresh))|(picR(i,j,1)<(picR(i,j,3)+Rthresh)) 
            RpicR(i,j,1)=0; 
        end 
   nd  e
end 
imagesc(RpicR); 
  
subplot(3,2,5) 
for i=1:120 
    for j=1:160 
        if (RpicL(i,j,1)>150) 
            PRpicL(i,j)=255; 
        else 
            PRpicL(i,j)=0; 
       nd  e
    end 
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end 
FPRpicL = medfilt2(PRpicL,[3 3]); %filters out noise 
%Edge Detection for object ID 
[B,L,Nn,A] = bwboundaries(FPRpicL); 
       imagesc(FPRpicL); hold on; 
       colors=['b' 'g' 'r' 'c' 'm' 'y']; 
       for k=1:length(B), 
         boundary = B{k}; 
         cidx = mod(k,length(colors))+1; 
         plot(boundary(:,2), boundary(:,1), 
colors(cidx),'LineWidth',2); 
         %randomize text position for better visibility 
         rndRow = ceil(length(boundary)/(mod(rand*k,7)+1)); 
         col = boundary(rndRow,2); row = boundary(rndRow,1); 
         h = text(col+1, row-1, num2str(L(row,col))); 
         set(h,'Color',colors(cidx),'FontSize',14,'FontWeight','bold'); 
       end 
% 
  
subplot(3,2,6) 
for i=1:120 
    for j=1:160 
        if (RpicR(i,j,1)>150) 
            PRpicR(i,j)=255; 
        else 
            PRpicR(i,j)=0; 
        end 
    end 
end 
%Edge Detection for object ID 
FPRpicR = medfilt2(PRpicR,[3 3]); %filters out noise 
[B,L,Nn,A] = bwboundaries(FPRpicR); 
       imagesc(FPRpicR); hold on; 
       colors=['b' 'g' 'r' 'c' 'm' 'y']; 
       for k=1:length(B), 
         boundary = B{k}; 
         cidx = mod(k,length(colors))+1; 
         plot(boundary(:,2), boundary(:,1), 
colors(cidx),'LineWidth',2); 
         %randomize text position for better visibility 
         rndRow = ceil(length(boundary)/(mod(rand*k,7)+1)); 
         col = boundary(rndRow,2); row = boundary(rndRow,1); 
         h = text(col+1, row-1, num2str(L(row,col))); 
         set(h,'Color',colors(cidx),'FontSize',14,'FontWeight','bold'); 
       end 
% 
  
%subplot(3,3,6) 
  
%subplot(3,3,9) 
  
%subplot(3,3,2) 
  
L=xcorr2(PRpicL,PRpicL); 
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[Vl,Xl]=max(max(L)); 
R=xcorr2(PRpicR,PRpicR); 
[Vl,Xr]=max(max(R)); 
  
Rng=xcorr2(PRpicR,PRpicL); 
[V,Xrng]=max(max(Rng)); 
  
Xl 
Xr 
Xrng 
DeltaX_L(N)=160-Xrng; 
Rng=xcorr2(PRpicL,PRpicR); 
[V,Xrng]=max(max(Rng)); 
Xrng 
DeltaX_R(N)=Xrng-160; 
end 
     
figure 
axes('XTick',[2 3 4 5 6 7 8 9 10 11 12 13 14 16 
18],'XScale','log','YScale','log','XMinorTick','on','XMinorGrid','on'); 
hold on; 
%plot (DistL,'b*'); 
xlim([2,18]); 
ylim([10,160]); 
  
% Range Simulation 
%% Constants 
%clear all; 
T=160; 
R=0; 
L=160; 
FOV1=36; 
FOV2=36; 
D3=2/3; 
%% Calculations 
step=1; 
for R=1:160; 
    A1=90-FOV1/2+FOV1*(1-L/T); 
    A2=90-FOV2/2+FOV2*R/T; 
    A3=180-A1-A2; 
    D2=D3*sind(A2)/sind(A3); 
    D1=D2*sind(A1)/sind(A3); 
    RangeObj(161-R)=D2*sind(A1); 
    step=step+1; 
end 
  
Measured_Dist=[2 3 4 5 6 7 8 9 10 11 12 13]; 
DeltaX_Possible=4:0.01:125;  
figure 
plot(1./DeltaX_R,Dist,'g*') 
hold on 
plot(1./(round(DeltaX_Possible)),292.66./DeltaX_Possible-0.6868,'r') 
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