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ABSTRACT

Prior research has focused on intra-domain fault localization leaving the cross-

domain problem largely unaddressed. Faults often have widespread effects, which if

correlated, could significantly improve fault localization. For both competitive and

security reasons, domain managers hesitate to share fault observations even when

doing so may significantly ease fault localization. This dissertation presents a charac-

terization of the problem space in terms of inference accuracy, privacy, and scalability,

and provides a framework to evaluate any design in the design spectrum. This frame-

work not only explicitly models the inference accuracy and privacy requirements for

discussing and reasoning over cross-domain problems, but also addresses scalability

impacts and facilitates the re-use of existing fault localization algorithms while enforc-

ing domain privacy policies. The dissertation provides a graph-digest-based approach

with which participating network domains can exchange abstracted graphs that rep-

resent network fault propagation models. The research explores feasibility of this

approach via implementation of an inference graph-based design in a cross-domain

network setting. The results show a substantial improvement in cross-domain fault

localization accuracy and inference speed by using the inference-graph-digest based

approach.
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I. INTRODUCTION

Computer network faults happen frequently and finding the source of failure is

a non-trivial task. Although much progress has been made locating faults within net-

work domains, finding faults that affect multiple domains, or cross-domain fault local-

ization, remains under-researched. Network domain administrators currently perform

fault diagnosis in isolation, without benefit from evidence observed in other domains.

Today’s highly connected networks need collaboration to locate complex failures, but

privacy concerns tend to prevent cooperation across network boundaries. This re-

search proposes a cooperative approach in which domain administrators share some

data to find these elusive faults, while preserving privacy for sensitive network domain

properties.

Faults in a network occur often and in complex ways, and it is well-documented

that managers must respond to these failures on a regular basis [19, 23, 46]. There

are a wide variety of components in a network that can fail and fiber cuts, router

mis-configuration, and power and maintenance outages are becoming more com-

mon [13,23,48]. Diversity of network elements within a network continues to grow [8].

The heterogeneity of elements in a network adds complication to all aspects of manag-

ing a network. Dependencies between network elements are not always deterministic,

increasing the difficulty of correlating observations about network state. Failure du-

rations can vary, increasing the difficulty of correlating observation data and further

complicating diagnosis [19,48]. Serious faults can be undetected and may not be able

to be rapidly localized [23].

When observations of network state arising from a network fault propagate

across domain boundaries, the fault is described as cross-domain. Troubleshooting

faults is a challenging task—it is even more difficult when trying to troubleshoot

cross-domain issues without knowledge of fault observations and network structure

from neighboring network domains. Acquiring knowledge of the needed observations

1



Domain 1

Domain 2

Domain 3

Data flow for 
workgroup in 
Domain 1 transits 
Domain 2 to reach 
server in Domain 3.

Figure 1.1. Simple Failure Scenario

and network topology is further complicated by the fact that it is risky, for both

competitive and security reasons, for domain managers to share this information even

when the sharing might ease fault localization. With business processes migrating

to web-services, implemented in the “cloud” and built on protocols such as SOAP

(Simple Object Access Protocol), the likelihood of network faults impacting multiple

domains approaches unity.

Faults often have widespread effects, which if correlated, can significantly in-

crease fault localization accuracy. This research defines inference gain to be the

increase in inference accuracy achieved by correlating additional evidence. Cross-

domain network failures can not always be localized without a coordinated effort

between domains. Consider the simple failure scenario depicted in Figure 1.1. A

work group in Domain 1 must access data from a server in Domain 3 requiring

connectivity through Domain 2. Unfortunately, one of the routers in Domain 2 is

misconfigured. Other groups and services can reach the server in Domain 3, but

users in Domain 1’s work group can not. Furthermore, no equipment failures along

the path from the work group (Domain 1) to the server (Domain 3) trigger alarms.

This is difficult to troubleshoot without cross-domain collaboration, often resulting in

“finger pointing.” While the fault remains unabated and potentially unnoticed, there

2



may be observations external to each domain that could help detect and localize the

fault. Overcoming obstacles to cross-domain collaboration can realize inference gain

to stamp out otherwise ambiguous network errors.

The cross-domain environment introduces a source of complex potential fail-

ures. There are more than 10,000 autonomous systems (ASs) in the Internet today,

each applying local policies for route selection [42]. Domains in the Internet today

are loosely coupled [13], and since cross-domain flows depend on network elements

in more than one domain, no single domain has complete control of all risks to the

flows. Operators make manual changes in routing policies without fully understand-

ing the impact to other domains, and business arrangements may restrict traffic flow

between Autonomous Systems [14]. Links between domains are common points of

congestion, and traffic engineering between domains is often achieved through trial

and error [14]. Traffic engineering across domains is significantly more complicated

than traffic engineering within a domain [14]. This reality implies that complexity in

performing fault localization across domains also increases.

Privacy, scalability, and interoperability issues hinder efforts to achieve accu-

rate cross-domain fault localization. While prior work has stated the importance of

these issues [18, 25, 30, 44], review of the literature did not find a formal definition

of requirements addressing them. These same issues prevent network collaboration

for other types of inference [27,47]. Network domain managers are often unwilling or

not permitted to share detailed internal network architectures and quality-of-service

issues with outside agencies, running face-first into the need to share data to success-

fully troubleshoot networking issues. Automated techniques for finding faults across

a large number of domains face serious computational issues and exact computation

using belief networks is NP-hard [19]. Interoperability in network-management and

fault-isolation techniques is a perennial problem: Different modeling techniques and

tools using different algorithms will be employed in various domains. Conflict of in-

formation formats and semantics may arise between domains, with each domain’s

3



model assigning a different value to the same parameter. There is a dramatic need

for methods enabling cross-domain fault localization efficiently while minimizing the

need to share sensitive proprietary information.

Cross-domain fault isolation efforts are hampered by privacy issues. Domain

managers may be reluctant to share the details of their network dependency graph

data with other domain managers. ISPs do not want statistics on the number of

problems observed in their network publicly available, and do not want to share

their topology and state information with their competitors [25, 27, 44]. Different

network providers have proprietary network fault management systems without open

interfaces [18]. Each domain manager will have some information about another

network domain, such as shared peering points, public web services, and publicly

available company information. The vast majority of components in another network,

however, can only be modeled as a cloud. Network providers are likely considered

competitors and any benefit attained by collaboration to localize faults must outweigh

the cost of revealing internal details to the competition.

A cross-domain fault localization approach may not scale. There is no central

fault management system for the Internet and combining data to resolve a cross-

domain failure scenario with a centralized model may not be realistic. Consider a

scenario in which a backbone link failure has impacted many domains. In the worst

case much of the Internet may need to be mapped into a fault propagation model.

Traditional debugging tools do not scale across administrative domains [30]. A typical

tier-1 network (also known as an Internet backbone network [24]) has approximately

1,000 routers, supported by two orders of magnitude more access and core transport

network elements [23].

To interoperate, a cross-domain approach must overcome the heterogeneity of

existing fault localization approaches. Even if domain managers collaborate for the

purpose of fault localization, they may use different methods of data representation

and interpretation. Different domains may be using different inference algorithms,
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different tools, and possibly different data schema. Each domain may employ a fault

management system that is fundamentally different from those used by other domains

with whom they regularly interact. Inference methods used by fault management

systems vary widely, and the data from one may not have meaning in another.

Three general approaches are possible for diagnosing cross-domain problems.

The first of these, the status quo, is isolated inference. In this approach, each do-

main tries to locate the fault without sharing data with other domains. The second

approach, referred to as full disclosure, entails full collaboration and data-sharing

between domains. A fault propagation model using this approach is equivalent to a

global model of all domains involved. While full-disclosure, in general, is unrealistic

because of the privacy factor and for scalability reasons, it is included as a baseline

model for studying inference gains achievable from information sharing. The third ap-

proach, proposed by this research and termed “cooperative”, is to implement a design

in the design spectrum that lies somewhere between isolated inference and full disclo-

sure. In this third approach domains exchange limited information, e.g., summaries of

fault observations, to perform inference while protecting sensitive information. This

research focuses on exploring the feasibility of the third approach.

A. PROBLEM STATEMENT AND MAIN HYPOTHESIS

Problem Statement: Cross-domain fault localization is an under-researched

area for which no general approach currently exists. External evidence that can

improve inference accuracy about network faults is unavailable to domain inference

algorithms. Privacy, scalability, and interoperability issues restrict information ex-

change about these observations.

Main Hypothesis: It is possible to construct a framework to enable managers

of separate network domains to share information and achieve inference gain while

quantifying privacy preservation of sensitive information.

5



B. CONTRIBUTIONS

This research makes the following major contributions to the state-of-art for

computer network fault localization:

• This research provides a characterization of the problem space for cross-domain
fault localization, and provides explicit metrics to evaluate any approach in
terms of the core issues of accuracy, privacy, and scalability.

• This research develops the first concrete solution framework providing a feasi-
ble, general approach to address cross-domain fault localization. This frame-
work describes a graph digest approach that enables domains that use causal
graphs to model fault propagation to exchange summary inference informa-
tion.

• This research provides a first application of the framework using intra-domain
fault localization algorithms to locate faults in a cross-domain setting.

• This research provides a first heuristic to learn a network domain’s topology
from a bipartite causal graph.

C. ORGANIZATION

The outline for the remainder of this dissertation is as follows:

• Chapter II discusses related work in fault localization, fault localization algo-
rithms, and cross-domain fault localization.

• Chapter III describes the approach to model the problem, including metrics
to evaluate an approach.

• Chapter IV provides the evaluation methodology.

• Chapter V presents the evaluation results.

• Chapter VI presents the conclusions for this research, and suggests areas of
future work.
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II. RELATED WORK

This chapter presents the state-of-the-art for intra-domain and cross-domain

fault localization. As this research examines whether existing fault localization al-

gorithms can be applied in a cross-domain context, a selection of recent algorithms

are presented. This chapter is organized as follows. First, the chapter discusses gen-

eral concepts of network fault localization. Second, the principle methods of inference

used by recent fault localization approaches are surveyed. In particular, SHRINK and

SCORE are highlighted because they are used to to evaluate the model in Chapter V.

Third, solutions proposed prior to this effort for cross-domain fault localization are

discussed. Fourth, network tomography, a current approach used to collect network

status data is discussed. Finally, recent work on graph anonymization, which has

direct bearing on privacy preservation is described.

A. NETWORK FAULT LOCALIZATION

Failures can stem from many causes, including hardware, software, and con-

figuration errors. Errors may be introduced at each stage of a network’s architectural

implementation [23]. Fault diagnostic information is subject to errors due to in-

accurate models of network dependencies, missing observations, and spurious [39]

observations. Typically human operators perform device configuration, resulting in

potentially misconfigured devices.

The sheer number of components in a system increases the frequency of fail-

ures, and the complexity in locating a failure. Network flows can cross many com-

ponents in a network and a failure of any one component on the path can sever

end-to-end connectivity. A typical tier-1 network has roughly 1,000 routers from

different vendors, having different features and playing different roles [23].

Fault localization is the second step of fault diagnosis, which consists of three
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steps: fault detection, fault localization, and testing/analysis [8, 37]. Fault detec-

tion usually comes from alarms. Network administrators typically employ a fault

localization solution to arrive at likely hypotheses to explain the observations about

detected faults. Fault localization, a major task in maintaining network service, is the

process of determining the actual faults responsible for observed problems in a sys-

tem [41]. The data typically available to perform fault localization includes potential

fault causes, observations of network state, dependencies between causes and observa-

tions, prior probabilities of fault causes, and dependencies between fault causes. Fault

localization algorithms return a best explanation, which is a set containing the most

likely failed root cause or causes, given the model and available evidence. Ideally, a

best explanation precisely matches the ground truth.

Domain managers typically employ a fault management system, instrumented

with alarms, that infers the best explanation for observed alarms based on the network

dependencies. These dependencies are stored in a shared risk database, representing

the network components subject to failure [19]. Many of the alarms are based on Sim-

ple Network Management Protocol (SNMP) trap messages, and Traceroute and ping

results. SNMP uses UDP to send trap messages based on state variable thresholds.

Since UDP is an unreliable protocol, not all trap messages will reach the network

management system, resulting in lost observations.

The principle of Occam’s Razor is fundamental to network fault localiza-

tion [23]. Considering the prior probability of any component failing, it is more

likely that fewer conditionally independent components can explain observed failures.

Considering a typical network component failure probability of 10−5 in any given

hour [19], the probability that multiple independent components have simultaneously

failed decreases significantly with the number of hypothesized simultaneously failed

nodes.

Fault localization is further complicated by the existence of errors in the data.

These errors include inappropriate prior probabilities, incorrect or inappropriate de-
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pendency mappings, and erroneous observations of network state. Prior probabilities

used may not be representative of the actual failure rates. Dependency mappings

are constructed either through human user input data or by analyzing traffic flow

on a network. Observations of network state are determined through client report-

ing, SNMP traps, or by using probing tools such as Traceroute. Intuitively, any

method that relies on human operator input is subject to error. Changes in network

configuration are not always updated, resulting in incorrect dependency mappings.

Observation nodes are subject to false negative observations, such as lost SNMP pack-

ets, and false positive observations, such as spurious symptoms [37] in the network.

Errors must be modeled appropriately in any network fault localization approach to

identify root causes that best explain observed evidence. Ineffective error modeling

can lead to incorrect identification of root causes of network failures, which in turn

leads to increased downtime for the network and resources expended to implement

failure recovery.

B. FAULT LOCALIZATION ALGORITHMS

Before describing specific fault localization algorithms, this section first sum-

marizes a few core underlying concepts used by recent approaches, including assump-

tions and heuristics making otherwise intractable algorithms practical for finding

identifying faults.

The minimum set-cover problem is known to be NP-Complete [10]. An in-

stance of this problem consists of a finite set X and a family of subsets Y such that

each element of X belongs to at least one subset Y . A solution to this problem is

the minimum number of subsets Y such that the union of these subsets contain all

elements of X. Modeling possible causes of failure as the cover set Y and observations

of failure as the set X, as done by one of the studied fault localization approaches [23],

identifies the least number of failures to explain the state of observations about fail-

ure. Although ideal in its application of Occam’s razor, by itself a minimum-set cover
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approach lacks a mechanism to leverage prior probabilities and non-binary causal

dependencies.

Bayes’ rule allows diagnostic inference to reason about causes, given the evi-

dence:

Pr(B|A) =
Pr(A|B)Pr(B)

Pr(A)
.

In computer networking, the probability of observing a failure given a component

has failed may be estimated or directly measured. That knowledge can be used to

leverage the power of Bayes’ rule to derive the probability that a component has

failed, given the state of an observation.

Many inference methods, such as Bayesian inference, bound the number of

simultaneous failures [19]. Reasonable independence assumptions and heuristics can

reduce the complexity of this NP-Hard problem [31] with little sacrifice in accuracy.

Assumptions about the maximum number of failed components based on the high

reliability of networking components also serve to reduce complexity [4,19]. In general,

in the networking domain it is reasonable to assume independence between failure

causes (e.g. a router fault on one side of a network domain says nothing about

whether a cable is cut on the other side) [4, 19]. Additionally, greedy approaches

can achieve good results in practice, as does one of the studied fault localization

algorithms, SCORE [23].

A survey conducted by Steinder and Sethi, 2004 [37] classifies techniques used

in fault localization, dividing them into three broad categories: expert systems, model

traversing, and graph theoretic techniques. Expert systems attempt to mimic a hu-

man expert to solve problems within a domain. Model traversing techniques represent

network entities and their relationships, and then traverse the model graph to cor-

relate alarms and locate faults. Graph theoretic techniques use a fault propagation

model to describe entities and conditional dependencies between them in a depen-

dency graph.
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The survey further divides the graph theoretic techniques into five categories.

Divide and conquer algorithms cluster dependencies in a dependency graph, then

recursively subdivide the clusters containing nodes explaining failure observations.

This process continues until a singleton having the highest probability of explain-

ing the failed observations is derived. Context-free grammar approaches represent

network components as terminals, and use productions to capture network depen-

dencies. Codebook techniques are represented with a matrix of problem codes that

can be used to “look up” the cause given the observed effects. Bayesian network ap-

proaches [4, 19] use directed acyclic graphs (DAG) in which nodes represent random

variables modeling the state of network elements, and edges representing conditional

probabilities [37]. Finally, bipartite causal graph models [23,36,40] use bipartite fault

propagation models to represent cause and effect relationships.

A current trend is to model the problem as a DAG having root causes as

parentless (root) nodes, observations as childless (leaf) nodes, and dependencies as

directed edges in the graph. These edges express conditional probabilities between

elements in a network, and allow determining the conditional probability table for

each node. This graph structure is also known as a causal graph [37]. The solution

approaches using a causal graph typically perform probabilistic inference on the con-

structed dependency graphs. Most, if not all, network fault propagation models can

be transformed and represented with a causal graph.

Root causes to network failure are also known as shared risk groups (SRGs)

[25]. Shared risks are typically hardware components that can fail and are represented

by the set of nodes that are dependent on the shared risk [23]. In a bipartite causal

graph all SRG nodes are root nodes, and members of an SRG set are observation nodes

represented graphically by directed dependency edges from the SRG nodes to their

member observation nodes. In this dissertation, observation nodes and observations

are used interchangeably.

Recent approaches exhibiting these techniques include SCORE (non proba-
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bilistic), SHRINK, and Sherlock. SHRINK and SCORE use bipartite graph repre-

sentations of fault propagation models. Sherlock is the first system to expand the

approach to use multilevel dependency graphs. In each case the network dependency

graph fed to the algorithm is a causal graph. Although SHRINK, SCORE, and Sher-

lock have many differences, they can all use a bipartite causal graph, and all return

a best explanation.

X1 X2
A

F1 F2

B

C

F3

F4

A B
L1

L3

C

L2

(a) Physical topology (b) IP View

Figure 2.1. Example network.

To illustrate the SCORE, SHRINK, and Sherlock algorithms, consider the

simple network depicted in Figure 2.1. Figure 2.1(a) depicts the network physical

topology, in which IP routers A, B, and C are connected across fibers F1 - F4 and

optical cross-connects X1 and X2. Each IP router has a an IP link to each other

router as shown in Figure 2.1(b). If any of the optical components, fibers, or optical

cross-connects fail, the IP routers will detect link failures. The prior SRG failure

probabilities are 10−4 and 10−6 for the fibers and the cross-connect respectively.

X1F1 F2 X2

L2

F3

L1 L3

F4

Figure 2.2. Causal Graph for topology in Figure 2.1
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The causal graph in Figure 2.2 provides a visual representation of fault prop-

agation for the network in Figure 2.1. Each hardware component that can fail (fibers

F1 . . . F4 and switches X1 and X2) are modeled as SRGs, and the IP links (L1 . . . L3)

are modeled as observation nodes. The edge strength of each edge in the graph de-

picts the probability that an IP link will observe failure given that the SRG has failed.

To illustrate, the edge from F1 to L1 reflects the probability (unlabeled edges have an

edge weight of 1.0) that L1 will observe failure given F1 has failed with a probability

of 1.0.

1. SCORE

Kompella et al. introduced SCORE [23] in 2005. SCORE applies a greedy

minimum set cover technique to perform inference on a bipartite DAG. Two of the

strengths of the SCORE algorithm are its inference speed and its adherence to the

Occam’s razor principle. SCORE does not use probability distributions, however, and

therefore may not be the best algorithm to use when probability distribution data

is available. SCORE addresses errors through a hit-ratio threshold. This threshold

represents the allowable false positive ratio that a hypothesis must not exceed to be

a considered as a candidate explanation.

Each potential failure root cause node is represented as a parentless node,

and each observation node is represented as a childless node in the graph. The

dependencies from parent nodes to child nodes are set to one. Each root cause

node has a derived hit ratio that reflects the percentage of this node’s children that

have observed failure, and coverage ratio that reflects the percentage of remaining

unexplained failures that can be accounted for by the failure of this root cause node.

The hit and cover ratios equal 1− false positive ratio and 1− false negative ratio

respectively. Let O represent the set of observation nodes that have observed failure.

Let Si represents the ith root cause node, and let Oi be the set of observation nodes

that will report failure given that Si has failed. The hit ratio for Si is equal to

|Oi∩O|/|Oi| and, once computed for each root cause, does not change for the duration
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SRG Links Hit Ratio Cover Ratio
F1 L1, L3 0.5 0.5
X1 L1, L3 0.5 0.5
F2 L1, L3 0.5 0.5
X2 L1, L2, L3 0.67 1.0
F3 L1, L2 1.0 1.0
F4 L2, L3 0.5 0.5

Table 2.1. Hit and Cover ratios calculated for observations L1 = down, L2 =
down, L3 = up on the example network in Figure 2.1.

of the algorithm execution. The coverage ratio for Si is computed using |Oi ∩O|/|O|

and is updated with each iteration of the algorithm. With each iteration of the

SCORE algorithm the root cause node with the maximum coverage ratio, and having

a hit ratio equal to or greater than the input threshold value, is added to a hypothesis

vector and the observations associated with the root cause are explained and removed

from the set O. The algorithm continues, adding root cause nodes to the hypothesis

vector until the observation set O is empty.

Table 2.1 shows an example of using SCORE for the network depicted in

Figure 2.1. Consider the scenario where IP links L1 and L2 are observed to be

down, and L3 is observed to be up. Intuitively, the cause is most likely the failure

of fiber link F3. On the SCORE algorithm’s first pass with a threshold setting of

1.0, only F3 has a hit ratio of 1.0, so the algorithm adds F3 to the hypothesis set.

The hypothesis completely explains the observations, so the algorithm returns F3 as

the root cause for the failure scenario. In a more complicated scenario, possibly with

multiple failures and observation errors, SCORE uses a cost function that considers

the number of SRGs in the hypothesis and the threshold setting used for the execution

of the algorithm to determine the best explanation.

2. SHRINK

Srikanth Kandula et al. developed SHRINK [19] in 2005 to perform approxi-

mate Bayesian inference on a bipartite causal graph. One of the greatest strengths
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of the Shrink algorithm is that it can return the probability that a hypothesis has

caused the observed failures for each hypothesis considered if the belief values are

normalized. Another of SHRINK’s main contributions is its robustness. Shrink mit-

igates potential errors in mapping conditional probabilities and in observation state

reporting by reducing each conditional dependency by a noise value, then adding

edges with the same noise value to form a complete directed bipartite graph.

The SHRINK model assumes independent failures of root cause nodes and

that no more than three SRGs will fail simultaneously in a large network based on

the extremely low likelihood of four or more simultaneous failures. Noisy-OR is used

to calculate the conditional probability table for a node with multiple parents. The

SHRINK algorithm is defined as follows. Let < S1, . . . , Sn > denote a hypothesis

vector, where Si = 1 if a failure of SRG Si is assumed, and Si = 0 otherwise. Let

< L1, . . . , Lm > denote an observation vector, where Lj = 1 if a failure of Lj is

observed, and Lj = 0 otherwise. Given a particular observation vector, the SHRINK

algorithm searches through all hypothesis vectors with no more than three assumed

failures, and returns those maximizing the posterior probability

argmax
<S1,...,Sn>

Pr(< S1, . . . , Sn > | < L1, . . . , Lm >).

Consider the example network in Figure 2.1 again. Recall that the causal

graph has six optical components mapped to SRGs F1 . . . F4, O1, and O2. To account

for potential database and observation errors a noise value (10−4) is subtracted from

the conditional probability of each edge in Figure 2.2, and noisy edges with this same

value are added to form a complete bipartite graph. E.g., Probability(L1|F1) is 0.9999

while Probability(L2|F1) = 10−4.

Suppose L1 and L2 are down, and L3 is up. As described above, SHRINK

only considers hypothesis vectors with at most three total assumed failures. For

this six SRG example SHRINK searches through
∑3

k=0

(
6
k

)
= 42 hypotheses, with

hypothesis vector < 0, 0, 0, 0, 1, 0 > maximizing the posterior probability for the given
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observations. SHRINK correctly identifies SRG F3 (i.e., the failure of fiber link F3)

to be the root cause.

3. Sherlock

Paramvir Bahl et al. introduced Sherlock [4] in 2007. The Sherlock fault

localization system uses an inference algorithm called Ferret. One of the strengths

of Sherlock’s Ferret algorithm is that it can run on a multi-level graph. However, by

not considering prior probabilities of SRGs, Sherlock does not adhere to the principle

of Occam’s razor. One of the main contributions of Sherlock is in directly measuring

conditional dependencies in a network to populate its fault propagation model. This

data collection mitigates the lack of prior probabilities in its inference model and

reduces the risk of human-introduced errors in its SRG databases. Like SHRINK, a

noise value is subtracted from all root cause dependencies that affect a network path.

Ferret applies Breadth-First-Search (BFS) to a causal graph, propagating val-

ues down to the observation nodes. Ferret can run on a multi-level DAG, and con-

ditional dependencies between root causes are represented by meta-nodes inserted

into the graph. In addition to up and down states, Sherlock can compute the belief

that a root cause node is in a troubled state: up but experiencing a performance

degradation. Like Shrink, up to 3 simultaneous failures are hypothesized using Fer-

ret. Each hypothesis vector is set with a permutation of root causes in either the

up or down state. The probabilities at each node are propagated down the graph to

the leaf nodes, using noisy-OR computations. The equations used to determine the

probabilities that a child node is in different states are

P (child up) =
∏

j

((1− dj) ∗ (ptrouble
j + pdown

j ) + pup
j ),

P (child down) = 1−
∏

j

(1− pdown
j + (1− dj) ∗ pdown

j ), and

P (child troubled) = 1− (P (child up) + P (child down)),

16



where dj represents causal dependency P (child|parentj), and pup
j , pdown

j , and ptroubled
j

denote the the probability of the jth parent node being up, down, and troubled

respectively.

Once all probabilities have propagated to the observation nodes for a hypoth-

esis, the hypothesis score is calculated by taking the product of probabilities of the

observation node, where the value used for a node is P (child up) if the node reports

up, P (child down) if the node reports down, and P (child troubled) if the node reports

troubled. [4] The hypothesis with the highest score is the best explanation of root

causes given the observations of state.

Returning to the illustration in Figures 2.1 and 2.2 for the observations L1 and

L2 down and L3 up, Sherlock considers
∑3

k=0

(
6
k

)
= 42 hypotheses. Sherlock assigns

edge strengths between a router and path at 1 − 10−5. Assigning this value to all

edges yields a causal graph similar to that used by SHRINK, less prior probabilities

and noisy edges. The algorithm returns hypothesis F3 as the best explanation with

a score of 0.9998.

C. CROSS-DOMAIN FAULT LOCALIZATION

Cross-domain fault localization is correlating observations from multiple do-

mains to determine the best explanation for detected faults. Cross-domain, multi-

domain, and inter-domain are synonymous terms found in the literature. When data

is required from multiple domains to consistently identify the cause of network faults,

a cross-domain solution is needed. A study of routing instability found that all parties

pointed to another party as the cause in about 10% of the problems [44]. Despite its

importance, little work has been done to address fault localization across administra-

tive domains [44].

High-level approaches to model cross-domain fault localization and solutions

with limited scope to address the problem have been proposed. Proposed approaches

to model collaboration for cross-domain fault isolation are centralized, decentralized,
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and distributed strategies [21, 38]. Katzela et al. described three general approaches

to cross-domain fault localization collaboration: centralized, decentralized, and dis-

tributed [21]. In the centralized approach, a single entity has a global view of the

network and performs inference on behalf of all domains involved. The centralized

approach introduces a single point of failure for troubleshooting, and is both inef-

ficient and inflexible [35]. A centralized scheme as described by Katzela is akin to

the full disclosure approach described in this research, and is therefore not practical

for privacy reasons. In the decentralized approach, a central manager oversees all

domain managers. When failures affect more than one domain, this central manager

coordinates cross-domain collaboration between the domains [21]. In the distributed

approach, each network is partitioned into logically autonomous systems. This ap-

proach is similar to isolated inference, and includes abstract representations of exter-

nal root causes that could affect internal observations [21]. A distributed approach

is well suited for fault localization when effects from faults do not propagate across

network domains [5].

Existing cross-domain approaches tend to either rely on full cooperation from

involved domains [18, 35, 38], or on passively monitoring traffic and actively probing

to infer network state [2, 33]. In the past, researchers have used routing and up-

date messages, or distributed probing to identify cross-domain failures [48]. Some

suggested techniques are based on observing distributed traffic [30, 48]. Distributed

fault localization techniques have been identified as an open research problem [37]. A

solution to distributed fault localization in hierarchically routed networks has been

proposed [38], which is discussed next.

Steinder et al., 2008 presented a cross-domain fault localization approach for

hierarchically organized networks that use probabilistic fault propagation models [38].

In this approach, a network manager at the top of a hierarchy oversees and coordinates

fault localization for subordinate domains. The approach relies on domains to use

probabilistic fault localization algorithms. In the approach, each domain attempts to
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localize faults internally first. If the most probable cause of a fault comes from a proxy

node representing external domains, the domain manager requests inference from the

network manager. The network manager, upon receiving a request for inference from

a domain manager, determines the domains transited by the path as reported by the

requesting domain. The network manager divides the path into nodes representing the

transited domains and the external links between them, and provides each domain the

status of the end-to-end path as an external observation. Each domain then correlates

this external observation with their internal observations and returns a probability

that the root cause resides within the domain. If the most probable explanation is

one of the domains, that domain manager is responsible to find the precise root cause.

The cross-domain approach for hierarchical networks does not achieve gener-

ality. The approach relies on network domains to fall into a strict hierarchy, such

as in either a strictly customer-provider relationship or a hierarchically organized set

of domains under the same authority. The approach explicitly looks for errors along

a path, meaning that the model must contain all paths through the domains. Fi-

nally, each domain must use a probabilistic fault localization algorithm in order to

collaborate.

D. NETWORK TOMOGRAPHY

Network tomography, a term first used by Vardi in 1996 [45], uses a limited

subset of nodes to monitor a network, and estimate the network status and structure

[7, 9, 22, 26]. Network tomography can help to identify routing faults and congestion

[9]. However, implementing network tomography on a large scale faces significant

computational challenges [7]. Two forms of network tomography in recent literature

in include path-level traffic intensity estimation (also known as passive tomography)

and link-level parameter estimation (also known as active tomography) [9, 26].

With path-level parameter estimation, nodes inside of a network collect link-

level information measurements to estimate path-level parameters [9]. The informa-
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tion can then be used to estimate the traffic matrix of a network [26].

In link-level parameter estimation, nodes (typically on the fringe of a network)

collect path-level measurements to estimate link parameters [9]. Alternatively, the

data may be gathered via probes into the network, hence active tomography [26].

These measurements can be used to characterize a network performance over time [26].

In addition to probing to measure network status, active tomography can be used to

reveal a network’s hidden structure [9].

With the lack of viable cooperative cross-domain fault localization solutions,

active network tomography provides a non-cooperative option for a domain to probe

other network domains to gather external evidence. While probing can certainly pro-

vide valuable information about the state and structure of another network domain,

the information gleaned will not necessarily be of the same quality as information

provided by a collaborative approach. Furthermore, there is a growing network se-

curity trend to prevent network probing [7, 9], which may reduce the effectiveness of

active tomography.

E. PRIVACY CONSIDERATIONS

A passive, or semi-honest, adversary will follow specified protocols and attempt

to infer as much information as possible from messages received [47]. In the context

of cross-domain fault localization using graph digests, a passive adversary will only

attempt to learn sensitive information from a graph digest. Recent work in data-

mining uses a semi-honest collaboration model [6, 28]. As in the data-mining work,

this research assumes a semi-honest model.

An active, or malicious, adversary will not necessarily follow the protocols, and

may take measures to influence the dataset [47]. An active adversary may intention-

ally induce network faults for the purpose of learning sensitive network properties.

This research assumes that collaboration for finding faults is not done with active

adversaries.
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Graph anonymization is typically done using naive anonymization, in which

node labels are simply renamed creating a graph isomorphic to the original, non-

anonymized graph [17]. Recent approaches to strengthen anonymization of graphs

include random perturbation of edges: performing random edge deletions and inser-

tions [17]. While perturbation helps to enhance privacy of a graph, these pertur-

bations may cause degrade accuracy for the graph [17], and techniques have been

proposed to estimate the original data from the perturbed data [20]. Narayanan and

Shmatikov successfully identified individual Netflix records, in spite of small data

perturbations [29]. Any approach to share inference information for fault localization

must take measures beyond simple node anonymization if privacy is a concern.

Recent work to de-anonymize graphs attempt to locate specific nodes in the

graph [17]. A common technique to measure privacy for a data set, is to measure

k-anonymity as defined by Sweeney [43]. The basic idea of k-anonymity is to create

sets of indistinguishable nodes. The cardinality of the smallest of these sets equals the

k-anonymization level. Future work to augment the generalized standard deviation

metric presented in Chapter III with k-anonymization may strengthen the proposed

practical privacy protection approach.

Secure Multiparty Computation (SMC) approaches address performing joint

computation in a distributed system where each party reveals no information other

than their input and output [27]. Although any polynomial-time multi-party tech-

nique can be performed with privacy preservation using SMC, the cost of performing

SMC schemes for large-scale models can be too high [6, 27, 28]. As inference models

for fault localization are large, a SMC approach to fault localization may not be vi-

able. The framework and approach presented in Chapter III, however, may decrease

the size of the models involved sufficiently to enable using SMC.
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F. CONCLUSION

As seen in this chapter, there has been recent progress in fault localization. Of

particular note, the SCORE (2005) and SHRINK (2005) algorithms both use bipartite

causal graphs. SCORE uses an approach that embodies the principle of Occam’s

Razor, while SHRINK uses Bayesian inference with independence assumptions. The

strengths of these two algorithms make them excellent vehicles to test cross-domain

fault localization.

Cross-domain fault localization remains an under-researched area, but there

have been hints of progress in this research area. The only notable approach found

in the literature shows much promise, but is not general in its application.
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III. GRAPH DIGEST APPROACH

This chapter presents a framework for cross-domain fault localization that al-

lows any design in the problem space to be evaluated. The chapter provides a set of

criteria to explicitly define the two primary requirements of cross-domain fault local-

ization, realization of inference gain and protection of privacy, and the requirement

of scalability. The associated metrics for accuracy and scalability are relatively easy

to compute and make it possible to experimentally evaluate a design in terms of these

criteria. The chapter further provides a specific approach, using graph digests, for

use with fault localization models based on causal graphs.

A. GENERAL FRAMEWORK

As discussed in Chapter I, there are three general approaches for diagnos-

ing cross-domain problems. This chapter provides a first formulation of the third

approach, whereby domains exchange limited information, e.g., summaries of fault

observations, to strike a balance between inference gain and privacy preservation.

The crux of the formulation is a set of general metrics to measure the accuracy,

privacy protection, and scalability of a given cooperative design.

1. Modeling Inference Gain

A design is useless if the results it produces are not useful for inference. A

design cooperative is inference preserving if it maintains enough structure to allow

successful inference. Ideally, a design achieves the same inference gain as full disclo-

sure.

This research addresses two specific questions regarding the benefits of using

a proposed design:

1. What is the change in inference accuracy by using the design for cross-domain
scenarios compared to the accuracy achieved when domains perform inference
in isolation?
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2. What is the decrease in inference accuracy caused by using the design com-
pared to the accuracy achieved when domains collaborate with fully disclosed
information?

Question 1 above can be paraphrased as “What is gained by sharing informa-

tion when troubleshooting a problem?” Question 2 looks at the problem from the

other direction: “What is lost by trying to keep some things secret?” If the answer

to Question 1 is “a lot” then the design is effective at locating faults. If the answer to

Question 2 is “not a lot” then the design is efficient at realizing the potential accuracy

gain of cross-domain fault localization.

a. Accuracy Metrics

How is accuracy measured? Consider n domains performing fault local-

ization and let BT denote the set of actual faults (i.e., the ground truth). Let the best

explanation derived by isolated inference be Bi for each domain i. Let the best ex-

planation derived by full disclosure and a proposed design be Bu and Bd respectively.

First consider the case of isolated inference. Clearly if (BT − (∪n
i=1Bi)) 6= ∅, then the

isolated inference results contain false negatives (some faults were not found). The hit

ratio [23] is denoted by hs and measures the percentage of correct results in ∪n
i=1Bi :

hs =
|(∪iBi) ∩BT |
| ∪i Bi|

. (3.1)

Likewise if ((∪n
i=1Bi) − BT ) 6= ∅, then the inference results in isolation have false

positives. The coverage ratio [23] (denoted: cs) measures the percentage of faults in

BT that are correctly identified by ∪n
i=1Bi :

cs =
|(∪iBi) ∩BT |
|BT |

. (3.2)

It is clear that 1 ≥ h, c ≥ 0. The ratios of false positives and false

negatives are 1 − h and 1 − c respectively, both relative to BT . The ratios h and c

can each be easily optimized at the expense of the other, which may be overcome by

computing the harmonic mean of the two values. The harmonic mean of precision
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and recall is also known as F Score [3]. This research proposes to use the harmonic

mean α as the criterion to measure how well a digest model preserves inference gain.

The overall accuracy of isolated inference (denoted: αs) is the harmonic

mean of hs and cs:

αs =


0 if hs = cs = 0

2·hs·cs

hs+cs
otherwise.

(3.3)

The value of αs ranges from 0 (zero accuracy) to 1 (perfect inference). Intuitively, a

small αs value indicates a need for cross-domain coordination.

The accuracy using full disclosure (undigested graphs) is calculated by

αu =


0 if hu = cu = 0

2·hu·cu

hu+cu
otherwise,

(3.4)

where

hu =
|Bu ∩BT |
|Bu|

and cu =
|Bu ∩BT |
|BT |

. (3.5)

The accuracy of a proposed design is calculated by

αd =


0 if hd = cd = 0

2·hd·cd

hd+cd
otherwise,

(3.6)

where

hd =
|Bd ∩BT |
|Bd|

and cd =
|Bd ∩BT |
|BT |

. (3.7)

Without special consideration, a failure hypothesis involving x > 1 in-

distinguishable faults will result in adding x faults to the best explanation every time,

adversely impacting the hit ratio of the hypothesis. These faults are combined into

a single fault to calculate the scores αu, αd, and αs. Consolidating indistinguishable

faults is consistent with the SCORE fault localization algorithm [23].

To quantify the inference gain A from using a design (i.e., to answer

question 1 above), this research proposes to compute the difference between its infer-

ence accuracy and the accuracy achieved by domains in isolation:

A = αd − αs. (3.8)
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The value of A ranges from −1.0 to 1.0. A positive score means that the design

improved fault localization, a score of 0.0 means there was no improvement, and a

negative value means that using the design was worse than isolated inference. For

example, suppose BT = {S1, S4}, ∪iBi = {S2, S5}, and Bd = {S1, S5}. Then

hs = cs = 0 and hd = cd = 0.5. Thus, the inference gain A equals 0.5 for this case.

Similarly, this research proposes to measure the cost to privacy protec-

tion C (i.e., to answer question 2 above) with the metric

C = αu − αd, (3.9)

where C ranges from −1.0 to 1.0, with a larger value indicating a higher cost 1.

Continuing with the example above, C would be 0.5 if the full disclosure approach

achieves perfect accuracy, i.e., Bu = BT , which implies αu = 1.0.

Note that a design that only shares limited information may require

dramatically less computation as compared to the full disclosure approach. In other

words, the design is much more scalable. Section 3 discusses how to quantify this

benefit.

In support of the hypothesis of this dissertation, experiments showed

that a prototype design generally achieves better accuracy than isolated inference.

To test this hypothesis, the null hypothesis H0 used was: a prototype design is no

better than isolated inference. H0 is equivalent to αd = αs, which is just A = 0.

The alternative hypothesis H1 was that the design is more accurate than isolated

inference, or A > 0.

2. Modeling Privacy Preservation

In developing criteria for privacy preservation this section first presents a met-

ric to measure how much information a design discloses that would otherwise remain

undisclosed. Recognizing that this ideal metric may not be practical, Section B

1Intuitively, C should range from 0.0 to 1.0

26



presents practical metrics to measure information disclosure from using a specific

design (using a graph digest approach).

Before measuring privacy preservation, first the information that needs to be

protected must be established. This research defines a sensitive property as a piece of

information a domain manager considers private. Ideally, shared information should

not help to reveal any sensitive properties. Information about sensitive properties

should never be distributed unless permitted by a domain’s local security policy.

Specific sensitive properties will vary between domains and may include bottlenecks,

customer information, peering agreements, and many other characteristics. Further-

more, a collection of exchanged information from a domain over time should not aid

in deriving the sensitive properties.

Shannon said that “perfect secrecy” is achieved when the a priori probability

is equal to the a posteriori probability for message traffic deciphering by an adversary

[32]. The same concept applies sharing inference information. One has to assume that

an adversary has some domain knowledge, has passive access to externally observable

information, and can infer some level of knowledge about a distribution over time.

As discussed in Chapter II, this research assumes a semi-honest model.

This research explores information theory, which overlaps several technical

fields, to address the privacy preservation issue. Entropy, typically measured in bits,

is foundational to information theory. Entropy measures uncertainty about a proba-

bility distribution. The entropy H(X) of the random variable X with a probability

mass function p(x) is defined by

H(X) = −
∑

p(x) log2 p(x).

Information theory provides a means to reason about entropy between two distribu-

tions. [11]

Using an information theoretic approach, the relative entropy, or Kullback

Leibler (KL) distance [11], between a probability mass function of the random variable

representing an adversary’s belief about a sensitive property’s true value without
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shared information and a probability mass function after receiving shared information

measures the privacy loss due to implementing a cooperative design. Consider a

sensitive property that can be modeled by a discrete random variable X. Let p( )

represent the probability mass function representing an adversary’s belief about this

sensitive property conditioned by externally available information. Let d( ) represent

the probability mass function representing the adversary’s belief further conditioned

by shared information. The KL relative entropy equation is

KL(p( )||d( )) =
∑

x

d(x)log2

d(x)

p(x)
. (3.10)

In the best case this distance will equal zero for each sensitive property in

a domain, meaning that the information about a sensitive property is unchanged

after sharing information. Even if the entropy is reduced for a sensitive property, the

entropy of d(x) may remain sufficiently high to protect the privacy of the property.

Ultimately, the resultant entropy of d(x) and not the amount of entropy lost as given

by Equation 3.10, indicates the level of privacy protection for a sensitive property.

If prior and posterior probability distributions modeling an adversary’s belief

about a sensitive property can be derived, the relative entropy Eq. (3.10) can be used

to evaluate the privacy protection for a property. Although the KL distance appears

to be a perfect measure of privacy preservation, it is extremely difficult to apply in

practice as computing the KL distance requires knowledge of the prior probability

distribution the adversary uses (explicitly or implicitly) to guess a secret.

3. Modeling Scalability

Consider the SHRINK algorithm, which achieves polynomial time inference

by assuming no more than 3 concurrent SRG failures [19]. The algorithm still must

consider
(

n
1

)
+
(

n
2

)
+
(

n
3

)
hypotheses 2 with n here denoting the total number of

SRGs. The computational complexity for SHRINK is O(n4). Clearly, by compressing

2After abstracting away the null hypothesis and the “not in the model” hypothesis
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information a cooperative design will reduce the magnitude of elements in a model

(e.g. the number of SRGs n in the SHRINK model), resulting in far fewer hypotheses

to consider vs. full disclosure. As a result, such a design is intuitively more scalable

in terms of inference running time.

This research proposes a direct measurement of inference running times to

evaluate scalability. Let tu and td represent the recorded average running times for

the full-disclosure and a proposed design respectively. The metric E to quantify the

scalability improvement is defined by

E = log10

(
tu
td

)
. (3.11)

Thus, E measures the order of magnitude of reduction in inference time gained by

using a cooperative design as compared to full disclosure. A logarithmic measurement

is used for E to clearly present the order of magnitude difference in the running time.

A value for E much greater than 0 reflects significant savings in inference time by

using the proposed design, a value close to 0 reflects little or no savings, and a value

less than 0 means that the design performed slower than full disclosure inference.

B. GRAPH DIGEST APPROACH

As discussed in Chapter II, recent intra-domain approaches use graphical mod-

els to represent dependencies in a network, particularly the causal relationships be-

tween hardware failures and observed anomalies. These models (also called infer-

ence graphs), enable inference algorithms to determine those failure scenarios best

explaining observed anomalies. In practice, faults often propagate across network do-

main boundaries, depriving intra-domain algorithms of critical information required

for accurate inference. This research addresses the problem by sharing summarized

intra-domain models, called graph digests or simply digests in this research, between

domains. A graph digest is created to reflect a failure scenario and captures cross-

domain dependencies while hiding internal details.
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A cross-domain inference model based on graph digests can be formally defined

as follows. Consider n network domains:

• Gi is the inference graph for the ith domain.

• f is (ideally) a one-way transformation on Gi implementing a privacy policy.
f(Gi) is called the inference graph digest, or simply digest, for Gi.

• Gj =

(
n
]

i6=j
f(Gi)

)
]Gj, where j is a domain performing cross-domain inference

and ] is a model-specific union. Gj is the cross-domain model integrating the
digests from all the other domains with domain j’s undigested graph. Now,
domain j may use an existing algorithm such as SHRINK to perform inference
over Gj.

Before a practical graph digest design can be implemented, interoperability

standards must be developed. Domains using different inference methods can poten-

tially use a digest approach if standards are implemented and adhered to. Items to be

standardized include data types and attributes as well as cross-domain management

structures such as centralized, distributed, iterative, etc. Translation procedures are

needed in order to convert between models. This research defines a shared attribute

as a physical entity or logical concept modeled in two or more fault propagation infer-

ence graphs, and that has the same semantics in each graph. Shared attributes serve

as the glue that allows different models to be joined. For example, a shared attribute

that models the event that packets flow across a peering link between two domains

may be modeled as a root cause in one domain’s model and a dependent observation

in the other. In order to create a domain digest to connect to another domain’s fault

propagation inference graph, shared attributes must be identified and agreed upon.

The process for creating a graph digest is outlined in Figure 3.1. When a fault

is detected, if isolated inference does not find the root cause participating domains

agree on which domain will perform inference using their undigested inference graph

(graph Gj above). Each other domain creates a digest, if required, using the process in

Figure 3.1. The final decision in the graph digest creation process places responsibility
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Yes No

Pass digest

No

Yes

Figure 3.1. Process to create a graph digest

on the domain creating the digest to ensure compliance with local security policy. This

verification step places a human in the loop to enforce privacy of properties deemed

sensitive by the network administrator.

1. Practical Privacy Protection Metrics

The KL Distance metric for privacy is applicable when realistic distributions

representing an adversary’s belief about a sensitive property can be constructed. Un-

fortunately, deriving accurate probability mass functions about a sensitive property

in a domain, particularly from an adversary’s perspective, may not be possible. This

research explores a more pragmatic approach: characterize the effectiveness of various

attacks against a digest to learn specific sensitive properties about the digest’s source

domain. Specifically, the research provides a systematic method for experimentally

evaluating attacks against a causal graph.

a. Modeling a Causal Graph Attack

The focus of this research is on developing a general evaluation method-

ology, not on developing the most effective attacks on causal graphs. An exploration

of different sensitive properties to demonstrate privacy using the KL Distance did not

find a sensitive property with a meaningful probability distribution function.

As a practical approach, this research explored learning a domain’s

topology (routers, switches, physical and VPN links, etc.) from the network’s in-

ference graph. Not surprisingly, the literature search did not uncover previous work

addressing attacks on causal graphs. Once portions of a network topology have been

learned, sensitive property measurements can be taken on the constructed topology.
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b. Modeling Attack Effectiveness

There are many properties that a network domain administrator may

consider sensitive. However, relatively few of these can be inferred from an inference

graph for the domain. For example, properties such as detailed customer information

or operating system details, are most likely abstracted away from the graph. Four

example sensitive properties that could be inferred from an inference graph and used

to evaluate privacy protection are:

• Domain network diameter

• Number of routers in a domain

• Degree of the node with the highest degree in a domain

• Internal reachability between a pair of visible gateways

This research proposes to use the following statistical metrics to model

the effectiveness of an attack against a sensitive property.

• Root mean square error (rMSE).

Let X = {x1, x2, ...., xm} represent the collection of samples for a set of m
scenarios where the property has a fixed true value of P . The rMSE for that
scenario set is defined by

rMSE =
√
E((X − P )2) =

√√√√ m∑
i=1

(xi − P )2/m. (3.12)

The interpretation of rMSE is straightforward: if the rMSE value is large
relative to the true value P , the attack is considered unsuccessful.

• Generalized standard deviation (gSTD).

Usually the standard deviation, like rMSE, should be defined with respect to
a set of scenarios where the property’s true value is fixed. The definition is
generalized to consider samples from all scenarios used in an evaluation. Let
{x1, x2, ...., xM} represent the collection of samples for all M scenarios. The
gSTD is computed like a usual standard deviation by

gSTD =
√
E((X − E(X))2). (3.13)
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The gSTD has a desirable feature: it captures how well the attack algorithm
tracks the fluctuation in the true value of the property. This point will be
further articulated in Chapter VI. The attack is considered not effective if
gSTD is small relative to the sample mean E(X). For this reason, gSTD can
be viewed as a good indicator of the KL distance.

C. CONCLUSION

This chapter covers the two most significant contributions of the research:

first, a general framework, and second, a graph digest approach.

The general framework provides solid metrics to evaluate any cooperative de-

sign in the design spectrum defined by the competing requirements of accuracy and

privacy, and scalability. These metrics provide a transparent and rigorous way to ad-

dress the core issues for cross-domain fault localization and evaluate any such design.

In the graph digest approach, domains provide abstract representations of

their fault propagation models, coupled with evidence, to strike a balance between

accuracy and privacy. By distilling the shared information down to a collection of

nodes and edges, the approach intuitively reduces the size of a model as compared to

the full disclosure approach.
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IV. EVALUATION METHODOLOGY

This chapter presents the methodology used to evaluate the framework pre-

sented in Chapter III. A prototype algorithm for creating graph digests from bipartite

causal graphs was developed for evaluation. This algorithm is used to construct di-

gests for numerous failure scenarios across a range of realistic network topologies, and

then evaluated in terms of inference accuracy, privacy preservation, and scalability as

defined in Chapter III. The evaluation was shaped to consider scenarios with inherent

cross-domain characteristics.

The test topology selection process was motivated by several factors. Most

importantly, to satisfy the generality of the approach, the test topologies represent a

wide range of realistic networks. It is well-known that there is a lack of topologies

available for research efforts [34]. Instrumented networks may not contain enough va-

riety in topology to represent networks in the general case, and almost certainly would

not yield reproducible results. Furthermore, as this research is about fault localiza-

tion across network domains, collected data from instrumented networks would not

necessarily contain sufficient numbers of samples for meaningful results. The Naval

Postgraduate School is not a member of either the Abilene or GEANT projects, and

any collected cross-domain data from this project, if it exists, is not publicly available.

Given the need for generality and lack of available suitable test topologies, topologies

containing realistic topology components (atoms) were constructed. To provide em-

pirical evidence of the applicability to real network topologies, an additional topology

based on the Abilene [1] network was used.

To further evaluate the generality of the approach, experiments were conducted

by performing inference with both the SHRINK and SCORE algorithms using six

different synthetic topologies: two types of relationship between domains, and each

relationship has three topologies (small, medium, and large). Both provider-customer

and peer-peer relationships were modeled since autonomous systems typically peer
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using one of these two relationships [42], and so the generality of shared attributes

could be demonstrated. Additional experiments were performed using a topology

based on the Abilene network in a provider-customer setting. For each topology,

data was collected for single and double failure scenarios. If an observation node could

exist in another domain that provides evidence about an SRG, this research defines

that SRG as a cross-domain SRG. Failure scenarios were generated randomly, but

in order to favor scenarios requiring cross-domain fault localization, failure selection

was constrained such that at least one failure in a scenario must be a cross-domain

SRG. All single failure scenarios that satisfy this constraint were evaluated. There

are a total of 9 such scenarios in each provider-customer setting. In the peer-peer

setting there are 24, 42, and 68 such failures in the small, medium, and large topology

respectively. Three data collection cycles of fifty failure scenarios each for the double

failure scenarios were executed, yielding 150 distinct double failure scenarios for each

of the small, medium, and Abilene-based topologies. For both of the large topologies,

two collection cycles of twenty-five failure scenarios were executed, resulting in fifty

distinct double failure scenarios.

A variation of the decentralized collaboration model (Chapter II) was selected

for digest exchange. In the implemented model, each participating domain passed a

digest to a single domain, which then performed inference on behalf of all of the par-

ticipating domains. The model intuitively provides the best choice for the provider-

customer domain relationship. With many customers, the provider network domain

has shared attributes with each customer, while customers may not have shared at-

tributes with each other. In each failure scenario the domain identified as Domain 1

performed inference, adding a digest from Domain 2 to the Domain 1 causal graph.

Detailed descriptions of the models used with early versions of the prototype

algorithm and attack heuristic are documented in previously published incremental

steps of this research [15,16].
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createBipartiteDigest(G)

1: Add node Lnew to G
2: for all SRG Si ∈ G
3: if (for all edges (Si, Lj) ∈ G, Lj is up)
4: then Prune Si and its edges (Si, Lj)
5: else
6: Collect edges (Si, Lj) ∈ G such that Lj is up
7: if At least one such edge exists
8: Add edge (Si, Lnew)
9: Prune collected edges (Si, Lj)

10: Remove all isolated observation nodes Li

11: for all SRG Sx, Sy ∈ G
12: if Sx and Sy are indistinguishable
13: Aggregate Sx and Sy into S ′x such that S ′x = Sx ∪ Sy

14: Rename all SRGs that are not shared attributes
15: Rename all Observation nodes other than Lnew

Figure 4.1. Algorithm for computing a digest from a bipartite causal graph G.

A. DIGEST ALGORITHM

As the target of evaluation, a prototype digest creation algorithm was cre-

ated. The algorithm uses simple techniques, such as node and edge pruning, partial

evaluation, aggregation, and node renaming. Information such as prior probabilities

and conditional probabilities have been anonymized by setting all respective values

to the same strength. The algorithm originally used Noisy-OR to combine edges in

the digest causal graph directed to “up” observation nodes. Using Noisy-OR helped

to preserve inference information about these observation nodes that are condition-

ally dependent on the SRG being evaluated. However, this practice was found to be

very revealing about a domain network topology since the edge strength indicated

the number of neighbors a device has. Therefore, Noisy-OR was replaced with logical

OR in the implementation of the algorithm. See Figure 4.1 for detailed pseudo code

of the digest creation algorithm.

The focus of this work is on the evaluation methodology and hence the devel-

opment of potentially more effective digest creation algorithms is left to future work.
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If a rather simplistic digest creation algorithm performed promisingly, however, it

would be reasonable to conclude positively about the feasibility of cross-domain fault

localization when more polished techniques are used.

B. PROVIDER-CUSTOMER TEST TOPOLOGIES

This section introduces the provider-customer test topologies. In a provider-

customer relationship, one domain (the provider) provisions network backbone con-

nectivity to a second domain (the customer). In many cases, the provider’s physical

topology (e.g., SONET connections multiplexed on fiber) is not observable by the

customer. The customer only sees IP connections entering the edge device on one

side of the provider’s cloud and exiting on the other. Sometimes only a core router

is visible. In any case, many sources of faults are not visible to the customer. Fur-

thermore, configuration problems on either the customer’s or the provider’s side may

result in faults that are not readily observable by both parties.

For the provider-customer topologies, with the assumption that failures are

not total in the provider network and individual IP flows are not instrumented for

fault detection by the provider, observations were denied about customer flows to the

provider.

1. Physical Topologies

Each topology simulates a provider-customer network setting in which a cus-

tomer transits the provider domain using three leased circuits. The small topol-

ogy depicted in Figure 4.2, is loosely based on the topology used by the authors of

SHRINK [19]. The provider network (Domain 1 in Figure 4.2) consists of Optical Dig-

ital Cross Connect switches and fiber links to transit customer traffic. The customer

in the evaluation leases three optical circuits that transit the fiber mesh as depicted in

Figure 4.3. Additionally, several VPN tunnels are modeled in the customer topology,

shown in Figure 4.4, to explore the effects this realistic networking practice has on
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the framework. The study focuses on finding cross-domain faults that occur between

the provider domain and one of its customers (Domain 2 in Figure 4.2).
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Figure 4.6. Provider-Customer Large Physical Topology.

have 18, 54, and 204 routers respectively. The sub-components in the expanded net-

works have varying properties, such as node degree and distance between elements

in the domain, and are connected in mesh, star, ring, and ad hoc topologies. The

medium and large network topologies use the same provisioning (Figure 4.3) and

customer VPN tunnels (Figure 4.4) as in the small topology.

2. Modeling

To illustrate how a causal graph models fault propagation and how graph

digests are used, a detailed description of inference using the graph digest approach

is provided next using the small provider-customer physical topology (Figure 4.2).

As illustrated in Figure 4.2, Domain 1 has two optical cross connect switches

(O1 and O2) and four fiber links (F1 . . . F4) as SRGs. In Domain 2 (the customer

domain) each router (R1 . . .R18) and point-to-point link between adjacent routers

(e.g., R1 − R3) are modeled as an SRG. Every SRG failure in the customer domain
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Figure 4.7. Domain 1 causal graph with respect to Domain 2.
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L1-2 L1-3 V2-3 L4-11 V3-15 L11-12 V15-17 L17-18

P17-18R1 P15-18

SRGs

Observation Nodes

Figure 4.8. Domain 2 causal graph for small topology.

generates observations about the failure. The following observation nodes are modeled

in Domain 2: the IP connections between each pair of adjacent routers; the 3 internal

VPN tunnels (R2−R3), (R3−R6), and (R15−R17); the cross-domain IP connections

(R4−R11), (R4−R12), and (R11−R12); and the cross-domain VPN tunnel (R3−

R15). The three leased circuits underlying the cross-domain IP links serve as the

shared attributes for this setting, with Domain 1 modeling the shared attributes as

observation nodes (A1 . . . A3 in Figure 4.7), and Domain 2 modeling them as SRG

nodes. There are nine cross-domain SRGs from both domains (O1, O2, F1 . . . F4, R4,

R11, and R12) in the customer-provider setting.

As the provider domain (Domain 1) would have many cross-domain SRGs
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Figure 4.9. Domain 2 digest for small topology.

for different customers and a contractual obligation to provide transit service, the

provider domain was selected to perform inference on behalf of its customers for

the graph digest approach. For each of the failure scenarios, the customer domain

generated a digest for inference by the provider domain. The Domain 2 small topology

causal graph is presented in Figure 4.8. The routers R1 . . . R18, the point-to-point

links Px−y where x and y are the pair of adjacent routers Rx and Ry, and the shared

attributes A1 . . . A3 are identified as the SRGs. The observation nodes are the IP

links between the routers Lx,y and VPN tunnels Vx,y, where x and y designate the

routers on either end of the links or tunnels.

The Domain 2 digest created after observing connection failures L4−11 and

L11−12 is depicted in Figure 4.9. The SRGs R4, R11, and R12 have been anonymized

as S1...3, and IP links L4−11 and L11−12 as L1 and L2. Only the special observation

node Lup observes an “up” state and all other observation nodes report a “down”

state. All SRG prior probabilities are set to a uniform value; likewise all conditional

dependencies (the edges) have a uniform value.

An ad hoc node collapsing methodology is used to form a union between the

causal graphs, which starts by merging the shared attributes from each causal graph.

Next, each observation node inherits all conditional dependencies from all shared
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Figure 4.10. Union of causal graphs.

attributes on which the observation node is dependent (e.g., if an edge exists from a

shared attribute to an observation node, then all edges into the shared attribute from

an SRG are copied to that observation node). Finally, the shared attribute nodes

are removed. As an example F1 has an edge to A1 in the Domain 1 causal graph

(Figure 4.7) and A1 has an edge to L1 in the Domain 2 digest (Figure 4.8), thus

F1 gains an edge to L1 in the causal graph union. The model-specific union of the

Domain 1 causal graph with Domain 2’s digest is shown in Figure 4.10. In this sample

scenario SHRINK and SCORE each return F3 as the best explanation for both the

full disclosure and graph digest approaches.

There may be information loss with the transitive method of inheriting con-

ditional dependence described above. Consider the observation node L4−11 in Figure

4.8. This node is conditionally dependent on three SRGs in the Domain 2 graph.

The same node, represented by L1 in Figure 4.10, is conditionally dependent on seven

SRGs after creating the union of the Domain 2 digest and the undigested Digest 1

causal graph. Depending on the failure scenario, a different number of SRGs may

populate the conditional probability table (CPT) for observation node L4−11. Since

the prior probabilities of the SRGs and the conditional dependencies have been set

uniformly in this example scenario, the values in the table are distorted and infor-

mation is lost. If the correct distributions were learned over time, or intentionally

disclosed, the CPTs for the shared attributes could be populated with the correct
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distributions.

In the provider-customer topologies (Figures 4.2, 4.5, 4.6) F1, F2, and O1 are

indistinguishable to SHRINK and SCORE. Statistically, 1
3

of the randomly generated

failure scenarios will contain the failure of one of these three components. As discussed

in Chapter III, these nodes are combined into a single SRG to calculate the αu, αd,

and αs scores.

C. PEER-PEER TEST TOPOLOGIES

The second class of topologies considers two network domains with a peer-peer

relationship. In this relationship, each domain provides connectivity to its customers,

and neither domain provides Internet connectivity to the other [42]. The two do-

mains share multiple peering points and web service connections. These web service

connections represent monitored IP connections of interest between pairs of servers

hosted in different domains. Ownership of the shared links and hosting of the services

may be equally distributed between the two domains. IP link and web service failures

are fully visible, and device failures are considered total - an SRG failure causes an

observable failure event.

1. Physical Topologies

A similar process to create the provider-customer topologies was used to create

the peer-peer topologies. incorporating realistic network domain subcomponents. The

small physical topology is presented in Figure 4.11. The peer-peer domains in the

small topology have two peering points (R4 − R11) and (R6 − R17). The shared

attributes A1 and A2 model the event that the cross-domain connection is live.

There are five web services, W1 . . .W5, with cross-domain dependencies as

shown in Figure 4.12. For each web service with a cross-domain dependency, one do-

main models ownership of the web service and the other domain models a dependency

on that service. The shared attributes A3 . . . A6 model the event that the servers can
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Figure 4.11. Peer-Peer Domains Small Physical Topology.
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Figure 4.12. Peer-Peer Domains Small Services View.
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Figure 4.13. Peer-Peer Domains Medium Physical Topology.

reach each other along the shortest path for each pair of dependent services.

The medium topology (Figure 4.13) is modeled with four peering points and

eight web service connections (Figure 4.14), and the large topology (Figure 4.15) with

eight peering points and sixteen web service connections (Figure 4.16). The treatment

of the peering points, cross-domain web services, and shared attributes follows the

same reasoning and implementation as discussed for the small domain topology.

2. Modeling

The SRG and observation nodes are modeled as in the customer-provider set-

ting, and use the same notation. The set of cross-domain SRGs, from which each

failure scenario must have a failed component, contains every peering point router

and link, and every router and link on the shortest path between the servers for each

web service dependency. A total of 24, 42, and 68 cross-domain SRGs were identified

in the small, medium, and large topologies, respectively.

There are two types of shared attributes for this scenario. The first type
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Figure 4.14. Peer-Peer Domains Medium Services View.
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Figure 4.15. Peer-Peer Domains Large Physical Topology.
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Figure 4.16. Peer-Peer Domains Large Services View.

represents the peering links between the domains (A1 and A2 in Figure 4.11). For

each such link, one domain owns the link, and this domain models it as an observation

node;the other domain models it as an SRG node. The second type of shared attribute

describes whether a pair of servers can connect with each other. For each web service,

the domain hosting the service models the shared attribute as an observation node

while the domain on the client side models it as an SRG. In the evaluated peer-peer

topologies, both domains observe the state of an event modeled by a shared attribute.

The construction of causal graphs for the peer-peer domain setting proceed

similarly as with the provider-customer setting.

D. ABILENE-BASED TOPOLOGY

To provide an empirical evaluation using an established network topology, a

topology was constructed based on the Abilene network backbone [1] (Figure 4.17).

Customer domain connections to the Abilene network are modeled as stub routers. A
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Figure 4.18. Provider domain to the Abilene network.
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notional second network (Figure 4.18) was added across the Midwest United States

to decrease the diameter of the Abilene-based network. This second network serves

in the role as a provider to the Abilene network. The domain relationship and causal

graph construction for the Abilene-based network are the same as for the provider-

customer relationship described in Section B above, with the Abilene-based network

filling the role of the customer. The Abilene-based network transits three circuits,

C1 . . . C3, provided by the added network. The gateway routers that connect to the

circuits are routers R4, R7, and R20 in Figure 4.17.

E. INFERENCE ALGORITHMS

Two recent fault localization algorithms, SHRINK [19] and SCORE [23], were

selected (as discussed in Chapter II), to evaluate the graph digest design. The use

of two different algorithms is intended to provide evidence for the generality of the

approach. Although neither algorithm was crafted to perform cross-domain fault

localization, graph digests can be passed across domain boundaries for inclusion in a

consolidated inference effort. The two algorithms are fundamentally different, with

SHRINK using a Bayesian approach and SCORE using a greedy minimum set cover

approach.

Performing isolated inference with SHRINK and SCORE is straightforward.

Each domain performed inference, without benefit of collaboration, on their own

causal graph. The resulting best explanations, B1 and B2 from domains 1 and 2

respectively, were then combined into B1 ∪B2. To implement full disclosure, a global

causal graph for the two domains was created using a full view of the topologies, and

then inference was performed on this global causal graph to derive Bu. Finally, for

the graph digest approach, the causal graph of Domain 2 was first processed with the

digest creation algorithm. The resulting digest was then combined with the causal

graph of Domain 1 using the techniques described in Section 2, and inference was

performed on the combined graph to produce Bd.
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F. EVALUATION METRICS

1. Evaluating Accuracy

To evaluate the accuracy A and cost C metrics (defined in Chapter III), for

each failure scenario, first the inference accuracy of isolated inference and full disclo-

sure relative to ground truth was computed for each failure scenario. These results

were compared to the accuracy achieved with the graph digest approach for the same

failure scenarios. The digest creation algorithm presented in Figure 4.1 was used to

create the graph digest for Domain 2. The equations 3.8 and 3.9 were applied to

determine the accuracy A and cost C for each failure scenario.

Hypothesis testing showed whether the graph digest approach achieved better

accuracy than isolated inference for each topology and inference method used. There

are two domain relationships with three topology sizes each and two inference algo-

rithms, for a total of twelve data sets using the synthetic topologies with which to test

the hypothesis. Both SHRINK and SCORE performed inference on the Abilene-based

topology, providing two additional data sets for hypothesis testing. With expected

non-normal distributions, the hypothesis was evaluated using the Wilcoxon Signed-

Rank Test at the 95% confidence level [12]. Specifically, the H0 and H1 hypotheses

are that the graph digest approach achieves the same accuracy as isolated inference,

and that the graph digest approach achieves better accuracy than isolated inference,

respectively.

2. Evaluating Privacy Protection

The privacy protection provided by the prototype digest algorithm presented

in Figure 4.1 was used. As discussed in Chapter III the practical approach was used

to gauge the risk to privacy. Both of the evaluation inference algorithms, SHRINK

and SCORE, were designed to find faults at the physical layer based on observations

at the link and network layers. For this reason, sensitive properties that could be

measured from such a reconstructed topology were selected.
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In the evaluation, the following four sensitive properties were directly mea-

sured:

1. diameter - the diameter of the network.

2. number of routers - the total number of routers.

3. maximum node degree - the degree of the node with the highest degree.

4. reachability - whether or not an internal path can be inferred between two
gateway routers.

For each of these sensitive properties, the ground truth values were the internal,

or “hidden” values. As an example, an 18 router network with 3 visible gateways has

15 hidden routers. A digest revealing 3 internal routers reveals 3 of the 15 hidden

routers. The diameter and degree sensitive properties are evaluated similarly, and

the reachability property is binary.

Some may argue for treating IP link and web service failures themselves as a

sensitive properties. Hiding evidence of failure, however, is both counter-productive,

and directly opposed to the stated objective of sharing external observations of fail-

ure. Consider the provider-customer domain relationship as discussed above. The

customer may need to give the provider specific information about failures so that

the provider, who is contractually obligated to provide and maintain connectivity,

to restore service. Similarly peer-peer domains may have contractual obligations to

their respective customers.

No additional measures to hide sensitive properties were taken, but rather the

digest creation algorithm (Figure 4.1) was evaluated for the inherent privacy protec-

tion provided. Removing sensitive information from a causal graph prior to digesting

may provide additional protection, but the accuracy trade-offs must be understood.

As shown in the final decision step in Figure 3.1, a digest is evaluated for compliance

with a security policy after digesting and before dissemination. Ultimately, provable

techniques are needed to evaluate the level of privacy disclosure for a digest. This
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Figure 4.20. Topology produced by the attack heuristic.

research developed and implemented attack heuristics to learn sensitive properties of

a network domain from its digested causal graph to gauge privacy protection.

The heuristic was implemented to specifically attack SHRINK-style bipartite

causal graph digests. For brevity a simplified description of the attack heuristic is

presented.

Consider the example causal graph in Figure 4.19. The causal graph has SRG

nodes S1 . . . S6, observation nodes L1 . . . L3, and a shared attribute observation node

A1. Suppose it is known that A1 represents a peering-point shared attribute. It can

now be concluded that S4 is a gateway router. Next observe that L1 has 3 parent SRG

nodes, with S1 having a cardinality of 1. SRG S1 is most likely a point-to-point link

connecting the gateway S4 and an adjacent router: S5. Now nodes S4 and S5, and

edge (S4, S5) are in a graph representing the topology. Applying the same reasoning

with L2 and L3 allows adding node S6 and edges (S5, S6) and (S4, S6), resulting in

the topology shown in Figure 4.20.

The attack heuristic, which is presented at a high level in Figure 4.21, proceeds
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Digest-Attack-Heuristic(Digest D = (SRG S,Observation O),
SharedAttributes SA)

1 Extract-Topology(Digest D, SharedAttributes SA)
2 Add externally visible topology components
3 Evaluate-Properties(Topology T = (Routers R, Links L))

Figure 4.21. Heuristic used to attack graph digests.

in three phases. First, the heuristic attempts to derive topology from a graph digest.

Second, the heuristic adds missing externally visible components, such as gateway

routers and transit links, to an extracted topology. Third, the heuristic uses the

topology to estimate the values of sensitive properties. The attack heuristic (Figure

4.21) takes two parameters: the digest D and the shared attributes SA. Each shared

attribute includes a distinction of whether or not it represents a peering point. The

heuristic was designed to attack both an undigested bipartite causal graph, and a

digest created using the prototype digest creation algorithm (Figure 4.1). Eventually,

a collection of sample values is obtained for each property from each target set of

scenarios.

A conservative approach to estimating the values was implemented, which

represents an estimated lower bound on the information learned. In other words, the

attack uncovers values for sensitive properties that are almost certainly true. As an

example, suppose an attack uncovers two adjacent routers, each having an unresolved

edge representing a connection to another router. The heuristic assumes that these

unresolved edges connect to the same router.

Topology extraction, the first phase of the attack heuristic, is outlined in Figure

4.22. The procedure assumes a bipartite digest consisting of SRGs S, Observation

nodes O, and edges E represented as adjacency lists. The procedure uses a function

adj() defined by

adj : O ∪ S → 2O ∪ 2S,
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where

adj(x) =


{o ∈ O|(x, o) ∈ E} if x ∈ S

{s ∈ S|(s, x) ∈ E} if x ∈ O
(4.1)

A discussion of topology extraction from a customer’s causal graph in a provider-

customer domain relationship (Figure 4.22) follows. The extraction begins by iden-

tifying candidate point to point links. The heuristic steps through all SRG nodes

looking for any that points to just one observation node having three or fewer SRG

parents. In a SHRINK-style model, a point-to-point link SRG will be a parent node of

an IP link observation node between adjacent routers. Before any digest transforma-

tion and without any web services or VPN tunnels transiting the link, this observation

node has three parent nodes: the point-to-point link and two routers. In this case,

the point-to-point link SRG will have no other child observation nodes. However, the

link may have one or more transiting VPN tunnels or web services, represented by

a separate observation node. The point-to-point link will be a parent node of these

observation nodes as well, each of which will likely have multiple (more than three)

SRG parent nodes.

Now that some of the candidate point-to-point links have been identified, all

down observation nodes are evaluated, starting with those having three or fewer

parent SRGs. With the topologies used in this research, these comprise the majority

of the observation nodes. Two points of clarification are:

1. Shared attribute nodes are never added as routers.

2. A tie breaker must be used when evaluating equal options.

An observation node having one parent SRG is most likely a router and link

that have been aggregated, so that parent SRG node is added to the set of routers.

An observation node with two parents likely represents a stub router and a link, so the

node of highest degree is added to the set of routers. An observation node with three

parents, the most common case in an undigested graph, most likely represents two
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routers connected by a point-to-point link. The two parent nodes with the highest

degree are added to the set of routers. If none of the observation node’s parents are

shared attributes, then a link between these routers is added to the topology.

If a down observation node has more than three parents, the heuristic assumes

the observation node represents an IP tunnel or a web service. Often, any routers or

links that can be learned will have already been captured by other observation nodes,

which is why these observation nodes are processed last. The heuristic assesses each

of these observation nodes to see if there are any non-shared attribute SRG parents

not previously identified as routers or point-to-point links. If any such parents are

found, up to two parents are added to the set of routers along with links between

them if neither the observation node nor any of its parent SRGs is a shared attribute.

Finally, the topology extraction heuristic looks at routers identified at the peering

points and adds them as gateways.

The heuristic EXTRACT-TOPOLOGY evaluates a SHRINK-style bipar-

tite causal graph representing network fault propagation, and extracts the network

topology from the causal graph. The algorithm produces a graph of nodes repre-

senting routers, edges representing point-to-point links, and identifies IP tunnels. On

an undigested graph the algorithm always returns an isomorphism of the original

topology as shown below.

Without loss of generality, consider the customer topology extraction heuristic

in Figure 4.24, with the following assumptions about the network topology graph. The

graph is a simple, connected graph with at least two routers 1. Shared attributes,

gateway labels, and IP tunnels are not contained in the graph.

The following assumptions about the causal graph construction from the net-

work topology are made. First, the causal graph is correctly constructed from a

1The requirement to have more than one router in a network graph is consistent with reverse-
engineering a digest created using the digest creation algorithm (Figure 4.1). An isolated router
influences no IP links, hence the algorithm would prune an SRG representing an isolated router
from a causal graph.
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connected network topology graph. Second, the SRG nodes are routers and point-to-

point links, and the observation nodes are IP links between adjacent routers. Each

pair of adjacent routers has exactly one IP link observation node modeled between

them.

Let a network topology as described above be the graph G = (V,E), where

V consists of a set of two or more connected routers and E consists of a set of

point-to-point links connecting the routers in V . Let the bipartite causal graph be

D = (S,O), where the SRG set S models all routers and point-to-point links in

G, and the observation set O models observations of all IP links between each pair

of adjacent routers in V . Let the network graph G′ = (V ′, E ′) be the topology

constructed from reverse-engineering D. The heuristic EXTRACT-TOPOLOGY

(Figure 4.22) iterates through observation nodes o ∈ O to add edges e′ ∈ E ′ and

previously undiscovered routers v′ ∈ V ′ to G′. The function adj() is used as defined

in Equation 4.1. To prove the correctness of EXTRACT-TOPOLOGY to reverse-

engineer an isomorphism of G, namely G′ this subsection will prove by induction that

each step in adding the routers and edges to G′ is correct.

The following axiom related to construction of the dependency graph D must

be true for the Heuristic in Figure 4.22 to return an isomorphism G′ of the original

topology G from D.

Axiom 1. (Bipartite Causal Graph Construction).
An IP link directly connecting two routers is modeled as an observation node and
depends on exactly three SRG parent nodes modeling two routers and the point-to-
point link between the routers. The SRG modeling the point-to-point link affects no
other observation nodes. An SRG modeling a router may affect many observation
nodes, but a stub router affects only one.

Lemma 1. Provided that the above assumptions and Axiom 1 are true, an observa-
tion node o ∈ O represents an IP link between two adjacent routers iff |adj(o)| = 3.

Proof. By Axiom 1, an observation node representing a point-to-point IP link between
two adjacent routers is modeled as an observation node dependent on 3 SRG parent
nodes.
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Suppose an observation node o ∈ O exists such that |adj(o)| 6= 3. Then by
Axiom 1, o does not depend on precisely 3 SRG nodes, and hence o does not represent
an IP link.

Lemma 2. Provided that the above assumptions and Axiom 1 are true, an SRG
node s ∈ S represents either a point-to-point link or a stub router iff |adj(s)| = 1.

Proof. By Axiom 1, an SRG modeled as point-to-point link or a stub router affect
exactly one observation node modeling an IP link.

Suppose an SRG s models a point-to-point link or stub router such that
|adj(s)| 6= 1. There are two cases.

Case 1: |adj(s)| = 0. SRG s affects no IP links, hence s is an isolated compo-
nent violating the assumptions that G contains more than one router in a connected
simple graph.

Case 2: |adj(s)| > 1. SRG s affects more than one IP link, hence either s is
not a point-to-point link or stub router, or G is not a simple graph.

Lemma 3. Provided that the above assumptions and Axiom 1 are true, an SRG
node s ∈ S represents a router that is not a stub router iff |adj(s)| ≥ 2.

Proof. By Axiom 1, an SRG modeled as a non-stub router affects exactly more than
one observation node modeling an IP link.

Suppose SRG s models a router that is not a stub router and |adj(s)| < 2.
There are two cases.

Case 1: |adj(s)| = 0. SRG s affects no IP links, hence s is an isolated compo-
nent violating the assumptions that G contains more than one router in a connected
simple graph.

Case 2: |adj(s)| = 1. SRG s affects exactly one IP link, hence by Lemma 2
either s is either a point-to-point link or stub router.

Many lines in the heuristic (Figure 4.22) are not executed when processing an

undigested graph using the above assumptions and axiom. The following two lemmas

establish that many lines in the heuristic will not execute on such a graph, and thus

can be removed to increase clarity.

Lemma 4. Provided that the above assumptions and Axiom 1 are true, all observa-
tion nodes o ∈ O have degree |adj(o)| = 3.

Proof. By the assumptions only IP links are modeled in the graph, and by Lemma 1,
IP links have degree |adj(o) = 3|.
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Suppose an observation node o ∈ O does not have a degree of 3. Then by
Lemma 1, o does not model an IP link. By the above assumptions observation nodes
only model IP links, hence o is not in the model.

Lemma 5. Provided that the above assumptions and Axiom 1 are true, the algorithm
correctly populates the temporary set of candidate point-to-point links C with point-
to-point links and stub routers.

Proof. Lines 3-5 populate C with precisely the set of point-to-point links and stub
routers by Lemma 2.

Suppose a point-to-point link or stub router SRG s ∈ S is not placed in set C.
Then there does not exist a single o ∈ adj(s) such that |adj(o)| = 3, and by Lemma
2, s is neither a point-to-point link nor a stub router.

The heuristic EXTRACT-TOPOLOGY (Figure 4.22) can now be simpli-

fied. The simplification is not necessary, but by removing lines that are not executed

on a causal graph constructed from the network topology graph described above, a

streamlined version of the algorithm can be used for the proof. First, by the above

assumptions G is an undigested graph, so references to Lup inserted by the digest

creation algorithm, can be removed from lines 4, 6, and 26. The loop in lines 35-37

can similarly be removed. By Lemma 4, lines 7-11 can be removed since an obser-

vation node will not have a degree of 1 or 2. By Lemma 5, all point-to-point links

are added to container C, so lines 17 and 18 can be removed. By the assumptions,

the graph has neither IP tunnels nor gateway labels, so lines 21-34 can be removed.

Similarly, the tunnel set T can be removed from line 1. Since shared attributes are

not considered, the set SA can be replaced by ∅. Line 3 can now be rewritten and

lines 13 and 14 removed since the conditional if(adj(o) ∩ ∅) 6= ∅ always evaluates to

false. The resulting simplified version of the algorithm is depicted in Figure 4.24.

Using the simplified version of the algorithm constructed from the heuristic in

Figure 4.24, now the above axiom and lemmas will be applied to prove by induction

on the number of IP links that EXTRACT-TOPOLOGY creates a G′ that is

isomorphic to an arbitrary G using D.
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Theorem 1. Provided that the above assumptions and Axiom 1 are true,
EXTRACT-TOPOLOGY correctly reverse-engineers an isomorphism G′ of an ar-
bitrary graph G with k IP links, from a bipartite causal graph D that models depen-
dencies in G.

Proof. Base Case. Consider an arbitrary graph with k = 1 IP links, consisting of two
routers and a point-to-point link (Figure 4.25 (a)). By Axiom 1, the IP link will be
modeled as o ∈ O, dependent on two routers and a point-to-point link, each modeled
as an s ∈ S. The loop in lines 3-5 will add the point-to-point link and both routers
to set C. Since |adj(o)| = 3 by Lemma 1 and set P = ∅, lines 7 and 8 evaluate to
true. Since all three SRGs are in set C, set R = ∅, and |adj(s)| = 1 for each s ∈ S.
A tie-breaker adds one of the SRGs s ∈ S to P . Next, the other two SRGs s ∈ S
are added to the router set R in line 10. Finally, in step 11 an edge between the two
routers in R is added to L. The algorithm completes with V ′ = R and E ′ = L. The
resulting graph G′ contains two routers with a point-to-point link between them.

Inductive Step. Assume that an arbitrary graph with k IP links is always
correctly reverse engineered, such that G′ is isomorphic to G. It must be shown that
EXTRACT-TOPOLOGY creates a G′ isomorphic to an arbitrary graph G with
k + 1 IP links.

Suppose a bipartite dependency graph D has been created from an arbitrary
graph G with k + 1 IP links using Axiom 1. Consider temporarily removing the
(k + 1)th observation node o ∈ O, all SRG parents s ∈ adj(o) such that |adj(s)| = 1,
and all edges into o. Assume that the inductive hypothesis is true, and that the first
k observation nodes have been correctly reverse engineered to create an isomorphic
graph G′′ ⊂ G. By Lemma 1, the removed (k + 1)th observation node depends on a
point-to-point link and two routers. By Lemma 2 SRG s ∈ S models a point-to-point
link or stub routers iff |adj(s)| = 1, hence these SRGs have been temporarily removed.
Clearly G′′ is missing a link and possibly a stub router that is in G. To prove that
EXTRACT-TOPOLOGY creates a G′ isomorphic to G, the k + 1st observation
node and removed point-to-point link SRG, and any stub router SRG, must now be
added to D. The (k + 1)th observation node must now be reverse engineered and
added to G′′, creating G′. There are three cases as shown in Figure 4.25 (b). . . (d).
The missing components in G′′ after removing the (k+1)th IP link ok+1 are illustrated
with dashed lines. In each case by Lemma 1 |adj(o)| = 3 and by Lemma 2 the SRG
s ∈ S modeling the point-to-point link in adj(o) has degree of 1. The algorithm
will add the SRG s ∈ S representing the point-to-point link, along with any stub
routers to temporary set C in lines 3-5. Lines 7 and 8 always evaluate to true since
|adj(o)| = 3 by Lemma 1, and (adj(o) ∩ P ) = ∅ since G is a simple graph. The three
cases follow.

Case 1: A point-to-point link and stub router are in G, but missing from G′′

(Figure 4.25 (b)). Either an SRG modeling the missing stub router or the point-to-
point link in adj(o) is added to P in line 9. In line 10, the other two SRGs are added
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to R. One router, s ∈ S has been previously reverse engineered, but since s ∈ R,
R ∪ {s} = R. In line 11, a link is added between the two routers. Now that the
components in G missing from G′′ have been added, G′ is isomorphic to G.

Case 2: A link in G is missing from G′′, and G′′ consists of two disconnected
components (Figure 4.25 (c)). Let o ∈ O be the k+ 1st observation node. Since both
routers s ∈ adj(o) have been reverse-engineered by the first k observation nodes,
|adj(s)| > 1 for both SRG nodes representing the routers. Thus, |C| = 1, and C
contains just the point-to-point link. The link is added to P in line 9 and both
routers are re-added to R in line 10. Since s ∈ R for each router, R ∪ {s} = R. In
line 11, the link is added between the two routers. Now that the link in G missing
from G′′ has been added, G′ is isomorphic to G.

Case 3: A link in G is missing from G′′, and G′′ consists of one connected
component (Figure 4.25 (d)). Let o ∈ O be the k + 1st observation node. Since both
routers s ∈ adj(o) have been reverse-engineered by the first k observation nodes,
|adj(s)| > 1 for both SRG nodes representing the routers. Thus, |C| = 1, and C
contains just the point-to-point link. The link is added to P in line 9 and both
routers are re-added to R in line 10. Since s ∈ R for each router, R ∪ {s} = R. In
line 11, the link is added between the two routers. Now that the link in G missing
from G′′ has been added, G′ is isomorphic to G.

Any externally visible components that are missing from the extracted topol-

ogy are then added. The topology is then fed to the next heuristic, which is property

evaluation.

Topology extraction for the peer-peer domain relationship (Figure 4.23) pro-

ceeds similarly to extraction for the provider-customer relationship with the following

three modifications. First, the phase to identify components based on point-to-point

links first processes all non-SA observation nodes, then all SA observation nodes. Sec-

ond, for the case of an SA observation node with two SRG parent nodes, the heuristic

adds only one router. Third, the heuristic processes observation nodes as well as SRG

nodes to identify gateway routers, and creates a peering link instead of a transit link.

The property evaluation phase shown in Figure 4.26, measures the four sen-

sitive properties previously identified: reachability, domain diameter, number of

routers, and degree of the node with the highest degree. This heuristic takes the
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topology generated by the heuristic in Figure 4.22 and a pair of gateway routers for

reachability testing as input parameters.

The heuristic first iterates through the routers in the topology to find the node

with the maximum degree. Next, the heuristic temporarily removes all peering links

from the topology. If the reachability nodes have been identified in the topology as

gateways and a path exists between them, internal reachability is determined to be

true.

To calculate the number of routers, the heuristic first needs to resolve unre-

solved edges. A router has an unresolved edge in the topology if the router has an

edge to Lup in the causal graph. The heuristic attempts to resolve these unresolved

edges by checking to see if a link between routers with unresolved edges can be es-

tablished. Any number of routers may resolve their edges with a single router having

an unresolved edge. This detail is consistent with the logical OR implementation

in the digest algorithm (Figure 4.1), since an edge to Lup represents one or more

connections.

The heuristic adds all routers with an unresolved edge to set U , and colors

each router white. For each pair of routers in set U , if the routers are not adjacent

and both routers are not gateways, then the routers are colored black and an edge is

added between the routers. After adding these edges, which are a necessary step to

find the lower bound on the network diameter, the heuristic next checks to see if there

is a gateway router that is colored white. Since external information is visible with

respect to the domain attacking a digest and it is not common practice to peer with

multiple domains from a single gateway router, the heuristic explains the unresolved

edge by adding an internal router to the topology. If instead no gateway routers

are colored white but one or more internal routers are colored white, the heuristic

explains the first instance as an external connection to an unknown domain, and

a subsequent instance as an internal router. Dual homing is common practice for

network domains, but dual homing with an arbitrary number of connections is not.
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If an internal router is added to a domain topology, every router in set U will be able

to resolve its unresolved edge with the added router.

Finally, the heuristic uses the Floyd-Warshal algorithm [10] to determine the

network diameter. The Floyd-Warshal algorithm computes the longest of the shortest

paths in a graph.

3. Evaluating Scalability

The first ten double failure scenarios from each topology were instrumented to

measure the real elapsed time using the Linux time command via Cygwin. To evaluate

the scalability metric E the inference time was measured using both the full disclosure

and graph digest approaches. The mean of each set of ten measurements was used

as input to equation (3.11). The simulations were run on a 1.61 GHz computer with

960 MB RAM running Windows XP, service pack 3.

G. CONCLUSION

This chapter outlines the test methodology used to evaluate the hypothesis

that an approach using the framework in Chapter III achieves better accuracy than

isolated inference. Six different network domain topologies built from realistic net-

work topology atoms were used with varying sizes and two different domain peering

relationships. An additional topology based on the Abilene [1] backbone infrastruc-

ture was used. The prototype graph digest algorithm (Figure 4.1) was evaluated using

two different intra-domain fault localization algorithms: SHRINK and SCORE. The

variety in topologies, as well as the use of two different inference algorithms, serves

to evaluate the generality of the framework described in Chapter III. By measuring

performance in terms of the accuracy, privacy, and scalability metrics outlined in

Chapter III, the evaluation results in Chapter V establish the feasibility of the graph

digest approach for cross-domain fault localization.
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Extract-Topology(Digest D = (SRG S,Observation O), SharedAttribute SA)
1 initialize router set R, link set L, and tunnel set T to ∅
2 initialize temporary set variables C and P to ∅

� Identify candidate point-to-point links
3 for each SRG s ∈ (S − SA)
4 do if there exists a single o ∈ adj(s) such that o 6= Lup and |adj(o)| ≤ 3
5 then add s to C

� Identify components based on point-to-point links
6 for each observation node o 6= Lup in O
7 do if |adj(o)| = 1
8 then add s ∈ (adj(o) ∩ (S − SA)) to R
9 elseif |adj(o)| = 2

10 then add each s ∈ (adj(o)− (SA ∪ P )) to R
11 add edge (si, sj 6=i) for each si, sj 6=i ∈ (adj(o) ∩R) to L
12 elseif |adj(o)| = 3
13 then if (adj(o) ∩ SA) 6= ∅
14 then add each s ∈ (adj(o)− (SA ∪ P ) to R
15 else if (adj(o) ∩ P ) = ∅
16 then add s ∈ ((adj(o) ∩ C)−R) with min. |adj(s)| to P
17 if (adj(o) ∩ P ) = ∅
18 then add s ∈ (adj(o)−R) with min. |adj(s)| to P
19 add each s ∈ (adj(o)− P ) to R
20 add edge between each s ∈ (adj(o) ∩R) to L

� Identify gateway routers based on shared attribute peering points
21 for each s ∈ (S ∩ SA) such that s is a peering point shared attribute
22 do for each o ∈ (O ∩ adj(s))
23 do if |adj(o)− SA | ≤ 2
24 then label each s ∈ (adj(o) ∩R) as gateway
25 add edge between each s ∈ (adj(o) ∩R) and label as transit

� Identify routers based on logical tunnels
26 for each observation node o 6= Lup in O such that |adj(o)| > 3
27 do initialize a new tunnel t to ∅
28 if |adj(o) ∩R| < 2
29 then if |adj(o) ∩R| = 0
30 then add s ∈ (adj(o)− (P ∪ SA)) with max. |adj(o)| to R
31 add s ∈ (adj(o)− (R ∪ P ∪ SA)) with max. |adj(o)| to R
32 for each s ∈ adj(o) ∩R
33 do add router s to tunnel t
34 T ← T ∪ {t}

� Identify unresolved edges
35 for each s ∈ adj(Lup)
36 do if s ∈ R
37 then mark s with unresolved edge ← true

Figure 4.22. Heuristic to extract router, link, and tunnel sets of customer topology
from a graph digest.
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Extract-Topology(Digest D = (SRG S, Observation O), SharedAttribute SA)

1 initialize router set R, link set L, and tunnel set T to ∅
2 initialize temporary set variables C and P to ∅

� Identify candidate point-to-point links
3 for each SRG s ∈ (S − SA)
4 do if there exists a single o ∈ adj(s) such that o 6= Lup and |adj(o)| ≤ 3
5 then add s to C

� Identify components based on point-to-point links
� Do for all non-SA observation nodes first, then for all SA observation nodes

6 for each observation node o 6= Lup in O
7 do if |adj(o)| = 1
8 then add s ∈ (adj(o) ∩ (S − SA)) to R
9 elseif |adj(o)| = 2

10 then if o ∈ (O ∩ SA) such that o is a peering point shared attribute
11 then add s ∈ (adj(o)− (SA ∪ P )) with max. |adj(o)| to R
12 else add each s ∈ (adj(o)− (SA ∪ P )) to R
13 add edge to L between each s ∈ (adj(o) ∩R)
14 elseif |adj(o)| = 3
15 then if (adj(o) ∩ SA) 6= ∅
16 then add each s ∈ (adj(o)− (SA ∪ P ) to R
17 else if (adj(o) ∩ P ) = ∅
18 then add s ∈ ((adj(o) ∩ C)−R) with min. |adj(s)| to P
19 if (adj(o) ∩ P ) = ∅
20 then add s ∈ (adj(o)−R) with min. |adj(s)| to P
21 add each s ∈ (adj(o)− P ) to R
22 add edge between each s ∈ (adj(o) ∩R) to L

� Identify gateway routers based on shared attribute peering points
23 for each s ∈ (S ∩ SA) such that s is a peering point shared attribute
24 do for each o ∈ (O ∩ adj(s))
25 do if |adj(o)− SA | ≤ 2
26 then label each s ∈ (adj(o) ∩R) as gateway
27 add edge between each s ∈ (adj(o) ∩R) and label as peering
28 for each o ∈ (O ∩ SA) such that o is a peering point shared attribute
29 do if |adj(o)| ≤ 2 and |adj(o) ∩R| = 1
30 then label s ∈ (adj(o) ∩R) as gateway

� Identify routers based on logical tunnels
31 for each observation node o 6= Lup in O such that |adj(o)| > 3
32 do initialize a new tunnel t to ∅
33 if |adj(o) ∩R| < 2
34 then if |adj(o) ∩R| = 0
35 then add s ∈ (adj(o)− (P ∪ SA)) with max. |adj(o)| to R
36 add s ∈ (adj(o)− (R ∪ P ∪ SA)) with max. |adj(o)| to R
37 for each s ∈ adj(o) ∩R
38 do add router s to tunnel t
39 T ← T ∪ {t}

� Identify unresolved edges
40 for each s ∈ adj(Lup)
41 do if s ∈ R
42 then mark s with unresolved edge ← true

Figure 4.23. Heuristic to extract router, link, and tunnel sets of a peering topology
from a graph digest.
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Extract-Topology(Digest D = (SRG S,Observation O), SharedAttribute SA)
1 initialize router set R and link set L to ∅
2 initialize temporary set variables C and P to ∅

� Identify candidate point-to-point links
3 for each SRG s ∈ S
4 do if there exists a single o ∈ adj(s) such that |adj(o)| ≤ 3
5 then add s to C

� Identify components based on point-to-point links
6 for each observation node o ∈ O
7 do if |adj(o)| = 3
8 then if (adj(o) ∩ P ) = ∅
9 then add s ∈ ((adj(o) ∩ C)−R) with min. |adj(s)| to P

10 add each s ∈ (adj(o)− P ) to R
11 add edge between each s ∈ (adj(o) ∩R) to L

Figure 4.24. Algorithm to extract router, link, and tunnel sets of customer topology
from an undigested graph digest.

(a) (b) (c) (d)

ok+1 ok+1 ok+1

Figure 4.25. (a) Base Case and (b). . . (d) possible cases for G′′.
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Evaluate-Properties(Topology = (Routers R, Links L))
1 reachability ← false
2 diameter ← 0
3 number of routers ← 0
4 max node degree ← 0

� Determine reachability
5 Temporarily remove all peering links from L
6 if reachability nodes r1 ∈ R and r2 ∈ R are labeled as gateway
7 then if a path r1  r2 exists
8 then reachability ← true
9 Replace all peering links

� Find the maximum node degree
10 for each router r ∈ R
11 do if degree of r > max node degree
12 then max node degree ← degree of r

� Find the number of routers
13 Add all routers in R that have an unresolved edge to temporary set U
14 Color each router in U as white
15 external connection added ← false
16 while exists a router in U colored white
17 do for all r ∈ U
18 do for all (s 6= r) ∈ U such that s is not marked gateway
19 do if edge (r, s) /∈ L
20 then add (r, s) to L
21 color r black
22 color s black
23 if exists r ∈ U colored white and marked gateway
24 then add new router s to R
25 add s to U
26 color swhite
27 else if exists r ∈ U colored white and not marked gateway
28 then if external connection added = false
29 then external connection added ← true
30 color r black
31 else add new router s to R
32 add s to U
33 color swhite
34 number of routers ← |R|

� Find the network diameter
35 Run Floyd-Warshal algorithm on T to derive diameter

Figure 4.26. Heuristic to evaluate reachability, diameter, number of routers, and
maximum node degree sensitive properties from a graph digest.
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V. EVALUATION RESULTS

This chapter presents the evaluation results for the model presented in Chapter

III. The evaluation methodology described in Chapter IV is used.

A. PROVIDER-CUSTOMER SETTING

1. Accuracy Evaluation Results - SHRINK

For all but 5 of 377 tested scenarios, αd ≥ αs, resulting in non-negative ac-

curacy improvement scores A (Figure 5.1). The average A score was 0.31, 0.36, and

0.42 for the small, medium, and large topology respectively. The maximum score for

each topology was 1.0. There was an accuracy improvement in 55%, 66%, and 68% of

the test scenarios for the small, medium, and large topology respectively (indicated

by an oval in Figure 5.2). The results indicate that scaling the domain size has little

impact on the accuracy of Bd, B1 ∪B2, or A with respect to BT .

All instances of accuracy A = 1.0 in Figure 5.1 reflect failure scenarios for
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Figure 5.2. CDF of A metric for the provider-customer setting.

which only components in the provider (Domain 1) have failed. As discussed in

Chapter IV, failures in the provider domain are not observable by the provider. While

the customer can observe failures, inference by the customer in isolation will only

result in either incorrectly identified components in the customer domain, or finger

pointing at the provider. While it is not surprising that isolated inference was wholly

unsuccessful in identifying the failures (αs = 0.0) for these scenarios, the graph digest

approach did achieve perfect (αd = 1.0) accuracy.

The five negative accuracy results stem from double-failure scenarios of com-

ponents in the same neighborhood of a router or switch. Four of the five failure

scenarios with a negative score were essentially the same failure scenario that oc-

curred four times. The failure scenarios in the small topology graph were {F1, R11},

{O1, R11}, and {F2, R11}. Considering that F1, O1, and F2 are indistinguishable in

the inference model, they were essentially the same failure scenario. Furthermore,

the failure scenario in the medium topology {F2, R11} was identical to the failure

scenario by the same name in the small topology. For each of these four scenar-

ios, Bd = Bu = {O2, R11}, resulting in a false positive (O2), and a false negative
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Figure 5.3. Histogram of C metric for the provider-customer setting.

({F1, O1, F2}). Isolated inference (∪iBi) hypothesized {R11} resulting in a single

false negative result.

The negative score in the large topology occurred for the failure scenario

{F3, P10−11}, where P10−11 is the point-to-point link between R10 and R11. For this

scenario Bd = {F3, R11}, with a false positive result (R11) and a false negative result

(P10−11). Bu = {F3} and ∪iBi = {P10−11}, each with a single false negative result.

The cost metric C depicted in Figures 5.3 and 5.4 shows a minimal cost in

using the digest approach. The cost to inference equaled zero in all but nine test cases,

meaning that the digest approach achieved the same accuracy as the full disclosure

approach in 97.6% of the 377 tested scenarios. The average score was 0.005, 0.002,

and 0.006 for the small, medium, and large topologies respectively, with a maximum

value of 0.17 in each topology. Each of the nine failure scenarios for which C > 0.0

occurred when two components failed simultaneously in the same neighborhood of

a router or switch. For each of these nine scenarios, the best explanation using the

graph digest approach returned one correct and one incorrect failure while the full

disclosure approach returned one correct failure and did not hypothesize a second
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failure.

The digest algorithm in Figure 4.1 potentially degrades A. The logical-OR

treatment for edges to Lup removes information about conditional dependencies on

an SRG from the joint distribution, reducing the probability the SRG is up given the

state of the remaining dependent observation nodes. Additionally, the aggregation

step, exaggerated by using uniform prior probabilities, lumps additional SRGs into

a best explanation for αd. Since all equipment identified in a hypothesis would have

to be checked, all SRGs that have been aggregated into an SRG are unraveled into

a best explanation. Consequently, aggregation potentially adversely affects hd, and

ultimately αd and A. In spite of the information loss, the graph digest approach

performed remarkably well as discussed above.

The Z values using the Wilcoxon Signed-Rank Test are 8.21, 8.92, and 5.44

for the small, medium, and large topologies respectively. The hypothesis H1 passed

the 95% confidence test for SHRINK in the Provider-Customer setting.
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Figure 5.5. Histogram of A metric for the provider-customer setting.
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Figure 5.7. Histogram of C metric for the provider-customer setting.

2. Accuracy Evaluation Results - SCORE

For all but 5 of 377 tested scenarios αd ≥ αs, resulting in non-negative accuracy

improvement scores A (Figure 5.5). The average score is 0.28, 0.26, and 0.31 for

the small, medium, and large topology respectively. The maximum score for each

topology is 1.0. An accuracy improvement in 57%, 45%, 34% of the test scenarios

was observed for small, medium, and large topology respectively (indicated by an oval

in Figure 5.6). The results indicate that scaling the domain size has little impact on

the accuracy of Bd, B1 ∪B2, or A with respect to BT .

The five instances for which accuracy scores are negative occurred in double-

failure scenarios. For each of these scenarios isolated inference returned only one

identified failure, resulting in one correct explanation and one false positive result.

The graph digest and full disclosure approaches returned one correct and one incorrect

explanation, yielding both a false positive and a false negative in the hypothesis. As

in SHRINK, each of the scenarios with a negative score occurred when two failures

occurred in the same neighborhood in the physical topology graph.

The cost metric C, depicted in Figures 5.7 and 5.8, is uniform at 0.0 across all
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Figure 5.8. CDF of C metric for the provider-customer setting.

three topologies. This means that for all 377 tested scenarios, Bd = Bu. Interestingly,

when isolated inference outperformed the graph digest approach for the five failure

scenarios discussed above, isolated inference also outperformed full disclosure for these

same scenarios.

The digest algorithm in Figure 4.1 potentially degrades A using SCORE. The

impact of the digest’s logical-OR step to SCORE is to artificially inflate the hit ratio

of every SRG having more than one “up” observation set member. The aggregation

step has no impact on SCORE as the SCORE algorithm performs this step during

preprocessing. As with SHRINK, all SRGs that have been aggregated into an SRG

are unraveled in a best explanation. In spite of the information loss, the graph digest

approach performed remarkably well as discussed above.

The Z values using the Wilcoxon Signed-Rank Test were 8.83, 8.93, and 5.78

for the small, medium, and large topologies respectively. The hypothesis passed the

95% confidence test using SCORE in the Provider-Customer setting.
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Small Medium Large
Degree 2.11 (4) 3.28 (5) 4.33 (6)
Diameter 3.27 (4) 9.95 (11) 22.01 (23)
Routers 12.06 (15) 47.71 (51) 197.97 (201)

Table 5.1. Privacy metric rMSE versus (true value).

Node Domain Number
Degree Diameter Routers

gSTD 1.09 0.59 1.66
E(X) 2.01 0.94 3.16

Table 5.2. Privacy metric gSTD versus sample mean.

3. Privacy Evaluation Results

The digest creation algorithm (Figure 4.1) creates identical digests for both

SHRINK and SCORE. As a consequence, the privacy results for SHRINK and SCORE

are identical.

To compute the privacy protection for the customer, each digest was attacked

using the heuristic described in Chapter IV. The attack heuristic adds any missing

externally visible gateway routers and transit IP links to each topology extracted

from a digest. As previously discussed, no attempts were made to hide information

and no post-processing of the digests was performed to reduce the information leaked,

but rather the design was tested to see how much information leaked using the simple

digest algorithm described in Figure 4.1.

As depicted in Table 5.1, the root mean squared error (rMSE) was high relative

to the true value for the sensitive properties. The outcome for privacy evaluation

means that the information learned from the attacks was generally far from the true

values. Table 5.2 shows that the generalized standard deviation (gSTD) for each

privacy metric was low compared to the mean. This result means that there is little

variation in the amount of information learned about each sensitive property from

each digest attack. These results suggest a reasonable level of privacy protection
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considering the use of a prototype digest creation algorithm for the attack heuristic.

To provide more detail, histograms of the attack estimates are shown. Addi-

tionally, the relative error of the attack results versus the true value for each sensitive

property was calculated. The results expressed with histograms and cumulative dis-

tribution functions (CDF), less reachability, are presented for each domain size in

Figures 5.9 - 5.14. The reachability results are discussed next.

The reachability metric is binary with a one, the true value, representing

internal reachability between two externally visible gateways in the customer domain.

The reachability test was conducted between gateway routers R11 and R12 in Figures

4.2, 4.5, and 4.6. The gateways are 2 hops apart, with router R13 connecting them.

Only 7 of the 377 evaluated failure scenarios identified the reachability between

the nodes. Six of the failure scenarios that revealed reachability involved failure of

router R13 with a second failure. The second failed component in each case caused a

failure observation that could have been caused by failure of R11 or R12. For example,

in the failure scenario {R13, F3}, the IP link between R11 and R12 is observed to be

down. Since the failure of either R11 or R12 would cause this link to observe failure,

this is a failure scenario that reveals reachability between the nodes. The seventh

failure scenario to reveal the reachability was the failure scenario {R11, R12}.

The network diameter values measured by the attack are presented in Figure

5.9. The histogram clearly shows little variation in the attack estimates. At 50%

mass of the experiments (Figure 5.10), the relative error was 75%, 91%, and 96% for

the small, medium, and large topologies respectively. This result bodes well for the

inherent protection provided by the digest approach as a network domain size scales

up.

A histogram showing the number of routers found by the attack heuristic

is presented in Figure 5.11. The histogram shows fairly consistent results for each

topology size. As shown in Figure 5.12, the relative error between the number of

routers in a network and the number detected from attacking a digest increased
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Figure 5.11. Histogram for the number of routers property.

with topology size. At 50% mass of the experiments (Figure 5.12), the relative error

was 80%, 94%, and 99% for the small, medium, and large topologies respectively.

Intuitively these results makes sense since each digest only provides a small collection

of nodes. In general the topology learned consists of a neighborhood around one

or two routers, and multiple failures whose neighborhoods intersect allow a larger

portion of the topology to be inferred.

When a failure impacts an IP tunnel, as do 78% of the failure scenarios,

information about the neighborhood around each router on the tunnel is potentially

revealed. The IP tunnels do have an inherent protection feature in that an observation

node representing the IP tunnel will most likely have more than three parents in a

digest. This creates ambiguity in reconstructing router adjacencies along the tunnel

for the attack heuristic used.

The topologies were seeded with an unfavorable setting for the node degree

sensitive property by placing a router with high degree at the gateway in the customer
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Figure 5.12. CDF relative error for the number of routers property.

domain. The node aggregation and Noisy-OR steps performed by the digest algorithm

(Figure 4.1) did surprisingly well in hiding the true value of the node degree (Figures

5.13 and 5.14). The true degree was only revealed in 5% of the attacks, and the

property did not scale with the network domain size. At 50% mass of the experiments

(Figure 5.14), the relative error was 50%, 80%, and 83% for the small, medium, and

large topologies respectively. Better inherent protection would be expected if no high

degree nodes were placed near the gateways of the Domain 2 topology.

From the privacy results the prototype digest algorithm provided significant

protection against attacks to learn the sensitive properties evaluated. Using the at-

tack heuristic to learn information from the digests yielded fairly uniform results

irregardless of the domain topology specific composition and size. This low deviation

in results is reflected in the low gSTD values in Table 5.2 and the plots in Figures 5.9 -

5.14. The rMSE growth of the estimates (Table 5.1) as the domain size increases fur-

ther demonstrates that the attack reveals no more information about a large domain

than it does about a small domain. The results further suggest that a privacy metric
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Small Medium Large
Topology Topology Topology

E 1.00 2.81 4.84

Table 5.3. SHRINK scalability results.

whose true value naturally grows with the sheer size of a domain receives inherent

protection using a digest approach as the size of a network domain scales up. The

network diameter and the number of routers naturally grow with a network domain’s

size, while a high degree node or an interior path between two gateways remains fairly

static: an attack either finds it, or it does not.

4. Scalability Evaluation Results - SHRINK

To compute scalability E the average elapsed real time to compute SHRINK

results for up to three failures was measured for the small, medium, and large topolo-

gies.

As expected, the SHRINK running time increased significantly as the number
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Figure 5.14. CDF relative error for the node degree property.

Small Medium Large
Topology Topology Topology

E 0.14 0.34 1.09

Table 5.4. SCORE scalability results.

of SRGs increased. The increase in scalability E by using the graph digest approach

is evident in Table 5.3. Of particular note, inference time improved from hours to

milliseconds on the large topology.

5. Scalability Evaluation Results - SCORE

To compute scalability E the average elapsed real time to compute the SCORE

results for five threshold settings was measured for the small, medium, and large

topologies respectively.

Although the SCORE running time increased less dramatically than SHRINK

as the number of SRGs increased, a greater growth with full disclosure is evident than

with the graph digest approach. The increase in scalability E is shown in Table 5.4.
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B. PEER-PEER DOMAINS

1. Accuracy Evaluation Results - SHRINK

The initial inference results were puzzling as the αs, αu, and αd scores were all

low. SHRINK [19] tends to omit point-to-point links and stub routers from multiple

failure scenarios using the default settings, instead attributing the evidence of failure

about these components to an error in the SRG database. Although merely a nuisance

in the provider-customer setting, the problem became magnified in the peer-peer

domain setting due to the large number of links identified as cross-domain SRGs (e.g.

the peering links and links on the web service shortest paths). Additionally, failures

with low probability mass in one domain caused ambiguous inference results for Bi

in the other domain. The SHRINK model implemented did not include a method for

the inference to return Bi = ∅, which became a necessary feature in the peer-peer

domain setting.

To counter the issue of SRG omission, the prior probabilities of the SRG nodes

were lowered from 10−5 to 10−3. After the change the inference engine preferred to add

an additional SRG first, and assume an incorrect SRG database mapping second. To

correct the null hypothesis problem, a low probability “Not I” node was implemented

which indicates no failures internal to a domain. Using the low probability node is

consistent with SHRINK.

The accuracy improvement metric A for the peer-peer topologies is depicted

in Figures 5.15 and 5.16. In all but 1 of 484 tested cases, αd ≥ αs, resulting in

non-negative accuracy improvement scores A. In the tested scenarios, a minimum

accuracy improvement of 31%, 30%, and 41% was observed for the small, medium,

and large topologies respectively (highlighted with an oval in Figure 5.16). The A

score average was 0.09, 0.062, and 0.124 and maximum value was 1.0, 0.33, and 0.5 for

the small, medium, and large topology respectively. The results indicate that scaling

the domain size has little impact on the accuracy of Bd, Bi, or A with respect to BT .

A slightly greater improvement in the large topology was seen, attributed to the rich
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Figure 5.15. Histogram of A metric for the peer-peer setting.
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Figure 5.17. Histogram of C metric for the peer-peer setting.

number of cross-domain web service connections.

The negative accuracyA score occurred in the double-failure scenario {R37, P26−37},

where P26−37 represents the point-to-point link between routers R26 and R37. Do-

main 1 returned the cross-domain link {P26−37} as the best explanation. Domain

2 returned gateway router {R37} and a shared attribute for the cross-domain link

in its causal graph. Using isolated inference, each domain correctly identified the

failed component in its domain. The graph digest and full disclosure approaches both

identified {R37} as the best explanation, preferring to treat evidence of failure about

P26−37 as an error in the causal graph mapping.

As shown in Figures 5.17 and 5.18, the cost metric C was 0.0 (no cost) for all

failure scenarios. The results mean that for all 484 tested failure scenarios, the digest

approach achieved the same inference results as the full disclosure approach.

The Z values using the Wilcoxon Signed-Rank Test were 6.39, 6.19, and 6.01

for the small, medium, and large topologies respectively. These results each provide

95% confidence in the hypothesis.
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Figure 5.18. CDF of C metric for the peer-peer setting.

2. Accuracy Evaluation Results - SCORE

The accuracy improvement metric A for the peer-peer topologies is depicted

in Figures 5.19 and 5.20. For all but one of the 484 tested cases, αd ≥ αs, resulting

in non-negative accuracy improvement scores A. The instance with a negative score
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Figure 5.19. Histogram of A metric for the peer-peer setting.
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Figure 5.20. CDF of A metric for the peer-peer setting.

occurred in the same failure scenario, with the same details, as discussed above for

SHRINK in Section 1. In the tested scenarios, an accuracy improvement of 22%,

38%, and 47% was observed in the small, medium, and large topology respectively.

(highlighted with an oval in Figure 5.20). The A score average was 0.07, 0.08, and

0.15 and the maximum value was 1.0, 0.33, and 1.0 for the small, medium, and large

topology respectively. The results indicate a trend that accuracy A increases as the

domain size scales up. This result is attributed to the rich number of cross-domain

web service connections.

As shown in Figures 5.21 and 5.22, the cost metric C was 0.0 (no cost) for all

failure scenarios. The results mean that for all 484 tested failure scenarios, the digest

approach achieved the same inference results as the full disclosure approach.

The Z values using the Wilcoxon Signed-Rank Test were 5.44, 7.12, and 6.51

for the small, medium, and large topologies respectively. These results each provide

95% confidence in in the hypothesis.
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Figure 5.21. Histogram of C metric for the peer-peer setting.
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Figure 5.22. CDF of C metric for the peer-peer setting.
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Small Medium Large
Degree 2.63 (4) 4.64 (6) 5.79 (7)
Diameter 3.04 (5) 8.16 (10) 22.48 (24)
Routers 6.61 (10) 22.94 (26) 119.24 (122)

Table 5.5. Privacy metric rMSE versus (true value).

Node Domain Number
Degree Diameter Routers

gSTD 1.04 0.62 1.66
E(X) 1.46 1.83 3.19

Table 5.6. Privacy metric gSTD versus sample mean.

3. Privacy Evaluation Results

The privacy results using SHRINK and SCORE were identical for the reasons

discussed in Section 3. The results below apply to digests created for both SHRINK

and SCORE.

The root mean squared error results are shown in Table 5.5. Since the rMSE

values are high relative to the true value, the information about the sensitive prop-

erties learned from the attacks results are generally far from the true values. The

results from both the provider-customer and peer-peer settings are encouraging, and

a more robust digest creation algorithm can surely improve on the results achieved

by the prototype algorithm.

As depicted in Table 5.6, the generalized standard deviation for each privacy

metric was low compared to the mean. As in the provider-customer setting, there

was little variation in the amount of information learned about each sensitive prop-

erty from each digest attack. An attacker using the attack heuristic will generally

estimate similar sensitive property measurements across a range of failure scenarios

and topologies.

Next, additional privacy protection data is provided by presenting histograms

of the raw estimates and the relative error of the attack results against the true values
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for each sensitive property.

(a) Physical topology (b) Perceived topology after 
aggregation of B and D

D

C

B

A C
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Figure 5.23. Aggregation affect on reachability.

Internal reachability between the visible gateways was revealed in 4 of the 484

evaluated peer-peer failure scenarios. The tested gateways are three, three, and two

hops distant in small, medium, and large topologies respectively. Each instance of

revealing the reachability occurred in the medium topology between gateways R9 and

R12, which are 3 hops apart. The failed components were not in the neighborhood

of the evaluated gateway routers as was the case with in provider-customer setting.

In each case of revealed reachability, aggregation by the digest algorithm (Fig-

ure 4.1) collapsed nodes and edges together that could individually reach one of the

gateways. These aggregated nodes effectively created a bridge to establish reacha-

bility. To illustrate, gateway routers A and C connect to internal routers B and D

respectively as shown in Figure 5.23(a). Gateways A and C may or may not actually

be able to reach each other internally. If nodes B and D, representing the internal

routers, are indistinguishable to the digest creation algorithm (Figure 4.1), they are

aggregated into a single root cause node. The resulting topology after conducting

a reverse-engineering attack on the digest using the heuristic in Figure 4.23 returns

the topology shown in Figure 5.23(b). Digests containing revealed reachability would

not pass the local security check shown in Figure 3.1 and would therefore not be

distributed.
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Figure 5.24. Histogram for the diameter property.

As in the provider-customer setting, the attack heuristic infers a narrow range

of diameter estimates, irregardless of the actual domain network diameter as shown

in Figure 5.24. The relative error between the true network diameter and the attack

estimate grew with the topology size as shown in Figure 5.25. At 50% mass of the

experiments the relative difference was approximately 60%, 80%, and 96% for the

small, medium, and large topologies respectively.

The size of the topology had little bearing on the estimated number of routers

as seen in Figures 5.26 and 5.27.

The three results with the highest inferred values were 9 routers in the medium

topology and two results that found 10 routers in the large topology. One of the cases

in which 10 routers were revealed in the large topology occurred when a high degree

router failed in Domain 2. the digest creation algorithm (Figure 4.1) generated a

failed IP link observation node for each link connected to the failed router. This

failure scenario ({R98, P1−2}) also revealed the true value of the high degree node in
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Figure 5.25. CDF relative error for the diameter property.

Figure 5.28. The other two results with the highest inferred values occurred in double

failure scenarios when a link on the shortest path of many web service connections

failed. The difference between the true value and attack estimate for 50% mass of

the experiments (Figure 5.27) was 70%, 88%, and 98% for the small, medium, and

large topologies respectively.

Privacy protection for maximum node degree scaled slightly in the peer-peer

domain relationship (Figures 5.28 and 5.29) due to several nodes of higher degree in

the internal topology of domain D2. The node aggregation and Noisy-OR steps of the

digest creation algorithm contributed to hiding the true value of the highest-degree

node for most of the attacks, and only 1% of the attacks revealed the true high node

degree. The difference between the true value and attack estimate for 50% mass of

the experiments (Figure 5.29) was 75%, 83%, and 86% for the small, medium, and

large topologies respectively.

Again inherent protection for the evaluated privacy metrics is seen that re-

turn similar results irregardless of the size of the domain topology. A stronger digest
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Figure 5.26. Histogram for the number of routers property.

Small Medium Large
Topology Topology Topology

E 0.71 1.29 1.72

Table 5.7. SHRINK scalability results.

algorithm and post-processing of a digest to remove any information over a predes-

ignated threshold will intuitively strengthen a digest against entropy loss to attack.

Several digests were created that failed to sufficiently hide network sensitive proper-

ties, and these digests would not be distributed. The node aggregation step of the

digest algorithm (Figure 4.1) strips information from a graph digest, but with some

unintended consequences as discussed above. A more robust version of the algorithm

should address the identified shortcomings.
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Figure 5.27. CDF relative error for the number of routers property.

Small Medium Large
Topology Topology Topology

E 0.07 0.18 0.62

Table 5.8. SCORE scalability results.

4. Scalability Evaluation Results - SHRINK

The scalability (speed) improvement for the peer-peer domain scenario (Table

5.7), while significant, is not as dramatic as that observed in the provider-customer

setting. In the peer-peer scenario the domain performing inference has a larger struc-

ture, resulting in a greater number of hypotheses for the inference engine to consider.

While not as pronounced as in the provider-customer setting, the running time savings

are still significant.

5. Scalability Evaluation Results - SCORE

As in the provider-customer setting, scalability E (Table 5.8) improvement

is not as dramatic as that realized with SHRINK. Clearly though, using the graph
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Figure 5.28. Histogram for the node degree property.

digest approach achieves much faster inference running time than the full disclosure

approach.

C. ABILENE-BASED SETTING

1. Accuracy Evaluation Results

For all but 5 of 377 tested scenarios, αd ≥ αs, resulting in non-negative ac-

curacy improvement scores A (Figure 5.30). The average score was 0.25 for both

SHRINK and SCORE, and the maximum score for each was 1.0. There was an ac-

curacy improvement in 34% and 68% of the test scenarios for SHRINK and SCORE

respectively (indicated by an oval in Figure 5.31).

All instances of accuracy A = 1.0 in Figure 5.30 reflect failure scenarios for

which at least one component in the provider domain (Domain 1) failed. In these

failure scenarios all failures were in the provider domain, or one failure occurred

in the provider domain and either a point-to-point link or a stub router failed in

the customer domain. In the latter cases, with the default SHRINK settings a best
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Figure 5.29. CDF relative error for the node degree property.

explanation based on a single incorrect SRG dependency mapping may have a higher

posterior probability than a best explanation containing one more failed SRG.

The five negative accuracy results occurred using SCORE. The results stem

from double-failure scenarios containing a gateway in the customer domain and a non-

adjacent component in the provider domain. Each of these failure scenarios resulted

in all three leased circuits failing, and identifying the provider as the root cause of

all observed failures. These failure scenarios highlight a shortcoming in the greedy

heuristic used by SCORE. SHRINK, which returns the hypothesis with the maximum

posterior probability, correctly identified the failed gateways in these failure scenarios.

The cost metric C depicted in Figure 5.33, shows no cost in using the graph

digest approach. The cost to inference accuracy equaled zero in all test cases, meaning

that the digest approach achieved the same accuracy as the full disclosure approach

in all tested scenarios.

The Z values using the Wilcoxon Signed-Rank Test were 6.39 and 9.18 for

SHRINK and SCORE respectively. The hypothesis passes the 95% confidence test

96



0

105

19

1 0 1

33

5

46

100

0 1 1
6

0

20

40

60

80

100

120

-0.17 0.0 0.33 0.4 0.5 0.67 1.0

Accuracy A

N
u

m
b

er
 o

f 
S

ce
n

ar
io

s 
(1

59
 t

o
ta

l) SHRINK

SCORE

Figure 5.30. Histogram of A metric for the Abilene-based topology.
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Pie Chart Showing Accuracy Metric A Summary
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Degree 4.02 (6)
Diameter 6.56 (8)
Routers 67.36 (71)

Table 5.9. Privacy metric rMSE versus (true value).

Node Domain Number
Degree Diameter Routers

gSTD 1.41 1.00 2.23
E(X) 2.24 1.52 3.68

Table 5.10. Privacy metric gSTD versus sample mean.

for both inference algorithms.

2. Privacy Evaluation Results

The rMSE values of the attack estimates were close to the true hidden values

as depicted in Table 5.9. The gSTD values were low compared to the mean attack

values as shown in Table 5.10. These results indicate that the digest attacks were

unsuccessful at revealing the hidden values for the sensitive properties.

Histograms and CDFs of the attack estimates for each sensitive property, less

reachability, are presented in Figures 5.34 - 5.39. The reachability test was conducted

between gateway routers R4 and R7 in Figure 4.17. The gateways are 3 hops apart via

internal links, and none of the 159 digests revealed the hidden reachability between

these two gateway routers.

The network diameter values measured by the attack are presented in Figure

5.34. At 50% mass of the experiments (Figure 5.35), the relative error is approxi-

mately 88%.

A histogram showing the number of routers found by the attack heuristic is

presented in Figure 5.36. At 50% mass of the experiments (Figure 5.37), the relative

error is approximately 97%. Intuitively this results makes sense since each digest

only provides a small collection of nodes. In general the topology learned consists of
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100



0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9 10 11 12

Hidden Number of Routers Inferred by Attack Heuristic

P
er

ce
n

ta
g

e 
o

f 
S

ce
n

ar
io

s

Abilene-based topology
(159 scenarios)

True Hidden Value = 71

Figure 5.36. Histogram for the number of routers property.

SHRINK SCORE
E 2.47 0.24

Table 5.11. SHRINK and SCORE scalability results.

a neighborhood around one or two routers, and multiple failures whose neighborhoods

intersect allow a larger portion of the topology to be inferred.

A histogram depicting the maximum node degree attack results is shown in

Figure 5.38. At 50% mass of the experiments (Figure 5.39), the relative error was

approximately 67%.

3. Scalability Evaluation Results

To compute scalability E the average elapsed real time to compute SHRINK

and SCORE results for up to three failures was measured on the Abilene-based topol-

ogy. The mean elapsed real time of the first ten double failure scenarios for both full

disclosure inference and for the graph digest approach was used to compute E.

As expected the graph digest approach enabled significant time savings while
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Figure 5.37. CDF relative error for the number of routers property.

performing inference with SHRINK. Although not as dramatic, the graph digest ap-

proach enabled faster inference using the SCORE algorithm as well. These results

are consistent with the scalability results on the synthetic topologies constructed with

network topology atoms.

D. CONCLUSION

This chapter provides the experimental results using the evaluation method-

ology outlined in Chapter IV. For each of the seven tested topologies and for both

implemented intra-domain fault localization algorithms, the hypothesis of accuracy

improvement was supported with a 95% confidence level. Although the hypothesis

testing was conducted for 95% confidence, all fourteen hypothesis tests would have

passed at 99.95% confidence.

A summary of the accuracy results for the synthetic topologies is presented in

Figure 5.40. In total, there were 814 failure scenarios in which using the graph digest

approach improved accuracy in finding cross-domain faults.
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Figure 5.38. Histogram for the node degree property.

In general, both SHRINK and SCORE performed well at finding faults. When

a highly connected device failed, all approaches typically correctly identified the failed

component using SHRINK or SCORE. Using the full disclosure approach, SCORE

with a mean accuracy of 0.97 outperformed SHRINK with a mean accuracy of 0.88 .

Using the graph digest approach, SHRINK with a mean A score of 0.21 outperformed

SCORE with a mean A score of 0.19. Using the default SHRINK settings, SHRINK

assigns a lower prior probability of failure to a device than the probability that a

conditional dependency mapping is incorrect. SCORE tended to outperform SHRINK

when a stub router or point-to-point link failed. SHRINK with its built-in robustness

to errors in causal graphsperformed better at performing inference on transformed

data that included a graph digest.

The privacy results show measurable protection of the sensitive properties

evaluated. The estimate means were generally far from the true values with little

deviation in the estimates. Clearly some digests, such as those revealing reachability,

would fail local security policy checks. These digests would not be sent as discussed in

Chapter III, Section B. The privacy results for the synthetic topologies and empirical
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Figure 5.39. CDF relative error for the node degree property.

Small Medium Large Abilene-Based
Degree 2.11 (4) 3.28 (5) 4.33 (6) 4.02 (6)
Diameter 3.27 (4) 9.95 (11) 22.01 (23) 6.56 (8)
Routers 12.06 (15) 47.71 (51) 197.97 (201) 67.36(71)

Table 5.12. Summary of provider-customer rMSE versus (true value).

topology are similar, strengthening an argument for applicability of the graph digest

approach to a broad range of networks. A summary of privacy rMSE and gSTD

results for the provider-customer topologies is presented in Tables 5.12 and 5.13.

One of the surprises from the experiments is that the proposed metric gSTD is

much more effective than expected at gauging the performance of the digest-creation

Node Domain Number
Degree Diameter Routers

gSTD 1.20 0.74 1.85
E(X) 2.08 1.11 3.31

Table 5.13. Summary of provider-customer gSTD versus sample mean.
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Figure 5.40. Summary of A metric for the synthetic topologies.

algorithm in hiding the values of sensitive properties. While further investigations

are required to validate the generality of such effectiveness, the results give weight to

further investigation into the approach.

A decrease in running time was demonstrated by using the graph digest ap-

proach versus full collaboration, achieving positive scalability results for the approach.

The experimental results reaffirm the observation that more research efforts

in this space are needed. In all topologies simulated, a number of scenarios where

domains cannot troubleshoot effectively in isolation were discovered . A large portion

of the real world scenarios are expected to be more complicated than those evaluated

in this research. Therefore, the need for cross-domain solutions is real.
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VI. CONCLUSIONS

This chapter first provides the main conclusions from the research, and then

discusses future work identified in the course of the research.

A. RESEARCH CONCLUSIONS

This research demonstrated that by correlating risks and observations from

different domains, cross-domain fault localization has the potential to significantly

increase the accuracy of network fault localization. It also articulated the main chal-

lenges to realize inference accuracy gain, particularly the privacy consideration. The

main contributions are a framework with explicit metrics to evaluate a cooperative

design in the design space, and an inference-graph-digest based formulation of the

problem. The graph digest approach also facilitates the re-use of existing fault local-

ization algorithms without compromising each domain’s information hiding policy.

The evaluation supported the hypothesis with 95% confidence for all 14 evalu-

ated data sets: It is possible to construct a framework to enable managers of separate

network domains to share information and achieve inference gain while quantifying

privacy preservation of sensitive information.

This research presents the first comprehensive evaluation of the feasibility

of cross-domain fault localization. The evaluation is systematic and complete with

regarding to all the proposed performance metrics.

The goal was to answer the following overarching questions:

1. Does cross-domain fault localization offer the kinds of benefits warranting fur-
ther research?

2. Can it provide deployable and acceptable privacy protection with manageable
complexity?

The answer to both of these questions was a strong “Yes”. Cross-domain fault

localization, using the prototype design, performed quite well at finding the faults
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in all failure scenarios. Of course, in practice not using a design that balances the

requirements of accuracy and privacy is a non-starter — domain administrators will

be simply unwilling to reveal their complete topologies. This leads to the second

question. The digest approach did provide significant performance gains compared

with localization performed in isolation while measurably protecting the sensitive

properties tested. The use of a design that enables sharing summary information

dramatically increases the deployability of cross-domain fault localization by decreas-

ing inference time by two to three orders of magnitude.

While providing a positive answer to both high-level questions, the evalua-

tion also reveals several opportunities for further research and enhancement includ-

ing richer causal graph models and better digest algorithms. This underscores the

importance of having a repeatable evaluation methodology.

B. FUTURE WORK

To move forward certainly requires a fundamental understanding of the issues

beyond the framework, approach, and scenarios described in this dissertation. Is

the graph digest approach applicable to a wide range of network scenarios? What

about scenarios involving more than two domains? Does there exist a general, yet

easily calculable metric for quantifying the highly domain-specific information hiding

policy? How should observation errors and graph model inaccuracies be detected and

controlled? These and other similar questions constitute a new area of networking

research which may have a major impact on network fault trouble-shooting practices.

In light of this work, a prioritized list of future work follows.

• Beyond visual checks of “Does this seem reasonable?”, this research did not val-
idate how well the scenarios capture issues faced in real world practice. There
is little or no publicly available data to allow this validation. Further testing on
real network topologies must be done as a logical next step to validate the util-
ity of the framework and graph digest approach. Obtaining troubleshooting
records and topology from one’s own domain is challenging enough. Collecting
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such sensitive data from multiple domains is almost impossible. There may
be hope as data collection with fault logging by collaborative projects such
as Abilene and GEANT would provide a much needed evaluation dataset for
cross-domain fault localization, and fault localization in general.

• Distributions accurately representing an adversary’s beliefs about sensitive
properties that model general and specific events would allow application of
the KL distance to evaluate privacy protection. While this may remain a
lofty goal for many sensitive properties, any such distributions that can be
established will enable use of the ideal metric for privacy protection.

• Provable practical privacy risk metrics are needed. The presented rMSE
and gSTD practical privacy metrics provide a sound methodology, but their
strengths and limitations still need to be proven. Domain managers will be
reluctant to use any cooperative design without proven bounds on the risk to
sensitive properties.

• An ontology of sensitive properties with privacy protection implementation
methods is needed. While sensitive properties may vary between domains,
there may a core set that most domain managers would agree comprise the
majority of these properties. Identifying the common sensitive properties is a
logical first step needed in order to develop robust protection against disclo-
sure.

• Some inherent bias is acknowledged in attacking the digests using the at-
tack heuristics developed in this research. The entire network structure of
the undigested causal graphs is revealed using the attack heuristics, however,
indicating a sound baseline attack method. While a more thorough attack
strategy is needed, it may be possible to determine the effectiveness and limi-
tations of the presented heuristic. A variant of the heuristic may be a valuable
component of such a future attack strategy. This is just one of many reasons
why rigorous analysis and proofs of privacy are needed before the graph digest
approach can be widely adopted when privacy is a concern.

• The current algorithm for constructing digests incorporates network domain
knowledge. Techniques from the artificial intelligence and statistics communi-
ties for approximating statistical distributions could be leveraged to produce
smaller and more accurate digests. Since performing fault localization with di-
gests is significantly faster than without, perhaps digests can be used internally
in very large domains to yield faster inference.

For example, instead of allowing a digestion algorithm to produce variable
sized digest causal graphs, the size and/or structure of the graph digest a
prior may be constrained, similar to the way in which a secure hash function
has a predefined fixed width in bits (e.g., 512 bits for SHA-512) for all hash
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values. The primary advantage of this approach is that the gSTD would be
small regardless of the scenarios used. However, this approach also brings up
a challenge. By restricting the size and structure of a graph digest, it might
be difficult to encode within it sufficient information to support inference for
large scenarios.

• Observation errors or missing observations when evaluating inference accu-
racies were not modeled in this research. Such events are common in the
real-world due to software bugs or misconfigurations. Follow-on work should
evaluate the performance of the graph digest approach in a noisy observation
environment. These errors are expected to similarly impact all discussed ap-
proaches and, therefore, introduce very small perturbations to the A and C
metrics.

• The core network causal graph model (SHRINK [19]) has a very simple struc-
ture. The structure has the advantage of easy inference but lacks expressive-
ness. In particular, the bipartite nature makes compositing levels difficult. The
Sherlock [4] work gives a more expressive model without sacrificing SHRINK’s
inference speed advantages. Expanding the expressive power of the causal
graph model requires new algorithms for specifying shared attributes, combin-
ing graphs and for constructing digests.

• Finally, in addition to the development of better metrics and algorithms, an
emphasis should be placed on the creation of new theories for reasoning about
what can and cannot be achieved in balancing the trade-off between inference
accuracy and privacy protection. Appropriate mechanisms, trust models, and
policy must also be developed to support the exchange of causal graph digests
and other relevant information (e.g., shared attributes) between domains in
collaboration.
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