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Multi-signal, multi-modal data acquisition and
processing based on compressive sensing

Richard Baraniuk
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Abstract

In this final report, we report on our progress on ARO grant W911NF-07-1-0502.

The goal of the project was to develop compressive sensing and dimensionality reduction
for manifold data. We investigated and developed efficient sampling and measurement schemes
for manifold-modeled data to enable efficient new A/AiTR and fusion algorithms. Key ele-
ments included random projections, dimensionality reduction techniques, and the new theory of
compressive sensing. We developed new methods for signal and image registration, reconstruc-
tion, fusion, classification, and detection from incomplete information based on new compressive
matched filters, MACH filters, and pattern recognition techniques.

The research highlights detailed below are (i) a new smashed filter for dimensionally reduced
classification and A/AiTR; (ii) new algorithms for machine and manifold learning based on
random projections; (iii) joint manifold models and processing algorithms for multi-sensor and
multi-modal data fusion.

1 Signal and Image Manifolds

The geometric notion of a low-dimensional manifold is a powerful tool for modeling high-dimensional
data. Manifold models arise in cases where (i) a K-dimensional parameter # can be identified that
carries the relevant information about a signal and (i) the signal 9 € RY changes as a continuous
(typically nonlinear) function of these parameters. Some typical examples include a 1-D signal
shifted by an unknown time delay (parameterized by the translation variable), a recording of a
speech signal (parameterized by the underlying phonemes spoken by the speaker), and an image of
a 3-D object at an unknown location captured from an unknown viewing angle (parameterized by
the 3-D coordinates of the object and its roll, pitch, and yaw). In these and many other cases, the
geometry of the signal class forms a nonlinear K-dimensional manifold in RY,

M = {z(0): 6 € O},

where O is the K-dimensional parameter space [1-3]. Low-dimensional manifolds have also been
proposed as approximate models for nonparametric signal classes such as images of human faces or
handwritten digits [4-6].



2 The Multiscale Smashed Filter for Compressive Classification

The theory of compressive sensing (CS) enables a sparse or compressible signal to be reconstructed
from a small set of non-adaptive linear projections In some applications, this allows us to directly
acquire a compressed representation of a signal, effectively combining the steps of sampling and
compression. However, in many applications we are not interested in obtaining a precise recon-
struction of the scene under view, but rather are only interested in making some kind of detection
or classification decision. For instance, in target classification, we simply wish to identify the class
to which our image belongs out of several possibilities.

We have developed an algorithm to support a new theory of compressive classification that
enjoys the same benefits as compressive sensing. Our approach, based on a generalized maximum
likelihood classifier (GMLC), is applicable to a wide variety of signal classification problems. Fo-
cusing on the problem of image classification, we use the fact that the set of images of a fixed scene
with different imaging parameters (translation, scale, view angle, illumination, etc.) forms a low-
dimensional, nonlinear manifold in the high-dimensional ambient image space. Exploiting recent
results on random projections of manifolds, we design a pseudo-random measurement scheme and
a new classification algorithm—the smashed filter—that can be viewed as a generalization of the
classical matched filter to more challenging manifold settings. The smashed filter achieves high
classification rates using only a small fraction of measurements compared to the dimensionality of
the original images.

We begin by examining the problem of signal classification where the formation of the signal x
under each hypothesis depends on specific parameters; this results in a combined estimation and
classification problem. Suppose a signal € RY belongs to one of P classes C;,i = 1,...,P. We
let hypothesis H; signify that the signal « belongs to class C;. For each class C;, the generation of
the signal z under hypothesis H; is governed by a K-dimensional manifold M; = {f;(0;) : 0; € ©;}
embedded in the ambient signal space RY. Example parameters for image classification scenarios
include the pose of the object in the scene, translation, rotation, scale, etc. We obtain noisy
measurements of z, as in y = x +w € RY, giving us a distribution p(y|6;,H;) for the measured
signal y under hypothesis H; and parameter 6;.

In the case of two classes, where the optimal classifier is the likelihood ratio test, we can
accommodate these unknown parameters through the use of the generalized likelihood ratio test.
We will refer to the multi-class extension of this technique as the generalized mazimum likelihood
classifier (GMLC). The GMLC reduces to a maximum likelihood estimator (MLE) for the parameter
6/?;- for each hypothesis H;, followed by an standard MLC using the parameter estimates. We
can interpret the GMLC geometrically: the MLE of the parameter §; under the AWGN model
corresponds to finding the closest point on the manifold M; to the observed signal y. Subsequently,
the MLC can be interpreted as a “nearest-manifold” search from y to each of the M;.

We now consider the same classification problem where each class corresponds to the presence of
a known signal in noise, but instead of observing  +w we observe y = ®(x +w) where ® € RM*N
M < N. In this case, the GMLC is essentially unchanged: our classifier again reduces to a
“nearest-manifold” classifier; the only significant difference is that the P classes now correspond
to the manifolds ®M; c RM i =1,..., P.! We dub this GMLC the smashed filter [8,9]. The
performance of the smashed filter does not depend on any structure of the signals s;. Rather,
its performance depends on the stability of the dimensionality reduction of the manifold: if the

!Linear projection by ® of a manifold M € R yields another manifold in ®M € R [7].



(a) Tank (b) School Bus (c¢) Truck

Figure 1: Models used for smashed filter classification experiments.

distances between the projected points of the manifold and the projected signal are not preserved,
then the estimator performance will suffer. This issue becomes critical during the nearest-neighbor
classification step.

Let us now more closely examine the random projection of one or more manifolds from a high-
dimensional ambient space RN to a lower-dimensional subspace R™. We have shown that this
process actually preserves the essential structure of a smooth manifold, provided that a sufficient
number M of random projections are taken:

Theorem 2.1 [7] Let {M;}£ | be compact K-dimensional submanifolds of RN having condition
numbers 1/7; and volumes V;, respectively. Fix 0 < e <1 and 0 < p <1 and let

V= Z V:; and 7 = min (mln Ti, min dist(M;, MJ)) ’

i#j

Let ® be a random orthoprojector from RN to RM with

Klog(NVr—le ) log(l/p)> .

(1)

€2

w=of

If M < N, then with probability at least 1 — p the following statement holds: For every pair of
points x1, 9 € U;M,;,
[ M | Pz — Pxa|2 [ M
l—eW —=—<———=<(146€)\/—.
( ) N |lx1 — x2]l2 ( ) N

Theorem 2.1 ensures not only that distances between pairs of points on each manifold are well-
preserved, but also that the distances between the P manifolds themselves are all well-preserved. In
a classification setting with a large number of possible classes, the sublinear growth in the required
number of measurements is particularly attractive.

We now present experimental results that evaluate the smashed filter in a image target clas-
sification setting. We consider three classes, each for a different vehicle model: a tank, a school
bus, and a truck (see Figure 1). All images are of size 128 x 128 pixels, hence N = 16384, and all
measurement matrices are binary orthoprojectors obtained from a random number generator.

Our experiment is synthetic and concerns unknown shifts of a known image. In this case, K = 2
and we know the explicit structure of the three manifolds: each can be constructed by translating
a reference image in the 2-D image plane. The shifted versions of each image, as well as their
corresponding compressive measurements, were obtained synthetically using software. The first
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Figure 2: Results for smashed filter image classification experiments. (a) Classification rates and (b) average
estimation error for varying number of measurements M and noise levels o for the image shift experiments.
As M increases, the distances between the manifolds increase as well, thus increasing the noise tolerance and
enabling more accurate estimation and classification. Thus, the classification and estimation performances
improve as o decreases and M increases in all cases.

step in implementing the smashed filter is thus to find the ML estimate of the shift for each class.
This can be accomplished by simply calculating the distance between the observed y and projections
of all possible shifts of the image. For simplicity, we assume that the set of possible shifts is limited
by a maximum shift of 16 pixels in any direction. After the shift estimate is obtained for each class,
the GMLC selects the class whose estimate is closest to the observed image.

We performed classification experiments for different numbers of compressive measurements,
varying from M = 2 to 60, and for different levels of additive Gaussian noise, with standard
deviations o = 0.001,0.005,0.01 and 0.02. For each setting, we executed 10000 iterations of the
experiment, where we selected a testing point at random with a different noise realization at each
iteration. The classification rates in Figure 2(b) show a clear dependence between the number of
measurements and the classification rate. Furthermore, performance for a given M degrades as the
noise level increases; as expected the classifier becomes unreliable when the noise level becomes
comparable to the minimum distance between the projected manifolds. In Figure 2(c), we see a
similar relationship between the noise level and the error in the parameter estimate. These results
verify that increasing the number of measurements improves the quality of the estimates; and the
performance of the classifier is clearly dependent on the performance of the parameter estimator
for the appropriate class.

3 Efficient Machine and Manifold Learning Using Random
Projections

The unimpeded growth in the size of datasets generated by signal acquisition systems (e.g., sensor
networks, 3D imaging systems) poses a significant challenge to machine learning algorithms. This
effect — frequently referred to as the “curse of dimensionality” — usually forces an algorithm designer
to sacrifice accuracy in order to make the problem computationally feasible.

Nevertheless, in many cases we can avoid this difficult decision. Suppose our dataset X consists
of points € RN. Often, points in X, although N-dimensional, can be described using a manifold
model with only K degrees of freedom, where K < N. A simple method to alleviate the curse of



dimensionality is as follows: compute a non-adaptive linear projection of the N-dimensional dataset
into a random M-dimensional subspace of RY. In this case, the mapping f can be represented as
an M x N matrix ® where the entries of ® are independently drawn from a specified probability
distribution. The simplicity of this dimensionality reduction procedure is striking; it is clear that
the mapping is data independent, and the process of obtaining the image of any given data vector
x under the mapping f is a stand-alone computation. In addition, the main result in [7] guarantees
that, provided M = O(K log N), then there exists an € € (0, 1) such that

(1 =€)l —yll < [Pz — @y|| < (1 +€)flz —y]l (2)

for all z,y € X, where ||.|| represents either the ambient 2-norm in RY, or the Riemannian dis-
tance on the manifold describing X. In other words, the distance between any pair of points is
approximately preserved by the mapping &.

This paves the way for an alternate method to solve high-dimensional machine learning prob-
lems. Let £ denote some machine-learning algorithm tailored to the problem we wish to solve.
Our claim is as follows: for a wide variety of machine-learning algorithms £, the performance of
L when given access to only a randomly projected (i.e. M-dimensional) version of X is essentially
the same as its performance on the original dataset X. The implications of this are significant;
this implies that the machine is oblivious to whether it works with the original data, or with only
a low-dimensional, easily obtainable representation. In other words, random projections can be
used as a universal, inerpensive preprocessing step to almost any machine learning task. Thus,
the random projections approach could lead to tremendous savings in processing and memory costs
incurred during the learning process. In [10,11], the above claim is rigorously proved for two special
cases: 1) when L is the Grassberger-Procaccia algorithm for estimating intrinsic dimension of a
point cloud; 2) when £ is the Isomap algorithm for nonlinear dimensionality reduction of Euclidean
manifolds.

For illustration purposes, we test our theory on a common dataset (Figure 3) found in the
literature on dimension estimation and manifold learning - the Stanford face database. The face
database is a collection of 698 artificial snapshots of a face (N = 64 x 64 = 4096) varying under
3 degrees of freedom: 2 angles for pose and 1 for lighting dimension. The images are therefore
believed to reside on a 3D-manifold in an ambient space of dimension 4096. Random projections of
each sample in the databases were obtained by computing the inner product of the image samples
with an increasing number of rows of the random projection operator ®. We note that in the case
of the face database, for M > 40 < N, the Isomap residual variance on the randomly projected
points closely approximates the variance obtained with full image data. Also, the estimated GP
dimension stabilizes to a value of 4, which is identical to the estimated GP dimension using the full
image samples.

4 Joint Manifold Models for Distributed Data Processing

In some data acquisition scenarios, many observations of the same event are acquired simultaneously
(e.g., from multiple cameras), resulting in the acquisition of multiple manifolds that share the same
parameter space. For example, in a sensor network there may be many sensors observing a single
event from different vantage points, but the underlying phenomenon can often be described by a
single global parameter (such as the location of the objects of interest in a camera or microphone
network). Similarly, when sensing a single phenomenon with multiple modalities, such as video
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Figure 3: (a) Images from the Stanford face database: ambient dimension N = 4096, intrinsic dimension
K = 3 (b) Red curve indicates that just M ~ 40 <« N random projections carry sufficient information
for accurate dimensionality estimation. The green curve indicates that again just M =~ 40 < N random
projections carry sufficient information to enable the nonlinear structure of the manifold to be learned
accurately.
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and audio, the underlying phenomenon may again be described by a single modality-independent
parametrization (such as what a speaker is saying in a recording of a person speaking). In such
cases, we will see that it is advantageous to model the structure contained in the ensemble of
manifolds rather than simply treating each manifold independently. Hence, we study a simple
structure, the joint manifold on which we base our development of manifold-based learning and
estimation algorithms that exploit this structure to improve their performance.

Specifically, let M1, Msy,..., M be an ensemble of J manifolds of equal dimension K, and
suppose that each manifold can be expressed as a function on a single parameter space: M; =
{zi(0) : 6 € ©}. Denote the concatenation of all points for a single parameter value as x(6) =
[1(0)T ... 27(0)T]T. We define the joint manifold as the K-dimensional manifold resulting from
this concatenation: M* = {z(0) : 0 € ©}.

The advantage of considering the joint manifold, as opposed to the individual manifolds, lies
in the fact that the joint manifold tends to be better behaved. Specifically, one can quantify
this through the condition number, which controls local smoothness properties (such as curvature)
as well as global properties (such as self-avoidance) of the manifold [12]. Intuitively speaking,
the smaller the condition number, the more smooth the manifold. We show that the condition
number of the joint manifold is less than the maximum of the condition numbers of the manifolds
M1, Mo, ..., My. In practice we find that the joint manifold tends to be much better than this
worst case analysis. In many cases we actually expect that the joint manifold will have a smaller
condition number than the best of the component manifolds.

This property allows for the improvement of any manifold-based algorithm, including parameter
estimation, detection, classification, and manifold learning. By running these algorithms on the
joint manifold, rather than running them separately for each manifold, we can vastly improve
their performance. However, when the ambient dimension of the manifolds N or the number of
manifolds J in an ensemble is large, the dimensionality of the joint manifold— JN — may become
impossibly large to perform any meaningful computations. As a solution, we turn to the random
projection approach: suppose we linearly project our joint JN-dimensional data into a random M-
dimensional subspace. The results of [7] show that this process will preserve the essential properties
of the manifold.



Figure 4: Sample images of 2 different trucks from 2 different camera views. The motion of the truck along
the road forms a 1-D manifold. The number of pixels in each camera image N = 240 x 360 = 76800.

In a distributed setting, we must also consider the cost involved in collecting and transmitting all
of this data to a central node. Random projections also provide an elegant solution to this problem.
Suppose the sensors are allowed to perform only local random projections of the observed signals
prior to transmission. Fortunately, since the required measurements are linear, we can calculate
global measurements of the JAM in a distributed fashion. Let each sensor obtain its measurements
2 = ®;x;, with the matrices ®; € RM*N § = 1,...,J. Then, by defining the M x JN matrix
& =[P ... D], our global projections z = ®z can be obtained by

z = O
= o[z .. 277
(@ ... 0 )T .. 2T]7

= <I)1l‘1—|—...—{—(I)J1‘J.

Thus, the final measurement vector can be obtained by simply adding independent random projec-
tions of the signals acquired by the individual sensors.

As a stylized example, in this section we apply the random projections-based fusion algo-
rithm to the task of moving vehicle classification. Our images are generated using POVRAY
(http://www.povray.org), an open-source ray tracing software package.

We let a number J of cameras, each with resolution N, observe the motion of a truck along a
straight road. This forms an ensemble of J 1-dimensional manifold in the image space RV, one
formed from each camera; the joint manifold describing the truck’s motion would also be one-
dimensional in R7Y. Our classification task consists of distinguishing between two types of trucks
with minimal information processing. Example images from two different camera views for the
two classes are shown in Table 4. In our experiment, we obtain 200 random projections from
the 1D translational parameter space for three camera views. The resolution of each image is
N = 240 x 320 = 76800 pixels. The sample camera views suggest that some views make it easier
to distinguish between the classes than others. For instance, the head-on view of the two trucks is
very similar for most shift parameters, while the side view is appropriate for detecting the difference
between the two classes of trucks.

The error curves of joint manifold classification as a function of the signal-to-noise ratio (SNR)
are shown in Figure 5(a). It is clear that joint manifold classification does better than majority
voting and is comparable in performance to the best camera. However, in the absence of prior
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Figure 5: (a) SNR vs. probability of error curves for individual cameras, JAM, majority voting. JAM
performs better than majority voting and nearly as well as the best camera. (b) Number of sensors vs
communication bandwidth. JAM-based fusion ensures that the total amount of transmitted information to
the central unit remains approximately the same with increasing J.

information regarding how well each camera truly performs, the best strategy for the central pro-
cessor would be to fuse the data from all cameras. Thus, joint manifolds proves to be more effective
than high-level fusion algorithms like majority voting.

A crucial feature of joint manifold data fusion is that with increasing number of sensors, the total
communication bandwidth (proportional to the number of measurements per sensor M) does not
need to increase rapidly. Figure 5(b) describes the variation of the number of fused measurements
transmitted to the central decision unit by each sensor so as to obtain a given probability of error
P. under an SNR value of 10 dB per measurement. The plots are approximately flat; thus, this
demonstrates the utility of joint manifold fusion techniques in scenarios where bandwidth is a severe
constraint.
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