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Abstract

A study of risk assessment for artillery fire randomly colliding with

fixed wing aircraft is presented. The research lends itself to a general

study of collision models. Current models of object collisions fall under

one of three categories: the historical model, the gas particle model, and

the satellite model. These three vary in data requirements and math-

ematical representation of the impact event. The gas particle model is

selected for its flexibility and robust estimation. However, current math-

ematical development in the literature does not include certain spatial

and dynamic components necessary for a general encounter (collision)

model. These are derived in this work. For the specific application at

hand Quadratic formulas estimate the ballistic arc of artillery shells to

provide instantaneous relative velocities. An extended Poisson spatial

process is applied over the relative volume within a collision radius dur-

ing the conflict time window to provide a probability of collision. Imple-

mentation of the model for military use has been achieved via an Excel

spreadsheet providing scenario study capability in real time. Results for

several scenarios are presented which have been validated by experts.

These results support current policy of strict deconfliction.
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PROBABILISTIC ESTIMATION OF RARE RANDOM

COLLISIONS IN 3 SPACE

1. Introduction

1.1 Setting

The date was March 21, 2001. The spring training game between the Arizona

Diamondbacks and the New York Giants was in its 7th inning. Randy Johnson

wound up to pitch his famous hardball, released, . . . and . . . the ball was HIT . . . by

a bird! (Campbell, 2001)

Random collisions occur all around us every day. Meteor strikes, particles of

air colliding, midair aircraft collisions, and subatomic particles smashing together in

nuclear reactors are a few examples. Some collisions seem mundane, and others seem

like an amazing coincidence. Some are completely uninteresting, but others grab our

attention with the enormity of the event. Generalizing on the concept of collisions,

there are many interactions requiring that objects pass within some distance of the

center of each other to stimulate some event. Such events are called “encounters” –

where one object encounters the other in space. Search and rescue operations require

that the searchers pass within some detection distance in order to find the victims.

Wireless networks require that the client is within a certain distance of the hub in

order to maintain the required signal strength.

If the motion of the two objects can be represented by some random variable,

then their encounter is a random event and can be probabilistically estimated. Such

probabilistic estimates have repeatedly been requested regarding various encounter

scenarios throughout history. It is argued that the first question regarding random
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encounters was in the desire to avoid rainfall by running. However, that particular

scenario was not posed in the literature until the late 20th century.

The earliest probability estimate of an encounter model dates back to the

work of Rudolph Clausius in the mid-nineteenth century. Clausius was advocating

a kinetic theory of heat. At the time, it was thought that heat was some type of

substance, called caloric that was transferred from one object to another. Clausius

believed, as is commonly held in the scientific community today, that heat was rather

the kinetic energy of the molecules making up the object. One primary objection to

Clausius’ theory was the issue of dissipating vapors: if the gas particles really moved

as fast as Clausius claimed, why did it take so long for smoke to dissipate from one

side of the room to the other. Clausius’ response was to point out that the motions

of particles are not “free,” rather they are inhibited by collisions with other particles

randomly dispersed throughout the space. He proceeded to demonstrate that the

amount of distance a particle can travel before it randomly collides with another

particle is sufficient to prevent instantaneous dispersal of a vapor (Brush, 1965).

1.2 Problem Statement

Understanding the issues regarding encounter models requires one to first ap-

preciate the different types of models there are and the variety of real-world encounter

scenarios they represent.

1.2.1 Background on Encounter models

Encounter models fall into one of three categories discussed below.

1.2.1.1 The Historical Model

The historical model derives its name from the general concept of taking histor-

ical data where similar incident objects have moved in a space populated by similar

target objects and considers the ratio of collision incidences to collision-free inci-
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dences for an estimate of the probability of future collisions. The model is widely

used in many different topical studies. Mathematically, it is very simple and ex-

tremely useful in cases where it is impossible or undesirable to characterize the mo-

tion paths of the objects whether by stochastic or deterministic means. This model

has been used to estimate collision probabilities in a variety of scenarios including

bird strikes on aircraft (Bird/Wildlife Avian Strike Hazard (BASH) Team, 2008),

meteor collisions on earth (Chapman and Morrison, 1994), and the general concept

was also used in studies on Tomahawk cruise missile fratricides (Pollack et al., 1997)

and satellite collisions (Carpenter, 2007).

In each of the above cases it would have been extremely difficult to model the

motion paths of the incident object, the target objects, or both. For example, in

the case of bird strikes it would be reasonable to expect the birds and the pilots to

exhibit avoidance behavior when they sense a collision is impending. On the other

hand, it is much simpler to simply examine cases where collisions occurred and where

they did not occur, and take the ration of collision scenarios to all scenarios as the

probability of collision.

The historical model’s primary benefits are its simplicity and flexibility. It

requires an input of the number of collision events and the number of non-collision

events. The probability of collision is then estimated by

pc =
# collisions

[# collisions] + [# non-collisions]

Alternatively, in the case of continuous time parameters, it would also suffice to

have several samples of disjoint time intervals ti for i = 1, 2, . . . , n, each with a

corresponding count of the collisions that occurred during that interval, N(ti). Then

an estimate for the number of events in some future time interval, t∗, is given by
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multiplying the expected collision rate by the specified time interval:

pc =

(
n∑
i=1

N(ti)

nti

)
t∗

The flexibility is demonstrated by its ability to deal with avoidance behavior

as mentioned previously, and it is demonstrated by the model’s ability to accept

even quasi-“historical” data from Monte Carlo simulations such as the ones in the

Tomahawk study (Pollack et al., 1997). The simplicity allows for fast computation

of collision probabilities where the data is readily available. For example, meteor

collision models consider the rate of meteor strikes and multiply this by the prior

probability of a meteor being of a certain size. This is used in doomsday calculations

for the probability of a meteor destroying the human race within the next 100 years

(Chapman and Morrison, 1994).

The largest difficulty with the historical model is the standard question of all

sampled data: is the data truly representative of the whole population? One solution

for the problem is to strip away the quantitative results and simply give a qualitative

or comparative output (i.e., “You are more likely to encounter object a than you are

encounter with object b). This is the approach taken by the Bird/Wildlife Aircraft

Strike Hazard Team in the United States Air Force Avian Hazard Advisory System

(Bird/Wildlife Avian Strike Hazard (BASH) Team, 2008). Another answer to the

problem of sampling data is by limiting the number of scenarios. The Tomahawk

limits the study to only the scenarios that are most likely to result in a fratricide

and thus uses the worst-case scenario to provide an upper bound on the probability

of collision for an arbitrary scenario (Pollack et al., 1997).

1.2.1.2 The Gas Particle Model

The gas particle model is a very commonly used model for estimating collisions

or general encounter probabilities. In this model an incident particle moves through

the space at a constant velocity. No information is required or assumptions made

1-4



about the location or path of the incident or target particle paths, except that they

are uniformly distributed throughout the space. All objects are treated as point

particles and collisions occur when the incident particles come within a defined radial

distance from the target particles. Using the radial distance and a constant forward

velocity, the incident particles ”search” through a measurable volume (or area for two

dimensional spaces) in a time interval. The target particle density is then computed

over the searched area to estimate the expected number of collisions. The rate of

collision is the searched area divided by the total area. This rate is converted to a

probability by using a Poisson arrival process for the collisions.

The model has been heavily researched and applied to many different scenar-

ios. As the name suggests, this model is used to examine gas particle interactions

(Clausius, 1858). Other application domains for the gas particle model include

• Sub-atomic collision models (Johnson, 1939)

• Minefield navigation (Inselmann, 1977; Kim, 2002)

• Orbital debris field calculations (Jenkin and Gick, 2002; Johnson et al., 2001)

• The question: “Will I stay drier by running in the rain?” (DeAngelis, 1987)

• Bird strikes on windmills (Ano, 2000)

• Aircraft collision probabilities under “free flight” rules (Alexander, 1970)

Many simple applications limit themselves to mean value analysis by assuming

a constant density, however, no such limitation is required by the literature. Non-

constant densities and constant density probabilities are handled by spatial point

processes (SPPs). SPPs are used in a wide variety of fields including forestry, ge-

ography, seismology, cosmology, spatial epidemiology, and material sciences (see for

example: Brix and Chadoeuf (2002); Comas and Mateu (2007)). Several common

SPPs are the binomial, Poisson, Cox, and Gibbs processes. They frequently assume

stationary points, but not always (Møller and Waagepeterson, 2006). Examples of
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non-stationary, or “dynamic,” models include epidemiological models with migra-

tion allowed (Ball and Lynn, 2006) and sphere packing models (Stoyan, 2003). More

specific to the encounter modeling domain, kinetic theory and orbital debris envi-

ronment models dynamic point processes of the Poisson variety to generate collision

probabilities.

Angelis’ (1987) solution to the rainfall question will mathematically map into

the gas particle construct, however his particular solution incorporates the flux of

rainfall against a unit surface. This demonstrates a key concept of the model: relative

motion. In Angelis’ formulation, he takes the frame of reference of a stationary

observer and the particles are oncoming, whereas many other applications use the

frame of reference where the observer is moving in a field of stationary particles. In

many cases it is conceptually easier to work in the latter frame of reference, which

is the approach we will use. Note that relative velocities are reflexive, so the two

formulations are equivalent.

The strength of the gas particle model is its wide applicability in many domains.

With relatively simple calculations, this model has been adjusted for many different

assumptions on the locations and paths of incident and target particles, allowing for

relatively flexible applications. More advanced adjustments to the basic model can

be used to account for target particle motions, number of dimensions, and relativistic

matter/energy considerations in the case of sub-atomic physics.

The gas particle model’s weaknesses for representing encounter scenarios is

that it can become difficult to model dynamic situations. Furthermore, the model

requires that any object’s motion is independent of the motions of other bodies in

the space. No targeting or avoiding behavior is permitted.

1.2.1.3 The Satellite Collision Model

This third model requires more information than either of the previous two.

Its primary field of application is in estimating the probability that two satellites
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in orbit will collide (Alfano, 2006; Alfriend et al., 1999; Carlton-Wippern, 1993;

Chan, 1997). Another common application is in airspace deconfliction by air traffic

controllers (Chiang et al., 1997). In both of these cases, there is complete data for

estimating positions, velocities, and pairwise covariances of the object motion paths.

This model would not work well for predicting interactions where the exact motion

paths of the particles are erratic and generally unknown; therefore, it has not been

applied to as wide a variety of domains as the other two because of its enormous

data requirements.

The collision model requires full information on the perceived location and ex-

pected path of every object under consideration. It then uses geometric techniques

to compute the points of closest approach for every incident-target object pair. Lay-

ering a Gaussian error distribution at the point of closest approach, an upper bound

on the probability of collision is estimated by

∫∫∫
V

1√
(2π)3 |C|

e−
1
2
r̄C−1r̄

where V is the volume of space within which the encounter is expected to occur, C is

the combined covariance of the pair of objects and r̄ is the collision distance (Chan,

2004).

1.2.2 Discussion

Between these three modeling techniques a large gap exists for encounter sce-

narios which have data limitations, where encounters are very rare, and where the

physical behavior is complex. In this research we will extend the gas particle model

with a view towards filling in this gap. Specifically, some examples of scenarios that

break the assumptions of existing gas-particle encounter models include:

• Speeds of objects may be dependent on the objects’ locations in space
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• Objects are not uniformly distributed throughout the space

• The number of encounter-able objects moving in the space is bounded by some

positive integer n

• Objects may enter or leave the collision space

1.3 Objective

The goal of this research is to advance encounter model probability theory to

provide collision risk estimates for more general spatial and dynamic cases. The sub

objectives to be completed are:

1. Research modern point process theory for feasible enhancements to extend the

encounter model theory.

2. Apply the enhanced model to a problem scenario to provide a proof of concept

for the model.

1.4 Scope

The model developed in this research could apply to a number of different

scenarios. The application selected for this research is one of great military interest:

a probability estimation that artillery fire may randomly encounter aircraft in midair.

Figure 1.1 provides the problem scenario. The artillery unit is firing indirect fires (i.e.,

the gunner cannot see the target) that arc through an altitude range where aircraft

are flying. Clearly such a scenario presents risk to the aircraft, but Musselman (2008)

explains further that if pilots are concerned about being hit by friendly artillery fire,

they may not be as careful with their munitions as they would otherwise be, since

they may be distracted by the extra threat to their aircraft. The threat to aircraft

from the ground artillery increases risks for both the aircrews and the ground forces.
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Figure 1 – Problem scenario 

Figure 1.1 The Problem Scenario

Current doctrine prevents this from ever occurring by requiring commanders

to deconflict the airspace. Deconfliction consists of using fire support coordinating

measures (FSCMs) to allocate portions of the airspace for certain use during specified

time intervals. Common FSCMs include lateral separation (i.e., you stay on your

side of this line, and I’ll stay on my side), altitude separation (e.g. the aircraft flies

above the artillery fires), or time separation (JP3-09.3, 2003). The kill box structure

is an example of a more complex FSCM that is currently used in military operations

(JP3-09.34, 2005).

Despite the fact that joint doctrine requires the application of FSCMs, risk

analysis for artillery fires colliding with aircraft in a conflicted airspace is increas-

ingly becoming a point of interest for mission planners, decision makers, and com-

manders. In December 2007, the Center for Army Lessons Learned published a

requirement for an analytical model for assessing the risk of aircraft fratricide due to

fires (Neuenswander, 2008). Bethea and Herbranson (2008) point out that several

recent exercises on the Korean peninsula highlight the difficulty of deconfliction in

small airspaces that are heavily congested. Deconfliction in the Korean peninsula

places limits on the commander’s options, ability to mass his forces effectively, and

conduct timely responses to new developments on the battlefield. Smith (2006) also

identifies that in aerial interdiction operations the FSCMs can provide sanctuary to
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the enemy, prevent the prosecution of time sensitive targets, and limit the Comman-

der’s and pilot’s tactical options.

Under these limitations, the commander is left in a bind where he must choose

between one of two options:

1. Accept no risk to aircraft from friendly surface fires by deconfliction. This will

result in limitations as described above.

2. Accept an unknown risk that his aircraft will be hit by friendly surface fire by

choosing not to deconflict the airspace. This will provide more flexibility since

many of the limitations described above are not applicable.

Clearly, an unknown risk makes the decision very difficult to commanders.

There have been two prior efforts at determining this unknown risk. The

first was conducted by the National Defense Industrial Association (NDIA) in 2001

(Strike, Land Attack and Air Defense (SLAAD) Committee of the National Defense

Industrial Association (NDIA), 2001). Their study was conducted on behalf of the

Office of the Chief of Naval Operations. The study covered many aspects of Joint

Fires including various methods, tools, and issues with the practice. As a sub-

objective, the NDIA team conducted a simulation to test the validity of the “Big

Sky – Little Missile” theory that fratricide risks are negligibly small. A number of

important details are omitted from the study report, including confidence intervals

and numbers of replications of the simulation. However, they conclude that the risk

that aircraft will be hit by friendly fire is 1%, which is not a negligible risk. No

sensitivity analysis seems to have been performed on the results to test different

scenarios.

In 2008 the Air Force Doctrine Development and Education Center (Bethea

and Herbranson) started a probabilistic model that reduces the airspace to the ver-

tical plane that cuts through the gun-to-target line (GTL). The plane is then par-

titioned into aircraft-sized rectangles. The ballistic path is approximated by an
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isosceles triangle on the plane. The risk estimate is given by the ratio of rectangles

intersected by the triangle to the total number of rectangles. This is a much cruder

approximation than we propose to provide with our research.

To date, no published model exists for probabilistic estimation of the dynamic

collision likelihood of artillery fires on fixed wing aircraft. Specifically, a model is

needed that can account for

• Uncertainty in the artillery location

• Uncertainty in the aircraft location/heading

• Uncertainty in the target location

• Uncertainty in the shell speed

• Uncertainty in the aircraft speed

• Collisions from any possible angle (head-on, from behind, from above, etc.)

• Duration of airspace confliction

• Number of aircraft in the airspace

• Aircraft altitude

• Artillery max ord (highest height achieved by the fired shell)

• Size of the operational area (surface area from a top-down view)

1.5 Overview

Chapter 2 provides a theoretical development of an enhanced gas particle model

where the object speeds are spatially determined and their spatial distribution fol-

lows a generalization of the spatial Poisson point process. Chapter 3 presents an

application of the enhanced model to the proposed study for aircraft fratricides,

along with sensitivity analysis and numerical results. Chapter 4 concludes the thesis

by highlighting the key research findings and some areas for future research.
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2. Theoretical Development

Advancing Encounter Models with

Modern Point Process Theory

2.1 Introduction

We consider the general class of encounter models: representations of objects

moving in space as they randomly encounter other objects in the space. It is assumed

that the space is R3. Common applications of encounter modeling techniques include

kinetic theory (i.e., motions and collisions of gas particles) (Brush, 1965), bird strikes

(Bird/Wildlife Avian Strike Hazard (BASH) Team, 2008), airspace deconfliction

(Alexander, 1970; Pollack et al., 1997), and satellite collision models (Chan, 2004).

The result is a more general spatial point process (SPP) which is fully dynamic.

2.1.1 The Difficulty on Dynamic SPPs

Møller and Waagepeterson (2004) define an SPP X on a space S ⊆ Rn as a

measurable mapping on some probability space (Ω,F , f) to (Nlf , σ(Nlf )) where Nlf

is the set of locally finite point configurations in S and σ(Nlf ) is it’s σ-algebra. The

distribution of X follows PX(F ) = P ({ω ∈ Ω : X(ω) ∈ F}) for any F ∈ Nlf . They

go on to point out that every SPP can be uniquely identified by its corresponding

counting process on the collection of closed Borel sets in S, which is the approach

taken here. We define a random locally finite point configuration of N points on a

set S ⊆ R3 with the state space

B = {B1, B2, . . . , BN : Bi ∈ S}
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Then we say that a SPP is binomial if for any W ⊆ S, it holds

NX(W ) = |W ∩ B| ∼ Binomial(|B|, f(W ))

for some density function f on S. Similarly, the Poisson SPP is defined such that

for any W ⊆ S, |B ∩W | ∼ Poisson(λµ(W )) and conditional on |B ∩W | = N , the

process inside W is binomial.

In most applications of SPPs, the points are assumed to be stationary (Møller

and Waagepeterson, 2006), which may not be a problem for certain encounter models

(see Kim (2002) for example). However, in many encounter scenarios all the particles

are in motion, rendering the system dynamic.

The common technique to solve such systems is to change the frame of reference

so that only one object is in motion and all the rest are stationary. Loeb (1934)

provides a proof that the expected relative velocity, vrel between two objects, A and

B, moving in R3, provided that the directions of motion for A and B are independent

and at least one is uniformly distributed, is

Eθ[vrel(vA, vB, θ)] =

 vA +
v2
B

3vA
, vA ≥ vB

vB +
v2
A

3vB
, vA < vB

(2.1)

where vA and vB are the speeds of A and B respectively, and θ is the angle between

their motion vectors. As a result, the average rate of encounters in increased. Un-

fortunately, since this is a rate increase it must be evaluated at infinitesimal level.

Comas and Mateu in their simulation of a Gibbs process highlight the difficulty of

examining such dynamical systems using discrete time-step methods (Comas and

Mateu, 2007).

While the Poisson process naturally scales to account for changes at the in-

finitesimal level, non-Poisson distributions such as the binomial do not scale so easily.

Evaluating instantaneous increases in interaction probabilities in non-Poisson spa-

2-2



tial distributions is a non-trivial exercise. In fact, if the scaling is attempted in a

naive method, it can result in probabilities greater than unity, as will be seen later.

Therefore, while quite a few dynamic models exist that employ the Poisson pro-

cess or its derivatives (specifically the Gibbs process) to examine dynamic encounter

systems (Baddeley et al., 2006; Clausius, 1858), to our knowledge no studies have

been performed to examine dynamic SPP systems with non-Poisson-based counting

processes. Population epidemic models with migration might be considered an ex-

ception; however those cases consider migration on a lattice structure rather than in

a compact space (Ball and Lynn, 2006; Hagenaars et al., 2004).

2.1.2 The Extended Poisson Process

A natural solution to this problem of infinitesimal estimates on non-Poisson

distributions is provided by the extended Poisson process, adapted from the chrono-

logical R domain to the spatial R3 domain. The core concept of the extended Poisson

process is to use Markov birth-death processes to model counting processes that are

over- or under-dispersed with respect to the Poisson distribution. The extended

Poisson process uniquely features transition rates that are functionally dependent

on the current state. For example, the well known pure birth Yule process is an

extended Poisson process with a linearly increasing arrival rate.

The extended Poisson process was developed in the late 1980’s through the

early 1990’s in a series of papers primarily between M. Faddy, F. Ball, and P. Don-

nelly (Ball, 1995; Ball and Donnelly, 1987; Brown and Donnelly, 1993; Faddy, 1985,

1990, 1994). The culmination of this chain of research was when Faddy showed that

any discrete distribution with finite support can be represented by a Markov death

process where the transition rates depend on the current state (1998).

Since the discovery of the extended Poisson process, further refinement has

been in the realm of advancing statistical data analysis using the extended Poisson

process. Parameter estimation techniques for the extended Poisson process model
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include maximum log-likelihood calculations for the Q matrix (Podlich et al., 1999),

iteratively re-weighted least squares algorithms (Toscas and Faddy, 2005) and non-

parametric sequence algorithms (Podlich et al., 2004). It is interesting to note that

Quigley and Walls solve a similar problem where the arrival rate is both dependent

on the state of the system (number of arrivals) and the current time by using a

bootstrapping technique (2005). In application of statistical analysis, the extended

Poisson process has been heavily used in studies of biological processes (Faddy, 1995,

1997; Faddy and Smith, 2008, 2005; Faddy et al., 2001). We are aware of no major

further developments of the extended Poisson process as a feature of probability

theory.

With the bulk of research in extended Poisson processes going into parame-

ter estimation, the application of extended Poisson processes to spatial processes

is largely untouched. Faddy performed a short study of spatial data, but overtly

bypassed a full development of the formulaic application of the extended Poisson

process to the spatial parameters of the problem (Faddy and Smith, 2008). We

find, however, that using the Lebesque measure and integration allows us to easily

port the formulas from the time domain to the spatial domain. Most of the key

results carry over without any fundamental change. However, in higher-dimensional

domains, we find a new usefulness of the extended Poisson process: the ability to

smoothly handle increases in rates due to the relative frames of reference used in

encounter models.

2.1.3 Outline

Section 2 lays the groundwork for our discussion by defining the necessary

terminology and assumptions. Section 3 introduces the concept of motion to develop

a dynamic SPP. The section concludes with the description of an intuitive step

which would seem to allow for estimates of encounter probabilities, but which in

fact leads to a paradoxical relationship. The solution is presented in Section 4 with
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the introduction of the Extended Spatial Poisson Point Process and an example of

the model is presented for a dynamic SPP scenario. Some concluding thoughts are

provided in Section 5.

2.2 Definitions, Assumptions, and Scenario Description

We consider the probability that a point A will encounter some point B from

a collection B. Mathematically, the number of encounters is given by a counting

process, NX , on the r-ball of A, βr(A) = {s ∈ S : |s − A| < r} (using the standard

l2-norm).

NX =
∑
B∈B

Iβr(A)(B)

where I is the indicator function of whether B is in βr(A). Since this counting

process is involved, we introduce the following assumption that allows us to apply

SPP theory.

Assumption 2.1 X is a binomial SPP with uniform density function. Thus, if B

is distributed according to X, |B ∩W | ∼ Binomial(N,µ(W )/µ(S)), where N = |B|.

We use the standard Lebesgue measure µ which is assumed to be in 3-space. Later

in the development we will require Lebesgue measures in lower dimensions, at which

time we will subscript the measure to indicate the number of dimensions.

2.2.1 Defining locations and motion

The core of encounter models is the concept of motion. Motion is commonly

known to be the change in position over time. Frequently, the velocity of some object

X is denoted by a vector, ~vX = (v, θ, φ), where v ∈ [0,∞), θ ∈ [0, 2π], and φ ∈ [0, π].

Of these, the most important in this paper is the scalar v which we define as follows:
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Definition 2.1 The speed of an object in S is given by v a mapping v : [0,∞) →

[0,∞) given by some constant v. The domain is some time duration t, and the image

is the measure of some distance, d = µ1[d0, df ]. Thus v(t) = vt = d = µ1([d−0, df ]).

The above function definition may be read “d is the distance traveled by moving

at speed v for time t.” Note that the restriction to the non-negative reals eliminates

consideration of negative times or negative speeds. Throughout this article we will

define v as a function space, s ∈ S. Thus, the reader may interpret v(s ∈ S) as

d = v(s, t) = v(s)t, which is the distance that would be traveled by moving at speed

v(s) for time t.

In the dynamic encounter problem considered here, both A and the elements

of B can be in motion (i.e. have positive speed). Most of kinetic theory literature

(hard-body particle collisions on Poisson SPPs) examines cases where the elements

of B have speeds that are independent and identically distributed (see for example

Clausius (1858); Maxwell (1858)). To the authors’ knowledge, no prior work exists in

the literature that examines encounter cases where the speed of an arbitrary element

of B is a function of the element’s position in S. Examples of this phenomenon

abound in the natural environment: traffic lanes have different speed distributions,

ballistic projectiles vary their velocity by altitude, aircraft at different altitudes fly

at different speeds, and satellite speeds change between apogee and perigee of orbit.

Note that in some of these cases the velocities are deterministic and in others they

are stochastic in nature.

It would be possible to examine cases where the velocities are random functions

of the environment using random fields, but we believe the core concepts can be

adequately expressed in deterministic form. Thus, we consider the specific case where

the function for speed is deterministic and the direction is uniformly distributed in

R3.
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Assumption 2.2 The velocities of all the elements B ∈ B are i.i.d. with ~VB =

(vB(s), θ, φ) where vB(s) : S → [0,∞) is deterministic, θ ∼ Uniform[0, 2π], and

φ ∼ Uniform[0, π] (where ∼ means “distributed as”).

Note 2.1 We recognize that Assumptions 2.2 and 2.1 can place certain limitations

on vB(s) and X(t). For example, the following scenario presents a contradiction:

X(t) = vB(s) =

 1, s = s∗

0, s 6= s∗
∀t ∈ ∆t

since the system initializes with all elements of B located at s∗. As the system evolves,

s∗ is transient, and every other location is absorbing, which contradicts that B ∈ B

is located at s∗ with probability 1. Thus, by the statement of these two assumptions,

it is further implicitly assumed that no such contradictions are possible.

Lemma 2.1 If B is distributed according to X in S, then the probability that B is

in some region W ⊆ S is given by f(W ) = EW [f(s)]µ(W ), where EW [f ] means the

expectation of f over W .

Proof. The result follows trivially from the definition of the expectation:

EW [f ] =

∫
s∈W

f(s)

µ(W )
ds =

f(W )

µ(W )

Having addressed the motion of the elements of B, we now consider the motion

of A, which is intimately related to the encounter region. Since encounters are

spatially defined, the occurrence of an encounter depends on the location of the

encountering and the encountered. In this problem formulation, A is the encountering

object, and the elements of B are the encountered objects. The locations and motions

of the encountered (or unencountered) elements of B are given by Assumptions 2.1

and 2.2 respectively. We track A’s location by its path as follows:
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Definition 2.2 A path, p, is a continuous measurable mapping from [t0, tn] ⊂ R+
0

into S where Jp(p(t))= ~vA(t).

Here Jp(p(t)) is the 3-dimensional Jacobian of the path p from A’s location at time

t. Definition 2.2 allows for either stochastic or deterministic motion of A. The

requirement on the Jacobian limits the path length to what would be achievable

with the given velocities:

µ1(p) = µ1

(∫ tn

t0

~vA(t)dt

)
=

∫ tn

t0

µ1 (~vA(t)) dt =

∫ tn

t0

vA(t)dt (2.2)

Clearly, in order to define a path pA(t) according to Definition 2.2, we require

the velocity distributions. Previous work assumes that A’s motion is equal in dis-

tribution to that of B. While this is certainly allowable, this is not required by the

mathematical formulation of the encounter model. In fact, this model can work for

A with any distribution on ~vA (including that of no motion at all). For simplicity

we assume that the speed of A is i.i.d. at all moments in time. This means from

Equation (2.2) that E[µ1(p) = E[vA](tn − t0). We make no assumptions on the

directional components of ~vA.

Assumption 2.3 ~vA(t) = (vA, θ(t), φ(t)) where θ(t) ∼ fθ(t) and φ ∼ fφ(t) for some

random variables θ and φ mapping t to the probability spaces ([0, 2π],F[0,2π], fθ(t))

and ([0, π],F[0,π], fφ(t)) respectively (where FΩ is the Borel σ-algebra on Ω).

2.2.2 Defining an encounter region

Having located A in space, we can now proceed to define the region in which

the elements of B are to be encountered. We do this using a closed ball:

Definition 2.3 Define β(d,r)(s) as the closed r-ball of d dimensions (d ∈ {0, 1, 2, 3})

at s ∈ S by β(d,r)(s) = {s′ ∈ S : µ(s− s′) ≤ r} for some r ∈ R+
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Similarly to the definition of µ, we will forego the use of dimensional subscripts

for 3 dimensions. Since S ⊆ R3 we know that βr(s) is unique. Similarly, β(0,r)(s) = s

is unique. For d = 1 or d = 2, β(d,r)(s) is not unique in R3. Thus, when we

use β(2,r)(s) below, we place the further constraint on the 2-dimensional ball that

β(2,r)(p(t)) ⊥ Jp(p(t)), which makes it unique in R3. For defining the encounter

region in R3, the ball definition works for a single point, but since A may be moving

in S, we must extend this definition to include all points covered by A during its

sojourn along p(t).

Definition 2.4 Let A move along p(t) for t ∈ ∆t = [t0, tn]. Then let Wr(p,∆t)=

{s ∈ S : ∃t ∈ ∆t = [t0, tn] � s ∈ β(d,r)(p(t)). We call Wr(p,∆t) the encounter

window of A along p(t) for t ∈ ∆t.

Using the window construct is critical for encounter models. From Lemma

2.1, using µ(Wr(p,∆t), we can find the density function integrated over W , which is

used by the binomial process X (given in Assumption 2.1) to compute the random

counter of the number of elements in B encountered by A during ∆t.

In order to find W , we break with the standard convention in kinetic theory

of using the disks perpendicular to ~vA, and integrate over the path. Instead, we

will use a “leading edge” construct. The result is the same “tube”-shaped encounter

window of measure µd(W ) = µ(d−1)(β(d−1,r))µ1(p) under certain assumptions (see

Assumption 2.4 below) on W that prevent it from doubling back on itself with a

positive µ3 measure. We begin by defining the leading edge. The reason for the use

of the leading edge as opposed to the disk will be explained at the end of this section.

Definition 2.5 Let A move along p in S over some time ∆t = [t0, tn]. At any time

t ∈ ∆t, let P(s) denote the plane perpendicular to ~vA(t) passing through some point

s in the image of p. We define the leading edge, LEp(s), as the intersection of β=
r (s)

with the closed half-space bounded by P(s) and on the same side of P(s) as ~vA(t),

2-9



 

 A tv


 

 s  

 r s 

 pLE s

p  

 s p t  

Figure 2.1 The leading edge in 2 dimensions

where β=
(d,r)(s) is the boundary of the r-ball given by an equality constraint on the ball

definition.

Figure 2.1 gives a 2-dimensional represetation of the concept of the leading

edge. We constrain the path to prevent the encounter window from doubling back

on itself. Clearly, this cannot be done with balls, since the balls for two points

{t, t+dt} intersect each other at uncountably many points. However, we can achieve

the desired constraint using the leading edge.

Assumption 2.4 If A moves according to path p ⊂ S over time ∆t and the en-

counter radius is some r > 0, then for any ta, tb ⊂ ∆t where ta 6= tb it holds that

LEp(p(ta)) ∩ βr(p(tb)) = ∅.

Lemma 2.2 p is one-to-one.

Proof. Assume the corollary is false. Then ∃ta, tb ∈ ∆t where ta 6= tb, and

p(ta) = p(tb). Clearly, this would mean LEp(p(ta)) ⊂ βr(p(ta)) = βr(p(tb)), which

contradicts Assumption 2.4.

Note 2.2 It can be shown that Assumption 2.4 holds if p has curvature less than 1
r
.

Lemma 2.3 Suppose |B| = N and the elements B are stationary and distributed

in S according to the binomial SPP X. Then let A move along p for some time
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∆t. Suppose further that it is known that for some connected interval, δ1t ⊆ ∆t

with t0 ∈ δt1, that n ≤ N elements of B were within radius r from A at some

time during δ1. Then the probability of encountering further elements in the time

interval δ2t = ∆t\δ1t is given by the formula: P[NX(Wr(p,∆t))|N(Wr(p, δ1t) = n

and N(S) = N ] ∼ (Binomial(N − n, f(W ∗
r (p, δ2t))) + n).

Proof. Since X is binomial and it is known that N − n elements are

contained in S\Wr(p, δ1t), the result follows from the definition of X.

Next we consider the new encounter region swept by some particle A moving

along path p during a connected time interval δt ⊆ ∆t. This region is given by

W ∗
r (p, δt)= Wr(p, δt)\βr(p(t1)) where t1 = inf(δt) and if t1 ∈ δt we exclude the open

r-ball, otherwise we exclude the closed ball. Using the leading edge this region is

given by the union

W ∗
r (p, δt) =

⋃
t∈δt

LEp(p(t)) (2.3)

Since this union is incremented as t increases, we refer to it as the incremental

encounter window.

Our final lemma in this section comes in light of Lemmas 2.1 and 2.3. With

the end goal of finding NB(W ∗(p, δt)), from Lemma 2.3 we are required to find

f(W ∗
r (p, δ2t)) which with the help of Equation (2.3) is shown to be

f(W ∗
r (p, δ2t)) = f(

∫
δ2t

LEp(p(t))dp(t)).

This may still be difficult to integrate, but from Lemma 2.1 we can change the right

hand side to the product of E [f(W ∗
r (p,∆t\δ1t))] and µ(

∫
δ2t
LEp(p(t))dp(t)). This

places us in the position for the final result of this section:

Theorem 2.1 Suppose A is moving along p for some time δt. Then µ(W ∗
r (p, δt)) =

πr2vAδt.
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Proof. We know from Equation (2.3) that µ(W ∗
r (p, δt)) = µ(

∫
δt
LEp(p(t))dp(t).

Then from the properties of the Lebesgue measure µ

µ(

∫
δt

LEp(p(t))dp(t)) =

∫
δt

µ(LEp(p(t))dp(t))

=

∫
δt

µ2(LE∗p(p(t)))µ1(dp(t))

=

∫
δt

πr2µ1(~vA(t)dt)dt

= πr2

∫
δt

vAµ1(dt)

= πr2vAµ1(δt) (2.4)

where µ2(LE∗p(p(t))) is the surface area of LEp(p(t)) projected onto the plane per-

pendicular to ~vA(t), which is a disk of radius r. The projection is necessary because

the Lebesque measure can only be separated into constituent dimensions if those

dimensions are orthogonal.

It is interesting to note that Theorem 2.1 will also hold if the curvature equals

1
r

(see Note 2.2), provided certain other conditions hold. The reason is that if the

curvature equals 1
r

the double-counted points have zero measure, since µ is a measure

in 3 dimensions. The key is preventing Wr(p,∆t) from doubling back on itself with

any positive µ3 measure (i.e., volume). In Assumption 2.4, we required that there

are no intersections (even ones of zero measure) since the equality specified there

was not in measure, but in the actual spatial points themselves.

We conclude this section by explaining why the leading edge is used as opposed

to the more popular disk version. The reason lies in Lemma 2.3. Since we use a

general density function f , it is imperative that as A moves forward, we add the

proper points, s ∈ S, to the encounter window. The points to add are those on the

leading edge. Most of the literature in Kinetic Theory, on the other hand, assumes

f is uniform in S, so from Lemma 2.1 it makes no difference which points are added,

provided the same volume is added. As seen in Theorem 2.1 the volume added to
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the encounter window as A moves forward a certain distance vAδt, is equivalent to

the volume of a simple cylinder. Therefore kinetic theory prefers the more easily

visualized cylinder formed by a disk perpendicular to the direction of motion and

integrated over the path.

2.3 ~v as a function of S

The previous section laid ground work by defining bodies, motions, and en-

counter windows. The focus of this section is to bring all of these together into a

single encounter model. Kinetic theory provides a starting point for our develop-

ment, since much of the work regarding relative velocities has already been done. It

is generally known in the field of kinetic theory that the expected relative velocity

between two bodies moving according to the Assumptions 2.2 and 2.3, integrated

over all possible collision angles in 3-space is given by Equation (2.1)(for a proof see

Loeb (1934) or Chapter 3 of this thesis ). This result was first published by Clausius

(1858) and has been extended in many ways. To the author’s knowledge, however,

it has never been extended as it is in the following lemma where we allow the speeds

themselves to be functionally related to the space.

Lemma 2.4 If A is moving along p(t) in S at speed vA, and B ∈ B is located in

S and moves in random directions with locally defined speeds vB(s ∈ S) then the

average relative speed between A and B is

ES[vrel] =

∫
s∈W

Eθ[vrel(vA, vB(s))]
f(s)

f(W )
ds (2.5)

where Eθ[vrel(vA, vB)] is given by Equation (2.1)

Proof. Noting that the probability that B is located at s is f(s), the

remainder of the proof follows from the definition of the mean.
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From the formula of Equation (2.1) and Lemma 2.4, it can be seen that the

results are the same if vA varies over S and vB is constant. The reason is because

the speed of A relative to B is equal to the speed of B relative to A (the velocity

simply points in the opposite direction). Thus, our assumptions that vA is constant

and vB is a function of s is without loss of generality.

This shift in the speed of the encountering particle, A, is of great importance,

because velocity is intimately related to distance as seen in Definition 2.1. Since,

however, the actual distance covered by A during some time δt is independent of

the motion of B (only the relative distance), we adopt a new scaled measure that

dilates the standard Lebesgue measure, µ1, and so accounts for the relative increase

in speed.

Definition 2.6 Suppose Ω is a d-dimensional cube. Define µ
(~vA,~vB)
d,rel as the Lebesgue

measure of Ω where the first dimension is dilated by the ratio of the relative speed

between ~vA and ~vB divided by vA. Mathematically,

µ
(~vA,~vB)
(d,rel) =

vrel(~vA, ~vB)

~vA
µ1(Ω{1})µd−1(Ω{2,3...,d})

=
vrel(~vA, ~vB)

~vA
µ(Ω) (2.6)

where Ωn refers to the |n|-dimensional cube created by the intersection of Ω and the

sub-space of dimensions given in n.

The reason that the dilation is only in the first dimension is because from Definition

2.1 ~v maps to R, so the dilation due to relative velocity also only occurs in R. Using

the assumption that our measures are in R3, we will use the shorthand µ
(~vA,~vB)
rel (Ω) =

µ
(~vA,~vB)
(3,rel) (Ω).

Note 2.3 Suppose A and B are moving in S with speeds vA and vB respectively.

Then it is easy to see from Equation (2.6) that though the static encounter windows of

A and B are different (assuming vA 6= vB), their encounter windows relative to each
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other are of equal measure. This result leads to the following intuitive expectation

for relative encounter windows.

Theorem 2.2 The expected measure of the new encounter window swept by A rel-

ative to a moving B during an infinitesimal time interval δt = (t, t + dt] ⊂ ∆t,

conditional on the speeds of A and B, is given by

E(µ
~vA(t),~vB(t)
rel (W ∗

r (p, δt)) =
E[vrel(vA, vB)]

vA
µ(W ∗

r (p, δt))dt

Proof. The proof follows from Equation (2.6) and (2.4)

E[µ
(~vA,~vB)
rel (W ∗

r (p, δt))] = E

[
vrel(vA, vB)

vA
µ(W ∗

r (p, δt)

]
= E

[
vrel(vA, vB)

vA
πr2vA|δt|

]
=

E [vrel(vA, vB)]

vA
µ(W ∗

r (p, δt))

Then by combining Lemma 2.1 with Equation (2.6), we can show a similar

property on the f measure of W ∗
r (p, δt):

frel(~vA, ~vB)(W ∗
r (p, δt) =

vrel(vA, vB)

vA
f(W ∗

r (p, δt)) (2.7)

Which presents us with a dilemma: frel is no longer a probability measure. Depend-

ing on vA and vB and f(W ∗
r (p, δt)), it is feasible to generate frel measures that are

larger than unity. Clearly this makes the use of the binomial distribution for the

count process of X infeasible.
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2.4 The Extended Spatial Poisson Process

The reason that frel can grow beyond unity is because if motion is possible, it

is feasible for a single element B ∈ B to exist in two distinct locations in W ∗
r (p, δt)

during the time δt. This would occur when B was discovered at point s at time t,

and then it moved to point s′ where it was discovered at time t′. However, if we

could somehow remove a point from the candidate list of encounter-able elements

of B immediately after it was detected, the problem would be eliminated. The

Poisson distribution describes the limiting behavior required here, except that it

never changes the arrival rate. Here we use the extended Poisson process with a

linearly decreasing arrival rate at each transition, first described by Faddy (1990).

As M. Faddy (1997) explains, a binomial distribution gives rise to the linearly

decreasing sequence of arrival rates for a birth-death process: λn = −(N −n) ln(1−

p) for 0 ≤ n ≤ N . No provision has been made in the literature to allow for

inhomogeneity of λn, so we will use the expectation of f(W ∗
r (p, δt)) to give us a

constant arrival rate over the incremental encounter window.

symbol[Arrival rate]λ = − ln(1−E[f(W ∗
r (p, δt))]) = − ln

(
1− f(W ∗

r (p, δt))

µ(W ∗
r (p, δt))

)
(2.8)

Then the rate transition matrix of the extended spatial Poisson process corresponding

to the spatial binomial process X is given by:

Q =



−Nλ Nλ 0 · · · 0

0 −(N − 1)λ (N − 1)λ
. . . 0

0 0 −(N − 2)λ
. . . 0

...
...

...
. . .

...

0 0 0 · · · 0


(2.9)

This pure birth processes can be propagated in time using the Chapman-Kolmogorov

Forward equations. In the spatial case, we integrate the equations over S instead of
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t. Substituting µ(W ∗
r (p, δt)) in for t in (2.4) of Faddy (1997), and setting the initial

condition p0(W ∗
r (p, δt)) = [1, 0, 0, . . . , 0], we will find the probability distribution for

the number of encounters in the region W ∗
r (p, δt), using the formula

pn = p0 exp(Q ∗ µ(W ∗
r (p, δt))) (2.10)

This can be shown to be equal to the binomial distribution Binomial(N, f(W ∗
r (p, δt))),

where the nth element of pn corresponds to the binomial probability of n successes.

Extending Equation (2.10) to the problem where the elements of B are moving

we can take two equivalent perspectives to account for the relativity. The first

perspective was the one presented previously in Definition 2.6, namely, in order to

require the same time to cover the same absolute distance at an increase relative

velocity, the Lebesgue measure in the direction of relative motion must be dilated

in proportion to the increase in velocity. This would be equivalent in the extended

Poisson process to dilating the time t by some proportion. Time dilation is not

frequently studied in the area of counting processes. However, the issue of relative

speeds and the resultant perception of time or space dilation is extremely important

for dynamic spatial processes.

If one prefers to avoid the concept of space or time dilation, an alternative

perspective is that there is an apparent increase in the number of encounter-able

elements in B. This perspective derives from the fact that the increased number

of collisions can come by either increasing the density or inspecting a larger space.

Note, however, that the coefficient is applied only to the remaining encounter-able

elements, thus, the coefficient is placed outside the parenthesis in the elements of Q.

It can be seen from Equation (2.9) and (2.10), that the effect is the same

regardless of which perspective is taken. The exponential term is increased by the

coefficient vrel(vA, vB), except that in the perspective of increasing the remaining N ,

the coefficient is buried in Q.
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Example 2.1 Reversing the roles of A and B, we consider the case where the veloc-

ity of A is changing deterministically from the influence of constant uniform acceler-

ation and elements of B are moving with constant speed in random directions. Recall

from Note 2.3 that this formulation is equivalent to the one where vA is constant and

vB varies by spatial location.

Let ~vA = ~v0−gt where ~v0 = (vx0 , 0, v
z
0) (in Euclidean coordinates), g = (0, 0, 9.8)

and t ∈ [0, 2vz0g]. We assume A’s path has the starting point p(0) = (0, 0, 0). From

this initial condition using the velocities from ~vA, we get the path

p(t) = {(x, y, z) : x =
2tag

vz0
, y = 0, z = vz0t−

1

2
gt2}

where h = (vz0)2/(2g) and a = vx0v
z
0/g. This describes ballistic motion along a

parabolic arc from the origin to the point (2a, 0, 0) with zenith (a, 0, h). It can be

shown that this path meets the requirements of Assumption 2.4 if h > r.

The velocity of A as a function of z is given by

vA(x, y, z) = (vx0 , 0, (v
z
0)2 − 2zg) (2.11)

for (x, y, z) : x ∈ [0, 2a], y = 0, z = h
(

1− (x+a)2

a2

)
. The incremental encounter

window swept by A moving along p has measure (Reese and Sondow, 2009)

µ(W ∗) = πr2

(
1

2

√
a2 + 4h2 +

a2

4h
ln

(
2h+

√
a2 + 4h2

a

))

where we use the abbreviated form W ∗ = W ∗
r (p, δt). Assuming that X is uniform in

S, the probability that a stationary B is in this window is µ(W ∗)
µ(S)

.

To make this example more concrete, suppose we start the model with the inputs

shown in Table 2.1. From the formulas above, we can tell that the zenith occurs at

altitude h ≈ 11.5m, the total shot distance is 2a ≈ 2 ∗ 30.6, and the duration of

the flight is tn ≈ 4.1 seconds. With this information we can be confident that the
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Table 2.1 Velocity inputs for example problem
~v0 (15 m/s, 0, 20 m/s)
g 9.8 m/s2

vB 20 m/s

Table 2.2 Scenario inputs for example problem
S [0, 100]× [0, 20]× [0, 15]⇒ µ(S) = 3000m3

r 1m
N 4

parameters shown in Table 2.2 for the scenario are reasonably spacious to encompass

W ∗. They provide a sufficient space to fully contain the collision window.

This gives us a collision window volume of µ(W ∗) ≈ 105m3. If we assume that

the 4 elements of B are uniformly distributed in S and stationary, then the density

function is for a unit of volume

1

µ(S)
≈ 1

3000

and from Equation (2.8) we compute λ = − ln(1−f(W ∗)) ≈ 0.0012, since dF (W ∗) =

πr2µ(dp)/3000 ⇒ f(W ∗) = πr2/3000. The resultant extended Poisson process Q

matrix then becomes:

Q ≈



−.0042 .0042 0 0 0

0 −.0031 .0031 0 0

0 0 −.0021 .0021 0

0 0 0 −.0010 .0010

0 0 0 0 0


Now if the elements of B move at speeds vB in random directions in R3, we can

integrate Equation (2.5) to find the mean relative velocity between A and an arbitrary

element B ∈ B. Since the integration is rather lengthy, we resort to numerical

techniques to generate the expected relative velocity.
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Numerically integrating with 3 point Gaussian Quadrature (Burden and Faires,

2005) over all altitudes we find that the expected relative velocity for this scenario

is approximately 29.92m/s. This means that the average relative velocity between A

and some arbitrary element B ∈ B is approximately 20% higher than it would be if

the B element were stationary. To incorporate the effect of increasing the speed on

the collision probability, we can either increase each (N − i) in Q by 20% or we can

increase t by the same proportion. Here we choose to increase (N − i). This gives

us a new Q matrix:

Q ≈



−.0050 .0050 0 0 0

0 −.0038 .0038 0 0

0 0 −.0025 .0025 0

0 0 0 −.0013 .0013

0 0 0 0 0


Finally, we can exponentiate Qµ(W ∗) to find the transition probability matrix

Pij:

Pij =



0.5326 0.3622 0.0940 0.0107 0.0005

0 0.6195 0.3223 0.0549 0.0033

0 0 0.7298 0.2482 0.0220

0 0 0 0.8489 0.1511

0 0 0 0 1


We use the initial condition of 0 encounters with x0 = [1, 0, 0, 0, 0] (alterna-

tively we could use the encounter probability for the ball around the starting position,

βr(0, 0, 0)), to generate the probability distribution for the number of encounters at

tn, xtn:

xtn = x0Pij = [0.5326, 0.3622, 0.0940, 0.0107, 0.0005]
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2.5 Conclusion

In summary, it is clear that the extended Poisson process is applicable to spatial

point processes, and can provide significant advances both from a statistical perspec-

tive, by accounting for over- and under-dispersed data, as well as the probabilistic

perspective, in that it unifies a variety of spatial point processes into one common

framework. This framework also has a unique ability to address motions concerns

at the infinitesimal level, similar to the spatial Poisson process, while maintaining

the features of alternative counting processes. Thus, in the field of dynamic spatial

processes, it opens up a whole new horizon of feasible encounter modeling. The

applications for such studies include: hard-body collisions in finite particle systems,

search and rescue operations, and birth-death processes for links on a mobile ad-hoc

wireless networks.

On the other hand, the methods currently in use in spatial process models may

provide some insight to advance the theory of extended Poisson processes. To date,

the processes are limited in that the rates only depend on the number of arrivals

at some time, not the current time itself. Cox and Gibbs processes (Møller and

Waagepeterson, 2004) suggest that there may be parallel constructs in the temporal

domain to allow for time-variant versions of the extended Poisson process model with

time-intransient Markov chains.
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3. Case Study

Assessing Probability of Aircraft Fratricide

Due to Artillery Fires

3.1 Introduction and Problem Description

The risk analysis for artillery fires colliding with aircraft in a conflicted airspace

is increasingly becoming a source of concern for mission planners, decision makers,

and commanders. In December 2007, the Center for Army Lessons Learned pub-

lished a requirement for an analytical model for assessing the risk of aircraft fratricide

due to fires (Neuenswander, 2008). Research conducted by the Air Force Doctrine

Development and Education Center (Bethea and Herbranson) introduces a probabil-

ity model that introduces the concept of a shell creating a collision “tube” through

the sky with a geometric approximation of the ballistic path. Their model, however,

fails to account for the dynamic motions of the aircraft and artillery projectiles.

The National Defense Industrial Association (Strike, Land Attack and Air Defense

(SLAAD) Committee of the National Defense Industrial Association (NDIA), 2001)

also conducts a simulation study that concluded a 1% risk of fratricide. Despite the

increase in studies on the subject, no published model exists to date for probabilistic

estimation of the risk of fratricide of fixed wing aircraft due to artillery fires.

Figure 3.1 shows a picture describing the problem scenario. Artillery units

fire indirectly (ie. the gunner cannot see the target) arcing through an altitude

range where aircraft are flying. The model must take into account all the important

parameters, but be flexible so that it can operate with minimal information.

The approach to solving this problem begins in Section 3.2 with a literature

review on general collision models. The best candidate for solving this problem is

selected and adjusted to better match the particular scenario given by this problem.
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Aircraft 

altitude 

Figure 1 – Problem scenario 

Figure 3.1 The Problem Scenario

Specifically, the model is adjusted in Section 3.3.1 to account for ballistic trajectory,

spatial M/D/∞ birth-death processes in Section 3.3.2, and Section 3.3.3 accounts for

uncertainty in the parameters. After these adjustments, the final model represents an

original contribution to the literature of collision models. The model is implemented

in software and subjected to sensitivity analyses. Finally, numerical results are

computed for a simple scenario and some conclusions are drawn.

3.2 Finding the Right Model

The issue of things colliding is a point of interest in many different fields of

study. The literature is replete with collision studies that represent many different

physical collision models with different mathematical bases. Most of these studies

seem to solve their respective problem in one of three methods briefly presented here.

For further discussion on the models not carried through in this study, see Chapter

1.

1. The Historical Model: The general concept is to take historical collision data

from similar scenarios, and use these to estimate future collision probabilities.

It is a very flexible method that is simultaneously very simple. The draw-

backs are finding the data or developing and validating a realistic simulation

to generate the data.
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2. The Gas Particle Model: Here the incident particle moves through space,

sweeping through a collision window in the process. Spatial point processes

(SPP) provide a probability of a target particle existing in the window. The

strength of the model is its wide applicability. Its primary weakness is that

it quickly becomes unwieldy and complex when assumptions of independence

and uniformity are lost.

3. The Satellite Model: This third model uses geometric techniques on location

and path information of all objects to compute the points of closest approach

for every incident-target object pair. Then it uses a Gaussian error distribution

at the point of closest approach to estimate an upper bound on the probability

of collision. The strength of this model is its precision, but its weakness is the

large data requirements and the probability assumption of normality.

As we consider these three models for use in the problem at hand, we must eval-

uate their applicability to the problem, flexibility to work under uncertainty, and

simplicity of implementation. We quickly reject the satellite model for its data re-

quirements, which greatly exceeds the amount of data that is generally available in

real-time combat situations. This presents us with a choice between the historical

model and the gas particle model.

The gas particle and the historical models have both been used to develop

midair collision estimates. Alexander (1970) uses the gas particle model in estimating

the risk of mid-air collisions for aircraft using the “free flight” rules. His “back of

the envelope” calculations demonstrate that the gas particle is a viable method

of estimating random collisions between particles moving in uncertain directions.

The historical model was implemented using simulations by the National Defense

Industrial Association (Strike, Land Attack and Air Defense (SLAAD) Committee

of the National Defense Industrial Association (NDIA), 2001) to test the “Big Sky

– Little Missile” theory for Joint Fire doctrine development. They do not provide
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details on the half-width confidence interval results, but report that approximately

1% of their simulated scenarios resulted in a fratricide.

The historical model relies on many past observations of event phenomenon.

This technique is not wise to implement in combat theater models apart from simu-

lation. However, in view of the fact that the estimated collision frequency is low, it is

reasonable that a simulation approach would require an extensively large simulation

time or number of replications to develop sufficiently bounded confidence intervals

for realistic results. Nevertheless, Alexander demonstrated that the gas model can

be applied to the problem at hand without undue difficulty.

3.3 Model Development

The model is most easily understood in the simpler two dimensional case pre-

sented by Kim (2002). Kim examines the probability of activating a mine while

traversing a minefield. If a person travels a distance d across the minefield, and he

will activate any mines within a radius r, any mines located inside an area of dr will

be activated. If the mine density is σ mines per unit area, then the expected num-

ber of mines activated will be drσ. The aircraft collision model is in 3 dimensions

and the artillery shells are in motion, so modifications must be made, but the key

concepts are the same. Accounting for the third dimension, the expected number of

static fratricides in a collision window swept by the aircraft is

πr2dσ (3.1)

Visually the model we use here is presented in Figure 3.2. In Section 3.3.1 we

use relative velocities to add in motion of the shells. The second step, described in

Section 3.3.2, is to estimate the shell density in the collision window by means of

a spatial point counting process. Finally, these two results are combined in Section

3.3.3 to give a numerical estimate of the collision risk while accounting for uncertainty
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Figure 3.2 Model flow chart.

in the parameters. In forms of calculations similar to the formulas of Kim’s model,

the distance d is found in Step 1 of the model and σ is calculated in Step 2.

3.3.1 Step 1: Relative Velocity (Applying Ballistic Formulas)

This collision model deviates from Kim’s minefield model in that the shells are

in motion whereas mines are not. Fortunately, Loeb (1934) provides a method to

account for shell motion using relative speeds between the aircraft, va, and the shell,

vs. Mathematically, this is computed using the Law of Cosines (see Figure 3.3):

vrel = c =
√
a2 + b2 − 2ab cos θ =

√
v2
a + v2

s − 2vavs cosϑ

In our problem a and b are the speeds va and vs. ϑ is the angle of incidence

between the two motion vectors. The expected relative speed is found by integrating

over all possible ϑ angles as follows. We assume that the aircraft path is in some given
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Figure 3.3 The geometry of relative velocities.

direction and that the artillery shell could be coming at it from any direction. Thus,

without loss of generality, we fix the aircraft’s direction of motion to the vertical

axis: ~va = ẑ. Then we assume that the shell’s motion vector is uniform in 3-space.

If we desire to test whether the angle of approach, ζ is between some angle ϑ and

ϑ + dϑ, we must take the ratio of the surface area of the “belt” depicted in Figure

3.4 to the surface area of the sphere. If we consider the limiting case as dϑ → 0,

Figure 3.4 Computing the probability of angle of incidence.

the “belt” approaches the side of a cylinder with radius sinϑ and height dϑ. So the

ratio is computed as follows:

f(ϑ) = P (ϑ < ζ < ϑ+ dϑ) =
2π sinϑdϑ

4π
=

1

2
sinϑdϑ (3.2)
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We then use the probability of the incidence angle ϑ to find the expected

relative speed between two bodies moving in 3 space.

E (vrel) =

∫ π

ϑ=0

vrel(va, vs, ϑ)P(ϑ < ζ < ϑ+ dϑ)

=

∫ π

ϑ=0

√
v2
a + v2

s − 2vavs cosϑ

(
1

2
sinϑdϑ

)
=

1

6vavs

[(
v2
s + v2

s − 2vav
2
s cosϑ

)2/3
]π
ϑ=0

=
1

6vavs

[
−
(
v2
a + v2

s − 2vavs
)3/2

+
(
v2
a + v2

s + 2vavs
)3/2
]

=
1

6vavs

[
−
(
(va − vs‖)2)3/2

+
(
(va + vs)

2)3/2
]

=
1

6vavs

[
− |va − vs|3 + (va + vs)

3]
=

 vs + v2
a

3vs
, vs > va

va + v2
s

3va
, vs ≤ va

(3.3)

Note that in Equation (3.3), the speeds are considered constant. However, due

to the physics of ballistic motion, shell velocity, vs, is not constant over the shell’s

arc. Rather the shell speed decreases as it goes up and increases again as it comes

down. In general, vs is a function of launch angle, θ; muzzle velocity, vm; vertical

position, y; and acceleration due to gravity, the constant g. As an initial model we

use the ideal ballistic arc, wherein the instantaneous shell speed at any given altitude

follows the equation (for a proof, see Chapter 2)

vs(θ, y, vm) =
√

[vm cos θ]2 + [vm sin θ]2 − 2yg (3.4)

where θ is the angle of elevation at launch, vm is the muzzle velocity at launch, g is

the gravitational constant (32.2 ms−2), and y is altitude.

Then we set W to be the window volume swept by the aircraft during the

conflicted time. If we didn’t have relative velocity to consider, we would have W =

πr2tva. However, we do take the relative velocity into account using Equation (3.3).
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Moreover, we also consider the speed of the aircraft at a particular height. Given

the launch angle, θ and the muzzle velocity vm, we combine Equations (3.1), (3.3),

and (3.4) to find the new collision window formula:

Wrel =

∫ tn

t0

πr2E [vrel(va, vs(y(t)), ϑ)] dt (3.5)

where [t0, tn] is the time that the shell spends in the conflicted airspace.

3.3.2 Step 2: Shell Density (Applying Spatial Point Process Theory)

Given the volume Wrel, we next count how many shells are actually in the

window. The appropriate tool for such a counting process is called a spatial point

process (SPP). SPP theory is primarily used for statistical analysis used in areas

such as forestry, ecology, seismology, epidemiology and material science (Møller and

Waagepeterson, 2006). SPP’s come in different variations based on how the points

are distributed in space. The Binomial and Poisson distributions are frequently

used to model data that is fairly evenly spread out throughout the space. More

advanced models such as Cox and Gibbs processes are used if the points tend to

cluster together or scatter apart. Rarely do the objects move in any of the models

except in two domains: kinetic theory (Brush, 1965) and orbital debris environments

(Jenkin and Gick, 2002). In both of these cases, the Poisson SPP is the model of

choice because of its memoryless property which creates truly random distributions.

In the space/time context the memoryless property is as follows: as I fly through

the space, assuming that I do not double back on myself, the number of collisions

I’ve had so far has no bearing on the number of collisions I will have in the future.

We assume that the Poisson process is a reasonable estimate for the shells

entering the airspace. This corresponds to an exponentially distributed inter-firing

time for the artillery batteries. The assumption of a exponential distribution may

seem rather arbitrary, but it is justified on the fact that the distribution is the
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most random law that can be used, and so provides a conservative bound on the

risk. Furthermore, as the number of artillery units firing into the space increases,

Khintchine’s (Gross and Harris, 1998) law dictates that the inter-firing times will

converge to an exponential distribution.

However, we must also take into account the fact that the shells fly back out of

the airspace. This requires using a spatial birth-death point process. Since we know

from the ballistic arc exactly how long the shell remains in the altitude window, we

use a deterministic formula. If an aircraft is flying between altitudes ymin and ymax,

then the duration that the shell spends inside the range [ymin, ymax] is

t =
2

g

(√
v2
v − 2gmin(amin, h)−

√
v2
v − 2gmin(amax, h)

)
(3.6)

where vv is the vertical component of the muzzle velocity (vv = vm sin θ), h= v2
v/2g is

the zenith (henceforth, max ord) of the ballistic arc (again assuming an ideal ballistic

arc), and the construct amin/max = min{ymin/max, h} handles the cases where the shell

falls short of the min or max altitude of the aircraft.

In summary we assume that shells are fired into the space at exponentially

distributed time intervals with an average rate λ and that each shell spends the

same amount of time in the collision window given by t in Equation (3.6). In queuing

theory notation, this is represented as an M/D/∞ birth-death process. Adjusting

the formulas of Gross and Harris from the M/D/c queue (Gross and Harris, 1998),

the number of shells in the conflicted airspace volume at any point in time is L∼

Poisson[λt] (∼ means “distributed as”). Thus the number of shells in the whole

collision altitude at any given time is found by counting how many shells were fired

in the last t seconds. Since L is the number of shells in the whole space, assuming

that the shells are uniformly distributed throughout the space, we find the shell

density for a unit of air volume, σ by dividing L by the total volume of conflicted
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airspace WT :

σX =
L

WT

∼ Poisson

[
λt

WT

]
(3.7)

Another nice feature of the birth-death process as opposed to other SPP models

is that it changes the requirements for the memoryless property. As stated above, the

memoryless property requires that the aircraft cannot double back on itself. Clearly

this presents a difficulty for estimating fratricide risks for orbiting aircraft. However,

with the spatial birth death process, we only require that the aircraft cannot go

over its own tracks inside of t seconds. Depending on the altitude window that the

aircraft is flying in, t is usually no more than only a few seconds – well inside of the

time it takes for any aircraft to complete one turn of an orbit.

3.3.3 Step 3: Probabilistic Estimation (Applying Numerical Integration)

We are now able to give a probabilistic estimate of the number of fratricides

using Equation (3.1). We substitute Equation (3.5) in for πr2d, and Equation (3.7)

in for σ to get:

# frats = NX = σX ∗Wrel ∼ Poisson

[
Wrel

WT

λt

]
(3.8)

However, looking back at Equation (3.5), we see that Wrel depends on the

altitude, y. Similarly t from Equation (3.6) depends on the muzzle velocity, vm; the

angle of fire, θ; and the aircraft min/max altitudes, ymin and ymax. In addition, σ

depends on WT in Equation (3.7). Rarely, however, will the input parameters be

known with certainty. It is for that reason that vA(y) is left in its functional form,

since rarely will aircraft fly at one specific altitude. Similarly, it may be reasonable

to expect uncertainty in other parameters as well. We expect that WT , ymin and

ymax will not change over a given altitude, but it is certainly reasonable to expect

some variance in vm, θ, and y.
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Considering this, we parameterize the Poisson distribution in Equation (3.8)

with

λ∗ =
Wrel

WT

λt (3.9)

and then we make λ∗ a function of vm, θ, and y. Thus Equation (3.8) becomes

# frats = NX = σX ∗Wrel ∼ Poi [λ ∗ (y, θ, vm)] (3.10)

Then we allow any probability distributions fvm , fθ and fy for their respective

variables. For example, we will here use uniform distributions on the launch angle,

θ ∼ Uni(θmin, θmax); muzzle velocity, vm ∼ Uni([vm]min, [vm]max); and collision

altitude, y ∼ Uni(ymin, ymax) This allows us to compute the probability for a certain

number of fratricides by a conditioning argument

P(NX = n) =

∫
(y,θ,vm)

P(NX = n|y, θ, vm)P(y, θ, vm) d(y, θ, vm)

=

(ymax,θ,(vm)max)∫∫∫
(ymin,θ,(vm)min)

P(NX = n|y, θ, vm)f(y)f(θ)f(vm)dy dθ dvm (3.11)

where we know from the Poisson distribution of NX that

P(NX = n|y, θ, vm) =
e−λ

∗(y,θ,vm) (λ∗(y, θ, vm))n

n!

Since the integral is more complex in this case (considering the amount of

computation necessary to find λ∗), we solve it numerically with 3-point Gaussian

quadrature. Higher order quadratures provide better estimates, but since multi-

ple integrals are required the number of function evaluations grows exponentially.

Therefore the lower order quadrature is chosen for simplicity in this proof-of-concept.

The quadrature technique requires us to build a transformation function t from

[1,−1] to the variable domains. So, for a general variable x, we construct the function
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φx(tx) = ts
1
2
(xmax − xmin) + 1

2
(xmax + xmin) where tx ∈ [−1, 1]. Then (Burden and

Faires, 2005) demonstrates that in the general case,

∫ b

a

f(x)dx =

∫ 1

−1

f(φx(tx)
xmax − xmin

2
dtx

We note that the term xmax−xmin will be canceled out by the fx terms of Equation

(3.11). After these variable shifts, (3.11) becomes:

P (NX = n) =
1

8

(ty ,tθ,tvm )=(1,1,1)∫∫∫
(ty ,tθ,tvm )=(−1,−1,−1)

P(N = n|φy(ty), φθ(tθ), φvm(tvm))dtvmdtθdty

(3.12)

which is solved using Gaussian quadrature by:

P (NX = n) ≈ 1

8

∑
(ty ,tθ,tvm )∈{−1,0,1}3

 cy(ty)cθ(tθ)cvm(tvm)

P(N = n|φy(ty), φθ(tθ), φvm(tvm))

 (3.13)

where

cx(tx) =

 5/9, tx ∈ {−1, 1}

8/9, tx = 0

We recognize that Equation (3.13) is daunting to express in a single formula,

but it is quite easy to set up using standard spreadsheet software such as Microsoft

r Office Excel r (Microsoftr Corporation, 2006). This is the approach we used to

perform the sensitivity analysis and to derive the numerical results of the following

sections.

3.4 Sensitivity Analysis

Sensitivity analysis was performed on the above model. Figure 3.5 below pro-

vides a screenshot of the model implementation in Microsoftr Office Excelr. The

data was generally designed to both represent realistic data gathered from Field
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Manual 6-40 (HQ , 1999) and Jane’s military resources (Daly, 2008), and to provide

insight into the functional relationships represented in the equations. The aircraft

speeds and altitudes are generally representative of unmanned aerial vehicles (UAVs)

and the muzzle velocities are reduced to highlight functional relationships. Aircraft

altitude was represented using a uniform distribution with a spread of 1000 ft. All

other parameters are held constant for each observation, and those constants are

varied over many observations to generate the output graphs shown.

Comparing muzzle velocity to collision probabilities, until the muzzle velocity

attains a critical value, the projectile falls short of the minimum aircraft altitude,

and the collision probability is zero. As the max ord gradually travels through the

altitude range the collision probability increases until it reaches the maximal value

when the max ord equals the maximum altitude for the aircraft. Then the collision

probability gradually decreases and levels off at some constant value. The leveling

convergence at higher muzzle velocities represents the ballistic path through the at-

risk altitudes becoming straighter. As the muzzle velocity increases, the probability

converges to the limiting case of the projectile flying through the conflicted altitude

in a straight line at an angle equal to the angle of fire. This progression can be

seen in Figure 3.6. Since the numerical results match logical outcomes, this serves

as validation for the model.

The significance of this relationship between max ord, aircraft altitude, and

fratricide risk cannot be overstated. It shows that the point of highest risk is given

by a simple linear relationship between where the aircraft is flying and the max ord

of the projectile. If the aircraft altitude is x ± d, and the projectile is fired with a

max ord of h, then the probability of a fratricide is highest for aircraft flying with

an average altitude of x = h− d.

The significance of relative velocities is secondary to the muzzle velocity at-

taining this peak value. This is displayed visually in Figure 3.7. The fratricide

probability peaks when the velocity attains the appropriate level for the aircraft
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Figure 3.5 Three groups of input (artillery, aircraft, and scenario) are required to
produce an estimate of fratricide along with an uncertainty measure of
the estimate.
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Figure 3.6 p by vm and y.

altitude (max ord = d + x = 250 + 1000 = 1250 ft, so critical muzzle velocity is

approximately 408 ft/sec). Until both the muzzle velocity and aircraft speed reach

this critical velocity, changes in aircraft speed minimally affect collision probabili-

ties. As the aircraft speed exceeds the critical velocity, it begins to dominate the

equations, so that further increases in aircraft speed drive the probability of collision

even higher. Figure 3.8 demonstrates that even the effect of increasing the aircraft

speed can be dwarfed by relatively small changes in the collision radius. For exam-

ple, increasing the miss distance by only 2 ft has about the same impact as raising

the aircraft speed by 50 miles per hour.

3.5 Numerical Results

The response values from the model indicate surprisingly high results. A ”Big

Sky - Little Missile” concept implies miniscule collision probabilities. However, in

very normal scenarios here, it is not uncommon for the model to return fratricide

risks on the order of 1% to 5%. With input from an experienced Air Liaison Officer

(Glen Shilland, 2009), we generated three scenarios presented below. All three have

artillery fire with muzzle velocities uniformly distributed between 1525 and 1725

ft/sec and angles of fire uniformly distributed between 35 and 45 degrees. These
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Figure 3.7 p by vm and va.

Figure 3.8 p by va and r.
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ranges correspond to a minimum distance to target of about 20 km and a maximum

of about 28 km. The targets are uniformly distributed throughout surfaces areas (ie.

a top down view) called grid squares. Each grid square is 1 km2. Since the target

areas are so much smaller than the distances from the artillery to the target, we

assume that the shells only pass through the altitudes on descent, so t in Equation

(3.6) does not have the 2 coefficient.

3.5.1 Scenario 1

Our first scenario was intended to be conservative. The artillery is firing at a

target in 1 grid square at a rate of 2 rounds per minute (rpm). Meanwhile a 2-ship

flight of A-10s attack the target. The A-10s fly at 330 knots (kts) between 4500

and 5500 ft above ground level (AGL), proceed directly above their target, and fly

out of the grid square. The entire duration of the conflicted airspace is 6 seconds

(the approximate time it takes to cross a grid square at 330 kts). We desire the

probability that any rounds pass within 50 ft of the center of either aircraft.

The result of the scenario is that there is less than 0.001% risk to each aircraft.

Overall, the probability that no shells pass within 50 ft of either aircraft is approxi-

mately 99.95%, or alternatively stated, there is a 0.05% risk that a round will pass

within 50 ft of at least one aircraft. This is a very low risk, however, the results can

be very sensitive to the radius of collision. Figure 3.9 displays the effect of increasing

the minimum desired miss distance on the probability of a shell passing within the

radius of either aircraft.

3.5.2 Scenario 2

The second scenario considers the same artillery barrage on the target inside

of 1 grid square. This time, 2 RQ-7A Shadow unmanned aerial vehicles (UAVs) are

in orbit gathering intelligence on the battle development. They are flying at 75 mph

between 4800 and 5200 ft AGL. The entire scenario lasts 10 minutes, and it is again
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Figure 3.9 Comparing the probability of no fratricide to collision radii

Figure 3.10 Comparing the probability of no fratricide to scenario duration

desired to know the probability that any rounds pass within 50 ft of the center of

either aircraft.

This scenario results in a much higher risk: a 4.87% risk that at least one shell

will pass within 50 ft of one of the UAVs. Each UAV individually has a 2.46% risk.

The major reason for the increase in risk from the last scenario and this one is the

duration of the airspace confliction. We show the effect that duration has on the

risk in Figure 3.10.

3.5.3 Scenario 3

Our last scenario was intended to examine a more congested airspace. This

scenario increases the firing rate to 5 rpm, but also spreads it out over 4 grid squares.

The result of this is that the density is reduced by .75 rounds per grid square per

minute. In this scenario 2 helicopters are orbiting the area between 1900 and 2100
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ft AGL at 100 kts, 2 UAVs are on surveillance flying at 55 kts and 4800 to 5200 ft

AGL, and 2 A-10s are on orbit for CAS support at 9500 to 10000 ft AGL and 250

kts. The minimum desired miss distance for all aircraft is again 50 ft.

Individually, the aircraft have fairly decent probabilities of no fratricides: the

helicopters have a 99.51% chance of no shells, the UAVs have 98.40% chance, and

the A-10 planes have a probability of 97.94% chance of both being at least 50 ft from

any shells. However, collectively, there is a 5.06% chance that the center of at least

one of these aircraft will be with in 50 ft of some shell.

3.5.4 Further discussion

These probabilities are of sufficient risk to warrant attention. In comparison,

if a 0.1% risk of incapacitation is presented to ground troops supported by artillery

fire or close air support, the situation is termed “Danger Close,” which requires that

the “supported commander must accept responsibility for the risk to friendly forces

when targets are inside the [danger close zone].” (Joi, 2003). In the second and third

scenarios, the risks are 50 times as large as the “Danger Close” threshold.

Furthermore, when considering the expected costs of flying through conflicted

airspaces, the results are frequently non-trivial. Not considering the probability of

kill (pk) values, the 0.05% risk to an A-10, priced at 12 million, corresponds to an

expected cost of the mission of $60,000. These are just the “nuts and bolts” costs

and do not include effects such as unit morale degredation, loss of public opinion,

reduced of mission effectiveness until repairs, or medical costs. Most of such missions

through conflicted airspaces will not realize such costs, since the probability of safe

passages are so high, but it would not be wise to ignore such non-trivial risks with

such large consequences.

These numerical results suggest that the current military policy on deconflic-

tion of aircraft and artillery fire is a prudent course of action. The high expected cost

of flying through artillery fires must be matched by an even higher expected gain
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in order for the mission to be worth the possible loss. Furthermore, given current

stand-off firing capabilities and high altitude ISR, it may be possible to adjust flying

missions to achieve deconfliction with minimal degredation of the desired mission

effect. Decision analysis can aid planners in trade-off analysis for specific scenarios

given the probability calculations presented in this paper, but in general, this model

indicates deconfliction is the recommended course of action.

3.6 Conclusion

Despite the many collision models presented in the literature, the gas model is

the best probabilistic model for addressing the problem of aircraft fratricides from

artillery fire. It provides good fidelity with low data requirements. The adjust-

ments that are necessary to apply the gas model to the fratricide problem require

mathematical contributions from diverse fields. Adjusting the “minefield” model to

account for three dimensions, non-constant shell velocity that follows ballistic equa-

tions, and integrating for uncertainty in the input parameters all combine to form

a unique model that provides an original contribution to the literature of collision

models.

Numerical results from the model indicate unexpectedly high collision prob-

abilities in normal scenarios. Deconfliction is a prudent response to mitigate the

expected costs to joint campaigns, but decision analysis tools may be necessary in

certain situations to evaluate the best course of action. Sensitivity analysis on the

model serves the dual purpose of providing validation for the model and simultane-

ously suggesting options for lowering collision risks.

There are several areas where this collision model can be improved. First,

the unexpectedly high collision probabilities suggest that a simulation model could

reasonably provide further validation of the model without running the risk of poor

estimates resulting from rare occurances due to tail probabilities. Better ballis-
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tic models that incorporate drag coefficients may provide better estimates, but the

marginal improvements in accuracy may be outweighed by the increase in complex-

ity. Finally, the model could be expanded to include location on the artillery unit,

target, and/or aircraft position using inhomogeneous intensity parameter values.
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4. Conclusion

4.1 Research Summary

This thesis developed a useful extension to the gas particle collision model. It

demonstrated the feasibility to account for spatial dependencies in the object veloc-

ities. In addition, the extended Poisson SPP allows the analyst to compute collision

probabilities when the density of objects in a bounded space may be over- or under-

dispersed with respect to the Poisson distribution. This even allows for binomial

or negative binomial SPPs. Finally, multi-dimensional birth-death processes allow

the modeler to represent objects entering and exiting the space. Each one of these

enhancements presents an original contribution to the literature of encounter models.

The application of the research to the problem of aircraft fratricides from ar-

tillery fire provides an excellent forum to test the capabilities of the model. Valida-

tion via sensitivity analysis suggests the model is accurate. The application provides

useful insights to the problem domain that can affect military policy and doctrinal

decisions.

4.2 Future Work

Recent theoretical development for encounter models is limited. For dynamic

situations, the literature is limited to three-dimensional cases. This is probably due

in no small part to the difficulty in evaluating the probability density function for the

collision angles in other dimensions. The three dimensional case can be solved with

simple u substitution, as shown in Chapter 3. However, there are many applications

that could benefit from an encounter estimate for a dynamic two-dimensional model.

Higher dimensional models may also be useful, though their applications may be

more limited. Of particular interest is the case in dimensions higher than eight. This

is because it has been shown that the surface area of a unit hypersphere is maximal

4-1



in seven dimensions (among integer dimensions) (Weisstein, 2009). For dimensions

greater than seven, the surface area monotonically decreases. This may have some

interesting effects on the probability of the angles between different motion vectors

according to the development in Chapter 3.

Another theoretical development that is still lacking in the literature of en-

counter models is that of inhomogeneous spatial distributions. Mathematically this

would probably entail some sort of Gaussian distribution around the expected loca-

tion of the object at any given time (Fraser, 1951). Naturally, this must also take

into account the probability density function of motions of the objects. If the objects

move in uniformly distributed directions, any inhomogeneities in the SPP density

function will dissipate as the system evolves. One means to maintain the spatial

inhomogeneities would be to model the point arrivals using the spatial birth-death

process and distribute the arrivals using a Wiener process for the time since their

arrivals. Similar techniques may also assist in estimating uncertainty in the defined

motion paths of the encounter-er.

The application presented in Chapter 3 may be improved by allowing inho-

mogeneous spatial density functions. This would reflect more realistic conditions

where there is a higher probability of shells or artillery to exist in certain regions

(i.e., along the gun-to-target line, or in a particular orbit). As stated in the pre-

vious paragraph, this would necessitate further consideration on the assumption of

uniformly distributed directions of motion.

The insight that collision risks are non-negligible highlights the need for opti-

mization techniques to optimize the management of a congested airspace to allow for

maximum mission effectiveness with minimum risk. This may involve optimization

methods to deconflict the airspace. Alternatively, it may be desirable to assign mo-

tion paths through a conflicted airspace that travel to designated destination points

with minimal risk of fratricide.

4-2



Finally, the model described here can be applied to a number of other problem

scenarios other than the one described in Chapter 3. One application would be

dynamic spatial birth-death systems that represent mobile ad-hoc wireless networks.

Since wireless signals require spatial locality to maintain sufficient strength, it would

be of interest to know the probability of a particular node going out of signal range,

or simply dropping off the network. The implications of such estimates may assist

in developing robust policies for network information flow that can maximize the

probability that certain packets can reach certain nodes.
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Appendix A. Blue Dart

Foregoing Deconfliction: Consider the Risk!

Capt Timothy Holzmann and Dr. Jeffery Cochran

Dept. of Operational Sciences

Air Force Institute of Technology

Integration of air-to-surface fires and surface-to-surface indirect fires requires appli-

cation of appropriate restrictions: altitude, time, or lateral separation – (JP 3-09.34)

“From Deconfliction to Integration to Interdependence!” is the current mantra.

Current operations tempos are driving commanders to make ”Go” or ”No Go” deci-

sions in very short amounts of time, while simultaneously increasing joint operational

effectiveness by having all service branches work together to achieve a synergistic ef-

fect. For example, a commander may want Army artillery and Air Force close air

support to work together against some target. This naturally may present a risk to

the aircraft if it were to fly in the path of an artillery shell. In the military world,

taking unnecessary risks can lead to deadly consequences.

Joint doctrine requires commanders to eliminate the risk that the artillery

will accidentally hit the aircraft by instructing military planners use deconflict the

airspace: designate separate times/places for the artillery units to shoot and the

aircraft to fly (Joint Publication 3-09.3). However, recent military operations in

Iraq, Afghanistan and exercises on the Korean peninsula have highlighted several

drawbacks of requiring deconfliction. It can (1) limit the commander’s ability to

respond in a timely manner, (2) prevent him from massing his forces effectively, (3)

limit the pilot’s tactical options, (4) provide sanctuary to the enemy, and (5) hinder

the prosecution of time sensitive targets. The commander is left in a bind: accept

no risk by deconflicting and accept these limitations, or avoid the limitations but

accept an unknown risk by flying our aircraft through our own artillery fire. Should
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a commander take the risk? Can he count on the “Big Sky - Little Missile” theory to

come through, or should he bet on “Murphy’s Law” that something will go wrong?

In 2001, the National Defense Industrial Association (NDIA) performed a study

to test the “Big Sky - Little Missile” theory using a series of simulations (Integra-

tion, Control and Deconfliction of Joint Fires Study, Volume 1). Their simulations

of 4 aircraft flying through a barrage of artillery fire generated only 1% collision

probabilities. They conclude: “Chance for conflict still a risk though probability

low.”

More recently we teamed up with the Warfighter Applications team from the

Air Force LeMay Center to build mathematical formula for the question of ground-

to-air fratricide risk. Simulations can vary results from one run to the next, whereas

a formula never changes its answer. However, mathematical models are frequently

much harder to construct. In this case, the calculations involved ranged from high

school physics formulas to graduate school mathematics. The Air Force Studies and

Analyses agency provided preliminary review and validation of the model. After

further consultations with experienced military operators, our AFIT team generated

several realistic scenarios involving close air support operations and unmanned aerial

vehicle surveillance operations. Their results indicated that collision probabilities for

very normal situations can range up to 1% to 5%. While risk values depend greatly

on the particular scenario, both the NDIA and AFIT studies show that they are

frequently higher than what might be assumed under the “Big Sky - Little Missile”

theory.

Probabilities must be multiplied by the high price tags of modern aircraft to

generate the expected cost. Flying a $12 million aircraft, such as the A-10 Warthog,

through artillery fire at 1% chance of it getting hit is like throwing away $120,000

- and that’s not counting loss of public confidence or a pilot’s life. Furthermore,

what would the loss of that A-10 mean to the unit’s effectiveness until it could be

replaced? As one former A-10 pilot stated, “It is one thing to be crawling around in
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the mud with the infantry when some other pilot accidently gets shot down by US

artillery; it is quite another to be the pilot who has to walk home” (Capt. Hensley,

“A Fly Paper”).

We cannot turn these decision processes into just a game of numbers. Finding

a numerical risk value is easy compared to shouldering the responsibility of the

consequences. However, we can take a cue from the quantitative estimates: the

numbers suggest that the current policy of deconfliction is a prudent course of action.

Every day letters are going home to mothers, fathers, wives, husbands, and

children expressing our regret on the part of a grateful nation for the sacrifices of

brave members of our armed forces. The hardest ones to write are those when we

killed one of our own.
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Appendix C. Excel Model User Guide

The software implementation is in the form of a Microsoftr Office Excelr spread-

sheet Microsoftr Corporation (2006). There are three separate worksheets within

the file label “Start Here,” ”Inputs & Outputs”, and ”GaussQuad” respectively.

Each of these three worksheets is treated below.

C.1 Worksheet 1: “Start Here”

The intent of the software tool is to present the minimum level of complexity

required for an analyst to perform the necessary calculations and find the desired

results. This first worksheet provides the most simple presentation. The worksheet

is divided into several regions: the model calculator, the converter, the data sugges-

tions, and the charts.

C.1.1 The Model Calculator

The calculator is the main area of user interface. There is an input section, an

output section, and a notes section. Each of these is explained below. Figure C.1

displays these three sections as they are laid out in the software tool. The units for

each measure, whether input or output, are designated beside the appropriate cell.

Cells intended for user input are colored white, cells with calculated values have a

light shade, and the other cells have a darker shade.

The inputs are grouped by the component of the scenario that the respective

parameters describe. The artillery section requires the muzzle velocity, angle of fire,

and the number of rounds per minute that the artillery unit will be firing. As a

simplifying feature, the model eliminates the need for further inputs by assuming

that the standard conditions of the U.S. Army field manual 6-40 applies HQ (1999).

These conditions are reproduced in Figure C.2. In addition, the model assumes that

there is no drag on the projectile, so the shell follows an ideal ballistic arc. Aircraft
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Figure C.1 A screen shot of the Excel model
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Figure C.2 Excerpt from FM 6-40 containing standard firing conditions

are described by their altitudes, speed, and quantity. The scenario specifications

include the size of the operational area (ie. a top-down view of the area where the

aircraft are flying and artillery are firing), duration of the airspace confliction, and

the minimal desired miss distance. All inputs have a “sanity check” beside them

which is green if the parameter is within allowable constraints, yellow if it is on the

border, and red if it is outside allowable constraints. For example negative values

will be marked red. These flags are also highlighted in the notes section below.

The inputs for angle of fire, muzzle velocity, and aircraft altitude are required

in ranges. The actual values will be assumed to be uniformly distributed over the

specified ranges. Ranges must be of positive length (ie. max must be greater than

the min) or else the calculator will provide erroneous results.

The outputs of the software model (seen in the middle box of Figure C.1)

include a probabilistic assessment of the risk of one or more collisions during the

conflicted time period. This is the basic computational result from Chapter 3. In

addition, the model provides the rate at which collisions are expected to occur,

the expected number of collisions over the whole scenario, and its variance. Since

variance is difficult to interpret to a operational community, a range estimate is also

provided that gives reasonable upper and lower bounds on the expected number of

collisions during the given time period. Finally, a binomial distribution is used to
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test the probability that a given number of fratricides (up to the number of aircraft)

will occur.

The notes section flags important notes to the analyst on the whole scenario.

Specifically the calculations are made from considering 9 different combinations of

possible angles of fire and muzzle velocities. The notes section flags to the user cases

where the projectile fails to reach the minimum and/or maximum altitudes at which

the aircraft are flying. If it fails to reach the minimum altitude, the probability

of collision is zero. If it fails to reach the maximum altitude, the probability may

be also reduced from the case where it passes through the full range going up and

coming back down.

C.1.2 The Unit Converter

Also provided for the user are a unit conversion table to aid the analyst in

deciding the right inputs. This converter, shown in Figure C.3, is displayed just

to the right of the model calculator. The first two sections of the converter will

calculate the appropriate muzzle velocity of artillery fire for a given angle of fire

and distance to target; and it will calculate the appropriate angle of fire for a given

muzzle velocity and distance to target. Below this are various unit conversions with

the units specified.

C.1.3 The Data Suggestions

The default data, as seen in Figure C.4, gives the user some reasonable inputs

for aircraft velocities and altitudes. The data provided is unclassified, gathered

from Jane’s military resources Daly (2008), and Wikipedia Wikipedia Contributors

(2009a,f,e,b,c,d). The intention is to make the model simple to use for the average

analyst.
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Useful calculations
Find Artillery Velocity      
 Distance to target 25km  
 Angle of fire 45degrees  
 Muzzle velocity 1625.129ft/sec  
        
Find Artillery Angle      
 Distance to target 10km  
 Muzzle velocity 1625.129ft/sec  
 Angle of fire 11.78909degrees  
        
Conversions      
 m² --> nm²      

  1miles² = 1.324341nm²  
 miles --> ft      
  0.060386miles = 318.8406ft  
 ft --> miles      
  4921ft = 0.932008miles  

 knots --> ft/sec      
  330knots = 556.9758ft/sec  
 mph --> ft/sec      
  75mph = 110ft/sec  
 mils --> degrees      
  1200mils = 67.5°  
 meters -->ft      
  4000meters = 13123.2ft  

        

Figure C.3 The conversion table

Baseline Aircraft Data

Type Aircraft
Speed (mph)

Cruise alt
Cruising Maximum

Tactical

A-10 340 518 
F-15  900 
F-16  1320 
F-22  1043 

Cargos
C-17  403 
C130  400 28000

UAVs

RQ-7A Shadow 75 141 
Silver Fox 81 12000
FQM-151A Pointer 22 56 12500
AV RQ-11 Raven 40 60 100

RQ-1 Predator 84 138 25000

Figure C.4 Table of Baseline Data
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C.1.4 Graphs

The graphs provide the analyst with an understanding of how the risk varies

over various uncertainties in the input parameters. All three graphs plot the surface

of the probability of no collisions against angle of fire and muzzle velocity. They

differ in the altitudes at which the calculations are made. Collectively the three

graphs show the surface over the full range of uncertainty in the inputs.

C.2 Inputs & Outputs

The second worksheet gathers the inputs from the first page in a unified form.

It performs range checks on the inputs to ensure that they meet the range require-

ments. It also collects the results data from the third worksheet and performs basic

calculations to prepare them for output to the first worksheet.

C.3 GaussQuad

The final worksheet performs the Gaussian Quadrature calculations specified

in Chapter 3 of this thesis. Table C.1 outlines the role of each column in computing

the numerical integration. Figure C.5 gives a screenshot of the worksheet.
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Table C.1 Clarification on column meanings for “GaussQuad” worksheet

Columns A-C: Tx value is a mapping from [x min, x max] to [-1,1]
Columns D-F: Sx value is a rank value of the corresponding tx value.

1 is low, 2 is mid, 3 is high, 0 will not be included
in integration

Column G: Sample # value (1-27). 0 values will not be included
in integration

Columns H-J: Actual values of altitude (y), launch angle (theta),
and muzzle velocity (vm) corresponding to the tx values from
Columns A-C

Columns K-N: Weights for numerical integration. Total weight is the product
of the other three.

Column O: Maximum height possible for the given muzzle velocity
and launch angle

Columns P-Q: The minimal and maximal altitudes where collision is possible
Columns R-S: Calculations to determine expected relative velocities of shell

and aircraft
Column T: Duration (in seconds) that the shell spends in the collision

altitudes
Column U: The expected density of artillery shells in one unit of airspace
Column V: The total relative volume covered by aircraft traveling at the

relative speed for the duration of the vulnerable time.
Column W: The collision intensity parameter
Column X: Probability of one or more shells in a single aircraft’s path at any

point in time during the vulnerable time
Column Y: Weighted probability used for numerical integration
Columns Z-AA: Flags if shell does not attain aircraft min (col Z) or max

(col AA) altitude.
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Figure C.5 Screenshot of “GaussQuad” worksheet
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