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Abstract 

 This thesis describes a method that optimally deploys weather sensors of all types 

in a battlefield environment.  Gridded climatology models are used to determine an 

estimate for the weighted frequency of occurrence of operationally significant inclement 

weather events.  That data is used to formulate a series of preemptive Binary Integer 

Linear Programs that maximize detection of expected operationally significant inclement 

weather occurrences within the constraints of feasibility of sensor deployment, sensor 

operational lifespan and the sensor’s ability to detect the operationally significant 

inclement weather elements.  The preemptive Binary Integer Linear Programs are 

combined into a single objective function that maintains the preemptive nature of the 

original objective functions.   The BILP solutions are described as a meteorology and 

oceanographic collection plan supporting a particular military campaign.  A method for 

sensitivity analysis of differing BILP optimal solutions is provided.  Various realistic 

instances of the problem are solved to optimality and analyzed to demonstrate that the 

problem formulation accurately captures all aspects of the problem.  This type of analysis 

was not possible before this methodology was developed.
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OPERATIONS-FOCUSED OPTIMIZED THEATER WEATHER SENSING 

STRATEGIES USING PREEMPTIVE BINARY INTEGER PROGRAMMING 

I. Introduction 

Background 

     Throughout history, successful military leaders have recognized that weather 

conditions on the battlefield can play a significant role in determining the victor.  As 

early as 500 B.C.E., the great Chinese General Sun Tzu wrote in Art of War "Know 

yourself, know your enemy; your victory will never be endangered.  Know the ground, 

know the weather; your victory will then be total......" (Tzu 2005).  For this reason, the 

United States maintains and equips several different types of military units that are tasked 

to provide dedicated weather support to operational commanders.  These units use a 

variety of types of sensors to collect current weather conditions on the battlefield.  These 

units are also tasked to predict when future weather conditions will present a significant 

or marginal impact to friendly forces' ability to conduct various types of military 

operations.  For each different type of military operation, unit commanders and technical 

experts maintain a list of weather condition thresholds that significantly impact a unit's 

ability to successfully conduct that type of operation (JPub 3-59 2008).  There is a similar 

list of thresholds that marginally impact those same types of operations (JPub 3-59 2008).   

     United States military doctrine dictates that a senior commissioned officer trained 

in the regions of Meteorology and Oceanography (METOC) be appointed as the primary 

weather operations advisor to the overall commander of a military theater (JPub 3-59 
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2008).  This officer is typically referred to as the Senior METOC Officer (SMO).  The 

SMO is responsible for creating a theater weather sensing strategy that makes optimal use 

of all reliable weather sensing sources within the theater (JPub 3-59 2008).  From that 

strategy, the SMO develops a METOC collection plan.  This plan describes where 

weather sensing equipment and personnel should be located on the battlefield such that, 

in the SMO's expert opinion, these sensors provide the best depiction of current 

battlefield atmospheric conditions in support of the commander’s Concept of Operations 

(CONOPS) (JPub 3-59 2008).   

Problem Description 

     Presently, there is no established methodology for determining an optimal 

weather sensing strategy.  SMOs must rely on their individual knowledge of terrain, 

climate conditions, weather-related impacts to military operations and capabilities of 

available weather units to create their sensing strategies.  Creating this strategy is very 

difficult for a number of reasons.  First and foremost, the number of available weather 

units and sensors available for allocation is usually very small relative to the size of the 

battlefield that they are tasked to cover.  Obtaining additional weather personnel or 

sensors in addition to those initially on hand takes significant time and money.  Second, 

different types of weather units have different capabilities.  Some units can only be 

stationed at a friendly installation alongside units from their same branch of service (i.e. 

Army, Navy, Air Force, etc.).  Other weather units is placed into most any environment, 

but they can only stay in a particular region for a relatively brief time period of time 

before they must be recovered or rotated with another unit.  Third, different types of 
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weather sensors have similar constraints on their ability to operate in a particular region.  

Some sensors are small and solar-powered.  They are placed most anywhere, whereas 

other sensors are large and require a reliable power source to operate effectively.  

Additionally, not every sensor can collect all of the weather elements used to determine 

whether or not conditions will impact friendly forces' ability to conduct a particular type 

of military operation.  Finally, the SMO must also consider the replacement cost and 

expected time to failure for each type of weather sensor.  This is a very labor-intensive 

process that does not necessarily ensure optimal deployment of all weather personnel and 

equipment.   

     Implementing any weather sensing strategy will always require a significant 

expenditure of time and resources.  Once a weather sensing strategy is created, 

implementing that strategy is further complicated by the fact that the SMO's role is purely 

that of a subject matter expert.  The SMO is rarely in command of the personnel and 

equipment that the weather sensing strategy is attempting to allocate.  The SMO must 

present the sensing strategy to the overall commander for approval and implementation.  

When disagreements arise among the commander's staff regarding the benefits of 

implementing one particular weather sensing strategy versus another, the SMO currently 

has a very difficult time providing concrete cost-benefit comparisons that clearly 

advocate for one strategy over another.  The SMO must be able to concretely demonstrate 

to the commander that implementing the weather sensing strategy will contribute to 

achieving the commander's military objectives in a way that is significant enough to be 

worth the associated cost or risk. 
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Scope 

     In this research, the Battlefield Weather Sensing Strategy Problem (BWSSP) is 

formulated as a series of preemptive Binary Integer Linear Programs (BILP).  The 

BWSSP finds an optimal METOC collection plan that is focused on collecting the 

maximum amount of operationally-relevant weather information possible with the 

resources provided for any potential battlefield environment.  The model allocates a set of 

heterogeneous sensors with varying capabilities and requirements over both space and 

time dimensions.  The space dimension captures the decision on where to place sensors in 

order to maximize detection of operationally significant weather by each emplaced 

sensor.  The time dimension captures the decision on when to place a sensor at a 

particular region so as to maximize detection of operationally significant weather 

conditions over the expected operational lifespan of the sensor. 

The usefulness of placing a particular type of sensor at a particular place and time 

is calculated using a unique combination of historical and model-generated climate 

statistics, operationally significant weather element threshold parameters and 

characteristics of the sensor such as detection capability ranges and expected time to 

failure.  An optimal solution of this formulation yields the highest weighted probability of 

detection of the weather conditions that most significantly impact the operations most 

critical to the overall commander’s battle plan for the longest amount of time, based on 

the expected time to failure for the various sensor types.  The optimal solution tells the 

SMO both where and when to deploy the available sensors.   
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The statistical distributions of weather sensor operational lifespans are assumed to 

be either proprietary or very complex.  As such, a sensor may continue to function well 

beyond its expected lifespan.  Also, in the case of clandestine weather sensors, returning 

to a region after emplacing a sensor may reveal the existence of that sensor to an 

adversary.  To avoid either allocating a sensor to a currently occupied region or 

compromising a new clandestine sensor, the BWSSP in this thesis assumes that once a 

weather sensor is allocated to a particular region at a particular time, it will not be 

replaced for the duration of the campaign planning time period.  The BWSSP can be 

forced to allocate sensors to user-defined regions.  Therefore, once a sensor stops 

functioning, it is assumed that the SMO will remove the malfunctioning sensor from the 

current BWSSP solution.  If the region is now ineligible for sensor deployment, it can be 

removed from the BWSSP instance.  The SMO is then be able to re-optimize the BWSSP 

with the remaining unallocated supply of sensors while keeping all currently functioning 

weather sensors in their respective places.  This new solution remains optimal for the 

given battlefield conditions. 

     In practice, this model will be applied by SMOs in deployed regions around the 

globe.  SMOs are highly skilled atmospheric scientists and military officers, but very few 

are trained in operations research techniques.  As such, all computer code is written in 

Visual Basic (VBA®) for Microsoft Excel® with an emphasis on minimizing the number 

of decision variables at each step (without loss of fidelity) in an attempt to keep the 

problem solvable by Excel® Premium Solver® Version 9 in less than 24 hours on a 

standard laptop computer capable of running Microsoft Office 2007®.   
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Contribution of Research 

There are a variety of approaches to sensor allocation in current literature.  This is 

the first approach that considers historical behaviors of the detection targets as a series of 

preemptive objectives to form a measure of the usefulness of a particular sensor 

placement.  Gridded climatology models and historical weather observations provide 

reasonable estimates of when and where operationally significant weather conditions are 

expected to occur.  Since the objective of the BWSSP is to maximize detection of these 

conditions, these estimates of past behaviors provide a reasonable estimate of target 

behaviors for the weather sensors allocated in the METOC collection plan (BWSSP 

optimal solution).  The methodology applied to the BWSSP can be expanded to other 

resource allocation problems with multiple, preemptive objectives and where reasonable 

estimates of target behaviors are known and where time, space and the lifespan of the 

allocated resource are factors for consideration. 

Additionally, this research creates the first mathematical model for a military 

METOC collection plan.  The BWSSP model, as outlined in this research, can be used to 

compare METOC collection plans for differing supplies of weather sensors, thereby 

providing the SMO and overall commander with the ability to create a cost-benefit 

analysis for weather sensor procurement or deployment decisions. 

Overview 

This thesis comprises five chapters and three appendices.  Chapter 2 describes the 

types of data collected in a weather observation and the methods used to collect that data.  

Chapter 2 also describes how that data is used to create gridded climatology models.  
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Chapter 2 then describes the United States military doctrine that governs military 

campaign planning and the role of military weather personnel and weather data in that 

process.  Chapter 2 concludes with a review of current research literature in the areas of 

ad-hoc wireless sensor network design and optimization.  Chapter 3 outlines the 

mathematical model for the BWSSP.  The results of multiple, simulated instances of the 

BWSSP are presented in Chapter 4.  Sensitivity analysis is performed on a BWSSP 

optimal solution (METOC collection plan) to demonstrate how changes in sensor 

availability can affect the usefulness of the METOC collection plan.  Chapter 5 outlines 

the conclusions of this research, other possible applications for the BWSSP and areas for 

future research into the BWSSP.   Appendix A is the Microsoft® Visual Basic® computer 

code that was used to create and evaluate the instances of the BWSSP in Chapter 4.  

Appendix B is an Op-Ed column on the value of this research for the Air University 

“Blue Dart” program.  Appendix C contains an image of a story board PowerPoint® slide 

that briefly describes this research. 
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II. Literature Review 

Introduction 

 This chapter discusses the literature that provides the foundation for this research.  

The main areas of interest are weather sensors, weather data collection, the role of 

weather in military campaign planning and ad-hoc wireless sensor network design 

schemes. 

Surface Weather Sensors in the BWSSP Model 

When meteorologists talk about the weather, they are talking about the state of 

one or more of these weather elements: air temperature, air pressure, humidity, cloud 

height, total cloud coverage, precipitation, visibility, wind speed and wind direction 

(Ahrens 2000).  A weather observation is a report of the current state of these elements.  

In general, weather observations are divided into two types: surface and upper-air.  

Surface weather observations are measurements of the current state of weather elements 

as observed by manned instruments or automated sensors located on the surface of the 

Earth (AFMAN 15-11 2008).  Air Force Manual 15-111 Surface Weather Observations 

(2008) dictates that surface weather observations contain current measurements of all of 

the aforementioned weather elements.  They transmitted with no delay at a minimum of 

once an hour on the hour.  If possible, surface weather observations should also be 

transmitted when weather conditions change significantly either for the better or worse 

(AFMAN 15-111 2008).   

The military forces of the United States and its allies use a variety of different 

types of sensors to gather the essential weather elements for a surface weather 
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observation.  For the purposes of the BWSSP model, these sensors are placed into four 

general sensor categories: automated fixed base, manned fixed base, automated tactical, 

and manned tactical.  In the BWSSP model, an automated fixed base sensor is a surface 

weather sensor that requires a secure installation with a reliable source of power to 

operate.  This type of sensor does not require augmentation from a trained weather 

observer in order to transmit a valid surface weather observation, though it may require 

occasional maintenance to remain operational.  An example of this type of sensor 

commonly in use today is the TMQ-53 Tactical Meteorological Observation System 

(TMOS) manufactured by Vaisala® Corporation (see Figure 1). 

 

Figure 1.  TMQ-53 TMOS Undergoing Maintenance Check (Kuykendall 2007) 

      Similarly, a manned fixed base sensor requires a secure installation with a reliable 

source of power to operate.  Typically, a sensor of this type is actually a trained military 

weather technician with a set of approved handheld weather sensors with access to a 

radio or internet connection.  These personnel are part of the conventional military forces 
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and are not trained to operate independently on the battlefield.  Therefore, they are 

restricted to operating at regions secured by friendly forces such as bases and airfields.  

Typical handheld sensors used as part of this type of “sensor” are the Kestrel 4000® 

handheld wind, temperature, dew point and pressure sensor; plastic rain gauges; handheld 

lightning detection systems and laser rangefinders for determining cloud heights (see 

Figures 2-5). 

 

Figure 2.  Kestrel 4000® 

(REI Outdoor 2008) 

 

Figure 3.  Rain Gauge 

(National Weather Service 2002) 

 

Figure 4.  Lightning Detector 

(Electronics 2007) 

 

Figure 5.  Laser Rangefinder 

(Sniper's Paradise 2006) 

      As defined for the BWSSP, automated tactical weather sensors are sensors that 

can operate and transmit surface weather observations from most anywhere on the 

battlefield.  They are typically deployed clandestinely and can operate for a significant 

time period of time under their own power.  The last type of sensor, tactical manned 
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weather sensors, are the same as the manned fixed base sensors except that the personnel 

using the equipment are weather personnel who are trained to operate and survive most 

anywhere on the battlefield either on their own or as part of a small team.  These 

personnel are ground combat forces trained as Forward Region Limited Observers 

(FALOPs), friendly indigenous personnel trained and equipped as part of a clandestine 

weather observation network or they may be forward-deployed United States Air Force 

Special Operations Weather Teams (SOWTs). 

 

Figure 6.  SOWT Personnel (United States Air Force 2008) 

Upper-Air Weather Sensors in the BWSSP Model 

Upper-air weather observations are measurements of the current state of weather 

elements as observed by a sensor as it ascends through the atmosphere.  For the purposes 

of the BWSSP model, the primary upper-air weather sensors are weather balloons (also 

known as “rawinsondes”) (Ahrens 2000).  Federal Meteorological Handbook No. 3 - 

Rawinsonde and Pibal Observations (FMH-3 1997) mandates that when possible, upper-

air weather balloon observations should be taken at 0000 and 1200 Greenwich Mean 

Time every day.  These observations are to be transmitted as rapidly as possible to the 
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global weather information network.  FMH-3 (1997) mandates that all weather balloon 

sensors must be calibrated with known reliable surface weather sensors prior to launch.  

As such, the BWSSP requires the co-location of surface and upper-air sensors. 

A typical weather balloon sensor package consists of a disposable sensor bundle 

attached to a helium balloon.  The sensor package measures the same weather elements 

as a surface weather sensor, but at multiple heights as the balloon lifts it through the 

atmosphere.  The sensor package is equipped with a radio transmitter that sends its 

measurements to the surface in real-time.  Most modern weather balloon sensor packages 

are also equipped with a GPS receiver so that it can also transmit its current position.  

Most weather balloon systems require a secure installation for operation.  United States 

and allied artillery meteorological (ARTYMET) teams also launch weather balloons to 

aid in artillery targeting.  ARTYMET weather balloon data can also be included in the 

BWSSP model.  Additionally, SOWT personnel sometimes are able to launch weather 

balloons from other regions on the battlefield for very short periods of time, depending 

on the equipment available and the tactical situation they face (see Figure 8). 
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Figure 7.  SOWT Operator Releases Weather Balloon (Emery 2006) 

Weather Radars in the BWSSP Model 

In the BWSSP model, weather radars are treated much like upper-air weather 

sensors because they are used to continuously examine the behavior of clouds, wind and 

air masses at levels well above the surface of the Earth by bouncing microwave radiation 

off of water particles (Ahrens 2000).  In order to be effective, tactical weather radars need 

continuous network connectivity and a reliable power supply.  As such, they can only be 

deployed to secure installations (see Figure 7). 
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Figure 8.  E600 Tactical Weather Radar Tower (EWR Weather Radar Systems 2006) 

 All weather radars require trained weather personnel to operate them.  For this 

reason, the BWSSP requires that a surface weather sensor be co-located with any weather 

radar in order to make the best use of military weather personnel. 

Combined Weather Sensors in the BWSSP Model 

Depending on the terrain and resources available, it may be advantageous to 

combine multiple sensors together in one region to obtain additional useful weather 

information.  For example, one may wish to place a series of surface weather sensors at 

intervals scaling up the side of a mountain.  This combination of sensors will then 

provide useful information on the profile of the atmosphere and would behave like an 

upper-air sensor.  In this case, the SMO would enter the sensor placed at the foot of the 

mountain as a surface sensor in the BWSSP model.  The remaining set of surface sensors 
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placed on the mountain slope would be input as one upper-air weather sensor in the 

BWSSP model. 

Weather Observation Collection and Dissemination     

Once collected, military surface and upper-air weather observations are used for 

two main purposes.  The first purpose is to provide timely data to theater weather 

forecasting centers for Numerical Weather Prediction (NWP) computer model 

initialization.  Timely delivery of observations that provide an accurate depiction of the 

current state of the atmosphere are vital to proper NWP model initialization, thereby 

ensuring it provides accurate weather forecast data (Holton 1992).  Higher-resolution 

NWP models, like those currently used in military weather forecasting, are generally 

initialized in two steps: objective analysis of the observations and data initialization 

(Holton 1992).  In the objective analysis step, all of the irregularly spaced surface and 

upper-air weather observation data taken at the NWP model’s initialization time are 

checked for accuracy and are then interpolated to determine the state of the weather 

elements at standard levels of the atmosphere over evenly-spaced latitude and longitude 

points on the surface of the Earth (Holton 1992).  In the data initialization step, the 

evenly-spaced interpolated data points are then further smoothed to eliminate noise in the 

NWP model due to interpolation and rounding errors.  These smoothed, evenly-spaced 

data points are then used as the input data for the NWP model  (Holton 1992). 

The second purpose for taking weather observations is to provide friendly force 

weather personnel with a well-developed picture of the current state of the weather 

conditions across the battlefield.  This data is used to validate NWP model output as part 
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of the weather forecasting process.  Additionally, a well-developed picture of current 

battlefield weather conditions allows forecasters to inform unit commanders of current or 

approaching weather conditions that may impact ongoing operations.  This process is 

known as MISSIONWATCH in United States Air Force weather doctrine (AFMAN 15-

129 2004).  In order to conduct MISSIONWATCH effectively, friendly force weather 

personnel need to be fully aware of all weather conditions that can impact military 

operations through the duration of a campaign.   

Role of Weather in Military Campaign Planning 

United States military doctrine defines a military campaign as “a series of related 

military operations aimed at accomplishing a strategic or operational objective within a 

given time and space” (JPub 3-0 2008).  When planning for a military campaign, doctrine 

states that the overall commander should create a draft mission statement, commander’s 

intent, and the pertinent CONOPS.  The mission statement is usually a short and clear 

statement of what needs to be done during the campaign and why these actions are 

important for overall mission success.  The commander’s intent is a concise expression of 

the campaign’s purpose and the desired military end state when the campaign is 

concluded (JPub 3-0 2008).  The CONOPS describes how the efforts of all subordinate 

units will be integrated, synchronized, and phased to achieve the desired military end 

state at the conclusion of the campaign (JPub 3-0 2008).   

United States military campaigns generally follow a six phase model.  These 

phases are: shape, deter, seize initiative, dominate, stabilize, and enable civil authority.  

Depending on the mission statement and commander’s intent, a campaign plan may not 
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feature all six phases.  In the campaign plan, each phase of the campaign has an 

anticipated length of time to completion as well as a set of military objectives that must 

be met before that phase is completed.  Depending on the conditions on the ground, 

anticipated times to completion for phases of a campaign can shift drastically in either 

direction on the calendar.  Therefore, as campaigns progress, the campaign plan is 

continuously refined to ensure it accurately fulfills the commander’s intent (JPub 3-0 

2008). 

Prior to the launch of a military campaign and during the refinement of an 

ongoing campaign, commanders and their staff conduct Joint Intelligence Preparation of 

the Operational Environment (JIPOE).  JIPOE is a four step process: define the battlefield 

environment, describe the battlefield’s effects, evaluate the adversary and determine 

adversary potential courses of action (JPub 2-01.3 2000).   

In order to define the battlefield environment, one must examine the climate of 

the different regions on the battlefield.  For almost every potential conflict region in the 

world, historical weather observation data (climatology) is not available or reliable (JPub 

3-59 2008).  To compensate for this lack of critical information, the United States Air 

Force Weather Agency’s 14th Weather Squadron located in Asheville, North Carolina 

created the Advanced Climate Modeling and Environmental Simulation (ACMES) 

program.  Using all reliable historical weather observations available, the ACMES model 

uses NWP techniques to model historical weather conditions over time periods of several 

years.  The ACMES model interpolates climatological statistics for evenly-distributed 

points on the surface of the Earth at 100 km, 45 km, 15 km and 7.5 km resolutions in the 
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same manner as NWP models predict future conditions (14th Weather Squadron 

(AFWA) - USAF Accessed: September 11, 2008).   

The ACMES model provides a wide variety of climatological output statistics in a 

variety of formats.  For example, Figure 9 depicts the mean daily surface temperature for 

the Korean peninsula in the month of January over a ten year time period.  The flexibility 

of the ACMES model and its ability to provide a reasonable estimate of climate 

conditions in regions where little to no data is available makes it a very popular tool 

among military weather forecasters for use in the first step of JIPOE. 

 

Figure 9.  ACMES Example Graphical Output  
(Accessed: 14th Weather Squadron (AFWA) - USAF September 11, 2008) 

        

For the last three steps of JIPOE (describe the battlefield’s effects, evaluate the 

adversary and determine adversary potential courses of action), United States military 

doctrine states that “critical parameters should be established for each weather aspect in 

order to define the thresholds at which deteriorating weather conditions is expected to 

have favorable, marginal, or unfavorable effects on specific types of operations and 

equipment” (JPub 2-01.3 2000).  These critical parameters are usually collected by the 
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senior weather officer from various sources to include technical manuals, equipment 

operators, intelligence experts and unit commanders (JPub 2-01.3 2000).  Once compiled, 

the list of these critical weather element thresholds is commonly referred to as a Weather 

Effects Matrix (WEM).  Though there is no specified format for the WEM, many units 

organize their WEM into a format similar to the example given in Table 1. 

Table 1.  Example WEM for One Military Campaign Phase 

OPERATION 
FAVORABLE MARGINAL UNFAVORABLE 

(No Degradation) (Some Degradation) (Significant Degradation) 
SEA PORTS WIND < 20 KTS WIND 20 - 35 KTS WIND > 35 KTS 
AIR PORTS CEILING > 1500 FT CEILING 200 - 1500 FT CEILING < 200 FT 

 
VISIBILITY > 4800 METERS VISIBILITY 900 - 4800 METERS VISIBILITY < 900 METERS 

BRIDGING WIND < 10 KTS WIND 10 - 34 KTS WIND > 34 KTS 
SIGINT WIND < 30 KTS WIND 30 - 45 KTS WIND > 45 KTS 

  
TEMPERATURE 85 - 120 F TEMPERATURE < 32 F 

HELO LIFT CEILING > 500 FT CEILING 300 - 500 FT CEILING < 300 FT 
(NO SPECIFIC AIRFRAME) VISIBILITY > 1600 METERS VISIBILITY 800 - 1600 METERS VISIBILITY < 800 METERS 
(FLT LVL < 10000 FT) NO TURBULENCE / ICING LGT - MDT TURBULENCE / ICING SVR TURBULENCE / ICING 
TRAFFICABILITY NO PRECIPITATION LGT - MDT PRECIPITATION HVY PRECIPITATION 
NBC OPS 

 
WIND < 10 KTS WIND > 30 KTS 

   
WIND CALM 

 
NO PRECIPITATION LGT PRECIPITATION MDT - HVY PRECIPITATION 

CAS CEILING > 2000 FT CEILING 1000 - 2000 FT CEILING < 1000 FT 
(PLANNING PURPOSES) VISIBILITY > 8000 METERS VISIBILITY 3200 - 8000 METERS VISIBILITY < 3200 METERS 
STRAT RECON VISIBILITY > 8000 METERS VISIBILITY 4800 - 8000 METERS VISIBILITY < 4800 METERS 
(FLT LEVEL > 25000 FT) CLOUD COVER: SKC OR FEW CLOUD COVER: SCT CLOUD COVER: BKN OR OVC 
HIGH RECON VISIBILITY > 8000 METERS VISIBILITY 4800 - 8000 METERS VISIBILITY < 4800 METERS 
(FLT LEVEL > 8000 FT) CLOUD COVER: SKC OR FEW CLOUD COVER: SCT CLOUD COVER: BKN OR OVC 
LOW RECON VISIBILITY > 8000 METERS VISIBILITY 4800 - 8000 METERS VISIBILITY < 4800 METERS 
(FLT LEVEL > 3000 FT) CLOUD COVER: SKC OR FEW CLOUD COVER: SCT CLOUD COVER: BKN OR OVC 
GROUND RECCE VISIBILITY > 3000 METERS VISIBILITY 1000 - 3000 METERS VISIBILITY < 1000 METERS 
AIRBORNE WIND < 13 KTS WIND 13 - 18 KTS WIND > 18 KTS 

   
CEILING < 1000 FT 

 
NO PRECIPITATION LGT PRECIPITATION MDT - HVY PRECIPITATION 

 
DENSITY ALTITUDE < 4000 FT DENSITY ALTITUDE 4000 - 6900 FT DENSITY ALTITUDE > 6900 FT 

PERSONNEL NO PRECIPITATION LGT PRECIPITATION MDT - HVY PRECIPITATION 
(TEMP/HEAT/WINDCHILL) TEMPERATURE 20 - 85 F TEMPERATURE -15  -  20 F TEMPERATURE < -15 F 

  
TEMPERATURE 85 - 95 F TEMPERATURE > 95 F 

 

     Regardless of format chosen, the WEM consists of a list of the different types of 

military operations planned in the CONOPS for a given phase of the campaign.  If the 

CONOPS change from one phase to another, the WEM must change, as well.  Though 

not necessary, this list of operations may be put in order of precedence with respect to the 
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commander’s main effort for that phase.  For example, if building up supply stores was 

the commander’s main focus for a particular phase, sea port and air port operations would 

be listed first in the WEM, as they are in Table 1 above.   

For each type of operation listed in the WEM, there are three associated lists of 

weather element thresholds.  The unfavorable or “red” weather element threshold list 

consists of a list of weather conditions that significantly degrade friendly (or possibly 

hostile) forces’ ability to conduct that particular type of operation.  The marginal or 

“amber” weather element threshold list consists of a list of weather conditions that 

slightly degrade friendly (or possibly hostile) forces’ ability to conduct that particular 

type of operation.  The favorable or “green” weather element threshold list consists of a 

list of weather conditions that provide ideal conditions for friendly (or possibly hostile) 

forces’ to conduct that particular type of operation.   

For example, if Close Air Support (CAS) was a concern to a commander 

following the CONOP depicted in Table 1, a military weather forecaster would focus 

primarily on predicting when either the visibility will be less than 3,200 meters or when 

the cloud cover will exceed one half of the total sky (known as a ceiling) at an altitude of 

1,000 feet or less.  If those conditions were not likely to occur, the weather forecaster 

would then focus on predicting when either the visibility could be between 3,200 meters 

and 8,000 meters or where a cloud ceiling could form between 1,000 to 2,000 feet 

altitude.  If none of these conditions are forecast, a commander will expect to have no 

degradation of his CAS capabilities due to the weather conditions. 

All of these weather element thresholds are calculated from the weather element 

parameters found in climatology, weather observations and NWP forecast data.  For short 
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term operational planning, the WEM thresholds are compared with weather observations, 

NWP model output and man-made weather forecast products to determine the anticipated 

weather impact to the planned operations (JPub 3-59 2008).  For long-term campaign 

planning, climatology is used to determine potential weather impacts to planned military 

operations (JPub 2-01.3 2000). 

 

Figure 10.  Weather Impacts to Operations Based on Climatology (JPub 2-01.3 2000) 
 

Since large-scale weather patterns are seasonal and the months of the calendar 

year approximately follow the seasons; climatological statistics are typically calculated 

by month (Ahrens 2000).  Therefore, weather impact forecasts for long-term planning are 

typically divided in the time dimension by changes in phase of the campaign and then 

further subdivided by any changes in the month of the calendar year that fall during that 

phase of the campaign.  As demonstrated in Figure 9, climatological conditions also 

change depending on region.  The common practice among military weather forecasters 

is to divide the battlefield map up into large climatological regions where conditions are 

expected to be generally similar.  Products like the example in Figure 10 are then created 

for each climatological region using the WEM for each planned campaign phase.  



 

22 

 

Creating products in this manner provides campaign planners with the level of detail 

required to aid their efforts while minimizing the workload of the usually small military 

weather forecasting section. 

The gridded output of the ACMES model also permits another approach to using 

climatological data as an aid in military campaign planning.  Though not as efficient as 

the current large climatological region approach, it is possible to treat each individual 

data point in the ACMES model output as a separate climatological region.  Just as in the 

current process, analysis can be performed for each data point to determine the monthly 

by-hour percent occurrence of when that region is in the “red” category for a particular 

operation.  Similar analysis can be done to determine the monthly by-hour percent 

occurrence of conditions that are in the “amber” category for a particular operation.  This 

analysis can be repeated for every type of operation listed in the WEM for every planned 

phase of the campaign.  For the ACMES model at 15 km resolution, this could mean 

performing this analysis for a very large number of 225 km2 roughly square-shaped 

climatological regions.  For an average-sized country like Afghanistan, this process 

would mean dividing the country into  climatological 

regions (Central Intelligence Agency 2008).  In realistic cases, many of those 2,878 

regions probably would not be considered for climatological analysis because they would 

either not be reachable by friendly forces or because friendly forces would have no plan 

to enter that particular region throughout the duration of the campaign plan.  Even with 

those constraints eliminating possibly hundreds of regions, it is easy to see why this 

method is not standard practice.  However, performing climatological analysis with this 

approach will lead to a novel and efficient formulation of the BWSSP model. 
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The BWSSP as an Ad-Hoc Heterogeneous Wireless Sensor Network 

A wireless sensor network consists of a set of sensors where each sensor has its 

own power supply and transmission capability (Shih et al. 2006).  These sensors are 

deployed over a region and transmit data to a central data collection node (called a sink) 

either directly or by using other sensors in the network as intermediaries (Shih et al. 

2006).  A wireless sensor network that consists of different types of sensors with varying 

capabilities is said to be heterogeneous (Shih et al. 2006).  An ad-hoc wireless sensor 

network is a wireless sensor network where each sensor is not necessarily intended to be 

permanent and sensors usually have an expected operational lifespan (Shih et al. 2006).  

This type of network is usually constructed when sensors are required to provide 

information from regions that are too difficult, dangerous or costly to access frequently 

(Shih et al. 2006).  An optimal solution to the BWSSP creates a METOC collection plan 

which is an ad-hoc heterogeneous wireless sensor network, since it allocates all available 

weather sensors of any type to regions on the battlefield at a time that maximizes 

detection of “red” and “amber” weather conditions over the expected lifespan of the 

weather sensors. 

The variety of wireless sensor types available for practical use in networks 

continues to increase significantly as batteries improve and electronic sensors become 

smaller and more effective (Rowaihy et al. 2007).   The best combination of sensors to 

select for any wireless sensor network is determined by solving the Sensor Selection 

Problem (SSP) (Rowaihy et al. 2007).  Given a set N of sensors, the SSP seeks the “best” 

subset of sensors NN ∈' that provides a desired level of gathered information within a 
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particular budget.  The SSP is at least as hard as the weakly NP-hard Knapsack problem 

(Garey and Johnson 1979).  In instances of the BWSSP with only one time period, the 

BWSSP seeks the “best” types of sensors to allocate to a set of regions in order to gather 

the required weather information with a budget of available sensors.  Therefore, the 

BWSSP is at least as hard as the SSP, meaning the BWSSP is also NP-hard.  This means 

that, in the worst case, optimal solutions for instances of the BWSSP cannot be found in 

polynomial time (assuming P ≠ NP).   

In their survey of wireless sensor network designs, Rowaihy et al. (2007) stated, 

that once the optimal sensor types are selected, these networks are constructed utilizing 

one of four schemes: target tracking and localization, single mission assignment, multiple 

missions assignment and coverage.  Target tracking and localization networks are 

primarily concerned with the network’s ability to detect one or more targets that pass 

within its detection region.  Optimization schemes for this type of network usually focus 

on maximizing target detection probability at minimum cost, however, there is no 

estimate of target behavior.  Sensors are assumed to have a probability distribution 

governing their ability to detect a target when it enters its detectable region.  As such, 

various statistical methods are used to determine either sensor placement or when to 

activate (or deactivate) sensors within the network (Rowaihy et al. 2007).   

The BWSSP is focussed on detection of bad weather over and around the region 

of each sensor.  Air Force Manual 15-129 Air and Space Weather Operations - Processes 

and Procedures (2004) mandates all weather sensors be certified as fully functional and 

accurate prior to their use.  It also requires weather personnel be fully trained on the 

correct installation and placement of weather sensors.  This requirement ensures sensors 
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are providing an accurate picture of the environment and they are able to relay 

observational information in a timely fashion.  Therefore, the BWSSP assumes all 

sensors accurately detect and report on the weather elements occurring within the 

sensor’s respective detectable area.  Any weather sensors in the BWSSP requiring battery 

power are usually unmanned tactical surface weather sensors.  These sensors 

continuously conduct MISSIONWATCH, so they transmit on a fixed schedule (AFMAN 

15-111 2008).  The BWSSP assumes the operational lifespan of a weather sensor is the 

expected time to failure of one or more of the sensor components, regardless of the target 

environment.  As such, battery life optimization schemes are not applicable to the 

BWSSP.  Operationally significant inclimate weather conditions are the “targets” to be 

detected by the BWSSP wireless sensor network and the ACMES model data provides a 

reasonable estimate of target behavior.  Since target behavior is known with a reasonable 

level of certainty in the BWSSP, the BWSSP does not fit into a target tracking and 

localization wireless network scheme. 

In single and multiple mission assignment schemes, usefulness value functions 

are created to determine which types of sensors should be placed where to best detect 

known target(s).  Multiple targets may arrive simultaneously and must be dealt with by 

the available sensors.  The missions are individual sensor tasks that may or may not be 

shared by other sensors in the network.   This wireless sensor network design scheme is 

concerned with optimizing the configurations of individual, multi-modal sensors 

(Rowaihy et al. 2007). 

With the exception of a weather radar, the weather sensors in the BWSSP operate 

in only one mode and are always attempting to detect the same weather elements.  A 
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weather radar is capable of detecting different weather phenomena depending on the 

current state of the atmosphere (Ahrens 2000).  However, the decision to change radar 

settings does not significantly affect its operational lifespan nor does it affect the decision 

on its placement.  As such, the BWSSP does not fit into the single and multiple mission 

assignment schemes for wireless sensor network design. 

The coverage wireless sensor network design scheme is concerned with 

conserving energy consumption while maintaining total coverage of a geographic area.  

Redundant sensors are placed within the geographic area in a manner such that sensors is 

activated and deactivated to maximize the useful lifespan of the sensor network (Rowaihy 

et al. 2007).  Since battery life is not a concern in the BWSSP, the BWSSP does not fit 

into the coverage wireless sensor network design scheme. 

In addition to the schemes reviewed by Rowaihy et al. (2007), recent research 

efforts have approached wireless sensor network design as a resource allocation problem.  

Xu and Sahni (2006) use a deterministic sensor deployment scheme formulated as a 

BILP.  Their formulation ensures a predetermined level of sensor coverage at minimum 

cost and hence, their objective function is focussed solely on minimizing cost.  Their 

methodology chooses sensor deployment regions from a gridded set of pre-determined 

sites.  They assume that the available sensors are able to communicate with the central 

data collection point from any of the feasible deployment regions.  Their first set of 

constraints ensures the required amount of coverage is met for all regions of the network.  

Their second set of constraints ensures that no more than one sensor is deployed to any 

region.  This gridded BILP formulation is efficient, as it takes only O(sn) operations to 

create the set of constraints, where s is the number of sensors and n is the number of 
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feasible regions for sensor deployment.  This rudimentary formulation provides a 

foundation for a resource allocation approach to the BWSSP, however, Xu and Sahni’s 

formulation only considers homogeneous sensor networks.  Furthermore, their 

formulation does not account for sensor lifespan or targets that change over time, which 

are critical aspects that must be considered in any formulation of the BWSSP. 

Ramadan et al. (2006) describes a sensor deployment tool called SensDep that 

allocates sensors in a fashion similar to Xu and Sahni’s.  The SensDep tool also uses a 

BILP to allocate sensors to regions, considers heterogeneous wireless sensors and 

considers sensor lifespan.  However, the SensDep tool assumes sensors is activated (or 

deactivated) in order to extend battery life.  The SensDep objective function maximizes 

coverage of the network while also minimimizing energy consumption.  This is 

accomplished by subtracting energy consumption parameters from the coverage amount 

in the objective function.  This is the coverage scheme as described in Rowaihy et al. 

(2007).  Though the use of sensor lifespan in the BILP formulation of SensDep provides 

some insight into how sensor lifespan may be incorporated into a resource allocation 

approach to the BWSSP, the SensDep tool follows the coverage sensor network design 

scheme.  The BWSSP seeks to maximize detection of occurrence of inclement weather at 

each region while SensDep seeks to maximize coverage over an entire geographic region.  

Therefore, the BWSSP does not fit into the methodology in use in SensDep. 

Pizzocaro et al. (2007) use a Multiple Knapsack approach to a sensor assignment 

and deployment problem for intelligence-gathering sensors on a virtual battlefield.  In 

their model, they use a virtual battlefield divided into a set of regions.  Each region has its 

own deterministic surveillence requirement.  The “coverage” given by each sensor type is 
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its respective value in the Multiple Knapsack problem.  Their objective function 

maximizes coverage of the battlefield using the minimum number of sensors from a 

heterogeneous set by subtracting the number of sensors from the coverage parameters.  

The first set of constraints in this model are similar to those in Xu and Sahni’s model; 

they ensure that no sensor is deployed to more than one region.  In addition to these 

constraints, Pizzocaro et al. (2007) add a set of constraints that ensure sensors deployed 

into a particular region are able to satisfy the sensing requirements in that region.   

Pizzocaro et al. (2007) provides further insight into a formulation for the BWSSP.  It 

demonstrates that a Multiple Knapsack approach provides a weakly NP-hard formulation 

for the sensor selection and deployment problem.  However, this model does not account 

for the operational lifespan of the sensors nor does it account for sensing requirements 

that change over time.  Adding a time dimension to the Multiple Knapsack formulation 

provides a mechanism for incoorporating the operational lifespan and the changing nature 

of the sensing requirements into the model.  With the addition of the time dimension, this 

formulation takes on the form of a Binary Multiple Knapsack resource allocation problem 

with multiple resources.  This formulation provides a novel (though NP-hard) 

formulation for the BWSSP. 

Conclusion 

 The foundational literature for this research comes from a varied list of sources to 

include works discussing the attributes of weather sensors, weather data collection, the 

role of weather in military campaign planning and ad-hoc wireless sensor network 

optimization schemes.  The literature for ad-hoc wireless sensor network optimization 
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schemes is vast and continues to grow as sensing technology improves.  The various ad-

hoc wireless sensing network optimization schemes all provide a foundation for the 

BWSSP, but no single methodology captures it entirely.  Specifically, there does not 

appear to be any wireless network sensing scheme in the literature with a set of 

preemptive objectives.  Furthermore, there is a lack of significant research focused on 

detecting targets whose behavior has a known pattern of behavior that changes over time.  

In the next chapter, a formulation that captures all aspects of the BWSSP is presented.  

Therefore, this research expands the current literature by presenting a scheme for wireless 

sensor networks that considers historical behaviors of the detection targets as a series of 

preemptive objectives to form a measure of the usefulness of a particular sensor 

placement.  In addition, this research provides the first mathematical model for 

developing a realistic METOC collection plan for any type of military campaign 

anywhere on the globe.  
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III. Methodology 

Introduction 

 This chapter presents the general formulation of the BWSSP.  The parameters, 

sets and decision variables in the BWSSP are explained in terms of readily available data.  

These entities are then formulated first as a series of preemptive BILP objective functions 

and then as a combined, single BILP that maintains the preemptive nature of the original 

objectives.  The constraints on the BWSSP BILP are described in detail in terms of the 

attributes of the BWSSP parameters.  BWSSP complexity is then discussed with a 

preview of the approach taken in Chapter IV to solve several BWSSP instances to 

optimality.  Optimal solutions to the BWSSP are described as a METOC collection plan 

in terms of the BWSSP parameters.  The chapter concludes with an approach to 

sensitivity analysis of differing BWSSP optimal solutions based on the improvement or 

degradation of the METOC collection plan in terms of the BWSSP parameters.   

BWSSP Sets, Parameters and Decision Variables 

While conducting JIPOE as part of initial campaign planning, the SMO will know 

the layout of the battlefield, the planned phases of the campaign and the expected 

timetable for execution of these phases.  Therefore, the entire expected duration of the 

campaign is divided into a set { }1,2,...,T τ=  of time periods where transition from one 

time period to the next is denoted by either the expected change in the phase of the 

campaign or a change in the calendar month (a reasonable estimate of change in climate 
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conditions).  The time periods in the set T are not necessarily of the same duration, but no 

single time period will exceed the length of one calendar month. 

      As noted previously, any battlefield can be subdivided into a set of roughly 

square-shaped climatological regions, each with a data point of the ACMES gridded 

climatology model in its center.  The size and number of these regions depends on the 

resolution of the ACMES model and the size of the battlefield.  Occasionally, these 

regions may need to be further subdivided because they are bisected by a climatologically 

significant terrain feature such as a mountain range or large river.  Regions may also need 

to be further subdivided because they feature a friendly installation or airfield that could 

require a weather observation, but a weather observation at that installation or airfield 

would not provide an accurate depiction of the weather occurring in the rest of the region 

determined by the ACMES data point.  Additionally, entire regions may be eliminated 

from consideration in the BWSSP because they either lay out of the region of interest or 

they are not feasible for deployment of any of the available weather sensor types.  After 

applying all of this analysis to the ACMES model output, the battlefield will naturally be 

divided into a set { }1,2,...,M µ=  of climatological regions that are viable candidates for 

deployment of at least one of the available weather sensor types.  For any two regions 

Mm∈  and Mq∈ , let dmq be the physical distance between the center of region m and 

the center of region q. 

      Another consideration in the formation of any sensing strategy is the region of 

friendly installations, outposts, field headquarters, villages, etc.  Since some sensor types 

require external support and security in order to operate, the BWSSP must account for 



 

32 

 

these regions.  Let MHt ⊆ be the set of regions that contain secure friendly installations 

at time period Tt∈ .  Sensors requiring a secure installation must be deployed to regions 

in the set Ht.  For sensors that do not require a secure installation, it is advantageous to 

deploy them to the region Mm∈  with the greatest frequency of inclement conditions 

that is furthest away from the nearest friendly region, as weather conditions progress 

across the battlefield from one direction to another.  Let { }min
t

mt mqq H M
h d

∈ ⊆
= , the distance 

to the nearest region in set Ht from region Mm∈ . 

      As a part of the SMO’s campaign planning, he or she will create a set 

{ }1,2,...,N ν=  of all weather sensor types available for deployment during the expected 

duration of the campaign.  As previously noted, the position of upper air sensors requires 

the co-location of a surface sensor in order to ensure either proper calibration of the upper 

air sensor or optimal use of weather personnel.  Since these weather personnel must be 

present to operate an upper air weather sensor or tactical weather radar, they will also 

want to take a surface weather observation.  Other than the co-location requirement, the 

positioning of upper-air weather sensors or weather radars does not necessarily affect the 

positioning of surface weather sensors.  Furthermore, the positioning of upper-air weather 

sensors does not affect the positioning of weather radars and vice-versa.  For example, 

the positioning of a tactical weather radar does not necessarily affect the positioning of a 

weather balloon launch site, but the positioning of a tactical weather radar effects the 

positioning of all other tactical weather radars.  Therefore, let NB ⊂ be the set of upper-

air weather sensors that gather upper-air profile data (e.g., weather balloons) and NE ⊂  

be the set of weather radars. 
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      For each sensor type Nn∈ , the SMO is able to calculate an effective sensing 

range (or minimum spacing distance) δn.  This parameter is determined by the behavior of 

the sensor type, the effect of terrain on the sensor or by the desired minimum spacing 

between sensors that perform the same function (surface, upper-air or radar).  During 

each time period Tt∈ , the SMO will have a reasonable estimate of the number of 

sensors of type Nn∈ available for use in the campaign weather sensing strategy.  Let S 

be a ν× τ matrix where the parameter snt in S signifies the number of sensors of type 

Nn∈ that will arrive in theater at the start of time period Tt∈ .   

Once the number of sensors available is determined, the SMO can also determine 

the sets ntL T⊆ , where Lnt is the set of time periods sensor type n N∈  remains 

operational provided it is deployed at the start of time period t T∈ , and hence Lnt defines 

the operational lifespan of sensor type n N∈ .  Finally, let A be a ν × µ × τ tensor of 

binary parameters where the parameter anmt in A is 1 if sensor type Nn∈  is deployable 

to region Mm∈  at the start of Tt∈  and 0, otherwise.  A region may no longer be 

reachable after a certain time period (e.g. anmt = 1, but anm(t + 1) = 0), but a properly 

deployed sensor should continue to operate until its components fail, barring discovery 

by the enemy or any other unforeseen calamity.  Therefore, if sensor type n N∈  is 

deployed into a particular region Mm∈ , the BWSSP assumes that the sensor will 

continue to operate over its expected operational lifespan.   

      For every time period Tt∈ , there is a corresponding WEM derived from the 

CONOPS.  In each WEM, there is listed a set of planned operation types Ot.  If provided 

in the CONOPS, the SMO can assign a priority pot to each operation type tOo∈  where 
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the highest priority operation type tOo∈  has { }otOoot pp
t∈

= max  and the operation type 

tOo∈  with the lowest priority has { }otOoot
pp

t∈
= max .  The weights should be scaled so that 

{ } { } { }
1 2

11 1 12 2 1max max ... maxo o oo O o O o O
p p p p p p

τ
τ τ∈ ∈ ∈

= = = = = = for all t T∈  to prevent time 

periods with more operations being weighted as more important than other time periods.  

Operations may change priority from one time period to another.  For example, an 

operation such as CAS may correspond to operation o = 1 where tOo∈  and CAS may 

also correspond to operation o = 8 where 1+∈ tOo . 

      For each operation type tOo∈ , there is a list of weather element thresholds that 

make that operation type “red,” should the weather conditions meet or exceed those 

thresholds.  There is a separate list of weather element thresholds that make that 

operation type “amber,” should the weather conditions fall within those thresholds.  

Using the ACMES gridded climatology model output, it is possible to obtain a reasonable 

estimate of the frequency of occurrence of these “red” and “amber” weather element 

thresholds.   

Let ronmt be the ACMES-derived percent hourly occurrence of one or more of the 

weather conditions that meets or exceeds one or more of the “red” weather element 

thresholds for operation tOo∈ during time period Tt∈ in region Mm∈ detectable by 

sensor type n N∈ .  For example, suppose Table 1 is the WEM for the first time period of 

a military campaign (t = 1 where Tt∈ ).  CAS is the eighth highest priority operation 

type in the list (o = 8 where 1o O∈ ).  If sensor type n N∈  can detect cloud ceilings 

below 1,000 feet altitude as well as surface visibility less than 3,200 meters and the 
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ACMES model calculates that one or both of those weather conditions occurs, on 

average, during 75% of the hourly intervals in the time period t  = 1 at region m = 4 

( )Mm∈  , the parameter 8 41 75nr = .  Conversely, if sensor type b N∈  cannot detect cloud 

ceilings below 1,000 feet altitude, but can detect surface visibility less than 3,200 meters 

and the ACMES model calculates that surface visibility drops below 3,200 meters, on 

average, during 50% of the hourly intervals in the time period t = 1 at region m = 4 

( )Mm∈ , then the parameter 8 41 50br = .   

Similarly, let yonmt be the ACMES-derived percent hourly occurrence of one or 

more of the weather conditions that falls within one or more of the “amber” weather 

element thresholds for operation tOo∈ during time period Tt∈ in region Mm∈

detectable by sensor type n N∈ .  Returning to the previous example, again suppose Table 

1 is the WEM for the first time period of a military campaign (t = 1 where Tt∈ ).  CAS 

is the eighth highest priority operation type in the list (o = 8 where 1o O∈ ).  If sensor type 

n N∈  can detect cloud ceilings between 1,000 and 2,000 feet altitude as well as surface 

visibility between 3,200 and 8,000 meters and the ACMES model calculates that one or 

both of those weather conditions occurs, on average, during 15% of the hourly intervals 

in time period t = 1 at region m = 4 ( )Mm∈ , then the parameter 8 41 15ny = .  

Alternatively, if sensor type b N∈  cannot detect cloud ceilings between 1,000 and 2,000 

feet altitude, but can detect surface visibility between 3,200 and 8,000 meters and the 

ACMES model calculates that surface visibility is between 3,200 and 8,000 meters, on 

average, during 10% of the hourly intervals in the time period t = 1 at region m = 4 

( )Mm∈ , then the parameter 8 41 10by = .   
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The availability of these sets of modeled climatology statistics leads to a novel 

formulation of the BWSSP as a series of preemptive resource allocation Binary Integer 

Linear Programs.  For the BWSSP, the decision is which type of sensor to deploy to 

which region at what time.  Therefore, 1nmtx =  if a sensor type Nn∈ is deployed to 

region Mm∈ at the start of time period Tt∈ and 0, otherwise.  All of the sets, 

parameters and decision variables in the BWSSP are summarized in Tables 2 - 4. 

Table 2.  Sets in the BWSSP Model Formulation 
 

T ={1, 2, ….,τ} Set of time periods spanned by campaign plan 
M ={1,2,….,µ} Set of potential sensor deployment regions 

tH M⊆  Set of regions that contain secure friendly installations at time period Tt∈  
N ={1, 2,….,ν} Set of all available weather sensor types 

B N⊂  Set of upper air profile sensors (balloons, etc) 
NE ⊂  Set of upper air sensors that behave like radars 

ntL T⊆  
Set of time periods sensor n N∈ is expected to function if deployed at the 

start of time period t T∈  
S ν × τ matrix of snt parameters 
A ν × µ × τ tensor of anmt parameters 
Ot Set of military operation types planned during time period Tt∈  

 
Table 3.  Parameters in the BWSSP Model Formulation 

hmt 
Distance to the nearest region in set Ht from region Mm∈  during time period 

Tt∈  
δn Effective range of or minimum spacing for sensor type Nn∈  
dmq Physical distance between region Mm∈ and region Mq∈  
snt Number of Nn∈ sensors arriving in theater during time period Tt∈  

anmt 
1 if sensor Nn∈ is deployable to region Mm∈ at the start of time period Tt∈ , 0 

otherwise 
pot Weighted priority of operation type tOo∈  during time period Tt∈  

ronmt 
ACMES-derived percent hourly occurrence of one or more of the “red” weather 
conditions for operation type tOo∈ during time period Tt∈ in region Mm∈

detectable by sensor type Nn∈  

yonmt 
ACMES-derived percent hourly occurrence of one or more of the “amber” weather 

conditions for operation type tOo∈ during time period Tt∈ in region Mm∈
detectable by sensor type Nn∈  
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Table 4.  Decision Variables in the BWSSP Model Formulation 

xnmt 1 if sensor Nn∈ deploys to region Mm∈ at the start of time period Tt∈ , 0 otherwise 
 

BWSSP Objective Function Formulation 

      The overarching objective of the BWSSP is to maximize the weather prediction 

capability over the entire battlefield.  Specifically, the objective of the BWSSP is to 

maximize detection of operationally significant inclement weather conditions as 

frequently as possible for the longest amount of time possible, given the available set of 

weather sensors.  The most operationally significant inclement weather conditions are 

those listed in the “red” column of the WEM for each time period.  The “red” conditions 

constitute a significant threat to the safety of forces conducting that particular type of 

military operation.  The “amber” conditions, though also significant, are conditions that 

are considered to present a degradation of military capability, but are not necessarily a 

threat to lives or equipment.  Accordingly, any formulation for the BWSSP must 

prioritize detection of any occurrence of “red” inclement weather conditions over the 

detection of any “amber” inclement weather conditions.   

In an environment where the “red” and “amber” percent occurrence parameters 

are fairly uniform, an additional goal of any sensing strategy should be to detect these 

parameters as soon as they enter or leave the battlefield.  Therefore, if there are 

automated or clandestine tactical weather sensors available for deployment outside of 

secure installations in this type of uniform weather environment, it is advantageous to 

deploy them as far from friendly installations as possible.  This leads to the formulation 

of the BWSSP as a multi-objective BILP with three objective functions where the first 
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objective function must be maximized preemptively before the second and where the first 

and second must be maximized before the third. 

The “Red” Objective Function 

      Let unmt be the usefulness associated with deploying sensor type Nn∈  to region 

Mm∈  at the start of time period Tt∈  in terms of only the “red” weather conditions.  

This parameter is equal to the sum total of the frequency of occurrences of the “red” 

weather conditions over the operational lifespan of the sensor for every region within the 

effective range of the sensor (where effective range only applies to weather radars, as 

they are the only weather sensors able to scan the sky over other regions), weighted by 

the operational significance of the “red” weather conditions.  Mathematically, 

{ }:

   for , ,

                                                   for \ , ,

nt l nt lmq n

nt l

nmt ol onml ol onql
l L o O l L o Oq M d

nmt

nmt ol onml
l L o O

a p r p r n E N m M t T
u

a p r n N E m M t T

δ∈ ∈ ∈ ∈∈ ≤

∈ ∈

  
  ⋅ + ⋅ ∈ ⊂ ∈ ∈
  =  
 ⋅ ∈ ∈ ∈

∑ ∑ ∑ ∑ ∑

∑ ∑
 . (1) 

Combining this usefulness parameter with the decision variables yields the objective 

function: 

∑∑∑
∈ ∈ ∈Nn Mm Tt

nmtnmt xumax .   (2) 

Objective function (2) maximizes coverage of the operationally significant “red” weather 

conditions over the duration of the campaign plan. 

The “Amber” Objective Function 

      Let vnmt be the usefulness associated with deploying sensor type Nn∈  to region 

Mm∈  at the start of time period Tt∈  in terms of the “amber” weather conditions.  This 

parameter is equal to the sum total of the frequency of occurrences of the “amber” 
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weather conditions over the operational lifespan of the sensor for every region within the 

effective range of the sensor (where effective range only applies to weather radars, as 

they are the only weather sensors able to scan the sky over other regions), weighted by 

the operational significance of the “amber” weather conditions.  Mathematically, 

{ }:

   for , ,

                                                   for \ , ,

nt l nt lmq n

nt l

nmt ol onml ol onql
l L o O l L o Oq M d

nmt

nmt ol onml
l L o O

a p y p y n E N m M t T
v

a p y n N E m M t T

δ∈ ∈ ∈ ∈∈ ≤

∈ ∈

  
  ⋅ + ⋅ ∈ ⊂ ∈ ∈
  =  
 ⋅ ∈ ∈ ∈

∑ ∑ ∑ ∑ ∑

∑ ∑
. (3) 

Combining this usefulness parameter with the decision variables yields the objective 

function: 

∑∑∑
∈ ∈ ∈Nn Mm Tt

nmtnmt xvmax .   (4) 

Objective function (4) maximizes coverage of the operationally significant “amber” 

weather conditions over the duration of the campaign plan. 

The Distance from Friendly Installation Objective Function 

 Recall hmt is defined as the distance to the nearest region in set Ht from region 

Mm∈  during time period Tt∈ .  Therefore, the objective function that maximizes the 

distance from the nearest friendly installation for any sensor type that does not require a 

secure installation is: 

∑ ∑∑
∈ ∈∈

⋅
Tt Nn

nmtnmt
HMm

mt xah
t\

max .   (5) 

Combined Objective Function 

 Objective functions (2), (4) and (5) form a multi-objective BILP with three 

objective functions where objective function (2) must be maximized preemptively before 
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objective function (4) and objective function (4) must be maximized preemptively before 

objective function (5).  As stated in Chapter II, the BWSSP is NP-Hard and, in the worst 

case, cannot be solved in polynomial time (assuming P ≠ NP).  If each objective function 

is maximized one after the other, each BWSSP optimal solution would require executing 

three exponential algorithms.   

This hazard could be avoided by solving the BWSSP as a standard multi-objective 

problem.  However, the BWSSP objective functions are preemptive, not complementary 

(Das 1997).  There is no tradeoff between the value of objective function (2) and 

objective function (4) or objective function (4) and objective function (5).  Any solution 

that does not optimize objective function (2) is sub-optimal in the BWSSP.   

If the three preemptive objective functions (2), (4) and (5) can be combined into a 

single, combined objective function in polynomial time, optimal solutions to the BWSSP 

can generally be found more efficiently.  Sherali (1982) describes a simple algorithm that 

combines multiple, preemptive objective functions into a single objective function in 

polynomial time that maintains the preemptive nature of the original objective functions.  

Applying the Sherali algorithm to objective functions (2), (4) and (5) yields the objective 

function coefficients: 

\
1    for , ,

t

nmt mt nmt nmt mt nmt
t T m M H n N

b h a v h a n N m M t T
∈ ∈ ∈

 
= + ⋅ + ⋅ ∈ ∈ ∈ 
 

∑ ∑ ∑ .  (6) 

1                 for , ,nmt nmt nmt nmt
n N m M t T

b u b n N m M t Tπ
∈ ∈ ∈

 = + ⋅ + ∈ ∈ ∈ 
 

∑ ∑∑ .    (7) 

This yields the combined objective function: 

∑∑∑
∈ ∈ ∈Nn Mm Tt

nmtnmt xπmax .   (8) 
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The Sherali algorithm is a straightforward method for combining the three 

preemptive objective functions of the BWSSP into a single objective function that 

maintains the preemptive nature of the original objective functions.  However, this 

method has its drawbacks.  Combining the preemptive objective functions into a single 

objective function may cause the loss of some equally optimal solutions to the original set 

of preemptive objective functions.  If discovering all possible optimal solutions is more 

valuable than obtaining a single optimal solution quickly, then this method may not be 

suitable.  Ignizio and Thomas (1984) highlight an additional potential drawback of the 

Sherali algorithm that is applicable in the BWSSP formulation.  Namely, values for πnmt 

can become very large relative to the coefficients in the original objective functions.  This 

brings in the potential for integer overflow errors or difficulty obtaining an optimal 

solution using commercial software such as the Excel® Premium Solver® Version 9. 

 Ignizio and Thomas (1984) propose a modification to the Sherali algorithm that 

compensates for this last potential drawback.  Applying their modification to the Sherali 

algorithm, we wish to find a (p – 1)-dimensional vector (where p is the number of 

objective functions) of integer weights λ that minimizes the magnitude of the largest 

coefficient of the combined objective function.  Under their algorithm, objective function 

(5) becomes: 

( )2max mt nmt nmt nmt
n N m M t T

h a v xλ
∈ ∈ ∈

⋅ − ⋅ ⋅∑ ∑∑ .   (9) 

If the Sherali algorithm is then applied to objective functions (4) and (9): 

( )2 2' 1   for , ,nmt mt nmt nmt nmt mt nmt nmt
n N m M t T

b h a v v h a v n N m M t Tλ λ
∈ ∈ ∈

 = + ⋅ − ⋅ ⋅ + ⋅ − ⋅ ∈ ∈ ∈ 
 

∑ ∑∑ .  (10) 

The optimal value for the weight λ2 is determined by finding: 
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{ }{ }*
2

*
2 , ,

min max 'nmtn N m M t T
b

λ
λ

∈ ∈ ∈∈
=


.    (11) 

Equation (10) is convex in terms of λ2, so the value for *
2λ  can be found using a 

discrete search scheme (Ignizio and Thomas 1984).  Ignizio and Thomas (1984) suggest a 

Fibonacci search, but any efficient discrete search is sufficient.  An efficient limiting 

form of the Fibonacci search is the Golden Section Method (Snyman 2005).  In this 

research, the Improved Golden Section Method developed by Den Boef and Den Hertog 

(2007) is used.  This method finds the optimal value for a known convex (or concave) 

black-box function using the Golden Section Method while taking advantage of the 

convexity of the function to reduce the number of required function evaluations (Den 

Boef and Den Hertog 2007).  This method was chosen because it is at least as efficient as 

the Golden Selection Method and it does not require function gradient information (Den 

Boef and Den Hertog 2007).    The Improved Golden Search Method is intended for 

continuous functions.  Therefore, in this research, the nearest integer to the continuous 

optimal value found via the Improved Golden Section Method that has the smallest value 

for equation (11) is used as the value for *
2λ .  The VBA® code used to implement this 

algorithm is described in Appendix A. 

Substituting in *
2λ  yields a new combined objective function that combines 

objective functions (4) and (5): 

max 'nmt nmt
n N m M t T

b x
∈ ∈ ∈
∑ ∑∑ .   (12) 

Ignizio and Thomas (1984) can then be applied to combine preemptive objective 

functions (2) and (12) into a single objective function for the BWSSP that meets the 
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preemptive objectives of objective functions (2), (4) and (5).  Applying Ignizio and 

Thomas (1984), objective function (12) becomes: 

( )∑ ∑∑
∈ ∈ ∈

⋅⋅−
Nn Mm Tt

nmtnmtnmt xub 1'max λ .   (13) 

Applying the Sherali algorithm to objective functions (2) and (13) gives: 

( )nmtnmtnmt
Nn Mm Tt

nmtnmtnmt ubuubc ⋅−+⋅







⋅−+= ∑ ∑∑

∈ ∈ ∈
11 ''1 λλ .   (14) 

The optimal value for the weight λ1 is determined by finding: 

{ }{ }*
1

*
1 , ,

min max nmtn N m M t T
c

λ
λ

∈ ∈ ∈∈
=


.    (15) 

Equation (14) is also convex in terms of λ1, so the value for *
1λ  can also be found using 

the Improved Golden Section Method (Den Boef and Den Hertog 2007).  This yields a 

new combined objective function that maintains the preemptive nature of objective 

functions (2), (4) and (5) while minimizing the magnitude of the combined objective 

function coefficients: 

∑∑∑
∈ ∈ ∈Nn Mm Tt

nmtnmt xcmax .    (16) 

BWSSP Constraints 

      The first set of constraints required for the BWSSP ensure that no more than one 

surface sensor of any type is deployed to any region over the entire planning time period: 

{ }
Mmx

EBNn Tt
nmt ∈≤∑ ∑

∪∈ ∈
each for  1

\
.   (17) 

  Constraint (17) is summed over every time period of the campaign because the 

statistical distribution of the lifespan of a surface sensor is either very complex or 
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unknown.  The expected lifespan provides a reasonable estimate of sensor performance, 

but the standard deviation about the expected value can be very large.  In the case of a 

clandestine sensor, there are also operational concerns.  Returning to the site of a 

clandestine sensor would risk discovery by an adversary, thereby compromising the 

sensor and the personnel attempting to emplace it.  As such, the BWSSP formulation 

assumes that any sensor, once deployed, will not be replaced for the rest of the planning 

time period.  In other words, for all 1=nmtx , 0' =nmtx for all t’ > t where Tt∈  and Tt ∈' .  

It is assumed that the SMO will re-optimize the BWSSP instance in the event of the loss 

of a sensor in order to determine whether or not the current conditions and CONOPS 

advise replacement of the lost sensor. 

    The number of upper-air weather sensors and weather radars deployed to any 

particular region must also be restricted to one per each upper-air sensor type and weather 

radar type.  In other words, a weather radar and weather balloon system may be deployed 

to the same region, but two weather radars or two upper-air sensors may not.  This 

implies the following two constraints: 

Mmx
Bn Tt

nmt ∈≤∑∑
∈ ∈

each for  1 ,   (18) 

Mmx
En Tt

nmt ∈≤∑∑
∈ ∈

each for  1 .   (19) 

      The next set of constraints ensures that the total number of sensors deployed does 

not exceed the total number of sensors available at each time period: 

Nnsx n
Mm

nm ∈≤∑
∈

each for  11    (20), and   
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{ }2: and each for  
1

1
≥∈∈≤








−−∑ ∑∑

−

= ∈∈

tTtNnsxsx nt

t

k Mm
nmknk

Mm
nmt .   (21) 

Another consideration that must be accounted for in the BWSSP is the effective 

range of the sensors defined by the parameter δn.  Air Force Manual 15-111 Surface 

Weather Observations (2008) defines a surface weather observation as “a measurement 

or evaluation (manual, automated, or augmented) of one or more meteorological elements 

that describe the state of the atmosphere at the region where the observation is taken.”  

Surface observations are point observations, meaning the effective range of any surface 

weather sensor of any type is thought of as very small relative to the resolution of any 

climatological model.  Therefore, the effective range of any surface weather sensor is just 

the small region where it is located, thereby implying that { }0 for \n n N E Bδ = ∈ ∪ . 

Upper air observations that provide a vertical profile of the atmosphere, such as 

those provided by weather balloons, are also point observations.  However, Federal 

Meteorological Handbook No. 3 - Rawinsonde and Pibal Observations (FMH-3 1997) 

suggests that these types of observing stations be spaced at least 250 km apart over large 

land regions and 1000 km over sparsely populated and oceanic regions.  As such, 

constraint (22) is added as a constraint in situations where the suggestion in FMH-3 

(1997) is followed. 

( ) ( ) { }{ }1 for each ,  and : max ,nmt bqt mq b n
t T t T

x x n b B m,q M d δ δ
∈ ∈

+ ≤ ∈ ∈ <∑ ∑    (22) 

 Weather radars of any type sweep the atmosphere over a relatively wide region 

and cannot be placed within the effective range of each other because of interference.  

Constraint (23) ensures no two radars are placed within each other’s effective range. 
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( ) ( ){ }1 for each ,  and :nmt bqt mq b n
t T t T

x x n b E m,q M d δ δ
∈ ∈

+ ≤ ∈ ∈ < +∑ ∑    (23) 

 As noted in Chapter II, FMH-3 (1997) mandates upper-air weather profile sensors 

be calibrated with surface weather sensors prior to launch.  Though weather radars do not 

fall under this requirement, any METOC collection plan should co-locate any weather 

radar with a surface sensor to ensure that weather personnel are providing the maximum 

amount of information they can from any weather observation region.  Constraints (24) 

and (25) ensure that upper-air sensors like weather balloons and weather radars are co-

located with surface weather sensors. 

{ }\ 1
0 for each ,

t

nmt nmk
n B n N B E k

x x m M t T
∈ ∈ ∪ =

− ≤ ∈ ∈∑ ∑ ∑    (24) 

{ }\ 1
0 for each ,

t

nmt nmk
n E n N B E k

x x m M t T
∈ ∈ ∪ =

− ≤ ∈ ∈∑ ∑ ∑    (25) 

Placing these constraints on objective function (16) yields the BWSSP.  
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BWSSP 

∑∑∑
∈ ∈ ∈Nn Mm Tt

nmtnmt xcmax     (16) 

Subject to:  
{ }

Mmx
EBNn Tt

nmt ∈≤∑ ∑
∪∈ ∈

each for  1
\

   (17) 

Mmx
Bn Tt

nmt ∈≤∑∑
∈ ∈

each for  1    (18) 

Mmx
En Tt

nmt ∈≤∑∑
∈ ∈

each for  1    (19) 

Nnsx n
Mm

nm ∈≤∑
∈

each for  11    (20) 

{ }
1

1
 for each  and : 2

t

nmt nk nmk nt
m M k m M

x s x s n N t T t
−

∈ = ∈

 − − ≤ ∈ ∈ ≥ 
 

∑ ∑ ∑    (21) 

( ) ( ) { }{ }1 for each ,  and : max ,nmt bqt mq b n
t T t T

x x n b B m,q M d δ δ
∈ ∈

+ ≤ ∈ ∈ <∑ ∑    (22) 

( ) ( ){ }1 for each ,  and :nmt bqt mq b n
t T t T

x x n b E m,q M d δ δ
∈ ∈

+ ≤ ∈ ∈ < +∑ ∑    (23) 

{ }\ 1
0 for each ,

t

nmt nmk
n B n N B E k

x x m M t T
∈ ∈ ∪ =

− ≤ ∈ ∈∑ ∑ ∑    (24) 

{ }\ 1
0 for each ,

t

nmt nmk
n E n N B E k

x x m M t T
∈ ∈ ∪ =

− ≤ ∈ ∈∑ ∑ ∑    (25) 

{ }0,1   , ,nmtx n N m M t T∈ ∀ ∈ ∈ ∈   
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Solving the BWSSP 

 As discussed in Chapter II, the BWSSP where τ = 1 is an instance of the SSP, 

which is NP-hard (Garey and Johnson 1979).  Therefore, the general BWSSP is at least 

as hard as the SSP meaning that the BWSSP is NP-hard and worst case instances cannot 

be solved in polynomial time (assuming P ≠ NP).  Building the BWSSP constraints 

requires ( )2O µ ν τ⋅ ⋅  operations.  Therefore, the BWSSP is a difficult combinatorial 

optimization problem.   

In the next chapter, several BWSSP instances are created and solved to optimality 

using Excel 2007® with Premium Solver® Version 9.  The instances are examined to 

determine if the combined objective function (16) maintains the preemptive nature of the 

original preemptive objective functions (2), (4) and (5) while solving the BWSSP more 

efficiently.  Solutions are also examined to determine if the BWSSP creates a realistic 

METOC collection plan within a reasonable amount of time.   

Interpretation of a BWSSP Optimal Solution 

 An optimal solution to the BWSSP is a METOC collection plan that places the 

available weather sensors at a set of regions *M M⊆ in a schedule over the campaign 

time periods t T∈ that ensures all sensor types n N∈  are detecting operationally 

significant weather conditions as frequently as possible as far away from friendly 

installations as possible for the duration of their expected operational lifespans.  This 

METOC collection plan is described by the set of decision variables equal to 1 in the 
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BWSSP optimal solution.  Any value xnmt = 1 in the solution indicates that one sensor 

type n N∈  should be deployed to region m M∈  at the start of time period t T∈ .    

Operationally significant weather conditions are viewed as a threat to friendly 

forces.  Therefore, a METOC collection plan that detects those conditions as frequently 

as possible is most desirable.  The value of the METOC collection plan created by an 

optimal solution to the BWSSP can be quantified in terms of the contribution it provides 

to the overall commander’s CONOPS at each phase of the military campaign.   

Recall that the coefficients of objective functions (2) and (4) are created from 

ACMES-derived percent hourly occurrences of weather conditions that either 

significantly or marginally impact friendly forces’ ability to execute the operations in the 

CONOPS for each phase of the military campaign (operations to O∈  over all time 

periods t T∈ ).  For every region m M∈ such that 1nmtt T n N
x

∈ ∈
≥∑ ∑  in the BWSSP 

solution, a summary can be created depicting the number of hours each sensor type 

n N∈  at each region m M∈  can be expected to detect weather conditions that pose 

either a significant or marginal threat to friendly forces’ ability to execute operations 

to O∈  during a time period t T∈ .  This summary relates the METOC collection plan to 

increased situational awareness on the battlefield, thereby increasing friendly forces’ 

ability to conduct operations in favorable weather conditions that an adversary may not 

be aware of.   

This analysis is useful during all four steps of JIPOE: define the battlefield 

environment, describe the battlefield’s effects, evaluate the adversary and determine 
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adversary potential courses of action (JPub 2-01.3 2000).  General outlines of this type of 

analysis are given in Tables 5 and 6 below. 

Table 5.  BWSSP Solution Value as METOC Collection Plan at Time Period t T∈  
(Significant “Red” Weather Conditions) 

Expected Hours METOC Collection Plan Will Find “Red” Conditions For Operations 
Planned During Time Period t T∈  

(θ = Hours in time period t) 
Regions 

1
: 1t

nqkk n N
q M x

= ∈
∈ ≥∑ ∑  

1
: 1t

npkk n N
p M x

= ∈
∈ ≥∑ ∑  …… 

Operation 1 tO∈  { }1 1
max

100

t
nqt nqkkn N

r xθ
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⋅ ⋅∑
 

{ }1 1
max

100

t
npt npkkn N

r xθ
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 …… 
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100

t
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r xθ
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⋅ ⋅∑
 

{ }2 1
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100

t
npt npkkn N

r xθ
=∈

⋅ ⋅∑
 …… 

. 

. 

. 

. 

. 

. 

. 

. 

. 
…… 

 

Table 6.  BWSSP Solution Value as METOC Collection Plan at Time Period t T∈  
(Marginal “Amber” Weather Conditions) 

 
Expected Hours METOC Collection Plan Will Find “Amber” Conditions For Operations 

Planned During Time Period t T∈  

(θ = Hours in time period t) 
Regions 

1
: 1t

nqkk n N
q M x

= ∈
∈ ≥∑ ∑  

1
: 1t

npkk n N
p M x

= ∈
∈ ≥∑ ∑  …… 
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100

t
nqt nqkkn N

y xθ
=∈
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{ }1 1
max

100

t
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y xθ
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…… 

Operation 2 tO∈  { }2 1
max

100

t
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. 

…… 

 

Returning to the previous CAS example, again suppose Table 1 is the WEM for 

the first time period of a military campaign (t = 1 where Tt∈ ).  CAS is the eighth 
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highest priority operation type in the list (o = 8 where 1o O∈ ).  If sensor type n N∈  can 

detect cloud ceilings below 1,000 feet altitude as well as surface visibility less than 3,200 

meters and the ACMES model calculates that one or both of those weather conditions 

occurs, on average, during 75% of the hourly intervals in time period t = 1 at region m = 

4 ( )m M∈ , then the parameter 8 41 75nr = . Alternatively, if sensor type b N∈  cannot 

detect cloud ceilings below 1,000 feet altitude, but can detect surface visibility less than 

3,200 meters and the ACMES model calculates that surface visibility drops below 3,200 

meters, on average, during 50% of the hourly intervals in time period t = 1 at region m = 

4 ( )m M∈ , then the parameter 8 41 50br = .  If a sensor type b N∈  and a sensor type 

n N∈  are operating at region m = 4 ( )m M∈  during time period t = 1 ( )t T∈ , Table 5 

would have the following values: 

Table 7.  Example BWSSP Solution as METOC Collection Plan at Time Period 1 
(Significant “Red” Weather Conditions) 

 
Expected Hours METOC Collection Plan Will Find “Red” Conditions For Operations 

Planned During Time Period 1 
(744 Hours in 
time period 1) 

Regions 
……………..

 
m = 4

 …… 

. 

. 

. 

. 

. 

. 

. 

. 

. 

…… 

CAS 
( )18,  o o O= ∈  ……………..

 { } { }8 41 8 41744 max 1, 1 744 max 75,50
558

100 100
n br r⋅ ⋅ ⋅ ⋅

= =  
…… 

. 

. 

. 

. 

. 

. 

. 

. 

. 

…… 

 

Staying with the previous CAS example, again suppose Table 1 is the WEM for 

the first time period of a military campaign (t = 1 where Tt∈ ).  CAS is the eighth 
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highest priority operation type in the list (o = 8 where 1o O∈ ).  If sensor type n N∈  can 

detect cloud ceilings between 1,000 and 2,000 feet altitude as well surface visibility 

between 3,200 and 8,000 meters and the ACMES model calculates that one or both of 

those weather conditions occurs, on average, during 15% of the hourly intervals in time 

period t = 1 at region m = 4 ( m M∈ ) , then the parameter 8 41 15ny = .  Alternatively, if 

sensor type b N∈  cannot detect cloud ceilings between 1,000 and 2,000 feet altitude, but 

can detect surface visibility between 3,200 and 8,000 meters and the ACMES model 

calculates that surface visibility is between 3,200 and 8,000 meters, on average, during 

10% of the hourly intervals in time period t = 1 at region m = 4 ( m M∈ ) , then the 

parameter 8 41 10by = .  If a sensor type b N∈  and a sensor type n N∈  are operating at 

region m = 4 ( )m M∈  during time period t = 1 ( )t T∈ , Table 6 would have the 

following values: 

Table 8.  Example BWSSP Solution as METOC Collection Plan at Time Period 1 
(Significant “Amber” Weather Conditions) 

 
Expected Hours METOC Collection Plan Will Find “Amber” Conditions For Operations 

Planned During Time Period 1 
(744 Hours in time 

period 1) 
Regions 

………..
 

m = 4
 …… 

. 

. 

. 

. 

. 

. 

. 

. 

. 

…… 

CAS 
( )18,  o o O= ∈  

…………
…..

 { } { }8 41 8 41744 max 1, 1 744 max 15,10
111.6

100 100
n by y⋅ ⋅ ⋅ ⋅

= =  
…… 

. 

. 

. 

. 

. 

. 

. 

. 

. 

…… 
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Also recall the coefficients of objective function (5) are the distances from a 

particular region m M∈  to the nearest friendly installation tq H M∈ ⊆ .  If the average 

speed of large-scale weather systems is known, the distances hmt for every region m M∈

such that 1nmtt T n N
x

∈ ∈
≥∑ ∑  can be used to estimate the change in average time from 

detection to arrival of significant weather conditions at friendly installations at each time 

period t T∈ .  

BWSSP Sensitivity Analysis 

Optimal solutions to different instances of the BWSSP can be compared to 

determine the merits of one METOC collection plan versus another.  Comparisons may 

be made over any combination of the dimensions in the BWSSP: time, sensor type and 

region.  If any parameter snt for n N∈ and t T∈ is modified or if a region is removed from 

either M or tH  for some time period t T∈ , the degradation or improvement of the 

METOC collection plan due to that change can be quantified by the difference in the 

number of hours of expected operationally significant weather occurrences for each 

operation to O∈  over all time periods t T∈  using the appropriate ronmt and yonmt values.   

Again returning to the previous CAS example, suppose a SMO needs to 

demonstrate the value of acquiring the sensor type n N∈  slated for allocation to region m 

= 4 ( )m M∈  during time period t = 1 ( )t T∈ .  If after re-optimizing the BWSSP with 

the value sn1 decreased by one, the sensor type b N∈  remains feasible for allocation to 

region m = 4 ( )m M∈  and the new optimal solution contains the values xb41 = 1 and xn41 

= 0, the values in Tables 7 and 8 change to:  
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Table 9.  Modified BWSSP Solution/METOC Collection Plan at Time Period 1 
(Significant “Red” Weather Conditions) 

 
Expected Hours METOC Collection Plan Will Find “Red” Conditions For Operations 

Planned During Time Period 1 

(744 Hours in time period 1) 
Regions 

…………..
 

m = 4
 

…… 
. 
. 
. 
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. 
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. 

. 

. 
…… 

CAS 
( )18,  o o O= ∈  ……………..

 { }8 41744 max 1 744 50 372
100 100

br⋅ ⋅ ⋅
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…… 

 

Table 10.  Modified BWSSP Solution/METOC Collection Plan at Time Period 1 
(Significant “Amber” Weather Conditions) 

 
Expected Hours METOC Collection Plan Will Find “Amber” Conditions For Operations 

Planned During Time Period 1 

(744 Hours in time period 1) 
Regions 

……………..
 

m = 4
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. 

. 

…… 

CAS 
( )18,  o o O= ∈  ……………..

 { }8 41744 max 1 744 10 74.4
100 100

by⋅ ⋅ ⋅
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. 

. 

. 

…… 

 

Therefore, failing to acquire the sensor type n N∈  for allocation to region m = 4 

( )m M∈  during time period t = 1 ( )t T∈  causes a loss of 558 – 372 = 186 hours where 

friendly forces can expect to detect presently occurring “red” weather conditions for CAS 

and a loss of 111.6 – 74.4 = 37.2 hours where friendly forces can expect to detect 
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presently occurring “amber” weather conditions for CAS.  The same procedure can be 

easily performed in reverse to determine the value of gaining a new sensor type n N∈  at 

time period t  = 1 ( )t T∈ .   

Using this methodology, the SMO can analyze any changes in the BWSSP 

scenario by re-optimizing with the new parameter settings and comparing the new 

optimal solution to the old optimal solution using the number of expected hours of 

operationally significant weather detection gained or lost at each region Mm∈ .  In 

summary, this analysis provides the overall commander with a quantifiable metric for 

evaluating how any changes to the METOC collection plan can impact his or her ability 

to proceed with the campaign plan during each time period Tt∈ . 

Conclusion 

 This chapter presented the general formulation of the BWSSP.  The parameters, 

sets and decision variables in the BWSSP were explained in terms of readily available 

data.  These parameters were formulated first as a series of preemptive BILP objective 

functions and then as a combined, single BILP that maintained the preemptive nature of 

the original objectives.  The constraints on the BWSSP BILP were described in detail in 

terms of the attributes of the BWSSP parameters.  BWSSP complexity was discussed 

with a preview of the approach taken in Chapter IV to solve several BWSSP instances to 

optimality.  Optimal solutions to the BWSSP were described as a METOC collection plan 

in terms of the BWSSP parameters.  The chapter concluded with an approach to 

sensitivity analysis of differing BWSSP optimal solutions based on the improvement or 

degradation of a METOC collection plan in terms of the BWSSP parameters.    
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IV. Results 

Introduction 

 In this chapter, several BWSSP instances are generated using VBA® code and 

solved to optimality using Excel 2007® with Premium Solver® Version 9.  Each BWSSP 

instance is configured with parameter settings that depict realistic military campaign 

scenarios.  The instances are used to verify that the combined objective function (16) 

maintains the preemptive nature of the original preemptive objective functions (2), (4) 

and (5) while solving the BWSSP more efficiently.  Solutions to large instances of the 

BWSSP are also examined to determine if the BWSSP creates a realistic METOC 

collection plan within a reasonable amount of time.  Sensitivity analysis is conducted on 

a single, smaller BWSSP instance to illustrate BWSSP solution interpretation as a 

METOC collection plan.  Specifically, this chapter examines the overall effectiveness of 

the BWSSP as a model for creating a METOC collection plan. 

Combined Objective Function Efficiency 

 This section examines the efficiency of solving the BWSSP using the combined 

objective function (16) versus preemptively solving objective functions (2), (4) and (5). 

BWSSP Instance Generation 

 A total of 49 different BWSSP instances were created to test the computational 

efficiency and accuracy of objective function (16) versus preemptively solving objective 

functions (2), (4) and (5).  The parameters of the BWSSP were generated from a list of 

input values.  Some input values defined the specific value of a BWSSP parameter.   
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Other input values acted as an upper bound on a statistical distribution that created the 

randomized value for a BWSSP parameter.  

 The battlefield for each instance is defined by eight input parameters.  The climate 

conditions simulate weather patterns in different parts of the globe.  Climate conditions 

were defined as being either “Harsh,” “Moderate” or “Tropical.”  A “Harsh” climate 

means that all of the ronmt parameters were randomly generated as integer values from a 

uniform distribution between 25 and 50 for all to O∈ , n N∈ , m M∈  and t T∈ .  The 

corresponding yonmt parameters were randomly generated as integers from a uniform 

distribution between 0 and (100 – ronmt) for all to O∈ , n N∈ , m M∈  and t T∈ .  The 

“Harsh” climate was used to test scenarios where the primary objective function (2) 

coefficients are generally much larger than the secondary objective function (4) and 

tertiary objective function (5) coefficients. 

A “Moderate” climate means that all of the ronmt parameters were randomly 

generated as integer values from a uniform distribution between 0 and 25 for all to O∈ , 

n N∈ , m M∈  and t T∈ .  Each corresponding yonmt parameter was randomly generated 

as an integer from a uniform distribution between 0 and (50 – ronmt) for all to O∈ , n N∈ , 

m M∈  and t T∈ .   The “Moderate” climate was used to test scenarios where the 

secondary objective function (4) coefficients are generally much larger than the primary 

objective function (2) and tertiary objective function (5) coefficients. 

A “Tropical” climate means that all of the ronmt parameters were randomly 

generated as integer values from a uniform distribution between 0 and 15 for all to O∈ , 

n N∈ , m M∈  and t T∈ .  Each corresponding yonmt parameter was randomly generated 
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as an integer from a uniform distribution between 0 and (15 – ronmt) for all to O∈ , n N∈ , 

m M∈  and t T∈ .  The “Tropical” climate was used to test scenarios where the tertiary 

objective function (5) coefficients are approximately the same order of magnitude as the 

primary objective function (2) and secondary objective function (4) coefficients. 

 The “Campaign Type” is a notional military campaign that would feature a 

particular mix of operation types and time periods.  “Humanitarian Assistance” and 

“Peacekeeping” campaigns are of shorter duration and feature fewer operation types 

during each time period t T∈ .  “Conventional Warfare” features more operations over a 

longer set of time periods t T∈ .  “Advise/Train” campaigns are of longer duration, but 

feature fewer friendly installations or bases.  “Pre-assault” campaigns are of very short 

duration (one time period) and weigh heavier towards clandestine weather sensors.  This 

list is based on the author’s personal experience as a staff weather officer participating in 

military operational planning.  This is by no means the full list of all possible military 

campaign scenarios nor is it precisely how any campaign may be executed.  The list is 

purely notional and the scenarios are selected to test the BWSSP’s performance with a 

variety of parameter settings close to those commonly seen in real-world planning. 

 “Total Ops” is the total number of operations possible for a period t T∈ .  The 

size of each set Ot for all t T∈  was selected as a random integer value from a uniform 

distribution between 1 and the “Total Ops” value.  “Model Points” and “Model Res” 

create a simulated ACMES model window covering an area the size of the “Ops Area 

Size.”  The parameter “Model Points” represents the number of simulated ACMES model 

data points in the “model” window, all of which are evenly spaced at the interval 

indicated by the “Model Res” parameter.  A “Large” “Ops Area Size” is an area bigger 
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than 200,000 square kilometers, a “Medium” “Ops Area Size” is an area between 30,000 

and 70,000 square kilometers and the “Small” “Ops Area Size” is intended to represent 

an area between 6,000 and 20,000 square kilometers.   

The “Number Periods” parameter determines the number of time periods in the 

BWSSP instance, τ.  The “Number Bases” parameter indicates the number of friendly 

installations randomly placed within the simulated ACMES model window.  The friendly 

installations are placed randomly in the ACMES model window by selecting simulated 

ACMES model window points at random from a uniform distribution until all 

installations are placed at different ACMES data points. 

The parameters in A are determined by the sensor type.  Sensors requiring a 

secure friendly location (fixed base) have anmt = 1 for all tHm∈  for each Tt∈  and anmt 

= 0 for all tHm∉  for each Tt∈ .  For clandestine sensors, anmt = 1 for all Nn∈ , 

Mm∈  and Tt∈ .  Decision variables with objective function (16) coefficients equal to 0 

were removed from the problem instance. 

The settings for all of these input parameters are listed in Table 11 below: 
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Table 11.  Parameters Defining the Simulated Battlefield for BWSSP Test Instances 

Test 
Instance 

Climate 
Conditions 

Campaign 
Type 

Operations Area 
Size 

Total 
Ops 

Number 
Regions 

Model 
Res (km) 

Number 
Periods 

Number 
Bases 

1 Harsh Advise/Train Large 15 130 45 6 5 
2 Tropical Advise/Train Large 15 130 45 6 5 
3 Moderate Advise/Train Large 15 130 45 6 5 
4 Harsh Advise/Train Large 15 130 45 6 5 
5 Tropical Advise/Train Large 15 130 45 6 5 
6 Moderate Advise/Train Large 15 130 45 6 5 
7 Moderate Advise/Train Medium 15 160 15 6 3 
8 Moderate Advise/Train Small 15 160 7 6 2 
9 Harsh Advise/Train Medium 15 160 15 6 3 

10 Tropical Advise/Train Small 15 160 7 6 2 
11 Tropical Advise/Train Medium 15 160 15 6 3 
12 Harsh Advise/Train Small 15 160 7 6 2 
13 Harsh Peacekeeping Large 6 220 45 6 10 
14 Moderate Peacekeeping Large 6 220 45 6 10 
15 Moderate Advise/Train Medium 15 160 15 6 3 
16 Harsh Advise/Train Medium 15 160 15 6 3 
17 Tropical Advise/Train Medium 15 160 15 6 3 
18 Harsh Peacekeeping Large 6 300 45 6 10 
19 Moderate Advise/Train Small 15 170 7 6 2 
20 Tropical Advise/Train Small 15 170 7 6 2 
21 Harsh Advise/Train Small 15 170 7 6 2 
22 Tropical Peacekeeping Large 6 300 45 6 10 
23 Moderate Peacekeeping Large 6 300 45 6 10 
24 Harsh Humanitarian Assistance Large 4 540 45 6 25 
25 Harsh Humanitarian Assistance Large 4 540 45 6 25 
26 Tropical Pre-Assault Large 15 992 45 1 5 
27 Moderate Pre-Assault Large 15 992 45 1 5 
28 Tropical Peacekeeping Medium 6 290 15 6 5 
29 Tropical Peacekeeping Medium 6 280 15 6 5 
30 Moderate Peacekeeping Medium 6 280 15 6 5 
31 Harsh Peacekeeping Medium 6 280 15 6 5 
32 Tropical Peacekeeping Small 6 320 7 6 3 
33 Moderate Peacekeeping Medium 6 290 15 6 5 
34 Moderate Peacekeeping Small 6 320 7 6 3 
35 Harsh Peacekeeping Medium 6 290 15 6 5 
36 Tropical Humanitarian Assistance Large 4 540 45 6 25 
37 Tropical Humanitarian Assistance Large 4 540 45 6 25 
38 Moderate Humanitarian Assistance Large 4 540 45 6 25 
39 Moderate Humanitarian Assistance Large 4 540 45 6 25 
40 Harsh Peacekeeping Small 6 320 7 6 3 
41 Harsh Peacekeeping Small 6 320 7 6 3 
42 Harsh Pre-Assault Medium 15 995 15 1 3 
43 Harsh Conventional Warfare Large 15 540 45 12 55 
44 Harsh Conventional Warfare Large 15 540 45 13 50 
45 Tropical Pre-Assault Medium 15 995 15 1 3 
46 Moderate Pre-Assault Medium 15 995 15 1 3 
47 Tropical Conventional Warfare Large 15 540 45 12 55 
48 Tropical Conventional Warfare Large 15 540 45 13 50 
49 Moderate Conventional Warfare Large 15 540 45 13 50 
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The set N consists of at most one type of clandestine surface weather sensor, one 

type of fixed base surface weather sensor, one type of clandestine upper-air weather 

sensor, one type of fixed base upper-air weather sensor and one type of weather radar.  

The operational lifespans (in time periods) for each sensor type n N∈ were chosen based 

on estimates of real-world behavior.  The values were reduced in “Harsh” climates to 

capture the degradation in sensor capability due to wear and tear.  A sensor lifespan equal 

to 0 indicates that the sensor type was not included in that particular problem instance.   

The snt parameters indicating the number of sensors of any type n N∈  arriving at 

the start of time period t T∈ , were determined by a draw from a uniform distribution 

between 0 and the “Max Sensor” value for each sensor type n N∈  and time period t T∈ .  

The upper-air weather sensor spacing suggested by FMH-3 (1997) was observed in 

scenarios where it was appropriate.  The effective range of the weather radar in each 

scenario was selected to be 150 kilometers in “Harsh” climates and 220 kilometers in 

other climates.  This is very roughly based on the effective range of standard weather 

radars, though many factors influence the true effective range of any radar (Ahrens 

2000).  This difference in effective ranges models the change in radar settings due to 

weather conditions. 
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Table 12.  Weather Sensor Parameters for BWSSP Test Instances 

Test 
Instance 

Clandestine 
Surface Lifespan 

Base Surface 
Lifespan 

Base Upper-Air 
Lifespan 

Clandestine Upper-Air 
Lifespan 

Radar 
Lifespan 

Max 
Sensors 

Upper-Air 
Spacing 

Radar 
Range 

1 3 4 2 0 6 20 0 150 
2 7 9 6 0 12 20 0 220 
3 5 6 4 0 8 20 0 220 
4 3 4 2 0 6 20 250 150 
5 7 9 6 0 12 20 250 220 
6 5 6 4 0 8 20 250 220 
7 5 6 4 0 8 20 0 220 
8 3 6 4 0 8 10 0 220 
9 3 4 2 0 6 20 0 150 

10 5 9 6 0 12 10 0 220 
11 7 9 6 0 12 20 0 220 
12 7 4 2 0 6 10 0 150 
13 3 4 2 0 6 5 250 150 
14 5 6 4 0 8 5 250 220 
15 5 6 4 0 8 20 250 220 
16 3 4 2 0 6 20 250 150 
17 7 9 6 0 12 20 250 220 
18 3 4 2 0 6 5 250 150 
19 3 6 4 0 8 10 250 220 
20 5 9 6 0 12 10 250 220 
21 7 4 2 0 6 10 250 150 
22 7 9 6 0 12 5 250 220 
23 5 6 4 0 8 5 250 220 
24 0 4 2 0 6 20 250 150 
25 0 4 2 0 6 20 250 150 
26 7 9 6 1 12 20 0 220 
27 5 6 4 1 8 20 0 220 
28 7 9 6 0 12 5 250 220 
29 7 9 6 0 12 5 250 220 
30 5 6 4 0 8 5 250 220 
31 3 4 2 0 6 5 250 150 
32 5 9 6 0 12 5 250 220 
33 5 6 4 0 8 5 250 220 
34 3 6 4 0 8 5 250 220 
35 3 4 2 0 6 5 250 150 
36 0 9 6 0 12 20 250 220 
37 0 9 6 0 12 20 250 220 
38 0 6 4 0 8 20 250 220 
39 0 6 4 0 8 20 250 220 
40 7 4 2 0 6 5 250 150 
41 7 4 2 0 6 5 250 150 
42 3 4 2 1 6 20 0 150 
43 0 4 2 0 6 20 0 150 
44 0 4 2 0 6 20 0 150 
45 7 9 6 1 12 20 0 220 
46 5 6 4 1 8 20 0 220 
47 0 9 6 0 12 20 0 220 
48 0 9 6 0 12 20 0 220 
49 0 6 4 0 8 20 0 220 
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Results 

All 49 instances of the BWSSP were optimized using Microsoft® Excel 2007® 

with the Premium Solver® Version 9 add-in on a Microsoft® Windows XP® workstation 

featuring an AMD® Athlon™ 64 X2 Dual Core Processor 4800+ running at 2.49 GHz 

with 1.87 GB of RAM.  Each instance was first optimized using objective function (16) 

as the sole objective function subject to constraints (17) through (25).  The optimal 

objective function value for objective functions (2), (4) and (5) were then recorded using 

the solution found by optimizing objective function (16).   

BWSSP was then solved as a preemptive BILP.  The Premium Solver® was reset 

and objective function (2) was optimized subject to constraints (17) through (25).  The 

objective function (2) optimal value was then recorded.  The Premium Solver® was again 

reset and objective function (2) was added as an inequality constraint greater than or 

equal to its optimal objective function value.  Objective function (4) was then optimized 

using Premium Solver® subject to the new constraint as well as constraints (17) through 

(25).  The optimal objective function value for objective function (4) was then recorded 

and the Premium Solver® was reset.  As before, objective functions (2) and (4) were 

added as inequality constraints greater than or equal to their respective optimal objective 

function values.  Finally, objective function (5) was optimized using the Premium 

Solver® subject to the constraints determined by the two previous objective function 

optimal solutions as well as constraints (17) through (25).  Its optimal objective function 

value was then recorded. 

As depicted in Table 13, the combined objective function (16) returned an optimal 

objective function value equivalent to those returned by objective functions (2), (4) and 
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(5) when each was solved preemptively for every problem instance.  This data indicates 

that the Improved Golden Section Method (Den Boef and Den Hertog 2007) as well as 

the Ignizio and Thomas (1984) modification to the Sherali (1982) algorithm were both 

implemented correctly in the VBA® code and that the methodology appears to be a valid 

approach to finding an optimal solution to the BWSSP.   
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Table 13. Objective Function Values for BWSSP Test Instances 

Test 
Instance 

Combined BILP Pre-emptive BILP 
Obj Func (16) Obj Func (2) Obj Func (4) Obj Func (5) Obj Func (2) Obj Func (4) Obj Func (5) 

1 1.24466E+17 1135938 976216 11667 1135938 976216 11667 
2 6.9121E+15 302404 148675 9122 302404 148675 9122 
3 1.73322E+16 300978 434043 15006 300978 434043 15006 
4 1.01693E+18 2003987 963044 11667 2003987 963044 11667 
5 4.54854E+16 587649 147265 9122 587649 147265 9122 
6 1.40106E+17 523103 428590 15006 523103 428590 15006 
7 1.69262E+16 505197 745642 4637 505197 745642 4637 
8 1.31563E+16 621496 913858 1925 621496 913858 1925 
9 1.24816E+17 1725792 1482173 3517 1725792 1482173 3517 

10 6.60088E+15 610410 307510 853 610410 307510 853 
11 2.0125E+16 787288 389226 4781 787288 389226 4781 
12 1.72423E+17 3084632 2590929 680 3084632 2590929 680 
13 6.90981E+16 273849 92803 3252 273849 92803 3252 
14 7.96818E+16 275007 187740 1594 275007 187740 1594 
15 1.79809E+17 854510 741659 4637 854510 741659 4637 
16 1.70633E+18 3060976 1471209 3517 3060976 1471209 3517 
17 2.24858E+17 1384900 387222 4781 1384900 387222 4781 
18 1.7053E+17 413836 143175 3690 413836 143175 3690 
19 1.49558E+17 1130166 958903 2070 1130166 958903 2070 
20 4.06074E+16 824574 229832 977 824574 229832 977 
21 2.05119E+18 5025725 2768313 1400 5025725 2768313 1400 
22 5.83979E+16 263439 60262 3105 263439 60262 3105 
23 1.96138E+17 323560 169623 5253 323560 169623 5253 
24 3.90365E+12 1232216 482949 0 1232216 482949 0 
25 3.90365E+12 1232216 482949 0 1232216 482949 0 
26 1.28466E+14 7931 2931 11564 7931 2931 11564 
27 2.27214E+15 24112 32932 9673 24112 32932 9673 
28 8.04154E+15 177963 40775 985 177963 40775 985 
29 2.34549E+16 337798 71498 1378 337798 71498 1378 
30 4.13857E+17 565224 478585 1426 565224 478585 1426 
31 7.13604E+17 932936 352483 1157 932936 352483 1157 
32 4.61048E+15 260924 71778 426 260924 71778 426 
33 1.97196E+17 416144 257086 1349 416144 257086 1349 
34 3.37978E+16 367718 290415 328 367718 290415 328 
35 5.07662E+17 611181 229550 1574 611181 229550 1574 
36 2.50221E+11 362634 62997 0 362634 62997 0 
37 2.50221E+11 362634 62997 0 362634 62997 0 
38 2.25502E+12 633784 353259 0 633784 353259 0 
39 2.25502E+12 633784 353259 0 633784 353259 0 
40 3.33282E+17 1244326 670755 1105 1244326 670755 1105 
41 1.20939E+18 1765855 997463 1212 1765855 997463 1212 
42 8.41629E+15 119968 98027 4095 119968 98027 4095 
43 2.79091E+13 8206934 7990527 0 8206934 7990527 0 
44 1.89065E+13 6713863 6533277 0 6713863 6533277 0 
45 5.30556E+14 41406 20516 4094 41406 20516 4094 
46 7.1827E+13 8411 12316 2682 8411 12316 2682 
47 2.07052E+13 1861242 1102338 0 1861242 1102338 0 
48 1.93794E+13 1895340 1124785 0 1895340 1124785 0 
49 7.52243E+13 4079719 6953075 0 4079719 6953075 0 
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 Table 14 contains the number of decision variables and constraints for each 

BWSSP instance.  It also contains the optimal weights found via the Improved Golden 

Section Method (Den Boef and Den Hertog 2007) for the Ignizio and Thomas (1984) 

equations used to create the coefficients for objective function (16) in each BWSSP 

instance.  The total time (in hours, minutes and seconds) to build the constraint set, build 

the Ignizio and Thomas (1984) equations and optimize the BWSSP instance (as both a 

combined (single) objective BILP and using preemptive objective functions) are listed in 

Table 14.   

As discussed in Chapter III, there is a trade-off when using the combined 

objective function versus the series of preemptive objective functions.  Namely, one may 

lose the ability to find other, equally optimal BWSSP solutions.  However, the combined 

objective function (16) should, on average, provide an optimal solution to the BWSSP in 

a more computationally efficient manner than solving objective functions (2), (4) and (5) 

preemptively.  The times (in hours, minutes and seconds) Premium Solver® took to 

achieve optimality for each BWSSP instance via both methods are listed in Table 14.  

The times (in hours, minutes and seconds) it took Excel 2007® to create all of the 

constraints for each BWSSP instance are also listed in Table 14. 
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Table 14. Problem Sizes and Times to Optimal Solutions for BWSSP Test Instances 

     
Time (HH:MM:SS) 

Test 
Instance 

Num Decision 
Variables 

Num 
Constraints 

*
1λ  *

2λ  Constraint 
Build 

Ignizio 
Thomas 

Combined 
Solver 

Pre-Emptive 
Solve 

1 828 202 0 95249 0:00:55 0:00:04 0:00:24 0:00:53 
2 834 207 0 53144 0:01:01 0:00:03 0:00:21 0:00:55 
3 840 212 0 214616 0:01:04 0:00:03 0:00:20 0:00:57 
4 828 208 0 86320 0:01:06 0:00:04 0:00:25 0:00:52 
5 834 210 0 50824 0:01:12 0:00:03 0:00:22 0:01:03 
6 840 216 0 203724 0:01:17 0:00:04 0:00:21 0:00:59 
7 996 217 0 100693 0:01:25 0:00:05 0:00:28 0:01:19 
8 981 203 0 52578 0:01:27 0:00:04 0:00:29 0:01:19 
9 996 217 0 55957 0:01:28 0:00:04 0:00:24 0:00:54 

10 984 205 0 18462 0:01:28 0:00:04 0:00:24 0:01:07 
11 996 217 0 44060 0:01:29 0:00:04 0:00:30 0:01:19 
12 993 211 0 33817 0:01:30 0:00:04 0:00:30 0:01:20 
13 1416 365 0 232973 0:01:36 0:00:08 0:00:27 0:00:41 
14 1398 350 0 391842 0:01:54 0:00:08 0:00:23 0:00:34 
15 996 220 0 100230 0:02:07 0:00:04 0:00:32 0:01:26 
16 996 220 0 55456 0:02:09 0:00:03 0:00:25 0:01:01 
17 996 220 0 43822 0:02:13 0:00:04 0:00:35 0:01:25 
18 1896 423 0 344034 0:02:15 0:00:13 0:01:18 0:03:49 
19 1041 214 0 55707 0:02:18 0:00:05 0:00:38 0:01:33 
20 1047 218 0 19126 0:02:19 0:00:04 0:00:35 0:01:20 
21 1047 218 0 40455 0:02:25 0:00:05 0:00:36 0:01:28 
22 1938 471 0 177738 0:02:47 0:00:12 0:00:48 0:02:22 
23 1914 449 0 691559 0:02:56 0:00:14 0:01:15 0:04:04 
24 450 454 0 0 0:04:09 0:00:02 0:00:32 0:00:11 
25 450 454 0 0 0:04:09 0:00:01 0:00:31 0:00:12 
26 1999 2995 13 259684 0:04:28 0:00:12 0:00:43 0:01:16 
27 1999 2993 2 853789 0:04:37 0:00:12 0:00:45 0:00:59 
28 1785 373 0 55314 0:04:54 0:00:09 0:01:47 0:04:54 
29 1734 369 0 55170 0:04:57 0:00:09 0:01:03 0:02:10 
30 1731 368 0 276030 0:05:13 0:00:09 0:01:00 0:01:54 
31 1734 369 0 134538 0:05:18 0:00:09 0:01:28 0:04:07 
32 1935 366 0 30594 0:05:31 0:00:10 0:01:48 0:04:42 
33 1788 375 0 294715 0:05:36 0:00:10 0:01:37 0:04:44 
34 1941 370 0 79577 0:05:36 0:00:11 0:01:23 0:03:12 
35 1797 382 0 161815 0:05:39 0:00:10 0:01:01 0:01:55 
36 450 480 0 0 0:05:46 0:00:01 0:00:44 0:00:28 
37 450 480 0 0 0:05:47 0:00:01 0:00:43 0:00:31 
38 450 495 0 0 0:05:57 0:00:01 0:03:09 0:08:32 
39 450 495 0 0 0:05:58 0:00:02 0:03:18 0:07:58 
40 1944 372 0 87428 0:06:21 0:00:11 0:01:52 0:05:01 
41 1956 380 0 115445 0:06:50 0:00:11 0:01:56 0:05:47 
42 1999 2997 0 288815 0:06:57 0:00:11 0:01:10 0:01:13 
43 1146 1189 0 1 0:08:04 0:00:09 0:14:43 0:15:33 
44 1146 1122 0 1 0:08:45 0:00:10 0:13:54 0:18:18 
45 1999 2998 2 147841 0:09:33 0:00:12 0:01:33 0:01:03 
46 1999 2998 4 442093 0:09:36 0:00:12 0:01:40 0:01:39 
47 1083 1294 0 1 0:11:25 0:00:04 0:22:45 0:26:00 
48 1044 1173 0 1 0:12:09 0:00:05 0:10:57 0:18:58 
49 1044 1196 0 2 0:12:18 0:00:04 0:06:53 0:19:59 

 



 

68 

 

 If using the combined objective function (16) is a more computationally efficient 

method, on average, for optimizing the BWSSP than preemptively optimizing objective 

functions (2), (4) and (5), the mean of the Ignizio and Thomas (1984) optimization times 

added to the mean of the Premium Solver® optimization times for objective function (16) 

should be less than the total mean optimization time for objective functions (2), (4) and 

(5), when each is optimized preemptively.  From Table 14, these values are calculated as: 

Table 15. Mean and Variance of BWSSP Optimal Solution Times 
(Hours, Minutes, Seconds) 

 

 
Combined Preemptive 

Mean 0:02:23 0:03:57 
Variance 0:18:50 0:33:43 

 

On first glance, it appears that the combined objective function (16) does, on 

average, find an optimal BWSSP solution significantly faster than preemptively 

optimizing objective functions (2), (4) and (5).  However, this sample of BWSSP 

instances may not be representative of the larger population of all BWSSP instances.   

A paired-t statistical hypothesis test can be performed on the sample data in Table 

14 to see if the difference in the means of the two solution methods is statistically 

significant (Montgomery 2005).  Assuming the hypothesis that the mean of the combined 

objective function times to optimality is equal to the mean of the preemptive objective 

function times to optimality, one can test the alternative hypothesis that the mean of the 

combined objective function times to optimality is less than the mean of the preemptive 

objective functions time to optimality using the test statistic (Montgomery 2005): 
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Where φj is the difference (in minutes) between the jth preemptive objective functions 

total optimization time and the jth combined objective function optimization time and Sφ 

is the standard deviation of the sample of φj values. 

Assuming a 99.9% confidence interval, the hypothesis that the two means are 

equal is rejected because 33.73388284t54.63443796 0.0005,480 =>=t  (Montgomery 

2005).  Therefore, we can conclude with a 99.9% level of confidence that the mean time 

to optimality for the combined objective function formulation is less than the mean time 

to optimality for the preemptive objective functions formulation.  In Figure 11, the 

complexity of each BWSSP instance is approximated by the time required to build the 

instance constraints.  The general trend indicates that as constraint build time increases 

(increasing BWSSP instance complexity), the combined objective function approach is 

less than or equal to the time required for the preemptive objective functions approach. 
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Figure 11.  Combined Objective Function vs. Preemptive Objective Functions 

Computational Efficiency Analytical Conclusions 

 Table 13 empirically demonstrates the optimal solution to the BWSSP found 

using the combined objective function (16) captures the preemptive relationship between 

objective functions (2), (4) and (5).  The main drawback of the combined objective 

function approach, however, is that it may mask some alternative optimal solutions that 

would otherwise be found using the preemptive objective functions (2), (4) and (5).  

Therefore, if determining an optimal solution quickly is more important than finding 

alternative optimal solutions for the BWSSP, the combined objective function approach 

is preferred. 

Large BWSSP Instances 

 For the BWSSP to be a practical methodology for creating METOC collection 

plans, SMOs must be able to find optimal solutions for the BWSSP in a reasonable 

amount of time using computer hardware and software that is readily available in a 

typical military headquarters.  Eleven large instances of the BWSSP were solved on a 
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Hewlett-Packard HP Pavilion dv6500 Notebook PC with an Inter® Core™ 2 Duo CPU 

T7300 operating at 2.00GHz with 2.0 GB RAM running the Windows® Vista® operating 

system.  The instances were created using the same VBA® code as before in Microsoft® 

Excel 2007® with the Premium Solver® Version 9 add-in.  The results obtained from 

these instances are given in Table 16: 

Table 16.  Large BWSSP Instances Optimized on a Common Laptop Computer 

Total 
Ops μ 

Model 
Res 
(km) 

τ Max 
|Ht| 

Dec  
Var 

Num 
Constr ν 

Max 
snt 

Objective Functions 
λ*

1 λ*
2 

Time (HH:MM:SS) 
Ignizio 

Thomas 
Combined 

Solver 
Constraint 

Build (16) (2) (4) (5) 
15 540 45 13 50 8154 1617 3 20 1.66766E+2

 
1054721

 
8898436 1701

 
0 966305 0:02:33 0:13:48 1:30:07 

15 540 45 13 50 8154 1780 3 20 6.29185E+1
 

4684913 6917862 2422
 

0 1726734 0:03:00 0:24:52 0:21:47 
15 540 45 13 50 7968 1646 3 20 1.65952E+1

 
4010450 2023006 2271

 
0 587940 0:01:49 0:04:48 0:15:56 

15 540 45 12 55 7593 1650 4 20 1.58677E+2
 

1259185
 

1072905
 

1731
 

0 730711 0:01:40 0:20:15 0:10:43 
15 540 45 12 55 7656 1867 4 20 3.99717E+1

 
4713436 7118371 1718

 
0 1295180 0:01:44 0:29:05 0:14:28 

15 540 45 12 55 7362 1640 4 20 7.36242E+1
 

2490605 1238329 1697
 

0 585077 0:01:35 0:05:32 0:13:25 
6 540 45 12 10 6654 737 4 5 1.57413E+1

 
1324465 472834 9089 0 1622548 0:01:30 0:21:50 0:08:33 

6 540 45 12 10 6711 774 4 5 1.10301E+1
 

875942 705600 8313 0 2852157 0:01:36 0:21:55 0:11:15 
6 540 45 12 10 6666 740 4 5 6.39607E+1

 
392491 95541 5008 1 795784 0:01:35 0:21:56 0:10:59 

6 194
 

15 12 5 23358 2053 4 5 1.43409E+2
 

2192688 858852 1182
 

0 5971380 0:23:51 0:30:57 2:16:51 
6 194

 
15 12 5 23397 2083 4 5 2.83084E+2

 
2543105 2227429 7037 0 7803005 0:25:14 0:30:25 4:23:29 

 

 Though this is by no means an exhaustive list of all possible BWSSP scenarios, 

the largest of the test instances had 23,397 decision variables with 2,083 constraints 

(decision variables with an objective function (16) coefficient equal to zero were 

removed in pre-processing).  The first nine instances were optimized over a roughly 

“square” ACMES model window (23 × 23 model points) covering an area of about 

900,000 square kilometers at 45 kilometers resolution.  The last two instances were 

optimized over a “square” ACMES model window (13 × 13 model points) that is about 

35,000 square kilometers at 15 kilometers resolution.  Friendly installations were 

randomly inserted into the model window at random time periods.   
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An attempt was made to solve each instance preemptively using objective 

functions (2), (4) and (5).  The Premium Solver® found the optimal solution in 1 hour and 

13 minutes for the first instance and failed to return an optimal solution within an 8-hour 

time limit for the last 10 instances.   The largest instance in the test set was optimized 

subject to constraints (17) – (25) using the single, combined objective function (16) in 5 

hours and 19 minutes, including the time required to build constraints in Excel 2007®.  

This is well within the 24-hour time limit discussed in the introduction.  This indicates 

that the BWSSP provides a useful methodology for creating a METOC collection plan 

for most real-world scenarios. 

BWSSP Sensitivity Analysis 

 This section discusses a method for performing sensitivity analysis on BWSSP 

optimal solutions.  A specific BWSSP instance is created and optimized.  The optimal 

solution is interpreted as a METOC collection plan.  The S matrix is modified and the 

BWSSP is re-optimized.  The difference between the new and previous BWSSP optimal 

solutions is analyzed in terms of a gain or loss of significant weather condition detection 

in the METOC collection plan. 

BWSSP Instance as a METOC Collection Plan 

 Consider a military campaign occurring over 16 regions ( )16µ =  over a total of 2 

time periods ( )2τ = .  Each region is at least 45 kilometers from the nearest region 

(simulating the ACMES model at 45 kilometer resolution).  The CONOPS indicate that 

operation types Operation 1 and Operation 2 will be executed in that order of priority 

during time period 1 and operation type Operation 2 will be the only operation type 
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executed during time period 2.  There are five friendly installations located on the 

battlefield { }1 2 2,7,13,14,15H H= = .  For the campaign, sensor types n N∈  are 

available according to the schedule in Table 17: 

Table 17.  Sensor Availability (S Matrix) for BWSSP Instance 

N Sensor Type δn 
(km) 

T 
t = 1 t = 2 

n = 1 Clandestine SFC Sensor 0 1 1 
n = 2 Base SFC Sensor 0 1 1 
n = 3 Clandestine Upper-Air Sensor 0 1 2 
n = 4 Upper-Air Sensor 50 0 2 
n = 5 Weather Radar 65 2 1 

 

 The simulated ACMES-derived hourly percent occurrence values of operationally 

significant weather conditions that can be detected by the sensor types n N∈ are given in 

Tables 18 and 19: 

Table 18.  “Red” Hourly Percent Occurrence Parameters for BWSSP Instance (ronmt) 

Sensor n = 1 n = 2 n = 3 n = 4 n = 5 
Time Period t = 1 t = 2 t = 1 t = 2 t = 1 t = 2 t = 1 t = 2 t = 1 t = 2 

Region o = 1 o = 2 o = 1 o = 1 o = 2 o = 1 o = 1 o = 2 o = 1 o = 1 o = 2 o = 1 o = 1 o = 2 o = 1 
1 40 41 30 44 46 33 40 41 30 44 46 33 44 46 33 
2 23 30 27 26 33 30 23 30 27 26 33 30 26 33 30 
3 36 32 40 40 35 44 36 32 40 40 35 44 40 35 44 
4 33 45 42 37 50 47 33 45 42 37 50 47 37 50 47 
5 29 38 25 32 42 28 29 38 25 32 42 28 32 42 28 
6 37 33 43 41 37 48 37 33 43 41 37 48 41 37 48 
7 37 41 37 41 46 41 37 41 37 41 46 41 41 46 41 
8 29 30 42 32 33 47 29 30 42 32 33 47 32 33 47 
9 29 26 40 32 29 44 29 26 40 32 29 44 32 29 44 

10 41 43 30 46 48 33 41 43 30 46 48 33 46 48 33 
11 41 34 34 46 38 38 41 34 34 46 38 38 46 38 38 
12 36 40 41 40 45 46 36 40 41 40 45 46 40 45 46 
13 45 36 26 50 40 29 45 36 26 50 40 29 50 40 29 
14 43 31 40 48 34 45 43 31 40 48 34 45 48 34 45 
15 28 44 32 31 49 36 28 44 32 31 49 36 31 49 36 
16 38 31 35 42 34 39 38 31 35 42 34 39 42 34 39 
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Table 19.  “Amber” Hourly Percent Occurrence Parameters for BWSSP Instance (yonmt) 

Sensor n = 1 n = 2 n = 3 n = 4 n = 5 
Time Period t = 1 t = 2 t = 1 t = 2 t = 1 t = 2 t = 1 t = 2 t = 1 t = 2 

Region o = 1 o = 2 o = 1 o = 1 o = 2 o = 1 o = 1 o = 2 o = 1 o = 1 o = 2 o = 1 o = 1 o = 2 o = 1 
1 41 1 53 6 12 19 46 10 44 25 34 36 50 18 51 
2 68 23 13 15 21 65 58 2 17 22 15 58 42 44 33 
3 24 48 56 42 3 40 20 12 50 58 55 4 25 53 8 
4 20 16 19 32 22 50 55 12 28 1 19 37 52 32 19 
5 21 20 5 12 19 35 51 30 8 44 31 49 49 14 70 
6 9 10 17 58 39 17 56 44 41 36 0 13 53 26 33 
7 33 19 41 28 20 47 14 43 52 31 8 28 9 20 29 
8 16 33 9 0 63 3 25 33 21 2 55 41 53 50 4 
9 42 68 53 29 52 5 39 24 10 49 32 47 45 62 48 

10 21 2 11 16 3 47 21 42 49 17 41 60 49 51 3 
11 52 50 29 41 21 14 12 66 42 53 29 28 45 33 25 
12 31 4 55 53 21 20 37 28 53 17 4 14 47 53 11 
13 10 40 35 41 34 55 35 12 60 18 14 24 39 27 8 
14 39 47 59 9 16 12 8 54 14 17 2 42 25 50 33 
15 54 44 29 8 48 22 4 10 61 24 14 55 51 48 62 
16 38 28 50 1 28 17 39 11 54 14 25 11 33 54 3 

 

 Substituting these parameters into the BWSSP and maximizing objective function 

(16) yields the optimal solution x1,14,1 = 1, x2,7,1 = 1, x3,14,1 = 1, x5,7,1 = 1, x5,14,1 = 1, x1,1,2 = 

1, x2,2,2 = 1, x3,1,2 = 1, x4,2,2 = 1, x4,7,2 = 1 with all other decision variables equal to 0.  In 

plain language, this solution becomes the METOC collection plan in Table 20. 

Table 20.  METOC Collection Plan from BWSSP Instance Optimal Solution 

Deploy One Sensor of Type To Region At Start of Time Period 
Base Surface Sensor 7 1 

Weather Radar 7 1 
Clandestine Surface Sensor 14 1 

Clandestine Upper-Air Sensor 14 1 
Weather Radar 14 1 

Clandestine Surface Sensor 1 2 
Clandestine Upper-Air Sensor 1 2 

Base Surface Sensor 2 2 
Upper-Air Sensor 2 2 
Upper-Air Sensor 7 2 

 

 Pictorially, this METOC collection plan looks like Figure 12: 
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Figure 12.  Pictorial Representation of METOC Collection Plan in Table 20 

 As outlined in Chapter III, the value of this METOC collection plan can be 

explained to the overall commander in terms of the military campaign plan using the ronmt 

and yonmt parameters for all to O∈ , n N∈ , m M∈  and t T∈  by following the format in 

Tables 5 and 6.  Table 21 depicts the value of the METOC collection plan in Table 20 

and Figure 12 in terms of the military campaign plan using the method described in 

Tables 5 and 6. 

Table 21.  METOC Collection Plan Value in Terms of Military Campaign 

Expected Hours METOC Collection Plan Will Find 
“Red” Conditions  

For Operations Planned During Time Period 1 

Expected Hours METOC Collection Plan Will Find “Red” Conditions For 
Operations Planned During Time Period 2 

(744 Hours in Period 1) 
Regions 

(744 Hours in Period 2) 
Regions 

7 14 1 2 7 14 
Operation 1 305.04 357.12 Operation 2 223.2 223.2 305.04 334.8 
Operation 2 342.24 252.96   

  
  
  
  

Expected Hours METOC Collection Plan Will Find 
“Amber” Conditions  

For Operations Planned During Time Period 1 

Expected Hours METOC Collection Plan Will Find “Amber” Conditions For 
Operations Planned During Time Period 2 

(744 Hours in Period 1) 
Regions 

(744 Hours in Period 2) 
Regions 

7 14 1 2 7 14 
Operation 1 208.32 290.16 Operation 2 394.32 483.6 349.68 438.96 
Operation 2 148.8 401.76   
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Sensitivity Analysis of a BWSSP Solution as a METOC Collection Plan 

 As mentioned in Chapter III, the methodology in the previous section can be used 

to perform sensitivity analysis on the BWSSP to determine the value of a particular 

sensor in the METOC collection plan (BWSSP optimal solution).  Returning to the 

example in the previous section, if the clandestine surface weather sensor scheduled to 

become available at the start of time period 1 is delayed until the start of time period 2, 

the optimal solution to the BWSSP becomes x2,7,1 = 1, x5,7,1 = 1,  x1,1,2 = 1, x2,2,2 = 1, x1,14,2 

= 1,  x3,1,2 = 1,  x3,14,2 = 1,  x4,2,2 = 1, x4,7,2 = 1,  x5,14,2 = 1, and all other decision variables 

equal to 0.  In plain language, this becomes the METOC collection plan in Table 22. 

Table 22. METOC collection Plan from Modified BWSSP Instance Optimal Solution 

Deploy One Sensor of Type To Region At Start of Time Period 
Base Surface Sensor 7 1 

Weather Radar 7 1 
Clandestine Surface Sensor 1 2 

Clandestine Upper-Air Sensor 1 2 
Base Surface Sensor 2 2 

Upper-Air Sensor 2 2 
Upper-Air Sensor 7 2 

Clandestine Surface Sensor 14 2 
Clandestine Upper-Air Sensor 14 2 

Weather Radar 14 2 
Pictorially, this METOC collection plan looks like Figure 13: 

  

Figure 13.  Pictorial Representation of METOC Collection Plan in Table 22 
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 A comparison of Figures 12 and 13 reveals that the difference between the 

METOC collection plan in Table 20 and the METOC collection plan in Table 22 is 

represented by the expected hours of detection of significant weather conditions provided 

by the weather sensors allocated to region 14 during period 1 in the original METOC 

collection plan.  An examination of Table 20 provides the loss of capability in the 

METOC collection plan due to the change in availability of the clandestine surface 

weather sensor (Table 23). 

Table 23.  Degradation of Capability in METOC Collection Plan (Sensitivity Analysis) 

Expected Hours of Detection Lost Due to Clandestine Surface 
Weather Sensor Arrival Change (Time Period 1) 

"Red" Conditions "Amber" Conditions 

(744 Hours in Period 1) Region (744 Hours in Period 1) Region 
14 14 

Operation 1 357.12 Operation 1 290.16 
Operation 2 252.96 Operation 2 401.76 
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Analytical Conclusions 

 In this chapter, several BWSSP instances were generated using VBA® and solved 

to optimality using Excel 2007® with Premium Solver® Version 9.  Each BWSSP 

instance was configured with parameter settings that depict realistic military campaign 

scenarios.  The combined objective function (16) maintained the preemptive nature of the 

original preemptive objective functions (2), (4) and (5) in all problem instances while, on 

average, solving the BWSSP in less time.  Several large instances of the BWSSP were 

optimized on a standard laptop computer, demonstrating that the BWSSP creates a 

realistic METOC collection plan within a reasonable amount of time.  Sensitivity analysis 

was conducted on a single, smaller BWSSP instance illustrating how a BWSSP solution 

can be interpreted as a METOC collection plan and how the merits of one METOC 

collection plan can be compared with those of another.  In summary, the BWSSP 

provides an efficient mathematical model that creates optimal METOC collection plans 

for any type of military campaign anywhere on the globe. 
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V. Conclusions and Future Research 

Introduction 

 This chapter concludes the research into the BWSSP.  The research conclusions 

and contributions are discussed.  Future BWSSP research areas are suggested. 

Research Conclusions and Contributions 

Though there are a wide range of sensor allocation schemes in the current 

literature, this research is the first approach that considers historical behaviors of the 

detection targets as a series of preemptive objectives to form a measure of the usefulness 

of a particular sensor placement.  In the case of the BWSSP, gridded climatology models 

and historical weather observations provide reasonable estimates of when and where 

operationally significant weather conditions are expected to occur.  Since the objective of 

the BWSSP is to maximize detection of these conditions, these estimates of past 

behaviors provide a reasonable estimate of target behaviors for the weather sensors 

allocated in the METOC collection plan.  The methodology applied to the BWSSP can be 

expanded to other resource allocation problems with multiple, preemptive objectives 

where reasonable estimates of target behaviors are known and where time, space and the 

lifespan of the allocated resource are factors for consideration. 

Additionally, this research creates the first mathematical model for a military 

METOC collection plan.  The BWSSP model, as outlined in this research, can be used to 

compare METOC collection plans for differing supplies of weather sensors, thereby 

providing the SMO and overall commander with the ability to create a cost-benefit 
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analysis for weather sensor procurement decisions.  This type of analysis was not 

possible before this research. 

Future Research 

 The BWSSP as described in this research only handles static weather sensors.  

One potential avenue of future research involves incorporating mobile weather sensors 

into the BWSSP as a means of filling in the gaps of sparse METOC collection plans.  The 

BWSSP may also be applied to any type of sensing network where target detection 

abilities change over time.  The methodology for creating the preemptive objectives of 

the BWSSP may also be applicable to other sensing networks where sensors are capable 

of performing multiple tasks, each with their own priority that changes over time. 

 Though the BWSSP can be optimized in a reasonable amount of time as a BILP, 

other approaches may bear fruit.  A Dynamic Programming approach may be a more 

computationally efficient way to tackle the BWSSP.  Also, in cases where there are a 

large number of friendly installations within a very small area, constraints 22 – 25 make 

the BWSSP much more difficult to optimize.  A heuristic approach to this scenario may 

provide a sufficiently “good” basic feasible solution to the BWSSP in far less time than 

the BILP approach in this research. 
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Appendix A. Visual Basic for Applications Documentation 

Code Description 

 The BWSSP instances in Chapter IV were created using the Microsoft® Visual 

Basic for Applications (VBA®) programming language.  This code was implemented as a 

series of macros in Microsoft Excel 2007®.  Each BWSSP instance BILP was solved to 

optimality using the Premium Solver® Version 9 Excel® add-in manufactured by 

Frontline Systems, Inc. 

Source Code 

 VBA® is an object-oriented programming language embedded in the Microsoft 

Office 2007® suite.  In VBA®, a statement preceded by a ‘ indicates a comment.  The 

subroutines below create instances of the BWSSP based on user input, pass the BWSSP 

instance to Premium Solver® Version 9 and then store the optimal solution.  Also 

included are VBA® subroutines that implement Ignizio and Thomas (1984) as well as the 

Improved Golden Section method developed by Den Boef and Den Hertog (2007).   

BWSSP Test Subroutine 

Option Base 1 
Option Explicit 
 
Sub Test() 
' This subroutine runs several test instances of the BWSSP 
 
Application.Calculation = xlCalculationManual       ' Turn off automatic calculation 
 
Dim LOOP_COUNTER As Long        ' Loop counter 
Dim StartTime As Date           ' Start time of the current solver run 
Dim ProbStart As Date           ' Start time of the current problem instance 
Dim M As Long                   ' Number of regions 
Dim N As Long                   ' Number of sensor types 
Dim T As Long                   ' Number of total periods 
Dim k As Long                   ' Loop counter 
Dim j As Long                   ' Loop counter 
 
LOOP_COUNTER = 4                ' Initialize loop counter 
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' Clear old problem data 
Do While Trim(Sheets("Campaign").Range("AF" & CStr(LOOP_COUNTER))) <> "" 
   LOOP_COUNTER = LOOP_COUNTER + 1 
Loop 
 
Do While Trim(Sheets("Campaign").Range("A" & CStr(LOOP_COUNTER))) <> "" 
' Loop through all problem instances 
    
   Sheets("Campaign").Range("R1:AF1").Rows(LOOP_COUNTER).ClearContents 
   Application.ScreenUpdating = False                  ' Turn of screen updating (code runs faster) 
    
   ' Record total number of locations 
   M = Sheets("Campaign").Range("F" & CStr(LOOP_COUNTER)) 
   ' Record total number of sensor types 
   N = Application.WorksheetFunction.CountIf( _ 
      Sheets("Campaign").Range("J" & CStr(LOOP_COUNTER) & ":N" & CStr(LOOP_COUNTER)), ">0") 
   ' Record total number of timeperiods 
   T = Sheets("Campaign").Range("H" & CStr(LOOP_COUNTER)) 
    
   Call DeleteSheets                                   ' Delete old problem instance sheets 
    
   Application.Calculation = xlCalculationManual       ' Turn off automatic calculation 
   ProbStart = Now()                                   ' Start the clock on the problem instance 
    
   ' Create a matrix of distances between locations 
   Call Distance_Matrix(M, Sheets("Campaign").Range("G" & CStr(LOOP_COUNTER)), True) 
    
   ' Build randomized climate data based ont he scenario and format the data for the BILP 
   Call Build_Random_Instance(Sheets("Campaign").Range("C" & CStr(LOOP_COUNTER)), _ 
      Sheets("Campaign").Range("B" & CStr(LOOP_COUNTER)), Sheets("Campaign").Range("E" & CStr(LOOP_COUNTER)), M, _ 
      T, Sheets("Campaign").Range("I" & CStr(LOOP_COUNTER)), _ 
      Sheets("Campaign").Range("J" & CStr(LOOP_COUNTER)), Sheets("Campaign").Range("K" & CStr(LOOP_COUNTER)), _ 
      Sheets("Campaign").Range("L" & CStr(LOOP_COUNTER)), Sheets("Campaign").Range("M" & CStr(LOOP_COUNTER)), _ 
      Sheets("Campaign").Range("N" & CStr(LOOP_COUNTER)), Sheets("Campaign").Range("O" & CStr(LOOP_COUNTER)), _ 
      Sheets("Campaign").Range("P" & CStr(LOOP_COUNTER)), Sheets("Campaign").Range("Q" & CStr(LOOP_COUNTER))) 
    
   ' Create binary matrix of deployability values 
   Call A_Matrix(N, T) 
 
   ' Create matrix of deployability * distance to nearest base values (thrid obj function coefficients) 
   Call H_Matrix(N, T) 
    
   ' Start the clock for the combined objective function solve time 
   StartTime = Now() 
   ' Create the combined objective function for the bottom two obj functions 
   Call IgnizioThomas("b_nm", "h_nm", "v_nm", N, T) 
   ' Record the weight 
   Sheets("Campaign").Range("AE" & CStr(LOOP_COUNTER)) = Sheets("b_nm1").Range("B2").Cells(1, (N + 1) * 2) 
    
   ' Take the new combined objective function and merge it with the highest priority obj function 
   Call IgnizioThomas("c_nm", "b_nm", "u_nm", N, T) 
    
   Application.Calculation = xlCalculationManual 
    
   ' Record the weight 
   Sheets("Campaign").Range("AF" & CStr(LOOP_COUNTER)) = Sheets("c_nm1").Range("B2").Cells(1, (N + 1) * 2) 
    
   ' Record the time it takes to make the combined objective functions 
   Sheets("Campaign").Range("Y" & CStr(LOOP_COUNTER)) = Now() - StartTime 
      
   ' Update the screen to prevent Excel from crashing 
   Application.ScreenUpdating = True 
   Sheets("Campaign").Select 
   Application.ScreenUpdating = False 
   Application.DisplayAlerts = False 
   ' Formulate the constraints and solve the combined BILP 
   Call BWSSP_BILP(N, T, LOOP_COUNTER, False, 0, "$B$3") 
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   ' Solve the preemptive BILP for just the u values 
   Call BWSSP_BILP(N, T, LOOP_COUNTER, True, 0, "$D$3") 
    
   ' Solve the preemptive BILP for just the v values 
   Call BWSSP_BILP(N, T, LOOP_COUNTER, True, 1, "$F$3") 
    
   ' Solve the preemptive BILP for just the h values 
   If Sheets("Campaign").Range("U" & CStr(LOOP_COUNTER)) > 0 Then 
      Call BWSSP_BILP(N, T, LOOP_COUNTER, True, 2, "$H$3") 
   Else 
      Sheets("Campaign").Range("X" & CStr(LOOP_COUNTER)) = 0 
   End If 
    
   Application.Calculation = xlCalculationManual 
      
   ' Loop to next problem instance 
   Sheets("Campaign").Select 
   Sheets("Campaign").Range("AB" & CStr(LOOP_COUNTER)).Select 
   Sheets("Campaign").Range("AB" & CStr(LOOP_COUNTER)) = Now() - ProbStart 
   ActiveWorkbook.Save 
   LOOP_COUNTER = LOOP_COUNTER + 1 
   Application.ScreenUpdating = True 
Loop 
 
Application.Calculation = xlCalculationAutomatic       ' Turn off automatic calculation 
Application.DisplayAlerts = True                       ' Restore alerts 
 
End Sub 
 
Delete BWSSP Instance Sheets Subroutine 

Sub DeleteSheets() 
' This algorithm deletes problem instance worksheets to make room for new problem runs 
 
With Application 
   .Calculation = xlCalculationManual 
   .DisplayAlerts = False 
   .ScreenUpdating = False 
End With 
 
Dim i As Long 
 
' Delete all sheets except for the control sheet 
i = 1 
 
Do While i <= ThisWorkbook.Sheets.Count 
   If Not Sheets(i).Name = "Campaign" Then 
      Sheets(i).Delete 
   Else 
      i = i + 1 
   End If 
Loop 
 
With Application 
   .Calculation = xlCalculationAutomatic 
   .DisplayAlerts = True 
   .ScreenUpdating = True 
End With 
 
End Sub 
 
BWSSP Random Instance Subroutine 

Sub Build_Random_Instance(Campaign As String, Climate As String, TotalOps As Long, M As Long, T As Long, _ 
NumBase As Long, SFCLifespan As Long, BaseSFCLifespan As Long, BaseUALifespan As Long, _ 
UALifespan As Long, RadarLifespan As Long, MaxS As Long, UARange As Long, RadarRange As Long) 
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' This subroutine creates a random instance of the BWSSP 
' It creates the list of bases and values for delta, s, u, and v 
 
With Application 
   .DisplayAlerts = False 
   .ScreenUpdating = False 
   .Calculation = xlCalculationManual 
End With 
 
Dim Array1() As Variant     ' Temporary array 
Dim Array2() As Variant     ' Temporary array 
Dim N As Long               ' Number of sensor types 
Dim S As Range              ' Range of sensor supply numbers 
Dim u As Range              ' Range of u objective function coefficients Equation (2) 
Dim v As Range              ' Range of v objective function coefficients Equation (4) 
Dim A As Range              ' Range of deployability parameters 
Dim r As Range              ' r_onmt values 
Dim y As Range              ' y_onmt values 
Dim D As Range              ' Distance matrix 
Dim Bases As Range          ' List of friendly installations in this isntance 
Dim Delta As Range          ' Sensor effective ranges/minimum spacing (in km) 
Dim i As Long               ' Loop counter 
Dim j As Long               ' Loop counter 
Dim k As Long               ' Loop counter 
Dim p As Long               ' Loop counter 
Dim q As Long               ' Loop counter 
Dim o As Long               ' Loop counter 
Dim g As Long               ' Loop counter 
Dim Lifespan() As Long      ' Array of sensor life spans (in time periods) 
 
 
' Count the number of sensor types 
N = 0 
If SFCLifespan > 0 Then N = N + 1 
If BaseSFCLifespan > 0 Then N = N + 1 
If BaseUALifespan > 0 Then N = N + 1 
If UALifespan > 0 Then N = N + 1 
If RadarLifespan > 0 Then N = N + 1 
 
Set D = Sheets("d").Range("B2:" & Range("B2").Cells(M, M).Address) 
 
' Remove old problem sheets, if there are any 
i = 1 
Do While i <= ThisWorkbook.Sheets.Count 
   If Not Sheets(i).Name = "Campaign" And Not Sheets(i).Name = "d" Then 
      Sheets(i).Delete 
   Else 
      i = i + 1 
   End If 
Loop 
 
' Create random supply of sensors 
Sheets.Add.Name = "s" 
Set S = Sheets("s").Range("C2:" & Range("C2").Cells(N, T).Address) 
S(1, 1).Offset(-1, -2) = "Sensor Type" 
' Create sensor detection ranges 
Sheets.Add.Name = "delta" 
Set Delta = Sheets("delta").Range("A2:" & Range("B2").Cells(N, 1).Address) 
 
For i = 1 To N Step 1 
   S(i, 1).Offset(0, -1) = "n = " & CStr(i) 
   For j = 1 To T Step 1 
      If i = 1 Then S(i, j).Offset(-1, 0) = "t = " & CStr(j) 
      S(i, j) = Round(MaxS * Rnd(), 0) 
   Next j 
Next i 
 
k = N 
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If RadarLifespan > 0 Then 
' Code the type of this sensor as a radar 
   S(k, 1).Offset(0, -2) = 1 
' Add a detection range 
   Delta(k, 1) = "n = " & CStr(k) 
   Delta(k, 2) = RadarRange 
   k = k - 1 
End If 
 
If k < 1 Then k = 1 
 
If BaseUALifespan > 0 Then 
' Code the sensor type as base-based balloon 
   S(k, 1).Offset(0, -2) = 4 
' Add a detection range 
   Delta(k, 1) = "n = " & CStr(k) 
   Delta(k, 2) = UARange 
   k = k - 1 
End If 
 
If k < 1 Then k = 1 
 
If UALifespan > 0 Then 
' Code the sensor type as non-base balloon 
   S(k, 1).Offset(0, -2) = 6 
' Add a detection range 
   Delta(k, 1) = "n = " & CStr(k) 
   Delta(k, 2) = 0 
   k = k - 1 
End If 
 
If BaseSFCLifespan > 0 And k >= 1 Then 
' Code the sensor type as base surface sensor 
   S(k, 1).Offset(0, -2) = 3 
   ' Add a detection range 
   Delta(k, 1) = "n = " & CStr(k) 
   Delta(k, 2) = 0 
   k = k - 1 
End If 
 
If SFCLifespan > 0 And k >= 1 Then 
 
For i = k To 1 Step -1 
' Code the sensor type as non-base surface sensor 
   S(i, 1).Offset(0, -2) = 7 
' Add a detection range 
   Delta(i, 1) = "n = " & CStr(i) 
   Delta(i, 2) = 0 
Next i 
 
End If 
 
' Randomly insert bases 
Sheets.Add.Name = "Bases" 
Set Bases = Sheets("Bases").Range("A1:" & Range("A1").Cells(NumBase + 1, N + 5).Address) 
Bases(1, 1) = "Lat" 
Bases(1, 2) = "Lon" 
Bases(1, 3) = "m" 
Bases(1, 4) = "Name" 
Bases(1, 5) = "Start Period" 
Range(Bases(1, 6), Bases(1, 5 + N)).Value = Application.Transpose(S.Columns(1).Offset(0, -1)) 
For k = 2 To NumBase + 1 Step 1 
   Bases(k, 3) = Round(Rnd() * (M - 1) + 1, 0) 
   Bases(k, 4) = "Base " & CStr(k - 1) 
   If Campaign = "Humanitarian Assistance" Then 
      Bases(k, 5) = 1 
   Else 
      Bases(k, 5) = Round(Rnd() * (T - 1) + 1, 0) 
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   End If 
   Do While Application.WorksheetFunction.CountIf(Bases.Columns(3), "=" & CStr(Bases(k, 3).Value)) > 1 
      Bases(k, 3) = Round(Rnd() * (M - 1) + 1, 0) 
   Loop 
   Range(Bases(2, 6), Bases(NumBase + 1, 5 + N)).Value = 0 
Next k 
 
 
Sheets.Add.Name = "Rules" 
p = 0 
' Create operations lists and respective weights 
For k = 1 To T Step 1 
   Sheets("Rules").Range("A1").Cells(1, 2 * k - 1) = "Phase " & CStr(k) 
   Sheets("Rules").Range("A2").Cells(1, 2 * k - 1) = "Weight" 
   Sheets("Rules").Range("A2").Cells(1, 2 * k) = "Operation" 
   j = Round(Rnd() * (TotalOps - 1), 0) + 1 
   For i = 1 To j Step 1 
      Sheets("Rules").Range("A3").Cells(i, 2 * k) = Round(Rnd() * (TotalOps - 1), 0) + 1 
      Do While Application.WorksheetFunction.CountIf(Sheets("Rules").Columns("A").Offset(0, 2 * k - 1), "=" & _ 
         CStr(Sheets("Rules").Range("A3").Cells(i, 2 * k))) > 1 
         Sheets("Rules").Range("A3").Cells(i, 2 * k) = Round(Rnd() * (TotalOps - 1), 0) + 1 
      Loop 
   Next i 
   If Application.WorksheetFunction.Count(Sheets("Rules").Columns("A").Offset(0, 2 * k - 1)) > p Then _ 
       p = Application.WorksheetFunction.Count(Sheets("Rules").Columns("A").Offset(0, 2 * k - 1)) 
Next k 
 
' Add the weights to the operations lists 
For k = 1 To T Step 1 
   i = 1 
   q = p 
   Do While Trim(Sheets("Rules").Range("A3").Cells(i, 2 * k)) <> "" 
      Sheets("Rules").Range("A3").Cells(i, 2 * k - 1) = q 
      q = q - 1 
      i = i + 1 
   Loop 
Next k 
 
' Create randomized climatology statistics 
For i = 1 To TotalOps Step 1 
   Sheets.Add.Name = "r_" & CStr(i) & "2mt" 
   Sheets("r_" & CStr(i) & "2mt").Range("A1") = "Region" 
   Sheets("r_" & CStr(i) & "2mt").Range("B1") = "Lat" 
   Sheets("r_" & CStr(i) & "2mt").Range("C1") = "Lon" 
   D.Columns(1).Offset(0, -1).Copy Sheets("r_" & CStr(i) & "2mt").Range("A2:A" & CStr(M + 1)) 
   ReDim Array1(M, 12) 
   For k = 1 To 12 Step 1 
      Sheets("r_" & CStr(i) & "2mt").Range("D1").Cells(1, k) = k 
      For j = 1 To M Step 1 
         If Climate = "Harsh" Then 
            Array1(j, k) = Round(Rnd() * 25, 0) + 25 
         ElseIf Climate = "Moderate" Then 
            Array1(j, k) = Round(Rnd() * 25, 0) 
         Else 
            Array1(j, k) = Round(Rnd() * 15, 0) 
         End If 
      Next j 
   Next k 
   Sheets("r_" & CStr(i) & "2mt").Range("D2:O" & CStr(M + 1)) = Array1 
   Erase Array1 
   Sheets("r_" & CStr(i) & "2mt").Copy after:=Sheets(ThisWorkbook.Sheets.Count) 
   ActiveSheet.Name = "r_" & CStr(i) & "4mt" 
   Sheets("r_" & CStr(i) & "2mt").Copy after:=Sheets(ThisWorkbook.Sheets.Count) 
   ActiveSheet.Name = "r_" & CStr(i) & "5mt" 
   Sheets("r_" & CStr(i) & "2mt").Copy after:=Sheets(ThisWorkbook.Sheets.Count) 
   ActiveSheet.Name = "r_" & CStr(i) & "1mt" 
   ReDim Array1(M, 12) 
   For k = 1 To 12 Step 1 
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      For j = 1 To M Step 1 
         Array1(j, k) = Round(Sheets("r_" & CStr(i) & "1mt").Range("D2").Cells(j, k) * 0.9, 0) 
      Next j 
   Next k 
   Sheets("r_" & CStr(i) & "1mt").Range("D2:O" & CStr(M + 1)) = Array1 
   Erase Array1 
   Sheets("r_" & CStr(i) & "1mt").Copy after:=Sheets(ThisWorkbook.Sheets.Count) 
   ActiveSheet.Name = "r_" & CStr(i) & "3mt" 
   For p = 1 To N Step 1 
      Sheets("r_" & CStr(i) & CStr(p) & "mt").Copy after:=Sheets(ThisWorkbook.Sheets.Count) 
      ActiveSheet.Name = "y_" & CStr(i) & CStr(p) & "mt" 
      ReDim Array1(M, 12) 
      For k = 1 To 12 Step 1 
         For j = 1 To M Step 1 
            If Climate = "Harsh" Then 
               Array1(j, k) = _ 
                  Round(Rnd() * (100 - Sheets("r_" & CStr(i) & CStr(p) & "mt").Range("D2").Cells(j, k)), 0) 
            ElseIf Climate = "Moderate" Then 
               Array1(j, k) = _ 
                  Round(Rnd() * (50 - Sheets("r_" & CStr(i) & CStr(p) & "mt").Range("D2").Cells(j, k)), 0) 
            Else 
               Array1(j, k) = _ 
                  Round(Rnd() * (15 - Sheets("r_" & CStr(i) & CStr(p) & "mt").Range("D2").Cells(j, k)), 0) 
            End If 
         Next j 
      Next k 
      Sheets("y_" & CStr(i) & CStr(p) & "mt").Range("D2:O" & CStr(M + 1)).Value = Array1 
      Erase Array1 
   Next p 
Next i 
 
' Build the sensor life span array 
i = 1 
ReDim Lifespan(N) 
If SFCLifespan > 0 Then 
   Lifespan(i) = SFCLifespan 
   i = i + 1 
End If 
If BaseSFCLifespan > 0 Then 
   Lifespan(i) = BaseSFCLifespan 
   i = i + 1 
End If 
If BaseUALifespan > 0 Then 
   Lifespan(i) = BaseUALifespan 
   i = i + 1 
End If 
If UALifespan > 0 Then 
   Lifespan(i) = UALifespan 
   i = i + 1 
End If 
If RadarLifespan > 0 Then 
   Lifespan(i) = RadarLifespan 
   i = i + 1 
End If 
 
' Create random u values from the climatology "statistics" 
For k = 1 To T Step 1 
   Sheets.Add.Name = "u_nm" & CStr(k) 
   For j = 1 To N Step 1 
      Set u = Sheets("u_nm" & CStr(k)).Range("B2:" & Range("B2").Cells(M, 2).Address).Offset(0, 2 * (j - 1)) 
      u(1, 2).Offset(-1, 0) = "n = " & CStr(j) 
      u(1, 1).Offset(-1, 0) = "m" 
      u.Columns(2) = 0 
      g = k + Lifespan(j) 
      If g > T Then g = T 
      q = k 
      Do While q > 12 
         q = q - 12 
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      Loop 
      For p = k To g Step 1 
      ' Loop through the lifespan of this sensor 
         o = 1 
         ' Loop through operations in this phase 
         Do While Trim(Sheets("Rules").Range("A3").Cells(o, 2 * p)) <> "" 
            Set r = Sheets("r_" & CStr(o) & CStr(j) & "mt").Range("D2:D" & CStr(M + 1)).Offset(0, q - 1) 
            Array1 = u.Columns(2).Value 
            Array2 = Application.WorksheetFunction.MMult(r, Sheets("Rules").Range("A3").Cells(o, (2 * p) - 1)) 
            u.Columns(2).Value = MAdd(Array1, Array2) 
            o = o + 1 
         Loop 
         q = q + 1 
         If q = 13 Then q = 1 
      Next p 
      If Delta(j, 2) > 0 Then 
         ReDim Array1(M, 1) 
         For i = 1 To M Step 1 
            Array1(i, 1) = Application.WorksheetFunction.SumIf(D.Columns(i), "<=" & CStr(Delta(j, 2)), u.Columns(2)) 
         Next i 
         u.Columns(2).Value = Array1 
         Erase Array1 
      End If 
      D.Columns(1).Offset(0, -1).Copy u.Columns(1) 
   Next j 
Next k 
 
' Create random v values from the climatology "statistics" 
For k = 1 To T Step 1 
   Sheets.Add.Name = "v_nm" & CStr(k) 
   For j = 1 To N Step 1 
      Set v = Sheets("v_nm" & CStr(k)).Range("B2:" & Range("B2").Cells(M, 2).Address).Offset(0, 2 * (j - 1)) 
      v(1, 2).Offset(-1, 0) = "n = " & CStr(j) 
      v(1, 1).Offset(-1, 0) = "m" 
      v.Columns(2) = 0 
      g = k + Lifespan(j) 
      If g > T Then g = T 
      q = k 
      Do While q > 12 
         q = q - 12 
      Loop 
      For p = k To g Step 1 
      ' Loop through the lifespan of this sensor 
         o = 1 
         ' Loop through operations in this phase 
         Do While Trim(Sheets("Rules").Range("A3").Cells(o, 2 * p)) <> "" 
            Set y = Sheets("y_" & CStr(o) & CStr(j) & "mt").Range("D2:D" & CStr(M + 1)).Offset(0, q - 1) 
            Array1 = v.Columns(2).Value 
            Array2 = Application.WorksheetFunction.MMult(y, Sheets("Rules").Range("A3").Cells(o, (2 * p) - 1)) 
            v.Columns(2).Value = MAdd(Array1, Array2) 
            o = o + 1 
         Loop 
         q = q + 1 
         If q = 13 Then q = 1 
      Next p 
      If Delta(j, 2) > 0 And S(j, 1).Offset(0, -2) = 1 Then 
         ReDim Array1(M, 1) 
         For i = 1 To M Step 1 
            Array1(i, 1) = Application.WorksheetFunction.SumIf(D.Columns(i), "<=" & CStr(Delta(j, 2)), v.Columns(2)) 
         Next i 
         v.Columns(2).Value = Array1 
         Erase Array1 
      End If 
      D.Columns(1).Offset(0, -1).Copy v.Columns(1) 
   Next j 
Next k 
 
i = 1 
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' Remove the original climatology values (for speed in solving) 
Do While i <= ThisWorkbook.Sheets.Count 
   If Mid(Sheets(i).Name, 1, 2) = "r_" Or Mid(Sheets(i).Name, 1, 2) = "y_" Then 
      Sheets(i).Delete 
   Else 
      i = i + 1 
   End If 
Loop 
 
' Erase arrays 
Erase Array1, Array2 
 
Sheets("Campaign").Select 
With Application 
   .ScreenUpdating = True 
   .DisplayAlerts = True 
   .Calculation = xlCalculationAutomatic 
End With 
 
End Sub 
 
Distance Matrix Subroutine 

Sub Distance_Matrix(M As Long, ModelRes As Long, IsRandom As Boolean) 
' This subroutine generates a distance matrix for the locations on the u variable pages 
 
Application.Calculation = xlCalculationManual 
Application.ScreenUpdating = False 
 
Dim Distance As Range 
Dim i As Long 
Dim j As Long 
Dim k As Long 
Dim D() As Long 
ReDim D(M, M) 
Dim Loc() As Long 
ReDim Loc(M) 
 
' Remove old problem sheets, if there are any 
On Error Resume Next 
Sheets("d").Delete 
 
' Create a distance matrix 
Sheets.Add.Name = "d" 
Set Distance = Sheets("d").Range("B2:" & Range("B2").Cells(M, M).Address) 
Distance(1, 1).Offset(-1, -1) = "m, q" 
 
Application.ScreenUpdating = True 
Sheets("Campaign").Select 
Application.ScreenUpdating = False 
 
For i = 1 To M Step 1 
   Loc(i) = i 
   If IsRandom Then 
   ' If we are creating a random distance matrix 
      D(i, i) = 0 
      k = 1 
      For j = i + 1 To M Step 1 
         D(i, j) = Round(((((j - i) Mod CLng(M ^ 0.5)) * ModelRes) ^ 2 + (CLng((j - i - 1) / CLng(M ^ 0.5)) * ModelRes) ^ 2) ^ 0.5, 0) 
         D(j, i) = Round(((((j - i) Mod CLng(M ^ 0.5)) * ModelRes) ^ 2 + (CLng((j - i - 1) / CLng(M ^ 0.5)) * ModelRes) ^ 2) ^ 0.5, 0) 
      Next j 
   End If 
   Application.ScreenUpdating = True 
   Sheets("Campaign").Select 
   Application.ScreenUpdating = False 
Next i 
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Distance.Columns(1).Offset(0, -1).Value = Application.Transpose(Loc) 
Distance.Rows(1).Offset(-1, 0).Value = Loc 
Distance = D 
Erase D 
Erase Loc 
Sheets("d").Columns("A").Cells.Font.Bold = True 
Sheets("d").Rows("1").Cells.Font.Bold = True 
 
Application.Calculation = xlCalculationAutomatic 
Application.ScreenUpdating = True 
 
End Sub 
 

‘A’ Matrix Subroutine 

Sub A_Matrix(N As Long, T As Long) 
' This subroutine generates the a (deployability) matrix for the locations on the u variable pages 
 
Application.Calculation = xlCalculationManual 
Application.ScreenUpdating = False 
 
Dim i As Long 
Dim j As Long 
Dim k As Long 
Dim p As Long 
Dim A As Range 
Dim S As Range 
Dim Bases As Range 
 
' Remove old problem sheets, if there are any 
i = 1 
Do While i <= ThisWorkbook.Sheets.Count 
   If Mid(Sheets(i).Name, 1, 2) = "a_" Then 
      Sheets(i).Delete 
   Else 
      i = i + 1 
   End If 
Loop 
 
i = Application.WorksheetFunction.Count(Sheets("Bases").Columns("C")) 
Set Bases = Sheets("Bases").Range("A2:" & Range("A2").Cells(i, 5 + N).Address) 
 
Set S = Sheets("s").Range("C2:" & Range("C2").Cells(N, T).Address) 
 
For k = 1 To T Step 1 
   Sheets("u_nm" & CStr(k)).Copy after:=Sheets(ThisWorkbook.Sheets.Count) 
   ActiveSheet.Name = "a_nm" & CStr(k) 
   For j = 1 To N Step 1 
      Set A = Sheets("a_nm" & CStr(k)).Range("B2:C" & CStr(1 + Application.WorksheetFunction.Count( _ 
         Sheets("a_nm" & CStr(k)).Columns("B").Offset(0, 2 * (j - 1))))).Offset(0, 2 * (j - 1)) 
      A.Columns(2) = 1 
      ' If this sensor type is base-only and it is not a base, we make the a value zero 
      If CLng(S(j, 1).Offset(0, -2)) <= 4 Then 
         For i = 1 To A.Rows.Count Step 1 
            If Application.WorksheetFunction.CountIf(Bases.Columns(3), "=" & CStr(A(i, 1))) = 0 Then 
               A.Rows(i).Cells.ClearContents 
               Sheets("u_nm" & CStr(k)).Range(A.Rows(i).Address).Cells.ClearContents 
               Sheets("v_nm" & CStr(k)).Range(A.Rows(i).Address).Cells.ClearContents 
            Else 
               p = 1 
               ' Find the base 
               Do While Bases(p, 3) <> A(i, 1) And p < Bases.Rows.Count 
                  p = p + 1 
               Loop 
               ' If the base doesn't exist yet or it is marked as undeployable for this sensor type, make a zero 
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               If Bases(p, 3) = A(i, 1) And _ 
                  (Bases(p, 5) > k Or Bases(p, j + 6) < 0) Then 
                  A.Rows(i).Cells.ClearContents 
                  Sheets("u_nm" & CStr(k)).Range(A.Rows(i).Address).Cells.ClearContents 
                  Sheets("v_nm" & CStr(k)).Range(A.Rows(i).Address).Cells.ClearContents 
               End If 
            End If 
         Next i 
      End If 
      ' Sort out deleted locations and sensors where a = 0 
      With ActiveWorkbook.Worksheets("u_nm" & CStr(k)).Sort 
         With .SortFields 
            .Clear 
            .Add Key:=Range(A.Columns(1).Address), SortOn:=xlSortOnValues, _ 
               Order:=xlAscending, DataOption:=xlSortNormal 
         End With 
         .SetRange Range(A.Address) 
         .Header = xlNo 
         .MatchCase = False 
         .Orientation = xlTopToBottom 
         .SortMethod = xlPinYin 
         .Apply 
         .SortFields.Clear 
      End With 
      With ActiveWorkbook.Worksheets("v_nm" & CStr(k)).Sort 
         With .SortFields 
            .Clear 
            .Add Key:=Range(A.Columns(1).Address), SortOn:=xlSortOnValues, _ 
               Order:=xlAscending, DataOption:=xlSortNormal 
         End With 
         .SetRange Range(A.Address) 
         .Header = xlNo 
         .MatchCase = False 
         .Orientation = xlTopToBottom 
         .SortMethod = xlPinYin 
         .Apply 
         .SortFields.Clear 
      End With 
      With ActiveWorkbook.Worksheets("a_nm" & CStr(k)).Sort 
         With .SortFields 
            .Clear 
            .Add Key:=Range(A.Columns(1).Address), SortOn:=xlSortOnValues, _ 
               Order:=xlAscending, DataOption:=xlSortNormal 
         End With 
         .SetRange Range(A.Address) 
         .Header = xlNo 
         .MatchCase = False 
         .Orientation = xlTopToBottom 
         .SortMethod = xlPinYin 
         .Apply 
         .SortFields.Clear 
      End With 
   Next j 
Next k 
 
Application.Calculation = xlCalculationAutomatic 
Sheets("Campaign").Select 
Application.ScreenUpdating = True 
End Sub 
 

‘H’ Matrix Subroutine 

 
Sub H_Matrix(N As Long, T As Long) 
' This subroutine generates the h_mt*a_mnt objective function coefficients 
 
Application.Calculation = xlCalculationManual 
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Application.ScreenUpdating = False 
 
Dim i As Long 
Dim j As Long 
Dim k As Long 
Dim p As Long 
Dim q As Long 
Dim g As Long 
Dim h() As Long 
Dim HRange As Range 
Dim S As Range 
Dim D As Range 
Dim Bases As Range 
 
' Remove old problem sheets, if there are any 
i = 1 
Do While i <= ThisWorkbook.Sheets.Count 
   If Mid(Sheets(i).Name, 1, 2) = "h_" Then 
      Sheets(i).Delete 
   Else 
      i = i + 1 
   End If 
Loop 
 
' Set the distance matrix 
i = Application.WorksheetFunction.Count(Sheets("d").Columns("A")) 
Set D = Sheets("d").Range("B2:" & Range("B2").Cells(i, i).Address) 
 
' Set the base list 
i = Application.WorksheetFunction.Count(Sheets("Bases").Columns("C")) 
Set Bases = Sheets("Bases").Range("A2:" & Range("A2").Cells(i, 5 + N).Address) 
 
Set S = Sheets("s").Range("C2:" & Range("C2").Cells(N, T).Address) 
 
For k = 1 To T Step 1 
   Sheets("a_nm" & CStr(k)).Copy after:=Sheets(ThisWorkbook.Sheets.Count) 
   ActiveSheet.Name = "h_nm" & CStr(k) 
   For j = 1 To N Step 1 
      Set HRange = Sheets("h_nm" & CStr(k)).Range("B2:C" & CStr(1 + Application.WorksheetFunction.Count( _ 
         Sheets("h_nm" & CStr(k)).Columns("B").Offset(0, 2 * (j - 1))))).Offset(0, 2 * (j - 1)) 
      ReDim h(HRange.Rows.Count, 1) 
      ' If this sensor type is base-only, we make the h_mt value zero 
      If CLng(S(j, 1).Offset(0, -2)) > 4 Then 
         For i = 1 To HRange.Rows.Count Step 1 
            If Application.WorksheetFunction.CountIf(Bases.Columns(3), "=" & CStr(HRange(i, 1).Value)) = 0 And _ 
               HRange(i, 2) > 0 Then 
               p = HRange(i, 1) 
               For q = 1 To Bases.Rows.Count Step 1 
                  ' If the base exists during the period and it is closer, save the distance 
                  If (D(p, Bases(q, 3)) < h(i, 1) Or h(i, 1) = 0) And Bases(q, 5) <= k Then h(i, 1) = D(p, Bases(q, 3)) 
               Next q 
            End If 
         Next i 
         HRange.Columns(2) = h 
      Else 
         HRange.Columns(2) = 0 
      End If 
   Next j 
Next k 
 
Sheets("Campaign").Select 
Application.ScreenUpdating = True 
 
End Sub 
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BWSSP BILP Formulation Subroutine 

Sub BWSSP_BILP(N As Long, T As Long, LOOP_COUNTER As Long, IsPreEmp As Boolean, NumPreEmp As Integer, _ 
MaxCell As String) 

' This subroutine creates the constraints and solves the combined BWSSP BILP using premium solver 9 
 
With Application 
   .Calculation = xlCalculationManual 
   .ScreenUpdating = False 
   .DisplayAlerts = False 
End With 
 
Dim StartTime As Date           ' Start time of the solver 
Dim i As Long                   ' Loop counter 
Dim j As Long                   ' Loop counter 
Dim k As Long                   ' Loop counter 
Dim p As Long                   ' Loop counter 
Dim q As Long                   ' Loop counter 
Dim g As Long                   ' Loop counter 
Dim w As Long                   ' Loop counter 
Dim y As Long                   ' Loop counter 
Dim M As Long                   ' Number of locations for this sensor type at this time 
Dim x As Range                  ' Range containing decision variables 
Dim c As Range                  ' Range containing c obj function coefficients (Equation (16)) 
Dim u As Range                  ' Range containing u obj function coefficients (Equation (2)) 
Dim S As Range                  ' Available sensor amounts 
Dim Delta As Range              ' Sensor effective ranges/minimum spacing 
Dim D As Range                  ' Distance matrix 
Dim cx As String                ' Excel equation for Equation (16) 
Dim ux As String                ' Excel equation for Equation (2) 
Dim vx As String                ' Excel equation for Equation (4) 
Dim hx As String                ' Excel equation for Equation (5) 
Dim Constraint As Range         ' Objective function constraints 
Dim SetConstraint As Boolean    ' True if constraints are set, false otherwise 
SetConstraint = False 
 
If Not IsPreEmp Then 
   On Error Resume Next 
   Sheets("ObjFunc").Delete 
   On Error Resume Next 
   Sheets("cx").Delete 
   On Error Resume Next 
   Sheets("ux").Delete 
   On Error Resume Next 
   Sheets("vx").Delete 
   On Error Resume Next 
   Sheets("hx").Delete 
   ' Remove old problem sheets, if there are any 
   i = 1 
   Do While i <= ThisWorkbook.Sheets.Count 
      If Mid(Sheets(i).Name, 1, 2) = "x_" Then 
         Sheets(i).Delete 
      Else 
         i = i + 1 
      End If 
   Loop 
   ' Create the sheet for the IP solution 
   Sheets.Add.Name = "ObjFunc" 
End If 
 
cx = "" 
ux = "" 
vx = "" 
hx = "" 
 
' Set the distance matrix 
i = Application.WorksheetFunction.Count(Sheets("d").Columns("A")) 
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Set D = Sheets("d").Range("B2:" & Range("B2").Cells(i, i).Address) 
 
' Define the S and delta value 
Set S = Sheets("s").Range("C2:" & Range("C2").Cells(N, T).Address) 
Set Delta = Sheets("delta").Range("A2:" & Range("B2").Cells(N, 1).Address) 
 
' Set the solver parameters 
Sheets("ObjFunc").Select 
Sheets("Objfunc").Range("A1") = LOOP_COUNTER - 3 
Sheets("Objfunc").Range("B1") = Application.WorksheetFunction.Count(Sheets("Campaign").Columns("A")) 
SolverReset                 ' Reset all solver parameters 
SolverOptions AssumeLinear:=True, Scaling:=True, BypassReports:=True 
SolverModel Interpreter:=1, CheckFor:=4, SolveTransformed:=True, ShowTransformations:=False, _ 
   ShowExceptions:=False, DesiredModel:=1, Interactive:=False, UsePsiFunctions:=True, Engines:=1, ReqSmooth:=True, _ 
   FastSetup:=True, Sparse:=True, ActiveOnly:=False 
SolverLPOptions Scaling:=True, AssumeNonNeg:=True, BypassReports:=True, Derivatives:=1, Presolve:=True 
 
' Create decision variables and multiply them by the combined objective function coefficients 
For k = 1 To T Step 1 
   If Not IsPreEmp Then 
      Sheets("u_nm" & CStr(k)).Copy after:=Sheets(ThisWorkbook.Sheets.Count) 
      ActiveSheet.Name = "x_nm" & CStr(k) 
      Sheets("x_nm" & CStr(k)).Copy after:=Sheets(ThisWorkbook.Sheets.Count) 
      ActiveSheet.Name = "cx" & CStr(k) 
      Sheets("cx" & CStr(k)).Copy after:=Sheets(ThisWorkbook.Sheets.Count) 
      ActiveSheet.Name = "ux" & CStr(k) 
      Sheets("x_nm" & CStr(k)).Copy after:=Sheets(ThisWorkbook.Sheets.Count) 
      ActiveSheet.Name = "vx" & CStr(k) 
      Sheets("x_nm" & CStr(k)).Copy after:=Sheets(ThisWorkbook.Sheets.Count) 
      ActiveSheet.Name = "hx" & CStr(k) 
       
      ' Set the objective function coefficients to their fixed values 
      Sheets("u_nm" & CStr(k)).Select 
      Cells.Select 
      Selection.Copy 
      Selection.PasteSpecial Paste:=xlPasteValues, Operation:=xlNone, SkipBlanks _ 
         :=False, Transpose:=False 
      Sheets("h_nm" & CStr(k)).Select 
      Cells.Select 
      Selection.Copy 
      Selection.PasteSpecial Paste:=xlPasteValues, Operation:=xlNone, SkipBlanks _ 
         :=False, Transpose:=False 
      Sheets("v_nm" & CStr(k)).Select 
      Cells.Select 
      Selection.Copy 
      Selection.PasteSpecial Paste:=xlPasteValues, Operation:=xlNone, SkipBlanks _ 
         :=False, Transpose:=False 
      Sheets("c_nm" & CStr(k)).Select 
      Cells.Select 
      Selection.Copy 
      Selection.PasteSpecial Paste:=xlPasteValues, Operation:=xlNone, SkipBlanks _ 
        :=False, Transpose:=False 
   End If 
    
   ' Build the objective function equations 
   For j = 1 To N Step 1 
      M = Application.WorksheetFunction.Count(Sheets("x_nm" & CStr(k)).Columns("B").Offset(0, (j - 1) * 2)) 
      If M > 0 Then 
         Set x = Sheets("x_nm" & CStr(k)).Range(Range("B2").Cells(1, 2 * j - 1).Address & _ 
             ":" & Range("B2").Cells(M, 2 * j).Address) 
         x.Columns(2).Value = 0 
         If Not IsPreEmp Then 
            For i = 1 To M Step 1 
               Sheets("cx" & CStr(k)).Range(x(1, 2).Address).Cells(i, 1).Formula = _ 
                  "=c_nm" & CStr(k) & "!" & x(i, 2).Address & "*" & "x_nm" & CStr(k) & "!" & x(i, 2).Address 
               Sheets("ux" & CStr(k)).Range(x(1, 2).Address).Cells(i, 1).Formula = _ 
                  "=u_nm" & CStr(k) & "!" & x(i, 2).Address & "*" & "x_nm" & CStr(k) & "!" & x(i, 2).Address 
               Sheets("vx" & CStr(k)).Range(x(1, 2).Address).Cells(i, 1).Formula = _ 
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                  "=v_nm" & CStr(k) & "!" & x(i, 2).Address & "*" & "x_nm" & CStr(k) & "!" & x(i, 2).Address 
               Sheets("hx" & CStr(k)).Range(x(1, 2).Address).Cells(i, 1).Formula = _ 
                  "=h_nm" & CStr(k) & "!" & x(i, 2).Address & "*" & "x_nm" & CStr(k) & "!" & x(i, 2).Address 
            Next i 
            cx = cx & "SUM(" & "cx" & CStr(k) & "!" & x.Columns(2).Address & ")+" 
            ux = ux & "SUM(" & "ux" & CStr(k) & "!" & x.Columns(2).Address & ")+" 
            vx = vx & "SUM(" & "vx" & CStr(k) & "!" & x.Columns(2).Address & ")+" 
            hx = hx & "SUM(" & "hx" & CStr(k) & "!" & x.Columns(2).Address & ")+" 
         End If 
         Sheets("ObjFunc").Select 
         If Not SetConstraint Then 
            ' Set the solver 
            SolverOK SetCell:=MaxCell, MaxMinVal:=1, Valueof:=0, ByChange:="x_nm" & CStr(k) & "!" & x.Columns(2).Address, _ 
               Engine:=9, EngineDesc:="Large-Scale LP Solver" 
            SetConstraint = True 
         Else 
            '  Add the decision variables for period k 
            SolverAdd CellRef:="x_nm" & CStr(k) & "!" & x.Columns(2).Address, Comment:="Period " & CStr(k) & " Decision 
Variables" 
         End If 
         ' Constrain the decision variables to be binary 
         SolverAdd CellRef:="x_nm" & CStr(k) & "!" & x.Columns(2).Address, _ 
            Relation:=5, FormulaText:="", Comment:="Period " & CStr(k) & " Decision Variables Binary Constraint" 
      End If 
   Next j 
Next k 
 
If Not IsPreEmp Then 
   i = 1 
   ' Delete data sheets that we no longer need 
   Do While i <= ThisWorkbook.Sheets.Count 
      If Not Sheets(i).Visible Or (Not (Mid(Sheets(i).Name, 1, 1) = "c" Or Mid(Sheets(i).Name, 1, 1) = "u" Or Mid(Sheets(i).Name, 1, 
1) = "v" Or _ 
         Mid(Sheets(i).Name, 1, 1) = "h" Or Mid(Sheets(i).Name, 1, 1) = "x") And _ 
         IsNumeric(Mid(Sheets(i).Name, Len(Sheets(i).Name), 1))) Then 
         Sheets(i).Delete 
      Else 
         i = i + 1 
      End If 
   Loop 
 
   ' Set up the combined objective function value 
   Sheets("ObjFunc").Range("B2") = "Obj Function Value" 
   Sheets("ObjFunc").Range("B3").Formula = "=" & Mid(cx, 1, Len(cx) - 1) 
 
   ' Set up the u objective function value 
   Sheets("ObjFunc").Range("D2") = "u Obj Function Value" 
   Sheets("ObjFunc").Range("D3").Formula = "=" & Mid(ux, 1, Len(ux) - 1) 
 
   ' Set up the u objective function value 
   Sheets("ObjFunc").Range("F2") = "v Obj Function Value" 
   Sheets("ObjFunc").Range("F3").Formula = "=" & Mid(vx, 1, Len(vx) - 1) 
 
   ' Set up the u objective function value 
   Sheets("ObjFunc").Range("H2") = "h Obj Function Value" 
   Sheets("ObjFunc").Range("H3").Formula = "=" & Mid(hx, 1, Len(hx) - 1) 
 
   ' Add in the constraints to the ObjFunc sheet 
   Sheets("ObjFunc").Range("B5") = "Constraints" 
   Set Constraint = Sheets("ObjFunc").Range("B8") 
   Constraint(1, 1).Offset(-1, 0) = "m" 
   Constraint(1, 2).Offset(-1, 0) = "Equation (17) - 1 SFC Per Loc" 
   q = 1 
   For i = 1 To D.Rows.Count Step 1 
      For k = 1 To T Step 1 
         For j = 1 To N Step 1 
            M = Application.WorksheetFunction.Count(Sheets("c_nm" & CStr(k)).Columns("B").Offset(0, (j - 1) * 2)) 
            If M > 0 And (S(j, 1).Offset(0, -2) = 3 Or S(j, 1).Offset(0, -2) = 7) Then 



 

96 

 

               Set c = Sheets("c_nm" & CStr(k)).Range(Range("B2").Cells(1, 2 * j - 1).Address & _ 
                  ":" & Range("B2").Cells(M, 2 * j).Address) 
               If c(i, 1) = D(i, 1).Offset(0, -1) Then 
                  p = i 
               Else 
                  p = 1 
                  Do While c(p, 1) < D(i, 1).Offset(0, -1) And p < M 
                     p = p + 1 
                  Loop 
               End If 
               If c(p, 1) = D(i, 1).Offset(0, -1) And c(p, 2) > 0 Then 
                  Constraint(q, 3) = Constraint(q, 3) & "x_nm" & CStr(k) & "!" & c(p, 2).Address & "+" 
               End If 
            End If 
         Next j 
      Next k 
      If Not Trim(Constraint(q, 3)) = "" Then 
         Constraint(q, 1) = D(i, 1).Offset(0, -1) 
         Constraint(q, 2).Formula = "=" & Mid(CStr(Constraint(q, 3)), 1, Len(CStr(Constraint(q, 3))) - 1) 
         Constraint(q, 3) = 1 
         q = q + 1 
      End If 
   Next i 
 
   Set Constraint = Constraint.Offset(0, 4) 
   Constraint(1, 1).Offset(-1, 0) = "m" 
   Constraint(1, 2).Offset(-1, 0) = "Equation (18) - 1 Balloon Per Loc" 
   q = 1 
 
   For i = 1 To D.Rows.Count Step 1 
      For k = 1 To T Step 1 
         For j = 1 To N Step 1 
            M = Application.WorksheetFunction.Count(Sheets("c_nm" & CStr(k)).Columns("B").Offset(0, (j - 1) * 2)) 
            If M > 0 And S(j, 1).Offset(0, -2) Mod 2 = 0 Then 
               Set c = Sheets("c_nm" & CStr(k)).Range(Range("B2").Cells(1, 2 * j - 1).Address & _ 
                  ":" & Range("B2").Cells(M, 2 * j).Address) 
               If c(i, 1) = D(i, 1).Offset(0, -1) Then 
                  p = i 
               Else 
                  p = 1 
                  Do While c(p, 1) < D(i, 1).Offset(0, -1) And p < M 
                     p = p + 1 
                  Loop 
               End If 
               If c(p, 1) = D(i, 1).Offset(0, -1) And c(p, 2) > 0 Then 
                  Constraint(q, 3) = Constraint(q, 3) & "x_nm" & CStr(k) & "!" & c(p, 2).Address & "+" 
               End If 
            End If 
         Next j 
      Next k 
      If Not Trim(Constraint(q, 3)) = "" Then 
         Constraint(q, 1) = D(i, 1).Offset(0, -1) 
         Constraint(q, 2) = "=" & Mid(CStr(Constraint(q, 3)), 1, Len(CStr(Constraint(q, 3))) - 1) 
         Constraint(q, 3) = 1 
         q = q + 1 
      End If 
   Next i 
 
   Set Constraint = Constraint.Offset(0, 4) 
   Constraint(1, 1).Offset(-1, 0) = "m" 
   Constraint(1, 2).Offset(-1, 0) = "Equation (19) - 1 Radar Per Loc" 
   q = 1 
   For i = 1 To D.Rows.Count Step 1 
      For k = 1 To T Step 1 
         For j = 1 To N Step 1 
            M = Application.WorksheetFunction.Count(Sheets("c_nm" & CStr(k)).Columns("B").Offset(0, (j - 1) * 2)) 
            If M > 0 And (S(j, 1).Offset(0, -2) = 1 Or S(j, 1).Offset(0, -2) = 5) Then 
               Set c = Sheets("c_nm" & CStr(k)).Range(Range("B2").Cells(1, 2 * j - 1).Address & _ 



 

97 

 

                  ":" & Range("B2").Cells(M, 2 * j).Address) 
               If c(i, 1) = D(i, 1).Offset(0, -1) Then 
                  p = i 
               Else 
                  p = 1 
                  Do While c(p, 1) < D(i, 1).Offset(0, -1) And p < M 
                     p = p + 1 
                  Loop 
               End If 
               If c(p, 1) = D(i, 1).Offset(0, -1) And c(p, 2) > 0 Then 
                  Constraint(q, 3) = Constraint(q, 3) & "x_nm" & CStr(k) & "!" & c(p, 2).Address & "+" 
               End If 
            End If 
         Next j 
      Next k 
      If Not Trim(Constraint(q, 3)) = "" Then 
         Constraint(q, 1) = D(i, 1).Offset(0, -1) 
         Constraint(q, 2) = "=" & Mid(CStr(Constraint(q, 3)), 1, Len(CStr(Constraint(q, 3))) - 1) 
         Constraint(q, 3) = 1 
         q = q + 1 
      End If 
   Next i 
 
 
   Set Constraint = Constraint.Offset(0, 4) 
   Constraint(1, 1).Offset(-2, 0) = "Equations (20) and (21) - Resource Constraints" 
   For k = 1 To T Step 1 
      Constraint(k, 1) = "t = " & CStr(k) 
      For i = 1 To N Step 1 
         M = Application.WorksheetFunction.Count(Sheets("x_nm" & CStr(k)).Columns("B").Offset(0, 2 * (i - 1))) 
         If k = 1 Then 
            Constraint(1, (i - 1) * 2 + 2).Offset(-1, 0) = "n = " & CStr(i) 
            If M > 0 Then 
               Constraint(k, (i - 1) * 2 + 2) = "=SUM(x_nm" & CStr(k) & "!" & Range(Range("B2").Cells(1, 2 * i), _ 
                  Range("B2").Cells(M, 2 * i)).Address & ")" 
            Else 
               Constraint(k, (i - 1) * 2 + 2) = 0 
            End If 
         Else 
            If M > 0 Then 
               Constraint(k, (i - 1) * 2 + 3) = "-(" 
               For j = k - 1 To 1 Step -1 
                  Constraint(k, (i - 1) * 2 + 3) = Constraint(k, (i - 1) * 2 + 3) & _ 
                     "(s!" & S(i, j).Address & "-SUM(x_nm" & CStr(j) & "!" & Range(Range("B2").Cells(1, 2 * i), _ 
                     Range("B2").Cells(M, 2 * i)).Address & ")" 
                  If j > 1 Then 
                     Constraint(k, (i - 1) * 2 + 3) = Constraint(k, (i - 1) * 2 + 3) & ")+" 
                  Else 
                     Constraint(k, (i - 1) * 2 + 3) = Constraint(k, (i - 1) * 2 + 3) & "))" 
                  End If 
               Next j 
               Constraint(k, (i - 1) * 2 + 2) = "=SUM(x_nm" & CStr(k) & "!" & Range(Range("B2").Cells(1, 2 * i), _ 
                  Range("B2").Cells(M, 2 * i)).Address & ")" & Constraint(k, (i - 1) * 2 + 3) 
            Else 
               Constraint(k, (i - 1) * 2 + 2) = 0 
            End If 
         End If 
         Constraint(k, (i - 1) * 2 + 3) = "=s!" & S(i, k).Address 
      Next i 
   Next k 
  
   Set Constraint = Constraint.Offset(0, 2 * (N + 1)) 
   Constraint(1, 1).Offset(-1, 0) = "Equation (22) - Balloon Min Spacing" 
   If Application.WorksheetFunction.CountIf(S.Columns(1).Offset(0, -2), "=2") + _ 
      Application.WorksheetFunction.CountIf(S.Columns(1).Offset(0, -2), "=4") + _ 
      Application.WorksheetFunction.CountIf(S.Columns(1).Offset(0, -2), "=6") + _ 
      Application.WorksheetFunction.CountIf(S.Columns(1).Offset(0, -2), "=8") > 0 Then 
      q = 1 
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      ' If there are balloons, find the first balloon with an effective range greater than zero 
      j = 1 
      Do While j <= N And (Delta(j, 2) = 0 Or S(j, 1).Offset(0, -2) Mod 2 <> 0) 
         j = j + 1 
      Loop 
      If j <= N Then 
      ' If we have found a balloon with effective range > 0, iterate through the distance matrix 
         For w = 1 To D.Rows.Count - 1 Step 1 
         ' Loop through rows of distance matrix 
            For y = w + 1 To D.Columns.Count Step 1 
            ' Loop through columns (upper half) of distance matrix 
               For i = j To N Step 2 
               ' Loop through remainder of sensor list, looking for balloons with effective range > 0 
                  If S(i, 1).Offset(0, -2) Mod 2 = 0 And Delta(i, 2) > 0 Then 
                  ' If sensor i is an upper air sensor with effective range greater than zero 
                     For g = i To N Step 1 
                     ' Loop through remainder of sensors, finding upper-air sensors with effective range > 0 
                     ' check current distance with combination of effective ranges 
                        If S(g, 1).Offset(0, -2) Mod 2 = 0 And (Delta(g, 2) > D(w, y) Or Delta(i, 2) > D(w, y)) Then 
                        ' If one of the balloon's minimum spacing requirements is greater than the distance 
                        ' between locations w and y set the constraint that w and y can only have one sensor between them 
                           For k = 1 To T Step 1 
                           ' Loop through time periods 
                              M = Application.WorksheetFunction.Count(Sheets("c_nm" & CStr(k)).Columns("B").Offset(0, 2 * (i - 1))) 
                              If M > 0 Then 
                              ' If there are any locations available for allocation for this sensor type and time period 
                                 Set c = Sheets("c_nm" & CStr(k)).Range(Range("B2").Cells(1, 2 * (i - 1) + 1).Address & _ 
                                    ":" & Range("B2").Cells(M, 2 * i).Address) 
                                 ' Find the sensor type i at location w 
                                 If c(w, 1) = D(w, 1).Offset(0, -1) Then 
                                    p = w 
                                 Else 
                                    p = 1 
                                    Do While c(p, 1) < D(w, 1).Offset(0, -1) And p < M 
                                       p = p + 1 
                                    Loop 
                                 End If 
                                 If c(p, 1) = D(w, 1).Offset(0, -1) And c(p, 2) > 0 Then 
                                    Constraint(q, 2) = Constraint(q, 2) & "x_nm" & CStr(k) & "!" & c(p, 2).Address & "+" 
                                 End If 
                              End If 
                              M = Application.WorksheetFunction.Count(Sheets("c_nm" & CStr(k)).Columns("B").Offset(0, 2 * (g - 1))) 
                              If M > 0 Then 
                                 Set c = Sheets("c_nm" & CStr(k)).Range(Range("B2").Cells(1, 2 * (g - 1) + 1).Address & _ 
                                    ":" & Range("B2").Cells(M, 2 * g).Address) 
                                 ' Find the sensor type g at location y 
                                 If c(y, 1) = D(y, 1).Offset(0, -1) Then 
                                    p = y 
                                 Else 
                                    p = 1 
                                    Do While c(p, 1) < D(y, 1).Offset(0, -1) And p < M 
                                       p = p + 1 
                                    Loop 
                                 End If 
                                 If c(p, 1) = D(y, 1).Offset(0, -1) And c(p, 2) > 0 Then 
                                    Constraint(q, 3) = Constraint(q, 3) & "x_nm" & CStr(k) & "!" & c(p, 2).Address & "+" 
                                 End If 
                              End If 
                           Next k 
                           If Not Trim(Constraint(q, 2)) = "" And Not Trim(Constraint(q, 3)) = "" Then 
                              Constraint(q, 2) = "=" & Mid(Constraint(q, 2) & Constraint(q, 3), 1, _ 
                                 Len(Constraint(q, 2) & Constraint(q, 3)) - 1) 
                              Constraint(q, 3) = 1 
                              Constraint(q, 1) = "n = " & CStr(i) & " at m = " & D(w, 1).Offset(0, -1) & _ 
                                              " + n = " & CStr(g) & " at m = " & D(y, 1).Offset(0, -1) 
                              q = q + 1 
                           Else 
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                              Constraint(q, 2) = "" 
                              Constraint(q, 3) = "" 
                           End If 
                           If i <> g Then 
                           ' If the sensors types are not the same, we have to add a constraint for the reverse problem 
                              For k = 1 To T Step 1 
                              ' Loop through time periods 
                                 M = Application.WorksheetFunction.Count(Sheets("c_nm" & CStr(k)).Columns("B").Offset(0, 2 * (g - 1))) 
                                 If M > 0 Then 
                                 ' If there are any locations available for allocation for this sensor type and time period 
                                    Set c = Sheets("c_nm" & CStr(k)).Range(Range("B2").Cells(1, 2 * g - 1).Address & _ 
                                       ":" & Range("B2").Cells(M, 2 * g).Address) 
                                    ' Find the sensor type g at location w 
                                    If c(w, 1) = D(w, 1).Offset(0, -1) Then 
                                       p = w 
                                    Else 
                                       p = 1 
                                       Do While c(p, 1) < D(w, 1).Offset(0, -1) And p < M 
                                          p = p + 1 
                                       Loop 
                                    End If 
                                    If c(p, 1) = D(w, 1).Offset(0, -1) And c(p, 2) > 0 Then 
                                       Constraint(q, 2) = Constraint(q, 2) & "x_nm" & CStr(k) & "!" & c(p, 2).Address & "+" 
                                    End If 
                                 End If 
                                 M = Application.WorksheetFunction.Count(Sheets("c_nm" & CStr(k)).Columns("B").Offset(0, 2 * (i - 1))) 
                                 If M > 0 Then 
                                    Set c = Sheets("c_nm" & CStr(k)).Range(Range("B2").Cells(1, 2 * i - 1).Address & _ 
                                       ":" & Range("B2").Cells(M, 2 * i).Address) 
                                     ' Find the sensor type i at location y 
                                     If c(y, 1) = D(y, 1).Offset(0, -1) Then 
                                        p = y 
                                     Else 
                                        p = 1 
                                        Do While c(p, 1) < D(y, 1).Offset(0, -1) And p < M 
                                          p = p + 1 
                                       Loop 
                                    End If 
                                    If c(p, 1) = D(y, 1).Offset(0, -1) And c(p, 2) > 0 Then 
                                       Constraint(q, 3) = Constraint(q, 3) & "x_nm" & CStr(k) & "!" & c(p, 2).Address & "+" 
                                    End If 
                                 End If 
                              Next k 
                              If Not Trim(Constraint(q, 2)) = "" And Not Trim(Constraint(q, 3)) = "" Then 
                                 Constraint(q, 2) = "=" & Mid(Constraint(q, 2) & Constraint(q, 3), 1, _ 
                                    Len(Constraint(q, 2) & Constraint(q, 3)) - 1) 
                                 Constraint(q, 3) = 1 
                                 Constraint(q, 1) = "n = " & CStr(g) & " at m = " & D(w, 1).Offset(0, -1) & _ 
                                              " + n = " & CStr(i) & " at m = " & D(y, 1).Offset(0, -1) 
                                 q = q + 1 
                              Else 
                                 Constraint(q, 2) = "" 
                                 Constraint(q, 3) = "" 
                              End If 
                           End If 
                        End If 
                     Next g 
                  End If 
               Next i 
            Next y 
         Next w 
      End If 
   End If 
 
   Set Constraint = Constraint.Offset(0, 4) 
   Constraint(1, 1).Offset(-1, 0) = "Equation (23) - Radar Effective Range" 
   If Application.WorksheetFunction.CountIf(S.Columns(1).Offset(0, -2), "=1") + _ 
      Application.WorksheetFunction.CountIf(S.Columns(1).Offset(0, -2), "=5") > 0 Then 
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      q = 1 
      ' If there are radars, find the first radar with an effective range greater than zero 
      j = 1 
      Do While j <= N And (Delta(j, 2) = 0 Or Not (S(j, 1).Offset(0, -2) = 5 Or S(j, 1).Offset(0, -2) = 1)) 
         j = j + 1 
      Loop 
      q = 1 
      If j <= N Then 
      ' If we have found a radar with effective range > 0, iterate through the distance matrix 
         For w = 1 To D.Rows.Count - 1 Step 1 
         ' Loop through rows of distance matrix 
            For y = w + 1 To D.Columns.Count Step 1 
            ' Loop through columns (upper half) of distance matrix 
               For i = j To N Step 2 
               ' Loop through remainder of sensor list, looking for balloons with effective range > 0 
                  If (S(j, 1).Offset(0, -2) = 5 Or S(j, 1).Offset(0, -2) = 1) And Delta(i, 2) > 0 Then 
                  ' If sensor i is an upper air sensor with effective range greater than zero 
                     For g = i To N Step 1 
                     ' Loop through remainder of sensors, finding radars with effective range > 0 
                     ' check current distance with combination of effective ranges 
                        If (S(j, 1).Offset(0, -2) = 5 Or S(j, 1).Offset(0, -2) = 1) And Delta(g, 2) + Delta(i, 2) > D(w, y) Then 
                        ' If the combined sensor effective ranges is greater than the distance between locations w and y 
                        ' set the constraint that w and y can only have one sensor between them 
                           For k = 1 To T Step 1 
                           ' Loop through time periods 
                              M = Application.WorksheetFunction.Count(Sheets("c_nm" & CStr(k)).Columns("B").Offset(0, 2 * (i - 1))) 
                              If M > 0 Then 
                              ' If there are any locations available for allocation for this sensor type and time period 
                                 Set c = Sheets("c_nm" & CStr(k)).Range(Range("B2").Cells(1, 2 * (i - 1) + 1).Address & _ 
                                    ":" & Range("B2").Cells(M, 2 * i).Address) 
                                 ' Find the sensor type i at location w 
                                 If c(w, 1) = D(w, 1).Offset(0, -1) Then 
                                    p = w 
                                 Else 
                                    p = 1 
                                    Do While c(p, 1) < D(w, 1).Offset(0, -1) And p < M 
                                       p = p + 1 
                                    Loop 
                                 End If 
                                 If c(p, 1) = D(w, 1).Offset(0, -1) And c(p, 2) > 0 Then 
                                    Constraint(q, 2) = Constraint(q, 2) & "x_nm" & CStr(k) & "!" & c(p, 2).Address & "+" 
                                 End If 
                              End If 
                              M = Application.WorksheetFunction.Count(Sheets("c_nm" & CStr(k)).Columns("B").Offset(0, 2 * (g - 1))) 
                              If M > 0 Then 
                                 Set c = Sheets("c_nm" & CStr(k)).Range(Range("B2").Cells(1, 2 * (g - 1) + 1).Address & _ 
                                    ":" & Range("B2").Cells(M, 2 * g).Address) 
                                 ' Find the sensor type g at location y 
                                 If c(y, 1) = D(y, 1).Offset(0, -1) Then 
                                    p = y 
                                 Else 
                                    p = 1 
                                    Do While c(p, 1) < D(y, 1).Offset(0, -1) And p < M 
                                       p = p + 1 
                                    Loop 
                                 End If 
                                 If c(p, 1) = D(y, 1).Offset(0, -1) And c(p, 2) > 0 Then 
                                    Constraint(q, 3) = Constraint(q, 3) & "x_nm" & CStr(k) & "!" & c(p, 2).Address & "+" 
                                 End If 
                              End If 
                           Next k 
                           If Not Trim(Constraint(q, 2)) = "" And Not Trim(Constraint(q, 3)) = "" Then 
                              Constraint(q, 2) = "=" & Mid(Constraint(q, 2) & Constraint(q, 3), 1, _ 
                                 Len(Constraint(q, 2) & Constraint(q, 3)) - 1) 
                              Constraint(q, 3) = 1 
                              Constraint(q, 1) = "n = " & CStr(i) & " at m = " & D(w, 1).Offset(0, -1) & _ 
                                              " + n = " & CStr(g) & " at m = " & D(y, 1).Offset(0, -1) 
                              q = q + 1 
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                           Else 
                              Constraint(q, 2) = "" 
                              Constraint(q, 3) = "" 
                           End If 
                           If i <> g Then 
                           ' If the sensors types are not the same, we have to add a constraint for the reverse problem 
                              For k = 1 To T Step 1 
                              ' Loop through time periods 
                                 M = Application.WorksheetFunction.Count(Sheets("c_nm" & CStr(k)).Columns("B").Offset(0, 2 * (g - 1))) 
                                 If M > 0 Then 
                                 ' If there are any locations available for allocation for this sensor type and time period 
                                    Set c = Sheets("c_nm" & CStr(k)).Range(Range("B2").Cells(1, 2 * g - 1).Address & _ 
                                       ":" & Range("B2").Cells(M, 2 * g).Address) 
                                    ' Find the sensor type g at location w 
                                    If c(w, 1) = D(w, 1).Offset(0, -1) Then 
                                       p = w 
                                    Else 
                                       p = 1 
                                       Do While c(p, 1) < D(w, 1).Offset(0, -1) And p < M 
                                          p = p + 1 
                                       Loop 
                                    End If 
                                    If c(p, 1) = D(w, 1).Offset(0, -1) And c(p, 2) > 0 Then 
                                       Constraint(q, 2) = Constraint(q, 2) & "x_nm" & CStr(k) & "!" & c(p, 2).Address & "+" 
                                    End If 
                                 End If 
                                 M = Application.WorksheetFunction.Count(Sheets("c_nm" & CStr(k)).Columns("B").Offset(0, 2 * (i - 1))) 
                                 If M > 0 Then 
                                    Set c = Sheets("c_nm" & CStr(k)).Range(Range("B2").Cells(1, 2 * i - 1).Address & _ 
                                       ":" & Range("B2").Cells(M, 2 * i).Address) 
                                    ' Find the sensor type i at location y 
                                    If c(y, 1) = D(y, 1).Offset(0, -1) Then 
                                       p = y 
                                    Else 
                                       p = 1 
                                       Do While c(p, 1) < D(y, 1).Offset(0, -1) And p < M 
                                          p = p + 1 
                                       Loop 
                                    End If 
                                    If c(p, 1) = D(y, 1).Offset(0, -1) And c(p, 2) > 0 Then 
                                       Constraint(q, 3) = Constraint(q, 3) & "x_nm" & CStr(k) & "!" & c(p, 2).Address & "+" 
                                    End If 
                                 End If 
                              Next k 
                              If Not Trim(Constraint(q, 2)) = "" And Not Trim(Constraint(q, 3)) = "" Then 
                                 Constraint(q, 2) = "=" & Mid(Constraint(q, 2) & Constraint(q, 3), 1, _ 
                                    Len(Constraint(q, 2) & Constraint(q, 3)) - 1) 
                                 Constraint(q, 3) = 1 
                                 Constraint(q, 1) = "n = " & CStr(g) & " at m = " & D(w, 1).Offset(0, -1) & _ 
                                              " + n = " & CStr(i) & " at m = " & D(y, 1).Offset(0, -1) 
                                 q = q + 1 
                              Else 
                                 Constraint(q, 2) = "" 
                                 Constraint(q, 3) = "" 
                              End If 
                           End If 
                        End If 
                     Next g 
                  End If 
               Next i 
            Next y 
         Next w 
      End If 
   End If 
 
   Set Constraint = Constraint.Offset(0, 4) 
   Constraint(1, 2).Offset(-2, 0) = "Equation (24) - Balloon/Surface Co-Location" 
   For k = 1 To T 
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   ' Loop through time periods 
      Constraint(1, 1).Offset(-1, 0) = "m" 
      Constraint(1, 2).Offset(-1, 0) = "t = " & CStr(k) 
      q = 1 
      For i = 1 To D.Rows.Count Step 1 
      ' Loop through locations in the distance matrix 
         For j = 1 To N Step 1 
         ' Loop through sensor types 
            M = Application.WorksheetFunction.Count(Sheets("c_nm" & CStr(k)).Columns("B").Offset(0, 2 * (j - 1))) 
            If M > 0 Then 
            ' If there are any locations available for allocation for this sensor type and time period 
               Set c = Sheets("c_nm" & CStr(k)).Range(Range("B2").Cells(1, 2 * j - 1).Address & _ 
                   ":" & Range("B2").Cells(M, 2 * j).Address) 
               If c(i, 1) = D(i, 1).Offset(0, -1) Then 
                  p = i 
               Else 
                  p = 1 
                  Do While c(p, 1) < D(i, 1).Offset(0, -1) And p < M 
                     p = p + 1 
                  Loop 
               End If 
               If S(j, 1).Offset(0, -2) Mod 2 = 0 And c(p, 1) = D(i, 1).Offset(0, -1) And c(p, 2) > 0 Then 
               ' If the sensor is an upper-air sensor 
                  Constraint(q, 2) = Constraint(q, 2) & "x_nm" & CStr(k) & "!" & c(p, 2).Address & "+" 
               ElseIf (S(j, 1).Offset(0, -2) = 3 Or S(j, 1).Offset(0, -2) = 7) _ 
                  And c(p, 1) = D(i, 1).Offset(0, -1) And c(p, 2) > 0 Then 
               ' If the sensor is a surface sensor 
                  Constraint(q, 3) = Constraint(q, 3) & "x_nm" & CStr(k) & "!" & c(p, 2).Address & "+" 
                  For g = k - 1 To 1 Step -1 
                     Set c = Sheets("c_nm" & CStr(g)).Range(Range("B2").Cells(1, 2 * (j - 1) + 1).Address & _ 
                        ":" & Range("B2").Cells(M, 2 * j).Address) 
                     If c(i, 1) = D(i, 1).Offset(0, -1) Then 
                        p = i 
                     Else 
                        p = 1 
                        Do While c(p, 1) < D(i, 1).Offset(0, -1) And p < M 
                           p = p + 1 
                        Loop 
                     End If 
                     If c(p, 1) = D(i, 1).Offset(0, -1) And c(p, 2) > 0 Then 
                        Constraint(q, 3) = Constraint(q, 3) & "x_nm" & CStr(g) & "!" & c(p, 2).Address & "+" 
                     End If 
                  Next g 
                  Set c = Sheets("c_nm" & CStr(k)).Range(Range("B2").Cells(1, 2 * (j - 1) + 1).Address & _ 
                        ":" & Range("B2").Cells(M, 2 * j).Address) 
               End If 
            End If 
         Next j 
         If Not Trim(Constraint(q, 2)) = "" And Not Trim(Constraint(q, 3)) = "" Then 
            Constraint(q, 2) = "=" & Mid(Constraint(q, 2), 1, Len(Constraint(q, 2)) - 1) & "-(" & _ 
               Mid(Constraint(q, 3), 1, Len(Constraint(q, 3)) - 1) & ")" 
            Constraint(q, 3) = 0 
            Constraint(q, 1) = D(i, 1).Offset(0, -1) 
            q = q + 1 
         Else 
            Constraint(q, 2) = "" 
            Constraint(q, 3) = "" 
         End If 
      Next i 
      Set Constraint = Constraint.Offset(0, 4) 
   Next k 
 
   Constraint(1, 1).Offset(-1, 0) = "m" 
   Constraint(1, 2).Offset(-1, 0) = "Equation (25) - Radar/Surface Co-Location" 
   For k = 1 To T 
   ' Loop through time periods 
      Constraint(1, 1).Offset(-1, 0) = "m" 
      Constraint(1, 2).Offset(-1, 0) = "t = " & CStr(k) 
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      q = 1 
      For i = 1 To D.Rows.Count Step 1 
      ' Loop through locations in the distance matrix 
         For j = 1 To N Step 1 
         ' Loop through sensor types 
            M = Application.WorksheetFunction.Count(Sheets("c_nm" & CStr(k)).Columns("B").Offset(0, 2 * (j - 1))) 
            If M > 0 Then 
            ' If there are any locations available for allocation for this sensor type and time period 
               Set c = Sheets("c_nm" & CStr(k)).Range(Range("B2").Cells(1, 2 * j - 1).Address & _ 
                   ":" & Range("B2").Cells(M, 2 * j).Address) 
               If c(i, 1) = D(i, 1).Offset(0, -1) Then 
                  p = i 
               Else 
                  p = 1 
                  Do While c(p, 1) < D(i, 1).Offset(0, -1) And p < M 
                     p = p + 1 
                  Loop 
               End If 
               If (S(j, 1).Offset(0, -2) = 1 Or S(j, 1).Offset(0, -2) = 5) And _ 
                  c(p, 1) = D(i, 1).Offset(0, -1) And c(p, 2) > 0 Then 
               ' If the sensor is a radar 
                  Constraint(q, 2) = Constraint(q, 2) & "x_nm" & CStr(k) & "!" & c(p, 2).Address & "+" 
               ElseIf (S(j, 1).Offset(0, -2) = 3 Or S(j, 1).Offset(0, -2) = 7) _ 
                  And c(p, 1) = D(i, 1).Offset(0, -1) And c(p, 2) > 0 Then 
               ' If the sensor is a surface sensor 
                  Constraint(q, 3) = Constraint(q, 3) & "x_nm" & CStr(k) & "!" & c(p, 2).Address & "+" 
                  For g = k - 1 To 1 Step -1 
                     Set c = Sheets("c_nm" & CStr(g)).Range(Range("B2").Cells(1, 2 * (j - 1) + 1).Address & _ 
                        ":" & Range("B2").Cells(M, 2 * j).Address) 
                     If c(i, 1) = D(i, 1).Offset(0, -1) Then 
                        p = i 
                     Else 
                        p = 1 
                        Do While c(p, 1) < D(i, 1).Offset(0, -1) And p < M 
                           p = p + 1 
                        Loop 
                     End If 
                     If c(p, 1) = D(i, 1).Offset(0, -1) And c(p, 2) > 0 Then 
                        Constraint(q, 3) = Constraint(q, 3) & "x_nm" & CStr(g) & "!" & c(p, 2).Address & "+" 
                     End If 
                  Next g 
                  Set c = Sheets("c_nm" & CStr(k)).Range(Range("B2").Cells(1, 2 * (j - 1) + 1).Address & _ 
                        ":" & Range("B2").Cells(M, 2 * j).Address) 
               End If 
            End If 
         Next j 
         If Not Trim(Constraint(q, 2)) = "" And Not Trim(Constraint(q, 3)) = "" Then 
            Constraint(q, 2) = "=" & Mid(Constraint(q, 2), 1, Len(Constraint(q, 2)) - 1) & "-(" & _ 
               Mid(Constraint(q, 3), 1, Len(Constraint(q, 3)) - 1) & ")" 
            Constraint(q, 3) = 0 
            Constraint(q, 1) = D(i, 1).Offset(0, -1) 
            q = q + 1 
         Else 
            Constraint(q, 2) = "" 
            Constraint(q, 3) = "" 
         End If 
      Next i 
      Set Constraint = Constraint.Offset(0, 4) 
   Next k 
End If 
 
' Now we use the Premium Solver to find a solution 
' Make sure you have a reference to the Solver 
 
For i = 1 To 3 Step 1 
   M = Application.WorksheetFunction.Count(Sheets("ObjFunc").Columns("C").Offset(0, (i - 1) * 4)) 
   If M > 0 Then 
      Set Constraint = Sheets("ObjFunc").Range("C8:" & Range("C8").Cells(M, 2).Address).Offset(0, (i - 1) * 4) 
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   ' If there are surface/balloon/radar sensors, add the sensor constraint (Equations 17,18,19) 
      SolverAdd CellRef:=Constraint.Columns(1).Address, Relation:=1, FormulaText:=Constraint.Columns(2).Address, _ 
         Comment:="Equation (" & CStr(16 + i) & ")" 
   End If 
Next i 
 
Set Constraint = Sheets("ObjFunc").Range("O8:" & Range("O8").Cells(T, 2).Address) 
For j = 1 To N Step 1 
' Add in the resource constraints (s_nt) - Equations (20) and (21) 
   SolverAdd CellRef:=Constraint.Columns(1).Address, Relation:=1, FormulaText:=Constraint.Columns(2).Address, _ 
      Comment:="Resource Constraint for Sensor Type " & CStr(j) 
   Set Constraint = Constraint.Offset(0, 2) 
Next j 
 
i = Application.WorksheetFunction.Count(Sheets("ObjFunc").Columns("O").Offset(0, 2 * (N + 1))) 
If i = 0 Then i = 1 
Set Constraint = Sheets("ObjFunc").Range("O8:" & Range("O8").Cells(i, 2).Address).Offset(0, 2 * (N + 1)) 
 
If Not Trim(Constraint(1, 1)) = "" Then 
' If there are balloons with effective range that are greater than any distances between potential deployment locations 
' add in the constraints 
   SolverAdd CellRef:=Constraint.Columns(1).Address, Relation:=1, FormulaText:=Constraint.Columns(2).Address, _ 
      Comment:="Balloon constraints - Equation (22)" 
End If 
 
i = Application.WorksheetFunction.Count(Sheets("ObjFunc").Columns("O").Offset(0, 2 * (N + 1) + 4)) 
If i = 0 Then i = 1 
Set Constraint = Sheets("ObjFunc").Range("O8:" & Range("O8").Cells(i, 2).Address).Offset(0, 2 * (N + 1) + 4) 
 
If Not Trim(Constraint(1, 1)) = "" Then 
' If there are radars with effective range that are greater than any distances between potential deployment locations 
' add in the constraints 
   SolverAdd CellRef:=Constraint.Columns(1).Address, Relation:=1, FormulaText:=Constraint.Columns(2).Address, _ 
      Comment:="Radar constraints - Equation (23)" 
End If 
 
For k = 1 To T Step 1 
   i = Application.WorksheetFunction.Count(Sheets("ObjFunc").Columns("O").Offset(0, (2 * (N + 1)) + (4 * (k + 1)))) 
   If i = 0 Then i = 1 
   Set Constraint = Sheets("ObjFunc").Range("O8:" & Range("O8").Cells(i, 2).Address).Offset(0, (2 * (N + 1)) + (4 * (k + 1))) 
 
   If Not Trim(Constraint(1, 1)) = "" Then 
   ' If there are radars with effective range that are greater than any distances between potential deployment locations 
   ' add in the constraints 
      SolverAdd CellRef:=Constraint.Columns(1).Address, Relation:=1, FormulaText:=Constraint.Columns(2).Address, _ 
         Comment:="SFC/Balloon co-location constraints - Equation (24)" 
   End If 
Next k 
 
For k = 1 To T Step 1 
   i = Application.WorksheetFunction.Count(Sheets("ObjFunc").Columns("O").Offset(0, (2 * (N + 1)) + (4 * (T + k + 1)))) 
   If i = 0 Then i = 1 
   Set Constraint = Sheets("ObjFunc").Range("O8:" & Range("O8").Cells(i, 2).Address).Offset(0, (2 * (N + 1)) + 4 * (T + k + 1)) 
 
   If Not Trim(Constraint(1, 1)) = "" Then 
   ' If there are radars with effective range that are greater than any distances between potential deployment locations 
   ' add in the constraints 
      SolverAdd CellRef:=Constraint.Columns(1).Address, Relation:=1, FormulaText:=Constraint.Columns(2).Address, _ 
         Comment:="SFC/Radar co-location constraints - Equation (25)" 
   End If 
Next k 
 
If Not IsPreEmp Then 
   ' Record number of decision variables 
   Sheets("Campaign").Range("AC" & CStr(LOOP_COUNTER)) = SolverSizeGet(TypeNum:=1, SheetName:="Objfunc") 
 
   ' Record number of constraints 
   Sheets("Campaign").Range("AD" & CStr(LOOP_COUNTER)) = SolverSizeGet(TypeNum:=2, SheetName:="Objfunc") 
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Else 
   If NumPreEmp >= 1 Then SolverAdd CellRef:="$D$3", Relation:=3, FormulaText:="$D$4", Comment:="Equation (2)" 
   If NumPreEmp >= 2 Then SolverAdd CellRef:="$F$3", Relation:=3, FormulaText:="$F$4", Comment:="Equation (4)" 
End If 
    
Application.Calculation = xlCalculationAutomatic 
StartTime = Now() 
' Run the solver 
SolverSolve UserFinish:=True, ShowRef:="ShowTrial" 
SolverFinish KeepFinal:=1 
 
If Not IsPreEmp Then 
   ' Store the c obj function 
   Sheets("Campaign").Range("R" & CStr(LOOP_COUNTER)) = Sheets("ObjFunc").Range("B3") 
   ' Store the u obj function 
   Sheets("Campaign").Range("S" & CStr(LOOP_COUNTER)) = Sheets("ObjFunc").Range("D3") 
   ' Store the v obj function 
   Sheets("Campaign").Range("T" & CStr(LOOP_COUNTER)) = Sheets("ObjFunc").Range("F3") 
   ' Store the h obj function 
   Sheets("Campaign").Range("U" & CStr(LOOP_COUNTER)) = Sheets("ObjFunc").Range("H3") 
   ' Record the time to solve with the combined objective function values 
   Sheets("Campaign").Range("Z" & CStr(LOOP_COUNTER)) = Now() - StartTime 
Else 
   ' Store the objective function value 
   If NumPreEmp = 0 Then Sheets("Campaign").Range("V" & CStr(LOOP_COUNTER)) = Sheets("ObjFunc").Range(MaxCell) 
   If NumPreEmp = 1 Then Sheets("Campaign").Range("W" & CStr(LOOP_COUNTER)) = Sheets("ObjFunc").Range(MaxCell) 
   If NumPreEmp = 2 Then Sheets("Campaign").Range("X" & CStr(LOOP_COUNTER)) = Sheets("ObjFunc").Range(MaxCell) 
   Sheets("ObjFunc").Range(MaxCell).Cells(2, 1) = Sheets("ObjFunc").Range(MaxCell) 
   Sheets("Campaign").Range("AA" & CStr(LOOP_COUNTER)) = Sheets("Campaign").Range("AA" & CStr(LOOP_COUNTER)) + 
(Now() - StartTime) 
End If 
 
Application.DisplayAlerts = True 
Application.ScreenUpdating = True 
 
End Sub 
 
Ignizio and Thomas (1984) Subroutine 

Sub IgnizioThomas(OutVar As String, LowVar As String, HighVar As String, N As Long, T As Long) 
' This subroutine applies the Ignizio Thomas algorithm (1984) 
 
Sheets("Campaign").Select 
With Application 
   .ScreenUpdating = False 
   .Calculation = xlCalculationManual 
End With 
 
Dim i As Long 
Dim j As Long 
Dim k As Long 
Dim M As Long 
Dim temp As Variant 
 
Dim OutRange As Range 
Dim MidRange As Range 
Dim HighRange As Range 
Dim LowRange As Range 
Dim UB As String           ' Upper bound range 
Dim MaxRange As String 
Dim Lambda As String 
MaxRange = "" 
UB = "" 
Lambda = OutVar & "1!" & Range("B2").Cells(1, 2 * (N + 1)).Address 
 
' Remove old problem sheets, if there are any 
i = 1 
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Do While i <= ThisWorkbook.Sheets.Count 
   If Mid(Sheets(i).Name, 1, Len(LowVar & HighVar)) = LowVar & HighVar Or _ 
      Mid(Sheets(i).Name, 1, Len(OutVar)) = OutVar Then 
      Sheets(i).Delete 
   Else 
      i = i + 1 
   End If 
Loop 
 
 
' Build the range containing the upper bound of the lower function 
For k = 1 To T Step 1 
   Sheets("u_nm" & CStr(k)).Copy after:=Sheets(ThisWorkbook.Sheets.Count) 
   ActiveSheet.Name = OutVar & CStr(k) 
   Sheets("u_nm" & CStr(k)).Copy after:=Sheets(ThisWorkbook.Sheets.Count) 
   ActiveSheet.Name = LowVar & HighVar & CStr(k) 
   Sheets(LowVar & HighVar & CStr(k)).Visible = False 
   For j = 1 To 2 * N Step 2 
      M = Application.WorksheetFunction.Count(Sheets(OutVar & CStr(k)).Columns("A").Offset(0, j)) 
      Set MidRange = Sheets(LowVar & HighVar & CStr(k)).Range(Range("B2").Cells(1, j).Address & _ 
         ":" & Range("B2").Cells(M, j + 1).Address) 
      Set HighRange = Sheets(HighVar & CStr(k)).Range(Range("B2").Cells(1, j).Address & _ 
         ":" & Range("B2").Cells(M, j + 1).Address) 
      Set LowRange = Sheets(LowVar & CStr(k)).Range(Range("B2").Cells(1, j).Address & _ 
         ":" & Range("B2").Cells(M, j + 1).Address) 
      If M > 0 Then 
         For i = 1 To M Step 1 
            MidRange(i, 2).Formula = "=ABS(" & LowVar & CStr(k) & "!" & LowRange(i, 2).Address & "-(" & Lambda & _ 
               "*" & HighVar & CStr(k) & "!" & HighRange(i, 2).Address & "))" 
         Next i 
      End If 
      MaxRange = MaxRange & "," & OutVar & CStr(k) & "!" & MidRange.Columns(2).Address 
      UB = UB & "," & LowVar & HighVar & CStr(k) & "!" & MidRange.Columns(2).Address 
   Next j 
Next k 
 
UB = "SUM(" & Mid(UB, 2) & ")" 
 
' Build the final coefficient matrix 
For k = 1 To T Step 1 
   For j = 1 To 2 * N Step 2 
      M = Application.WorksheetFunction.Count(Sheets(OutVar & CStr(k)).Columns("A").Offset(0, j)) 
      If M > 0 Then 
         ReDim Equations(M, 1) 
         Set OutRange = Sheets(OutVar & CStr(k)).Range(Range("B2").Cells(1, j).Address & _ 
            ":" & Range("B2").Cells(M, j + 1).Address) 
         For i = 1 To M Step 1 
            OutRange(i, 2).Formula = "=(1+" & UB & ")*" & HighVar & CStr(k) & "!" & OutRange(i, 2).Address & _ 
               "+(" & LowVar & CStr(k) & "!" & OutRange(i, 2).Address & "-" & Lambda & "*" & _ 
               HighVar & CStr(k) & "!" & OutRange(i, 2).Address & ")" 
         Next i 
      End If 
   Next j 
Next k 
 
' Label the weights and solve for the optimal 
Sheets(OutVar & CStr(1)).Select 
Set OutRange = Sheets(OutVar & CStr(1)).Range("B2") 
OutRange(1, N * 2).Offset(-1, 2) = "Lambda" 
OutRange(1, N * 2).Offset(0, 2) = 0 
OutRange(2, N * 2).Offset(0, 2) = "Maximum" 
OutRange(3, N * 2).Offset(0, 2).Formula = "=MAX(" & Mid(MaxRange, 2) & ")" 
Application.Calculation = xlCalculationAutomatic 
  
'----------------------------------------------------------------------------------------- 
' Find the optimal value for lambda 
 
j = 0 
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temp = OutRange(3, N * 2).Offset(0, 2) 
Do While OutRange(3, N * 2).Offset(0, 2) <= temp And temp > 0 
   OutRange(1, N * 2).Offset(0, 2) = 10 ^ j 
   j = j + 1 
Loop 
 
OutRange(1, N * 2).Offset(0, 2) = 0 
 
Call ImprovedGoldenSection(OutRange(1, N * 2).Offset(0, 2), 10 ^ j, 0, OutRange(3, N * 2).Offset(0, 2)) 
 
'----------------------------------------------------------------------------------------- 
 
Sheets("Campaign").Select 
Application.ScreenUpdating = True 
 
End Sub 
 
 
Function MAdd(A() As Variant, B() As Variant) As Variant() 
' This function performs matrix addition on two arrays 
 
Dim i As Long 
Dim j As Long 
Dim c() As Variant 
 
If UBound(A, 1) = UBound(B, 1) And UBound(A, 2) = UBound(B, 2) Then 
   c = A 
   For i = 1 To UBound(A, 1) Step 1 
      For j = 1 To UBound(A, 2) Step 1 
         c(i, j) = c(i, j) + B(i, j) 
      Next j 
   Next i 
Else 
   c(1, 1) = 0 
End If 
 
MAdd = c 
 
End Function 
 
Function ShowTrial(Reason As Integer) 
' This function tells Premium Solver to accept the solution without input from the user 
   ShowTrial = 0 
End Function 
 
Improved Golden Section Method Subroutine 

Sub ImprovedGoldenSection(FX As Range, u As Double, L As Double, FunctionVal As Range) 
' This subroutine implements the improved golden section line search method created 
' by Edgar Den Boef and Dick Den Hertog (2007) 
 
Dim tau As Double 
tau = (5 ^ 0.5 - 1) / 2 ' Golden section interval 
Dim x As Double 
Dim x1 As Double        ' Variable 
Dim x2 As Double        ' Variable 
Dim FL As Double        ' Function value at variable value L 
Dim FU As Double        ' Function value at variable value U 
Dim i As Double         ' Loop counter 
Dim FX1 As Double       ' Function value for x1 
Dim FX2 As Double       ' Function value for x2 
 
'------------------------------------------------------------------------------- 
' Initialization (Algorithm 2 in the paper) 
 
'Determine f(L) And f(U) 
FX(1, 1) = L 
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FL = FunctionVal(1, 1) 
FX(1, 1) = u 
FU = FunctionVal(1, 1) 
 
Do 
   If FL < FU Then 
      x = u - tau * (u - L) 
      ' Determine f(x) 
      FX(1, 1) = x 
      FX1 = FunctionVal(1, 1) 
   Else 
      x = L + tau * (u - L) 
      ' Determine f(x) 
      FX(1, 1) = x 
      FX1 = FunctionVal(1, 1) 
   End If 
   ' Determine new interval of uncertainty [L', U'] using convexity property 
   If FX1 > FU Then 
      L = x 
      FL = FX1 
   End If 
   If FX1 > FL Then 
      u = x 
      FU = FX1 
   End If 
Loop Until u - L < 0.001 Or (FX1 <= FL And FX1 <= FU) 
 
'------------------------------------------------------------------------------- 
' The improved golden section method (Algorithm 1 in the paper) 
FX2 = FX1 
 
Do While u - L > 0.001 
   If x = u - tau * (u - L) Then 
      x1 = x 
      x2 = L + tau * (u - L) 
      ' Determine f(x2) 
      FX(1, 1) = x2 
      FX2 = FunctionVal(1, 1) 
   ElseIf x = L + tau * (u - L) Then 
      x1 = u - tau * (u - L) 
      x2 = x 
      ' Determine f(x1) 
      FX(1, 1) = x1 
      FX1 = FunctionVal(1, 1) 
   End If 
   ' Determine new interval of uncertainty [L', U'] using convexity property 
   If FX2 > FX1 Then 
      u = x2 
      FU = FX2 
      x2 = x1 
      FX2 = FX1 
   ElseIf FX2 < FX1 Then 
      L = x1 
      FL = FX1 
      x1 = x2 
      FX1 = FX2 
   End If 
   ' Stretch [L, U'] to [L", U"] according to (1) and (2) to maintain golden selection property 
   If x1 <= u - tau * (u - L) Then 
      L = u - (1 / tau) * (u - x1) 
      FX(1, 1) = L 
      FL = FunctionVal(1, 1) 
   ElseIf u - tau * (u - L) < x1 And x1 < (1 / 2) * (u + L) Then 
      u = (1 / (1 - tau)) * (x1 - tau * L) 
      FX(1, 1) = u 
      FU = FunctionVal(1, 1) 
   ElseIf (1 / 2) * (u + L) <= x1 And x1 < L + tau * (u - L) Then 
      L = (1 / (1 - tau)) * (x1 - tau * u) 
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      FX(1, 1) = L 
      FL = FunctionVal(1, 1) 
   ElseIf x1 >= L + tau * (u - L) Then 
      u = L + (1 / tau) * (x1 - L) 
      FX(1, 1) = u 
      FU = FunctionVal(1, 1) 
   End If 
   If L <= x1 And x1 <= u Then 
      x = x1 
   ElseIf L <= x2 And x2 <= u Then 
      x = x2 
   End If 
Loop 
 
'--------------------------------------------------------------------------------- 
 
' Golden search is for continuous functions, so now we search for the best integer value 
' within the range [L, U] 
FX(1, 1) = Application.WorksheetFunction.Floor(L, 1) 
FL = FunctionVal(1, 1) 
For i = Application.WorksheetFunction.Floor(L, 1) - 1 To Application.WorksheetFunction.Ceiling(L, 1) Step 1 
   FX(1, 1) = i 
   If FunctionVal(1, 1) <= FL Then 
      FL = FunctionVal(1, 1) 
      x = FX(1, 1) 
   End If 
Next i 
 
FX(1, 1) = x 
 
End Sub 
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Appendix B.  “Blue Dart” Op-ED Column 

 In the early hours of January 24th, 2009, a convoy was travelling about 30 miles 

from an American firebase in the Afghan province of Farah.  Around 1 a.m., the 

pavement beneath the fourth of the four vehicles detonated, flipping the six-ton humvee 

end-over-end three times and throwing the vehicle’s engine thirty feet.  In that vehicle 

were five Marines and SrA Alex Eudy, an Air Force Special Operations Weather 

Journeyman.  The Marines in his patrol removed him from the wreckage.  When he 

regained consciousness, SrA Eudy had dozens of fractures in both legs and a severe cut in 

his chin.  He was severely wounded, but SrA Eudy went to work.  Following his training, 

he checked his remaining weapon, an M-9 pistol, and then began applying his combat 

lifesaver training to himself and those around him.  When the Marines in his patrol called 

for medical evacuation helicopters, SrA Eudy taught them how to use his weather 

observing equipment to pass detailed weather information to the inbound aircraft.  In the 

harsh Afghan terrain, this information is critical to safe helicopter extraction.  He was two 

months into his first deployment.   

Thankfully, SrA Eudy survived his wounds.  The Air Force News Service reports 

that he is in good spirits and is now starting the long road to recovery.  SrA Eudy is an 

outstanding Airman, but he is not alone.  He is at least the third special operations 

weatherman to receive the Purple Heart since September 11th, 2001.  These brave 

Airmen are the 21st Century heirs to a tradition started by Office of Strategic Services 

weathermen in Axis-controlled regions of World War II Europe and continued by Air 

Commando weathermen in remote parts of the jungles of Vietnam.  Modern special 

operations weathermen are the only personnel in the world trained to gather detailed, 
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scientific environmental measurements from remote areas of the globe, where all other 

technical means cannot reach.  The data they provide must be accurate and timely so that 

it can be included in theater-level numerical weather prediction computer models, thereby 

improving their accuracy.  These computer models are used by all friendly forces in the 

operational theater.  Additionally, when numerical weather prediction computer models 

are not available; these Airmen possess the technical and tactical knowledge to analyze 

limited environmental trend data to warn commanders of approaching conditions that can 

affect friendly and enemy forces’ operations.   

Gathering detailed measurements of battlefield environmental conditions is an 

important and dangerous military mission.  Joint Publication 3-59 Meteorological and 

Oceanographic Operations requires that all meteorological data collection on the 

battlefield be coordinated in a single Joint plan.  Each branch of the Department of 

Defense has its own set of meteorological sensors, each with its own detection 

capabilities, operational lifespan and operational requirements.  Special operations 

weathermen are the only weather personnel authorized to deploy themselves or their 

sensors outside of the wire to gather meteorological data.  These Airmen are rare and 

their equipment is expensive.  Presently, there is no standardized methodology for 

determining the best time and place for the deployment of meteorological sensing 

equipment of any type.  Any meteorological collection plan is left up to the judgment of 

the senior weather officer in the theater, with the approval of the overall operational 

commander.  Consequently, there is no standardized metric for comparing the benefits of 

different collection plans.  There is also no way to demonstrate any collection plan’s 

contribution towards the overall campaign goals. 
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At the Air Force Institute of Technology’s Center for Operational Analysis, a 

mathematical model was developed that takes any given military campaign plan, statistics 

compiled from climatological models, the numbers of available meteorological sensors 

and the capabilities of weather sensor types to create an optimized meteorological 

collection plan for any battlefield - anywhere.  This model ensures that the available 

sensors are deployed in a manner that maximizes frequency of detection of operationally 

significant weather conditions over the longest period of time possible with the given set 

of sensors.  This model also ensures that the meteorological collection plan is directly 

supporting the overall campaign plan.  This model must be implemented as soon as 

possible so that Airmen like SrA Eudy are only ever put in harm’s way for the best of 

reasons. 

 

Captain Geyer is a former Special Operations Weather Team leader and graduate 

student in Operations Research at the Air Force Institute of Technology. 

 

 

 

 

The views expressed in this article are those of the author and do not reflect the official 

policy or position of the United States Air Force, Department of Defense, or the US 

Government. 
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Appendix C.  Story Board PowerPoint® Slide 
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