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Abstract:  This work analyzed the spatial distribution of violent events as 
constructed from a content analysis of open source news reports. Data on 
112 variables was available for 45 neighborhoods. The small sample 
limited the analysis to those 32 variables with at least four observations. 
The statistical analysis was done both for the original measures of event 
counts by neighborhood, and for binary variables that indicated the 
presence of events. Test statistics for spatial autocorrelation were 
computed for global patterns and local patterns, including global and local 
Moran’s I, Geary’s c, Moran Scatterplot, join count statistics, and local join 
counts.  

There was little evidence of systematic spatial structure at the 
neighborhood scale. Only for a variable indicating internal between hayy 
migration was there consistent indication of positive spatial 
autocorrelation, or clustering. Several other variables showed significant 
negative spatial autocorrelation at the local scale, suggesting that 
neighborhoods where violent events occurred are surrounded by 
neighborhoods without violent events. A few neighborhoods were 
consistently identified as the locus of a spatial outlier, suggesting some 
patterning. A finer spatial scale might reveal more complex spatial 
patterns. The current data do not allow this to be investigated. 
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Executive Summary

In this report, we analyze the spatial distribution of violent events as constructed

from a content analysis of open source news reports. Data on 112 variables was

available for 45 neighborhoods. The sparsity of the sample limited the analysis to

those 32 variables for which there were at least four observations. The statistical

analysis was carried out both for the original measures of counts of events by

neighborhood, as well as for binary (0-1) variables that only indicated the presence

or absence of events.

Test statistics for spatial autocorrelation were computed for global patterns

and local patterns. These include global and local Moran’s I, Geary’s c, Moran

Scatterplot, join count statistics and local join counts.

Overall, there was little evidence of systematic spatial structure at the scale of

the neighborhood. Only for a variable indicating internal between hayy migration

was there consistent indication of positive spatial autocorrelation, or clustering.

Several other variables showed significant negative spatial autocorrelation (spatial

outliers) at the local scale, suggesting that neighborhoods within which violent

events occurred are surrounded by neighborhoods without violent events. A few

neighborhoods were consistently identified as the locus of a spatial outlier. This

suggests some patterning, but more extensive information is needed to character-

ize this more accurately.

Finally, it should be kept in mind that a finer spatial scale might reveal more

complex spatial patterns. The current data do not allow this to be investigated.
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1 Introduction

This report provides the methodological context and application of various tech-

niques to assess patterns in violent events in Baghdad, Iraq. The original moti-

vation was to assess the extent to which data culled by means of content analysis

from open source news reports could be used to construct quantitative measures

of the presence of significant patterns, such as hot spots and spatial outliers. In the

process, several data quality issues needed to be addressed. The results presented

here are only preliminary, in the sense that ultimately insufficient data of accept-

able quality could be extracted from the original data sources to allow meaningful

spatial statistical inference. The evidence on spatial patterns in Baghdad is there-

fore limited, although approaches are outlined that could be followed in a situation

where more extensive data are available (e.g., using classified sources of informa-

tion).

The report is organized in six remaining sections. First, a brief overview is

given of the fundamental methodological issues and the statistical tests most com-

monly used in practice are presented. This also includes a discussion of new

techniques proposed to deal with binary (zero-one) data. Next, the data and soft-

ware are addressed, before moving on to the actual empirical analysis. The latter

is carried out using both a global and a local perspective for the original counts of

events and for a binary indicator of presence/absence of the events. We close with

some concluding remarks.
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2 Methodological Issues

In this section, we review some relevant methodological issues pertaining to the

analysis of spatial data. In many instances empirical data not only contain infor-

mation on the variable (or attribute) of interest but also on the geographic location

where the particular value was observed. Spatial methods are required when the

structure of the data violates standard statistical assumptions, such as indepen-

dence. For example, the so-called first law of geography states that observations

close in space tend to be more similar. This is also referred to as positive spatial

autocorrelation, a crucial concept in the analysis that follows.

We start with a review of types of spatial data in Section 2.1. Next, we elab-

orate on the concept of spatial autocorrelation, providing a formal definition in

Section 2.2 as well as highlighting some of its special characteristics. Section

2.3 deals with one of the main problems when applying spatial analysis, the def-

inition of similarity and neighboring relationships. Finally, Section 2.4 provides

a brief discussion of statistical inference in the context of spatial autocorrelation

measures.

2.1 Types of Spatial Data

The classification we adopt follows Cressie (1993) and characterizes spatial data

by the nature of the spatial domain (D). The spatial domain is continuous when

a variable Z can be observed everywhere within the domain. In other words, be-

tween any given pair of locations one can theoretically place an additional infinite

number of observations. On the other hand, a spatial domain is discrete when

the number of locations can be enumerated, even though their actual number can

6



Figure 1: Geostatistical Data, House Sales and Ozone Stations, Los Angeles, CA

approach infinity. An example of this situation is when administrative units, such

as districts or provinces are considered. In the literature and in practice, the types

of data that correspond to these two situations are referred to as geostatistical data

and lattice data, respectively.

Geostatistical data corresponds to a continuous and non-stochastic domain. As

an example, consider measuring air pollution. Air pollution could be recorded at

any location, continuously across space. In practice, however, the level of pollu-

tion is recorded at a finite number of specific monitoring locations (see Figure 1).

In contrast, for lattice (or regional) data the domain is non-stochastic but discrete.

A typical example of lattice data are the U.S. counties, or the neighborhoods of a

city, or, more in general, data sets that provide information about every site in the

domain (see Figure 2).

Both geostatistical and lattice data share the common characteristic of a non-
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Figure 2: Lattice Data, Neighborhoods in Columbus, OH

stochastic domain. In contrast to this, so-called point pattern analysis deals with

the spatial distribution of events across space. In other words, the locations of

the events are stochastic and thus the domain (possible locations) is random. For-

mally, the collection of points corresponding to a random set D is termed a point

pattern (see Figure 3).

2.2 Spatial Autocorrelation

Generally speaking, autocorrelation is the correlation of a variable with itself.

In statistics, as well as in mainstream econometrics, a huge emphasis has been

placed on the presence of serial correlation over time. In time series analysis, past

values determine the present value of a variable. However, clearly, the present

does not determine the past. In other words, the structure of the dependence and

autocorrelation is unidirectional. The definition of dependence in space is not as

straightforward as in the time domain. Dependence in space is multi-directional
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Figure 3: Point Pattern Data, Locations of Trees
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in that what happens at one site may influence all other sites, but also may be

influenced by every other location. Therefore, if the variable under observation

is distributed across space, the term autocorrelation will refer to the correlation

between the value of the same variable at different locations.

Spatial autocorrelation can then be defined as the coincidence of value sim-

ilarity with locational similarity (Anselin and Bera 1998). Two types of spatial

autocorrelation occur, characterized as positive or negative spatial autocorrelation

(see Figure 4). If there is positive spatial autocorrelation, then observations with

high (or low) values of a variable tend to cluster in space (neighbors, or loca-

tions with similar locations have similar values). In other words, proximity in

space corresponds with attribute similarity (panel (a) of Figure 4). Conversely, in

the presence of negative spatial autocorrelation, locations tend to be surrounded

by neighbors having dissimilar values. Negative spatial autocorrelation implies a

checkerboard pattern of values, as shown in panel (b) of Figure 4. Positive spatial

autocorrelation is by far more intuitive with a clear interpretation, and tends to be

more commonly the focus of attention. Negative spatial autocorrelation is inter-

esting in that it points to spatial heterogeneity, or the dissimilarity of locations.

It should be noted that the point of departure in spatial statistical analysis is

the absence of any spatial structure, be it positive or negative. This is referred to

as complete spatial randomness (see Figure 4 panel (c) for an example). Spatial

randomness implies that there is no relation between the location of observations

and their values. As pointed out in Cressie (1993), the consequence of positive

spatial autocorrelation in data is a decrease of information with respect to the

uncorrelated (spatially random) counterpart. Proper statistical inference should

explicitly account for this loss of information in estimation and hypothesis testing.
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(a) (b) (c)

Figure 4: Examples of Spatial Autocorrelation Over a 5×5 Regular Grid. Positive
Spatial Autocorrelation (Panel a), Negative Spatial Autocorrelation (Panel b) and
Spatial Randomness (Panel c).

2.3 Spatial Weights

In defining spatial autocorrelation, the formal expression of the “proximity” be-

tween spatial observations is a crucial concept. Many different criteria can be used

to define “neighbors.”

The most intuitive way to proceed would be to estimate the full variance-

covariance matrix (or correlation) directly from the observed data. However, for

a set of n observations there will potentially be n× n covariance terms. This is

an example of the incidental parameter problem, a lack of degrees of freedom in

the data which makes estimating these parameters impossible in practice. The

solution to this problem consists of imposing some constraints in order to reduce

the number of parameters to be estimated. The tool that is widely used to represent

the spatial structure of a set of locations is the so-called spatial weights matrix.

A spatial weights matrix (W ) is an n× n positive and symmetric matrix that

defines the structure of the interaction between each pair of spatial units. Each

observation appears both as a row and as a column in the matrix. In each row, the

non-zero elements of the matrix express for a given observation which other obser-
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vations are considered to be its neighbors. Each non-zero element (wi j) indicates

the intensity of the relationship between the corresponding cross sectional units (i

and j). By convention, the diagonal elements wii are set to zero, which excludes

so-called self-similiarity, or the possibility that an observation is considered to be

its own neighbor. The weights matrix is typically used in row standardized form

(so that all its elements range between 0 and 1). To obtain the row standardization,

each element is divided by the sum of all the row elements. An important conse-

quence of the row standardization is that the resulting matrix will not necessarily

be symmetric, even though the original definition of neighbors is symmetric.

A crucial aspect in the construction of the spatial weights matrix is to deter-

mine which elements should be different from zero. There is little guidance on

this from either a theoretical or practical perspective. Typically, the description

of the neighborhood set relies on geographical criteria. The most straightforward

case is when two observations are considered neighbors if they share a common

edge. When this is the case, the corresponding element of W will be set to one

(binary contiguity). On a regular grid, different definitions of binary contiguity

can be applied. In analogy with the game of chess, they are referred to as rook

(share a common edge), bishop (share a common vertex), or queen (both edge and

vertex). In practice, rook and queen are the most commonly used criteria.

An alternative to the contiguity criterion is to use distance between observa-

tions as the basis for the construction of weights. Non-zero elements of W corre-

spond to pairs of observations within a critical distance of each other (i.e., wi j = 1

if di j < d, where di j is the physical distance between observations i and j, and d is

a distance cut-off value). Sometimes a function (inverse or squared inverse) of the

distance is used directly as input in the spatial weights matrix. In the literature,

12



this is referred to as direct representation.

A further example of geographical weights are the so-called k-nearest neigh-

bors. Such neighbors are based on the sorted distance between a unit and all other

units. The order k determines how far the neighbor set reaches. Note that the

actual magnitude of the distances between units is not important, it is the relative

ranking of distances that determines the neighbor set for each location. This cri-

terion is not symmetric, which complicates the computation of test statistics and

model parameters in some instances.

Geographical definitions of the neighbor set are by far the most widely used in

practice. However, many other approaches have been proposed in the literature as

well (see Case 1991, 1993, Conley and Ligon 2002, Conley and Topa 2002, Case

et al. 1993, among others), including semiparametric weights (Pinkse et al. 2002).

2.4 Inferential Approaches

Inference about spatial autocorrelation is based on a hypothesis test of the null

hypothesis that the data are spatially random. In different contexts (geostatistical

data, lattice data, point patterns), this takes on a slightly different form, but the

essence is that, under the null, space does not matter.

The general idea is to assess whether the magnitude of the observed test statis-

tics computed from the data is unusual under the assumption of spatial random-

ness. If the value of the statistic is particularly extreme, the null hypothesis should

be rejected and evidence is found of the presence of a spatial structure. As dis-

cussed in Schabenberger and Gotway (2005) there are four general approaches to

assess the significance of a test statistic for spatial autocorrelation.

13



A permutation test is based on the idea that spatial randomness can be op-

erationalized in the form of a random assignment of each observed value of the

variable to each spatial unit with equal probability. The total such possible ar-

rangements for n observations equals the number of possible permutations (n!).

Any spatial autocorrelation statistic is then computed for each of these random

spatial arrangements to yield a reference distribution. The observed value of the

test statistic (i.e., the value computed from the actual data) is compared to the ref-

erence distribution to assess pseudo-significance. Typically, if the observed value

is in the tail of the reference distribution, the null hypothesis of spatial randomness

is rejected.

The main limitation of the permutation approach is that even for small n the

number of arrangements will quickly become very large and create impractical

computational demands. Therefore, in practice, rather than considering the ex-

haustive set of permutations, a Monte Carlo approach is used instead. This creates

a subset of all possible arrangements by randomly reshuffling the data a prede-

termined number of times. The number of replications determines the smallest

pseudo-p value that can be obtained. For 99 permutations, this is p = 0.01, for

999 permutations, p = 0.001.

In contrast to this computational (non-parametric) approach, a parametric per-

spective starts from strong assumptions about the underlying distribution of the

variable. Under suitable regularity conditions, this allows for the computation

of the moments of the test statistic under the null hypothesis, and sometimes the

(asymptotic) distribution of the statistic as well. The most commonly used ap-

proach is to assume a Gaussian distribution for the variable, which in most cases

leads to a normal approximation of the distribution of the test statistic. In practice,

14



the mean and variance of the test statistics (under the null hypothesis) are used to

construct a standardized z-value, which is then employed to assess significance.

As an alternative to the Gaussian assumption, equal probability (randomiza-

tion) is commonly used as well. Again, under a set of suitable regularity condi-

tions, in most instances this results in an asymptotic normal approximation of the

distribution of the test statistic.

3 Statistics for Spatial Autocorrelation

Probably the most widely used statistic for spatial autocorrelation is the so-called

Moran’s I test (originally presented in Moran 1950). We consider this in Section

3.1 for both global and local versions of the test statistic. Section 3.2 deals with

Geary’s c statistic (Geary 1954), again both global and local. Finally, in Section

3.3, we turn to global and local measures of spatial autocorrelation for discrete

(binary) data, based on the principle of join counts.

3.1 Moran’s I

The formal expression for Moran’s I statistic for variable x is:

I =
n
S0

∑
i

∑
j

wi j(xi−µ)(x j−µ)/∑
i
(xi−µ)2 (1)

where n is the total number of observations, S0 = ∑i ∑ j wi j is the sum of all the

elements of the spatial weight matrix, and µ is the mean of x over all the observa-

tions. Note that if W is row-standardized, then S0 = n and the ratio n/S0 is equal

to one.
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Moran’s I resembles a correlation statistic since the numerator is a measure of

the covariance between the variable at different locations, and the denominator has

the typical aspect of a measure of the variance. The distribution of the test statis-

tic under the null is asymptotically normal. The moments of Moran’s I can be

derived analytically, using either a normality assumption (of the underlying vari-

able) or equal probability (randomization). In both instances, the expected value

of the statistic turns out to be E(I) =−1/(n−1) (Cliff and Ord 1981). However,

the variance differs depending on the assumption used. Under the assumption of

normality, the second moment is (see Cliff and Ord 1973, Ch1, p. 15):

EN(I2) =
n2S1−nS2 +3S2

0

S2
0(n2−1)

(2)

while under the assumption of randomization it is:

ER(I2) =
n[(n2−3n+3)S1−nS2 +3S2

0]−b2[(n2−n)S1−2nS2 +6S2
0]

(n−1)(n−2)(n−3)S2
0

(3)

where n is again the total number of observations, S1 = 1
2 ∑

n
i=1 ∑

n
j=1(wi j + w ji)2,

S2 = ∑
n
i=1

[
∑

n
j=1 wi j +∑

n
j=1 w ji

]2
and S0 has been defined above. Also, b2 is the

sample kurtosis coefficient, m4/m2
2, where m j is the j− th sample moment of x

around the sample mean. Inference is generally based on a standardized z-value

computed with either one of these moment expressions.

The interpretation of the index is as follows. When I > E(I), then a spatial unit

tends to be surrounded by locations with similar attributes. In other words, there

is spatial clustering of either low/low or high/high values. The strength of positive

spatial autocorrelation tends to increase with [I−E(I)]. On the other hand, when
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I < E(I), an observation will tend to be surrounded by neighbors with dissimilar

values, suggesting negative spatial autocorrelation.

As such, the magnitude of the statistic is not sufficient to conclude signifi-

cance. Irrespective of the magnitude of the statistic relative to its mean, there is

only evidence of departure from the null hypothesis of spatial randomness when

the statistic is large enough to be deemed significant.

3.1.1 Local Moran

Local Indicators of Spatial Association (LISA), according to the definition in

Anselin (1995), are statistics that satisfy two requirements:

1. For each location, provide an indication of the extent to which there is sig-

nificant clustering of similar values (local clusters) or dissimilar values (spa-

tial outliers) around that location.

2. The sum of the local statistics over all observations is proportional to a

global indicator of spatial association.

In contrast to global measures, local measures of spatial association examine

spatial dependence for subsets of the data. Thus, while a global measure yields

a single value for the entire data set, local measures result in as many statistics

as there are spatial units in the sample. Getis and Ord (1996) list a number of

advantages of local statistics, including:

1. Identification of hot and cold spots.

2. Identification of the scale at which there is no distinguishable association of

data values.

17



3. Verification of stationarity for a given study regions

As shown in Anselin (1995), a local version of Moran’s I can de expressed as:

Ii = (xi−µ) ∑
j∈Ji

wi j(x j−µ), (4)

where the variables have the same meaning as in (1) and Ji is the set of neighbors

of observation i. Anselin (1995) also derives the expression for expected value

and variance under a randomization assumption. These moments can be used for

statistical inference similar to the approach used for the global Moran. However,

the asymptotic approximation of the distribution of the local Moran under the

null based on these theoretical moments is rather poor. A preferred approach to

inference is conditional randomization, in which a series of permutations is carried

out for each observation in turn (see Anselin 1995, for details).

3.1.2 Moran Scatterplot

When the weights matrix W is row-standardized, an interesting interpretation of

Moran’s I statistic follows as the slope in a regression line. As a matrix expression,

the numerator of Moran’ I can be written as z′Wz, where zi = (xi−µ). Using the

same notation, the denominator can be written as z′z. As a result, the statistic

becomes I = z′Wz/zz. This corresponds to the slope in a linear regression of Wz

(dependent variable) on z (explanatory variable).

A graphical depiction of this result is obtained in a so-called Moran scatterplot

(Anselin 1996), in which the vertical axis represents the spatially lagged variable

Wz, and the horizontal axis the original variable z. This is the opposite of what a

spatial autoregressive regression would suggest, but it is the appropriate arrange-
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ment to find Moran’s I as the slope of the linear regression through the scatterplot

cloud.

A Moran scatterplot is a convenient tool to identify potential clusters and spa-

tial outliers (Anselin 1996). It provides a visual exploration of spatial autocor-

relation. If most of the observations fall either in the upper right or lower left

quadrants, there is evidence of positive spatial autocorrelation. Conversely, if the

observations are mostly concentrated in the lower right or upper left quadrants,

this suggests negative spatial autocorrelation. The four quadrants in the scatterplot

provide the basis to classify observations into four types of spatial autocorrelation.

Spatial clusters occur in the form of positive high-high associations in the upper

right quadrant, and positive low-low associations in the lower left quadrant. Spa-

tial outliers are present in the form of negative high-low associations in the lower

right quadrant, and negative low-high associations in the upper left quadrant. Note

that this only suggests the type of association, but does not establish significance.

A formal permutation test would be necessary to establish the latter.

A Moran scatterplot is illustrated in Figure 5.

3.2 Geary’s c

Geary’s c statistic can be expressed as:

c =
(N−1)

2S0
∑

i
∑

j
wi j(xi− x j)2/∑

i
(xi−µ)2, (5)

using the same notation as in the expression for the Moran’s I. Similar to the

procedures outlined in Section 3.1, inference can be based either on a normality

assumption or on a randomization approach. Interestingly, the expected value
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Figure 5: Moran Scatterplot. Variable Income, Columbus Dataset.
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of the statistic under the null is E(c) = 1 in both approaches. Consequently, it

does not depend on which variable is being considered, on the spatial structure

implied by W , or on the sample size. However, the variance differs between the

two assumptions. Under the assumption of normality, the variance is:

VarN(c) =
(2S1 +S2)(n−1)−4S2

0

2(n+1)S2
0

, (6)

whereas under the randomization assumption, it becomes (see Cliff and Ord

1973, for technical details):

VarR(c) = {(n−1)S1[n2−3n+3− (n−1)b2]

−1
4
(n−1)S2[n2 +3n−6− (n2−n+2)b2]

+S2
0[n

2−3− (n−1)2b2]}/n(n−2)(n−3)S2
0 (7)

where S0, S1, and S2 are as in the expressions above.

The interpretation of Geary’s c is somewhat counterintuitive since it is based

on a notion of dissimilarity (squared difference) rather than similarity. For values

of c less than one, positive spatial autocorrelation is indicated, whereas negative

spatial autocorrelation is suggested by values larger than one. As before, only

when these values are significant can the null hypothesis of spatial randomness be

rejected.
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3.2.1 Local Geary

Similar to Moran’s I, a local counterpart to Geary’s c can be derived, using the

general LISA principles outlined in Anselin (1995). The formal expression is:

ci = ∑
j∈Ji

wi j(xi− x j)2 (8)

where, as before, Ji identifies the set of neighbors of observation i. Inference is

based on conditional permutation (see also Sokal et al. 1998, for further technical

details and applications).

3.3 Join Count Statistics

When the attribute variable is binary, that is,

xi =

 1 if an event occurred in location i

0 if an event did not occur in location i

a different methodological approach is needed to measure spatial autocorrelation,

since both Moran’s I and Geary’s c require a ratio scale variable. A spatial auto-

correlation statistic for binary data can be derived from the principles of Mantel’s

general cross product statistic, or Gamma statistic, Γ = ∑i ∑ j ai jbi j, where ai j and

bi j are matching elements in two matrices of similarity. This principle can be

applied in the spatial case by considering one matrix as a matrix of attribute sim-

ilarity and the other as a matrix of spatial similarity (i.e., the weights matrix W ).

The corresponding spatial statistic would then be Γ = ∑i ∑ j ai jwi j.

In the case of a binary variable, three measures of attribute similarity (or dis-
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similarity) can be used: xix j, (1− xi)(1− x j), and (xi− x j)2. For xix j, the product

is non-zero when both xi and x j equal 1. Similarly, when both xi and x j are zero,

the product (1− xi)(1− x j) is non-zero. Both instances suggest positive spatial

autocorrelation, i.e., similarity between the values at i and j. In contrast, when

xi and x j take on different values (e.g., one is zero and the other one), then the

expression (xi− x j)2 is non-zero. This suggests negative spatial autocorrelation.

More specifically, this results in three so-called join count statistics for spa-

tial autocorrelation among binary variables. Positive spatial autocorrelation is

indicated by the BB (Black-Black, for a value of 1 in each location) and WW

(White-White, for a value of 0 in each location) statistics. Formally:

BB =
1
2

n

∑
i=1

n

∑
j=1

wi jxix j, (9)

and,

WW =
1
2

n

∑
i=1

n

∑
j=1

wi j(1− xi)(1− x j). (10)

Negative spatial autocorrelation is indicated by the BW (Black-White, for a

1-0 pair) statistic. Formally:

BW =
1
2

n

∑
i=1

n

∑
j=1

wi j(xi− x j)2. (11)

As shown in Cliff and Ord (1981), inference can be based on either an ana-

lytical or a computational approach. The moments of the statistics can be derived

under a particular sampling model, with or without replacement. The permutation

approach is more robust and is typically used in practice. For example, if there

are n1 observations with a value of 1 (B) in a sample of n, then the remaining
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n−n1 take on a value of 0 (W). The null hypothesis of no spatial autocorrelation

can then be tested by permuting the n1 black and the n− n1 white cells over the

observations.

3.3.1 Local Spatial Autocorrelation in Binary Data

The principle of a local spatial autocorrelation statistic can be extended to join

count tests. In general, any statistic of the cross product form Γ = ∑i ∑ j ai jwi j can

be localized for observation i as Γi = ∑ j ai jwi j (Anselin 1995). In the case of a

BB statistic, assuming i takes on the value of 1, this would take on the form:

BBi = xi ∑
j

wi jx j. (12)

Inference could be based on conditional permutation, although an analytical so-

lution is straightforward. Under the null hypothesis of spatial randomness, each

observation has equal probability of taking on a value of 1 (B). If pb is the pro-

portion of B values in the study region of size n, then the probability of finding

x black observations in a subregion of ni cells is simply given by the binomial

distribution:

Pr(X = x) =
(

ni

x

)
px

b(1− pb)ni−x. (13)

To be precise, the probability of “remaining” black observations should be ad-

justed for the fact that the location i takes on a black value, such that pb =

nb/(n− 1). In practice, this adjustment will be negligible in any but the small-

est data sets.

Given the total number of neighbors for an observation, it becomes a straight-

forward computation to determine how many black neighbors are needed for the
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BBi statistic to be significant. For example, locations for which Pr(X ≥ x) is less

than a chosen significance level (say p) would suggest the presence of a cluster.

However, unlike the case for ratio variables, where the average of the neigh-

boring values is the only meaningful information that can be contained in the

local statistic, the situation is more complex for discrete variables. The number

of black neighboring cells can be arranged in several different ways (unless all

neighbors take on the same value), some of which are more akin to the notion of

a “cluster” than others. In this case, attention focuses not only on the first order

neighbor relations between a location and its immediate neighbors, but also on

the arrangement of the values between the neighbors themselves, which involves

second order neighbor properties. In the literature, this distinction is referred to as

composition and configuration (Li and Reynolds 1993, 1994, 1995).

This issue is further explored in a recent paper by Boots (2003). This is set in

the context of 0-1 variables observed on a regular grid, which facilitates some of

the formal derivations. Boots (2003) notes that when considered locally, configu-

ration should be analyzed conditional on composition, i.e., after the number of a

particular type of cell (black or white) has been accounted for. In his approach, lo-

cal composition is measured by counting the number of cells of a particular type,

while local configuration is measured by join counts. This requires a considera-

tion of more than first order neighbors. In fact, he considers square windows of

increasing size centered on the observation of interest (he uses square windows

of dimension 3× 3, 5× 5 and 7× 7). In other words, his notion of local statistic

differs from the local join count expression given in Equation (12), but is more

akin to the notion of a regional statistic, computed from a moving window. Boots

(2003) outlines a classification into eight classes based on combinations of com-
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position and configuration.

While quantifying composition is straightforward, obtaining a formal measure

of configuration is more complex. One could express the total number of join

counts in a sub-region as a proportion of all joins in that sub-region. Then a

one-sample difference of proportion test could be employed to test the difference

between this (local) proportion and the corresponding proportion over the entire

study area. However, this approach is only valid when the composition of the

sub-region and that of the entire study area are the same. The proper way to

test for local configuration should thus be conditional on composition. In other

words, given the number of black cells in a sub-region, the number of joins needs

to be assessed relative to a random assignment. Analytical approaches towards

inference are limited by the small number of cells in the moving window. Boots

(2003) enumerates all possible cases for the three window sizes considered, up to

7×7. However, this approach is limited to a regular grid configuration.

To extend these ideas to an irregular spatial configuration would likely require

a permutation approach. In addition, the notion of a moving window would need

to be formalized. Obvious approaches would be to use either higher orders of

contiguity, distance bands, or nearest neighbor criteria. This remains to be further

explored and is not applied in our empirical study.

4 Data and Software

Before moving on to the empirical study of violent events in Baghdad, Iraq, we

briefly review the characteristics of the data and the software used in the analysis.
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4.1 Data

Figure 6 shows the city of Baghdad by neighborhood. Due to data limitations,

the study only considers 45 neighborhood areas in the city of Baghdad. Figure 7

presents the point locations of these 45 neighborhoods (marked by their sequence

number). These numbers correspond to the list of neighborhood names in Ap-

pendix A. The use of points rather than polygons to represent the neighborhoods

avoids problems with the precise delineation of the boundaries between them and

provides sufficient locational detail to allow for the computation of both global and

local spatial autocorrelation statistics. In order to visualize the point data results in

map format for this report, the 45 points are converted to (Thiessen) polygons to

create a neighborhood around each point, whereby neighborhood boundaries are

defined by the median distance between closest points. Figure 7 presents these 45

neighborhoods as an overlay of the original Baghdad neighborhoods in Figure 6.1

1To distinguish between the neighborhoods of both figures, the maps frequently refer to the 45
neighborhoods of this report as ”incident areas.”
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The original source for the data is a content analysis of news reports available

as open source. This involved a coding system that classified events reported on in

the news sources. While precise geocoding was not possible, there was sufficient

information in the reports to associate each event with a neighborhood.

A detailed coding system was used to classify the events. This system has a

nested structure, going from more general descriptions to more precise categories.

The structure is such that all events reported in a lower level (more specific) cate-

gory are also included in the total at the higher level. However, for some events,

it was not possible to find a more specific classification, so that the higher level

total does not necessarily correspond to the sum of all lower level categories. For

example, if the variable 7620IZ suicide bombing is non-zero for one of the 45

neighborhoods, the higher level variable 762 Suicide should also be non-zero.

However, the reverse is not necessarily the case, i.e., the count of events at the

higher level could be larger than (or equal to) the sum of events at lower level

categories. The detailed classification is given in Appendix B.

In the spatial analysis that follows in Section 5, we will report results for a spa-

tial weights matrix based on four nearest neighbors.2 The structure of dependence

between observations implied by this weights structure is illustrated in Figure 8.

Each point represents a spatial unit, with the red lines connecting each observation

to its four nearest neighbors. The denseness of the resulting network highlights

the number of connections between the sample points.

The content analysis of news sources yielded 112 variables for which at least

one event was recorded. However, a closer analysis of the frequency distribution

of the number of neighborhoods for which an event was observed for each of the

2Other spatial weights were considered as well without substantively affecting the results.
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Spatial structure implied by W

Figure 8: Structure of Dependence Implied by a 4-Nearest Neighbors Weights
Matrix.
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variables reveals a highly skewed result. As shown in Table 1, 40 variables only

record events in a single neighborhood, and 19 variables are only present in two

neighborhoods. Across all variables, the average number of neighborhoods with

recorded events amounts to four. For more than 75% of the variables, there are

fewer than six neighborhoods with recorded events.

This result could be due to the detailed nature of the classification which yields

insufficient (rare) events over the course of a year. Alternatively, it could also

point to a problem with the spatial scale of analysis. With relatively large (in

area) neighborhoods as units of analysis, it is conceivable that highly spatially

concentrated events are only recorded for one or two neighborhoods. Such events

may show spatial pattern within the neighborhood scale, but our analysis would

not be able to detect such pattern.

In order for meaningful spatial analysis to be carried out, we limited our

scope to those variables for which at least four different neighborhoods (out of

45) recorded events. This eliminated 80 variables from consideration, leaving 32

to be included in the analysis.

4.2 Software

The analysis that follows was largely performed using the R statistical software.

R is free software that can be downloaded from the CRAN website (at the address

http://cran.r-project.org/). R is a collaborative project with many contributors.

Most of the analysis presented here will be based on functions that are supplied

as packages. The spdep library (Bivand 2001, 2006, 2002, Bivand and Gebhardt

2000, Bivand and Portnov 2004) for spatial regression analysis contains most of
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Table 1: Distribution of Non-Zero Observations for Each Variable.

Non-zero Number
1 40
2 19
3 14
4 7
5 6
6 4
7 4
8 4
9 3
10 4
11 1
15 5
21 1
TOT 112

the tools needed to perform statistical testing for the presence of spatial autocor-

relation.

In addition, some of the methods discussed in Section 2 required additional

computer programming, since they are not currently available in any software

package (e.g., the local measures for binary data). When needed, these computer

programs were also written in the R language.

Finally, the spatial weights matrix was constructed from a shape file using

GeoDa software. GeoDa is a free downloadable software package

(http://geodacenter.asu.edu/software/downloads) developed at the GeoDa center

for Geospatial Analysis and Computation at the Arizona State University (Anselin

et al. 2006). GeoDa was also used to implement the LISA analysis.
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5 Spatial Analysis

In this section, we present results for the analysis of patterns in the distribution of

violent events in Baghdad using statistics for global and local spatial autocorrela-

tion. We proceed in two different ways. First, we consider the data as counts of

events, but ignore the specific count nature of the data (e.g., as would be the case

using a Poisson model). In other words, we treat the counts as if they were ratio

scale variables. While a loss of precision will be associated with this approach, it

does provide a qualitative measure of the degree of spatial clustering in the data.

In a second approach, we convert the counts to a binary 0-1 scale and apply join

count statistics to the resulting data. In both instances, we take a global as well as

a local perspective, applying the statistical tests outlined in detail in Section 3.

5.1 Counts of Events

5.1.1 Global Spatial Autocorrelation

Moran’s I

We begin the analysis of global spatial autocorrelation by considering the

Moran’s I statistic using four nearest neighbor spatial weights. The main results

are reported in Tables 2 and 3, respectively for the normal and randomization

assumption using an analytical approach towards inference.

Each table contains four columns. The first column reports the value of the

sample estimate of Moran’s I, the second column is the expected value, then

the variance and, finally, an indication of the significance level for a two-sided

statistical test. The difference between the two tables is only in the fourth and

last columns, since only the variance under the null differs between the two ap-
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proaches. The statistic itself and its expected value are the same.

Of the 32 variables considered in Table 2, only 166 1660IZ (within city in-

migration, hayy to hayy) is highly significant (p < 0.0001) and positive. This

suggests a significant degree of clustering at the neighborhood level. Note that

from the global statistic, it is not possible to assess whether this is clustering of

high values or low values, only of “similar” values. None of the other variables

showed a significant level of spatial autocorrelation, not even at a p levels of 0.05

or 0.10.

The results in Table 3 are largely the same. Again, the test statistics for variable

166 1660IZ is found to be highly significant (p < 0.0001) and positive. In addi-

tion, but only at a very conservative significance level of p < 0.10, two new vari-

ables show weak evidence of positive spatial autocorrelation: 627 6277IZ 6820IZ

(bombing by other means – killed) and 627 6277IZ 6821IZ (bombing by other

means – wounded). This suggests some clustering of similar values of these vari-

ables at the neighborhood scale.

A final assessment of Moran’s I is carried out by means of a permutation

test. In Figure 9, a graph with the reference distribution constructed from ran-

domly permuted data sets is shown for each variable. The reference distribution

was based on 999 independent samples. The density function (black curve in the

graphs) corresponds to the distribution of the statistic under the null. The red ver-

tical line is drawn at the observed value of Moran’s I for that variable. A pseudo

significance test can be based on how extreme the observed value is relative to the

reference distribution. For variable 166 1660IZ (within city inmigration, hayy to

hayy), there is again strong evidence of positive spatial autocorrelation. Similar

to the results under randomization, there is weak evidence of positive spatial au-
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tocorrelation for the additional variables 627 6277IZ 6820IZ (bombing by other

means – killed) and 627 6277IZ 6821IZ (bombing by other means – wounded).
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Table 2: Moran’s I under Normality.

I E(I) Var(I) p-value

166 1660IZ (within city inmigration, hayy to hayy) 0.373 -0.023 0.009 0.000
627 6277IZ 6820IZ (bombing by other means - killed) 0.115 -0.023 0.009 0.137
627 6277IZ 6821IZ (bombing by other means - wounded) 0.106 -0.023 0.009 0.163
627 6275IZ 6820IZ (attack on political officials - killed) -0.104 -0.023 0.009 0.379
627 6273IZ (firing on crowd) -0.102 -0.023 0.009 0.391
627 6277IZ (bombing by other means) 0.053 -0.023 0.009 0.413
682 6821IZ (offenses against life - wounded) 0.046 -0.023 0.009 0.455
727 (aftermath of combat) -0.091 -0.023 0.009 0.458
727 7270IZ 5630IZ (collateral civilian wounded -sunni) -0.091 -0.023 0.009 0.463
727 7270IZ (killed while captive) -0.089 -0.023 0.009 0.475
166 1661IZ (within city outmigration, hayy to hayy) -0.088 -0.023 0.009 0.480
627 6271IZ (roadside or on road bombing) -0.087 -0.023 0.009 0.483
682 6820IZ 5631IZ (offenses against life - killed - sunni) -0.087 -0.023 0.009 0.483
683 (offenses against the person) -0.079 -0.023 0.009 0.545
683 6830IZ (kidnapping indigenous person) -0.079 -0.023 0.009 0.545
627 6271IZ 6821IZ (roadside or on road bombing - wounded) -0.077 -0.023 0.009 0.557
627 6270IZ 6820IZ (car bombing - killed) -0.074 -0.023 0.009 0.579
627 (informal in group justice) -0.073 -0.023 0.009 0.587
627 6271IZ 6820IZ (roadside or on road bombing - killed) -0.073 -0.023 0.009 0.588
626 (social control) -0.068 -0.023 0.009 0.626
627 6270IZ 6821IZ (car bombing - wounded) -0.067 -0.023 0.009 0.630
627 6278IZ (rocket and or mortar attacks) -0.061 -0.023 0.009 0.681
627 6270IZ (car bombing) -0.061 -0.023 0.009 0.682
627 6276IZ 6820IZ (attack on mosque - killed) -0.060 -0.023 0.009 0.683
627 6275IZ (attack on political officials) -0.058 -0.023 0.009 0.702
626 6260IZ (written threat) -0.049 -0.023 0.009 0.773
627 6278IZ 6821IZ (rocket and or mortar attacks - wounded) -0.048 -0.023 0.009 0.784
627 6276IZ (attack on mosque) -0.009 -0.023 0.009 0.881
627 6278IZ 6820IZ (rocket and or mortar attacks - killed) -0.029 -0.023 0.009 0.949
682 6820IZ (offenses against life - killed) -0.027 -0.023 0.009 0.964
166 (within city migration, hayy to hayy) -0.027 -0.023 0.009 0.967
682 (offenses against life) -0.020 -0.023 0.009 0.973
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Table 3: Moran’s I under Randomization.

I E(I) Var(I) p-value

166 1660IZ (within city inmigration, hayy to hayy) 0.373 -0.023 0.007 0.000
627 6277IZ 6821IZ (bombing by other means - wounded) 0.106 -0.023 0.004 0.055
627 6277IZ 6820IZ (bombing by other means - killed) 0.115 -0.023 0.006 0.067
627 6273IZ (firing on crowd) -0.102 -0.023 0.004 0.178
627 6277IZ (bombing by other means) 0.053 -0.023 0.004 0.240
727 (aftermath of combat) -0.091 -0.023 0.004 0.263
627 6275IZ 6820IZ (attack on political officials - killed) -0.104 -0.023 0.005 0.274
727 7270IZ (killed while captive) -0.089 -0.023 0.004 0.290
727 7270IZ 5630IZ (collateral civilian wounded -sunni) -0.091 -0.023 0.005 0.330
627 6271IZ (roadside or on road bombing) -0.087 -0.023 0.005 0.359
166 1661IZ (within city outmigration, hayy to hayy) -0.088 -0.023 0.005 0.376
682 6821IZ (offenses against life - wounded) 0.046 -0.023 0.007 0.416
627 6271IZ 6821IZ (roadside or on road bombing - wounded) -0.077 -0.023 0.005 0.431
627 (informal in group justice) -0.073 -0.023 0.004 0.435
683 (offenses against the person) -0.079 -0.023 0.005 0.450
683 6830IZ (kidnapping indigenous person) -0.079 -0.023 0.005 0.450
682 6820IZ 5631IZ (offenses against life - killed - sunni) -0.087 -0.023 0.008 0.459
627 6271IZ 6820IZ(roadside or on road bombing - killed) -0.073 -0.023 0.005 0.488
627 6270IZ 6820IZ (car bombing - killed) -0.074 -0.023 0.007 0.532
627 6278IZ (rocket and or mortar attacks) -0.061 -0.023 0.004 0.535
627 6270IZ 6821IZ (car bombing - wounded) -0.067 -0.023 0.007 0.591
626 (social control) -0.068 -0.023 0.008 0.606
627 6270IZ (car bombing) -0.061 -0.023 0.007 0.649
627 6276IZ 6820IZ (attack on mosque - killed) -0.060 -0.023 0.007 0.653
627 6278IZ 6821IZ (rocket and or mortar attacks - wounded) -0.048 -0.023 0.003 0.653
627 6275IZ (attack on political officials) -0.058 -0.023 0.007 0.663
626 6260IZ (written threat) -0.049 -0.023 0.007 0.754
627 6276IZ (attack on mosque) -0.009 -0.023 0.007 0.870
627 6278IZ 6820IZ (rocket and or mortar attacks - killed) -0.029 -0.023 0.004 0.922
682 6820IZ (offenses against life - killed) -0.027 -0.023 0.003 0.941
682 (offenses against life) -0.020 -0.023 0.004 0.959
166 (within city migration, hayy to hayy) -0.027 -0.023 0.007 0.962
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Figure 9: Moran’s I under Permutation Approach, Number of Permutations is
999.
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Geary’s c

Table 4 summarizes the results from the calculation of the Geary’s c statistics

for spatial autocorrelation. The table consists of four columns. The first column

contains the value of Geary’s c statistic. The second column reports the variance

calculated under the assumption of randomization (Equation 7).3 The expected

value is equal to one. The standard deviate is calculated by subtracting the ex-

pected value from the value of the statistics and dividing by the standard devia-

tion. The last column contains an indication of the significance of a two-sided

statistical test. Note that the interpretation of Geary’s c is different from that for

Moran’s I. Positive spatial autocorrelation is obtained for c < 1, negative spatial

autocorrelation for c > 1.

The results provide quite a different portrayal of the spatial structure in the

data. In terms of positive spatial autocorrelation, the same variable as before

(166 1660IZ – within city inmigration, hayy to hayy) is highly significant (p =

0.0008). However, this is the only variable with a Geary c statistic less than one.

Of the remaining variables, 21 show significant negative spatial autocorrelation at

p < 0.10, of which seven are significant at p < 0.05.4

The seven variables with the most significant negative spatial autocorrela-

tion are 627 6273IZ (firing on crowd, p < 0.03), 627 6270IZ 6820IZ (car bomb-

ing, killed, p < 0.04), 627 6270IZ 6821IZ (car bombing, wounded, p < 0.04),

627 6271IZ 6821IZ (road side or road bombing, wounded, p < 0.04), 683 (of-

fenses against the person, p < 0.04), 683 6830IZ (kidnapping indigenous person,

p < 0.04), and 727 7270IZ 5630 (killed while captive, Shia, p < 0.05).

3Inference based on normality produced identical results and therefore it is not reported.
4In general, because it is based on the squared difference, a measure of dissimilarity, Geary’s c

tends to have more power to detect negative spatial autocorrelation.
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Table 4: Geary’s c under Randomization.

c Var(c) Standard p-value
deviate

166 1660IZ (within city inmigration, hayy to hayy) 0.5549 0.0175 -3.3626 0.0008
627 6273IZ (firing on crowd) 1.3964 0.0312 2.2447 0.0248
627 6270IZ 6821IZ (car bombing - wounded) 1.2830 0.0171 2.1622 0.0306
627 6270IZ 6820IZ (car bombing - killed) 1.2863 0.0177 2.1531 0.0313
627 6271IZ 6821IZ (roadside or on road bombing - wounded) 1.3419 0.0258 2.1291 0.0332
683 (offenses against the person) 1.3207 0.0227 2.1263 0.0335
683 6830IZ (kidnapping indigenous person) 1.3207 0.0227 2.1263 0.0335
727 7270IZ 5630IZ (collateral civilian wounded -sunni) 1.3245 0.0255 2.0340 0.0420
627 6270IZ (car bombing) 1.2520 0.0168 1.9457 0.0517
627 (informal in group justice) 1.3251 0.0284 1.9305 0.0535
627 6271IZ (roadside or on road bombing) 1.2987 0.0249 1.8925 0.0584
627 6275IZ 6820IZ (attack on political officials - killed) 1.2823 0.0226 1.8762 0.0606
727 (aftermath of combat) 1.3212 0.0300 1.8559 0.0635
627 6276IZ 6820IZ (attack on mosque - killed) 1.2360 0.0165 1.8358 0.0664
727 7270IZ (killed while captive) 1.3137 0.0294 1.8284 0.0675
166 1661IZ (within city outmigration, hayy to hayy) 1.2770 0.0231 1.8235 0.0682
627 6276IZ (attack on mosque) 1.2288 0.0160 1.8062 0.0709
627 6278IZ (rocket and or mortar attacks) 1.2984 0.0300 1.7240 0.0847
627 6278IZ 6821IZ (rocket and or mortar attacks - wounded) 1.3017 0.0324 1.6756 0.0938
627 6271IZ 6820IZ (roadside or on road bombing - killed) 1.2566 0.0239 1.6587 0.0972
682 6820IZ (offenses against life - killed) 1.2973 0.0324 1.6505 0.0988
626 (social control) 1.1955 0.0141 1.6466 0.0996
682 (offenses against life) 1.2692 0.0295 1.5679 0.1169
166 (within city migration, hayy to hayy) 1.1965 0.0178 1.4737 0.1406
626 6260IZ (written threat) 1.1828 0.0155 1.4669 0.1424
627 6278IZ 6820IZ (rocket and or mortar attacks - killed) 1.2510 0.0305 1.4384 0.1503
627 6277IZ (bombing by other means) 1.2011 0.0283 1.1952 0.2320
627 6275IZ (attack on political officials) 1.1483 0.0182 1.0976 0.2724
682 6820IZ 5631IZ (offenses against life - killed - sunni) 1.1275 0.0139 1.0826 0.2790
627 6277IZ 6821IZ (bombing by other means - wounded) 1.1242 0.0269 0.7577 0.4487
627 6277IZ 6820IZ (bombing by other means - killed) 1.0916 0.0223 0.6140 0.5392
682 6821IZ (offenses against life - wounded) 1.0442 0.0157 0.3534 0.7238
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Given the small number of non-zero observations, this would suggest that

neighborhoods with these types of events tend to be surrounded by neighborhoods

without events, although this needs to be further investigated by means of local

statistics.
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Moran Scatterplot

A final investigation of the extent of global spatial autocorrelation is carried

out by means of the Moran Scatterplot. In Figure 10, this is illustrated for all the

variables considered (again, using 4 nearest neighbor spatial weights).

The graphs illustrate the problems caused by the paucity of observations. In

most of them, there is a high concentration of zero values, suggested by the ver-

tical linear pattern in the left of the graph. Consequently, the slope of the linear

smoother is highly influenced by a few (outlying) observations and is not a very

reliable indicator of overall pattern. For the same variables identified before, we

find a positive slope. For 166 1660IZ (within city inmigration, hayy to hayy)

this is most pronounced. For the other two variables, 627 6277IZ 6820IZ (bomb-

ing by other means – killed) and 627 6277IZ 6821IZ (bombing by other means

– wounded) the evidence is much weaker. In most of the other cases, the linear

regression is fairly flat. In several instances, it is negative, although often driven

by very few observations.

The slope as such does not provide any indication of significance, but it pro-

vides a suggestion of the overall trend. The graph also allows a cursory investi-

gation of the type of spatial association (high-high, low-low, high-low, and low-

high), which will be further investigated by means of local statistics in Section

5.1.2.

In sum, the findings from the global spatial autocorrelation analysis suggest

that there is little overall evidence of spatial clustering. Of the 32 variables consid-

ered, only one consistently shows significant and positive spatial autocorrelation.

Only two others show weak positive spatial autocorrelation. Several others show

negative spatial autocorrelation, but only for Geary’s c statistic. As mentioned
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before, in part this may be due to the spatial scale of analysis. The spatial auto-

correlation tests considered take into account the similarity between neighboring

spatial units. If the interesting patterns occur within the neighborhood unit (and

not between them), they will not be detected at this scale of analysis.

5.1.2 Local Spatial Autocorrelation

We now turn to the identification of local clusters and spatial outliers by means

of the Local Moran statistic. Table 5 summarizes the results. It should be kept

in mind that for some variables, these analyses are based on a very small number

of non-zero observations, which may lead to unreliable results. Also, the Local

Moran is applied without consideration of the count nature of the data, nor of the

presence of zero values. Inference is based on the conditional permutation method

using 999 replications.

For all but one of the variables at least one location was identified with a sig-

nificant local Moran at p < 0.01. The number of locations ranged from one (for

four variables) to five (for four other variables). Striking, but not surprising, is

the general evidence of negative local spatial autocorrelation or spatial outliers

(predominantly high-low) (Figure 11 and Table 6). As pointed out in the discus-

sion of Geary’s c, the sparseness of violent events will tend to result in a spatial

distribution where a neighborhood with one or more events will be surrounded by

neighborhoods without events. This is likely to lead to a significant negative local

Moran statistic. Only for 166 1660IZ (within city inmigration, hayy to hayy) do

we again find evidence of positive local spatial autocorrelation, although a spatial

outlier is identified as well (Figure 12).

Three locations appear for 17 of the variables: #16 (al amiriyah) #34 (ad

47



Table 5: Local Moran by Type of Spatial Correlation. HH (High-High), HL (High-
Low), LH (Low-High)

obs I Type p-value

166
(within city migration, hayy to hayy)

al amiriyah (16) -1.10 HL 0.001
ad dawrah (34) -1.59 HL 0.001

166 1660IZ
(within city inmigration, hayy to hayy)

ash shulah (23) 6.91 HH 0.001
ghazaliyah (37) 4.10 HH 0.001
dabbash (38) -0.41 LH 0.008

166 1661IZ
(within city outmigration, hayy to hayy)

al amiriyah (16) -0.98 HL 0.001
ad dawrah (34) -1.40 HL 0.001

626
(social control)

al amiriyah (16) -1.22 HL 0.001
ad dawrah (34) -1.22 HL 0.001
al hurriyah (45) -1.22 HL 0.001

626 6260IZ
(written threat)

al amiriyah (16) -1.18 HL 0.001
al mansur (24) -0.31 HL 0.001
ad dawrah (34) -1.18 HL 0.001
al hurriyah (45) -1.18 HL 0.001

627 6270IZ
(car bombing)

al amiriyah (16) -0.04 HL 0.001
shurtah (39) -0.04 HL 0.001
al hurriyah (45) -1.04 HL 0.001
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627 6270IZ 6820IZ
(car bombing - killed)

al amiriyah (16) -0.10 HL 0.001
shurtah (39) -0.10 HL 0.001
al hurriyah (45) -1.33 HL 0.001

627 6270IZ 6821IZ
(car bombing - wounded)

shurtah (39) -0.11 HL 0.001
al hurriyah (45) -1.14 HL 0.001

627 6271IZ
(roadside or on road bombing)

al amiriyah (16) -0.74 HL 0.001

627 6271IZ 6820IZ
(roadside or on road bombing - killed)

al amiriyah (16) -0.86 HL 0.001
as salam (27) -0.20 HL 0.001
salim al hamadi (35) -0.45 LH 0.008
ghazaliyah (37) -0.53 HL 0.001

627 6271IZ 6821IZ
(roadside or on road bombing - wounded)

al amiriyah (16) -0.27 HL 0.001
ad dawrah (34) -1.80 HL 0.001
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627 6273IZ
(firing on crowd)

al mansur (24) -0.48 HL 0.001
ad dawrah (34) -1.57 HL 0.001
al hurriyah (45) -0.48 HL 0.001

627 6275IZ
(attack on political officials)

al amiriyah (16) -0.17 HL 0.001
ad dawrah (34) -1.29 HL 0.001

627 6275IZ 6820IZ
(attack on political officials - killed)

al qadisiyah (11) -0.25 HL 0.001
al amiriyah (16) -0.25 HL 0.001
al mansur (24) -1.25 HL 0.001
ad dawrah (34) -1.25 HL 0.001
ghazaliyah (37) -0.25 HL 0.001

627 6276IZ
(attack on mosque)

al amiriyah (16) -0.11 HL 0.001
al mansur (24) -0.11 HL 0.001
al hurriyah (45) -1.42 HL 0.001

627 6276IZ 6820IZ
(attack on mosque - killed)

al mansur (24) -0.73 HL 0.001
ad dawrah (34) -1.60 HL 0.001
al hurriyah (45) -0.73 HL 0.001

627 6277IZ
(bombing by other means)

al amiriyah (16) -0.21 HL 0.001
salim al hamadi (35) -0.57 LH 0.001
al jaza’ ir (36) -0.57 LH 0.002
seha (40) -0.57 LH 0.001
al hurriyah (45) -0.06 HL 0.001
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627 6277IZ 6820IZ
(bombing by other means - killed)

al yarmuk (9) -0.31 HL 0.001
al amiriyah (16) -0.31 HL 0.001
salim al hamadi (35) -0.62 LH 0.005
al jaza’ ir (36) -0.62 LH 0.004
seha (40) -0.62 LH 0.001

627 6277IZ 6821IZ
(bombing by other means - wounded)

al amiriyah (16) -0.33 HL 0.01
salim al hamadi (35) -0.54 LH 0.01
al jaza’ ir (36) -0.54 LH 0.01
seha (40) -0.54 LH 0.01

627 6278IZ
(rocket and or mortar attacks)

al karradah (6) -0.20 HL 0.001
ad dawrah (34) -2.05 HL 0.001
al hurriyah (45) -0.20 HL 0.001

627 6278IZ 6820IZ
(rocket and or mortar attacks - killed)

al karradah (6) -0.16 HL 0.001
al qadisiyah (11) -0.03 HL 0.001
ad dawrah (34) -1.87 HL 0.001
al hurriyah (45) -0.16 HL 0.001

627 6278IZ 6821IZ
(rocket and or mortar attacks - wounded)

al karradah (6) -0.16 HL 0.001
al mansur (24) -0.03 HL 0.001
ad dawrah (34) -1.90 HL 0.001
al hurriyah (45) -0.30 HL 0.001

682
(offenses against life)

al hurriyah (45) -0.12 HL 0.001
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682 6820IZ
(offenses against life - killed)

al hurriyah (45) -0.11 HL 0.001

682 6820IZ 5631IZ
(offenses against life - killed - sunni)

al amiriyah (16) -0.98 HL 0.001
ash shulah (23) -0.43 LH 0.009
al mansur (24) -0.98 HL 0.001
saydia dhubat (43) -0.98 HL 0.001
al hurriyah (45) -0.98 HL 0.001

682 6821IZ
(offenses against life - wounded)

al amiriyah (16) -0.20 HL 0.001
al hurriyah (45) -0.20 HL 0.001

683
(offenses against the person)

ad dawrah (34) -1.90 HL 0.001

683 6830IZ
(kidnapping indigenous person)

ad dawrah (34) -1.90 HL 0.001

727
(aftermath of combat)

al karkh (3) -0.02 HL 0.001
ad dawrah (34) -2.30 HL 0.001
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727 7270IZ
(killed while captive)

al karkh (3) -0.02 HL 0.001
ad dawrah (34) -2.30 HL 0.001

727 7270IZ 5630IZ
(collateral civilian wounded -sunni)

al azamiyah (5) -0.35 HL 0.001
al yarmuk (9) -0.35 HL 0.001
ad dawrah (34) -1.70 HL 0.001
al hurriyah (45) -0.35 HL 0.001

dawrah) and #45 (al hurriyah). We also observe several instances where the lo-

cations identified for the encompassing variables (within city migration, hayy to

hayy (166), social control (626), offenses against life (682), offenses against the

person (683), and aftermath of combat (727)) show considerable overlap with

more detailed subcategories.

Overall, these results need to be interpreted with care. The computation of the

local Moran treats the variables as if they were measured on a ratio scale, which is

clearly not the case here. Also, the presence of many zeros may lead to spurious

results. We therefore proceed with an analysis that does not assume a ratio scale.
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5.2 Binary Events

In this second part of the spatial analysis, the counts of events are transformed

into binary 0-1 variables. While this involves a loss of information, it may shed

light on different aspects of the spatial structure of the violent events. Also, given

the source of the data (a content analysis of news sources) the actual count of

events measured may be imprecise and too much importance may be given to the

magnitude as such. Instead, we focus here on the presence-absence of violent

events in the 45 neighborhoods.

As before, we start with an investigation of global patterns of spatial auto-

correlation. We also explore local patterns to a limited extent. As discussed in

Section 3.3.1, there remain some methodological issues to be investigated in this

regard, so the results should be considered preliminary.

5.2.1 Global Spatial Autocorrelation

We assess global spatial autocorrelation by means of the BB join count statistic.

We thus limit the focus to positive spatial autocorrelation between occurrences of

violent events in neighborhoods. The WW statistic would measure positive spatial

autocorrelation between the absence of events, which is less relevant. Given the

sparsity of events, it is likely that the sample will be dominated by BW joins, so

that a global pattern of negative spatial autocorrelation is to be expected. Hence,

we do not further pursue this.

Table 7 reports the results for the BB join count statistics for the same 32 vari-

ables considered before. We use a permutation approach to assess significance.5

5Note that the p-value reported are pseudo significance levels. With 999 permutations, the
highest level of significance that can be obtained is 0.001. This is a limitation of the permutation
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Table 7: Join Count Statistics. Permutation Inference.

BB E(BB) Var(BB) p-value
166 1660IZ (within city inmigration, hayy to hayy) 1.250 0.221 0.036 0.001
166 (within city migration, hayy to hayy) 1.250 0.472 0.075 0.011
627 6278IZ 6821IZ (rocket and or mortar attacks - wounded) 1.750 1.016 0.133 0.034
627 6278IZ 6820IZ (rocket and or mortar attacks - killed) 1.750 1.030 0.157 0.051
682 6821IZ (offenses against life - wounded) 1.500 1.017 0.149 0.107
627 6277IZ 6821IZ (bombing by other means - wounded) 0.500 0.230 0.039 0.110
683 6830IZ (kidnapping indigenous person) 1.000 0.641 0.093 0.126
627 6277IZ (bombing by other means) 1.000 0.629 0.100 0.127
683 (offenses against the person) 1.000 0.639 0.099 0.128
682 6820IZ (offenses against life - killed) 2.875 2.357 0.266 0.155
626 (social control) 0.750 0.484 0.081 0.157
682 (offenses against life) 2.875 2.401 0.270 0.182
627 6276IZ (attack on mosque) 1.125 0.816 0.121 0.185
166 1661IZ (within city outmigration, hayy to hayy) 0.375 0.232 0.039 0.203
627 6277IZ 6820IZ (bombing by other means - killed) 0.500 0.335 0.052 0.221
627 6278IZ (rocket and or mortar attacks) 2.750 2.383 0.287 0.237
627 6276IZ 6820IZ (attack on mosque - killed) 0.500 0.344 0.055 0.238
626 6260IZ (written threat) 0.500 0.341 0.058 0.238
627 6271IZ (roadside or on road bombing) 1.000 0.804 0.104 0.256
627 6270IZ 6821IZ (car bombing - wounded) 1.000 0.821 0.121 0.272
627 6271IZ 6821IZ (roadside or on road bombing - wounded) 0.625 0.483 0.079 0.276
627 6275IZ (attack on political officials) 0.625 0.486 0.074 0.281
727 (aftermath of combat) 2.625 2.374 0.278 0.305
727 7270IZ (killed while captive) 2.625 2.398 0.295 0.326
627 6270IZ (car bombing) 1.375 1.246 0.156 0.361
727 7270IZ 5630IZ (collateral civilian wounded -sunni) 0.375 0.346 0.055 0.412
627 6273IZ (firing on crowd) 0.250 0.227 0.038 0.419
627 6270IZ 6820IZ (car bombing - killed) 1.000 1.015 0.140 0.467
627 6271IZ 6820IZ (roadside or on road bombing - killed) 0.625 0.654 0.101 0.505
627 (informal in group justice) 4.500 4.766 0.414 0.636
682 6820IZ 5631IZ (offenses against life - killed - sunni) 0.125 0.228 0.043 0.640
627 6275IZ 6820IZ (attack on political officials - killed) 0.000 0.237 0.039 0.885
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The table contains four columns. The statistic itself is listed in the first column,

the mean and variance obtained from the permuted samples in columns two and

three, and the p-value in column four.

As in Section 5.1.1, there is again strong evidence for positive and signifi-

cant spatial autocorrelation of the variable 166 1660IZ (within city inmigration,

hayy to hayy) at p = 0.001. In addition, the encompassing variable 166 (in-

ternal migration) also shows significant positive spatial autocorrelation, at p =

0.011. The variables 627 6277IZ 6820IZ (bombing by other means – killed) and

627 6277IZ 6821IZ (bombing by other means – wounded) are no longer signifi-

cant. Instead, two new variables appear, 627 6278IZ 6821IZ (rocket and mortar

attacks – wounded) at p = 0.034, and marginally significant 627 6278IZ 6820IZ

(rocket and mortar attacks – killed) at p = 0.051.

In sum, there is only limited support for significant global spatial pattern in

the violent events across neighborhoods.

5.2.2 Local Spatial Autocorrelation

In this final section, we begin to address patterns of local spatial autocorrelation

for binary variables. As pointed out in Section 3.3.1, there are two important con-

cepts in this regard, composition and configuration. Since the data set consists of

only 45 observations, it was not possible to address configuration. For example,

in Boots (2003), the method for quantifying configuration relies on a moving win-

dow of up to 7×7, which would be meaningless in the current situation. Even the

smallest window, or 3×3 would take up one fifth of the data set for each location,

which is clearly inappropriate.

method.
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Table 8: Local Composition

Significant Locations
166(within city migration, hayy to hayy) al adl (22)

ash shulah (23)
ghazaliyah (37)

166 1660IZ (within city inmigration, hayy to hayy) al adl (22)
ash shulah (23)
ghazaliyah (37)

626 (social control) ash shulah (23)
ghazaliyah (37)

626 6260IZ (written threat) ash shulah (23)
ghazaliyah (37)

627 6271IZ 6820IZ (roadside or on road bombing - killed) al ma’mun (10)
627 6271IZ 6821IZ (roadside or on road bombing - wounded) al ma’mun (10)
627 6275IZ (attack on political officials) al ma’mun (10)
627 6276IZ 6820IZ (attack on political officials - killed) al kazimiyah (4)

dabbash (38)
627 6277IZ (bombing by other means) ash shulah (23)

ghazaliyah (37)
627 6278IZ (rocket and or mortar attacks) al quds (2)

al qahirah (7)
ash shulah (23)
ghazaliyah (37)

627 6278IZ 6820IZ (rocket and or mortar attacks - killed) ash shulah (23)
ghazaliyah (37)

627 6278IZ 6821IZ (rocket and or mortar attacks - wounded) ash shulah (23)
ghazaliyah (37)

682 (offenses against life) al adl (22)
ash shulah (23)
ghazaliyah (37)

682 6820IZ (offenses against life - killed) al adl (22)
ash shulah (23)
ghazaliyah (37)

682 6821IZ (offenses against life - wounded) al adl (22)
683 (offenses against the person) al ma’mun (10)

ash shulah (23)
ghazaliyah (37)

683 6830IZ (kidnapping indigenous person) al ma’mun (10)
ash shulah (23)
ghazaliyah (37)

727 (aftermath of combat) al adl (22)
ash shulah (23)
ghazaliyah (37)

727 7270IZ (killed while captive) al adl (22)
ash shulah (23)
ghazaliyah (37)

727 7270IZ 5630IZ (collateral civilian wounded -sunni) ash shulah (23)
ghazaliyah (37)
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We assess composition by computing the probability of observing the number

of neighborhoods with an event (x = 1), in a window defined by the four nearest

neighbors. This probability can be computed analytically as in Equation (13).

Those locations for which the result was less than p = 0.05 are listed in Table 8.

Only variables that included at least one significant location are included.

Of the 45 variables, 20 show significant local composition. However, the num-

ber of locations for each is rather small, ranging from one for four of the variables,

to four for 627 6278IZ (rocket and mortar attacks). Compared to the Local Moran

for the full counts, there are both fewer variables and fewer locations per variable.

Again, we observe several instances where the encompassing variable (within city

migration, hayy to hayy (166), social control (626), offenses against life (682),

and offenses against the person (683)) shows the same pattern as more detailed

subcategories.

Interestingly, a small number of locations appear as local clusters for several

of the variables (Figure 13 and Table 9). Specifically, #23 (ash shulah) and #37

(ghazaliyah) appear no less than 15 times, #22 (al adl) is listed seven times and #10

(al mamun) five times. Note that these are not the same neighborhoods as the ones

identified by means of the Local Moran. Also, both # 23 and #37 are boundary

locations, which may suffer from spurious inference due to the boundary effect.

In contrast, #10 is a central location, which deserves further scrutiny.

These findings, although preliminary, would suggest that the major locus of

violent events tends to be centered around a few neighborhoods (the ones iden-

tified together with their four nearest neighbors). However, this only addresses

the composition aspect of local clustering. Further methodological refinement is

needed to extend the regular grid case to irregular spatial configurations. Also,
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the difference between the neighborhoods identified by means of spatial autocor-

relation measures that use the full count and the ones based on binary variables

remains to be further investigated.
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6 Conclusions

This preliminary analysis of the spatial pattern of violent events in Baghdad only

allows for limited conclusions. The sparseness of events over the time period

considered and at the spatial scale of a neighborhood may not yield sufficient

information to fully assess the characteristics of their spatial distribution across

the 45 sites.

For 80 of the variables contained in the original classification that was con-

structed from the text sources (news reports), there were insufficient observations

to allow for any statistical analysis. Of the remaining 32 variables, a few show

consistent spatial patterns, both at the global and local scale. The only variable

where this evidence is strong is 166 1660IZ (within city inmigration, hayy to

hayy), which consistently shows signs of positive spatial autocorrelation, or clus-

tering (Figure 12). In contrast, the evidence for the other variables tends to point

to negative spatial autocorrelation, suggesting that neighborhoods with violent

events tend to be surrounded by neighborhoods without those events (Figure 11).

Interestingly, especially for the measures constructed for binary variables, a

handful of neighborhoods seem to show local spatial patterns for a range of in-

dicators of violent events (Figure 11 and Figure 13). This may warrant further

attention, by complementing the current quantitative analysis with on the ground

ethnographic information.

Greater precision in georeferencing may provide the detail needed to carry out

an analysis at a spatial scale smaller than the current neighborhood. In addition,

the consideration of different time periods may provide larger samples of violent

events. Finally, some methodological refinement is needed to extend the join
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count statistics to the local context in a satisfactory way.
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Appendix A: List of Neighborhoods

1. al mastansiriyah

2. al quds

3. al karkh

4. al kazimiyah

5. al azamiyah

6. al karradah

7. al qahirah

8. habibiya

9. al yarmuk

10. al ma’mun

11. al qadisiyah

12. al jahid

13. abd al wahid

14. al habra

15. hayy al furat

16. al amiriyah

17. al firdaws

18. al andalus

19. al kindi

20. zidan

21. az zahara’

22. al adl

23. ash shulah
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24. al mansur

25. al khadra

26. hayy at tayaran

27. as salam

28. qaryat washash

29. al muradiyah

30. jabbur

31. at ta’mim

32. al marifah

33. basatin jamil wadi

34. ad dawrah

35. salim al hamadi

36. al jaza’ir

37. ghazaliyah

38. dabbash (from BGN)

39. shurtah

40. seha

41. zawra park

42. old al muthanna airport

43. saydia dhubat

44. daoudi

45. al hurriyah
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Appendix B: Classification of Events

• 103 Place Name ad dawrah

• 166 Internal migration Hayy to Hayy

– 1661IZ Out

∗ 5630IZ shia
∗ 5631IZ sunni
∗ 5632IZ christian
∗ 5633IZ kurd
∗ 5634IZ chaldean

– 1660IZ IN

∗ 5630IZ shia
∗ 5631IZ sunni
∗ 5632IZ christian
∗ 5633IZ kurd
∗ 5634IZ chaldean

• 167 external migration

– 1671IZ Into Baghdad

∗ 5630IZ shia
∗ 5631IZ sunni
∗ 5632IZ christian
∗ 5633IZ kurd
∗ 5634IZ chaldean

– 1670IZ Out of Baghdad

∗ 5630IZ shia
∗ 5631IZ sunni
∗ 5632IZ christian
∗ 5633IZ kurd
∗ 5634IZ chaldean

• 626 social control

– 6260IZ written threat
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∗ 5631IZ sunni
∗ 5630IZ shia

• 627 Informal in group justice

– 6270IZ Car bombing

∗ 7278IZ collateral civilian wounded
· 5631IZ sunni
· 5630IZ shia

∗ 7279IZ collateral civilian dead
· 5631IZ sunni
· 5630IZ shia

∗ 6821IZ wounded
· 5631IZ sunni
· 5630IZ shia

∗ 6820IZ killed
· 5631IZ sunni
· 5630IZ shia

– 6271IZ roadside or on road bombing

∗ 6821IZ wounded
· 5631IZ sunni
· 5630IZ shia

∗ 6820IZ killed
· 5631IZ sunni
· 5630IZ shia

∗ 7278IZ collateral civilian wounded
· 5631IZ sunni
· 5630IZ shia

∗ 7279IZ collateral civilian dead
· 5631IZ sunni
· 5630IZ shia

– 6273IZ firing on crowd

∗ 6820IZ killed
· 5630IZ shia
· 5631IZ sunni

∗ 6821IZ wounded
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· 5630IZ shia
· 5631IZ sunni

– 6275IZ attack on political official

∗ 6821IZ wounded
· 5631IZ sunni
· 5630IZ shia

∗ 6820IZ killed
· 5631IZ sunni
· 5630IZ shia

– 6276IZ attack on mosque

∗ 6821IZ wounded
· 5631IZ sunni
· 5630IZ shia

∗ 6820IZ killed
· 5631IZ sunni
· 5630IZ shia

– 6277IZ bombing by other means

∗ 7278IZ collateral civilian wounded
· 5631IZ sunni
· 5630IZ shia

∗ 7279IZ collateral civilian dead
· 5631IZ sunni
· 5630IZ shia

∗ 6821IZ wounded
· 5631IZ sunni
· 5630IZ shia

∗ 6820IZ killed
· 5631IZ sunni
· 5630IZ shia

– 6278IZ rocket and or mortar attacks

∗ 7278IZ collateral civilian wounded
· 5631IZ sunni
· 5630IZ shia

∗ 7279IZ collateral civilian dead
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· 5631IZ sunni
· 5630IZ shia

∗ 6821IZ wounded
· 5631IZ sunni
· 5630IZ shia

∗ 6820IZ killed
· 5631IZ sunni
· 5630IZ shia

• 682 offenses against life

– 6821IZ wounded

∗ 5631IZ sunni
· 463?IZ insert occupation code

∗ 5630IZ shia
· 463?IZ insert occupation code

– 6820IZ killed

∗ 5631IZ sunni
· 4651IZ electrician

∗ 5630IZ shia
· 4671IZ police officer

• 683 offenses against the person

– 6830IZ Kidnapping indigenous person

∗ 5631IZ sunni
· 4666IZ minister

∗ 5630IZ shia
· 463?IZ doctor physician

• 727 Aftermath of combat

– 7270IZ killed while captive

∗ 5631IZ sunni
∗ 5630IZ shia

– 7278IZ collateral civilian wounded

∗ 5631IZ sunni
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∗ 5630IZ shia

– 7279IZ collateral civilian dead

∗ 5631IZ sunni
∗ 5630IZ shia

• 762 Suicide

– 7620IZ suicide bombing

∗ 6821IZ wounded
· 5631IZ sunni
· 5630IZ shia

∗ 6820IZ killed
· 5631IZ sunni
· 5630IZ shia

∗ 7278IZ collateral civilian wounded
· 5631IZ sunni
· 5630IZ shia

∗ 7279IZ collateral civilian dead
· 5631IZ sunni
· 5630IZ shia

– 7622IZ suicide bombing vehicular born

∗ 6821IZ wounded
· 5631IZ sunni
· 5630IZ shia

∗ 6820IZ killed
· 5631IZ sunni
· 5630IZ shia

∗ 7278IZ collateral civilian wounded
· 5631IZ sunni
· 5630IZ shia

∗ 7279IZ collateral civilian dead
· 5631IZ sunni
· 5630IZ shia

– 7621IZ suicide bombing individual born

∗ 6821IZ wounded
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· 5631IZ sunni
· 5630IZ shia

∗ 6820IZ killed
· 5631IZ sunni
· 5630IZ shia

∗ 7278IZ collateral civilian wounded
· 5631IZ sunni
· 5630IZ shia

∗ 7279IZ collateral civilian dead
· 5631IZ sunni
· 5630IZ shia

• 788 Rituals

– 7881IZ Pilgrimages

∗ 5360IZ shia
· 6821IZ wounded
· 6820IZ killed

– 7880IZ Formal processions

∗ 5360IZ shia
· 6821IZ wounded
· 6820IZ killed

∗ 5361IZ sunni
· 6821IZ wounded
· 6820IZ killed
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