Monitoring Cetaceans in the North Pacific

by

Kathleen M. Stafford

April 2009

Approved for public release; distribution is unlimited.

Prepared for: CNO(N45), Washington, D.C.
This report was prepared for CNO(N45), Washington, D.C.
and funded by CNO(N45), Washington, D.C.

Reproduction of all or part of this report is authorized.

This report was prepared by:

Kathleen M. Stafford
Oceanographer
APL, University of Washington

Reviewed by: Released by:

Jeffrey Paduan
Department of Oceanography

Karl Van Bibber
Vice President and Dean of Research
Two projects were undertaken in order to monitor cetaceans in the North Pacific. The first was designed to obtain passive acoustic data from the U.S. Navy’s Northern Edge Range. Three instruments were deployed in April 2008 to monitor both high (up to 25 kHz) and low (up to 1 kHz) frequencies for odontocetes and mysticetes, respectively. Unfortunately, these instruments did not record any data. The second project was to analyze retrospective data obtained by analysts at the Whidbey Island NAVFAC for broad regions of the North Pacific. Long-term (1996-2002) trends of blue and fin whale vocalizations were found to have strong seasonal and geographic differences. Furthermore, the number of fin whale call events detected increased significantly over time throughout the North Pacific. Onset and continuation of fin whale calling seemed to be primarily driven by day length, while blue whale calling behavior was influenced by combinations of sea surface temperature, surface chlorophyll a concentration, and day length.
Contents

LIST OF FIGURES
LIST OF TABLES
ABSTRACT
ACOUSTIC RECORDER DEVELOPMENT AND DEPLOYMENT REPORT
REVISITING SOSUS AND THE WATKINS DATA

(by: Mary Ann Daher, Kathleen M. Stafford, Joseph E. George, David Rodriguez, and Kimberly Amaral)

Abstract: Long-term records of blue and fin whales in the North Pacific Ocean: broad-scale oceanographic correlates.
(by: Kathleen M. Stafford, Sue E. Moore, Mary Ann Daher, Joseph E. George, David Rodriguez, and Kimberly Amaral)

PEER-REVIEWED PUBLICATIONS RELEVANT TO CNO(N45) FROM 9/1/07 – 8/30/08

ACKNOWLEDGMENT

DISCLAIMER

INITIAL DISTRIBUTION LIST
List of Figures

Figure 1: Orfin acoustic data logger. 1
Figure 2: Location of three Orfin acoustic data loggers with the rough boundaries of the Northern Edge Range. 3

List of Tables

Table 1: Location and sample rates of deployed hydrophone packages. 2
Abstract

Two projects were undertaken in order to monitor cetaceans in the North Pacific. The first was designed to obtain passive acoustic data from the US Navy’s Northern Edge Range. Three instruments were deployed in April 2008 to monitor both high (up to 25 kHz) and low (up to 1 kHz) frequencies for odontocetes and mysticetes, respectively. Unfortunately, these instruments did not record any data. The second project was to analyse retrospective data obtained by analysts at the Whidbey Island NAVFAC for broad regions of the North Pacific. Long-term (1996-2002) trends of blue and fin whale vocalizations were found to have strong seasonal and geographic differences. Furthermore, the number of fin whale call events detected increased significantly over time throughout the North Pacific. Onset and continuation of fin whale calling seemed to be primarily driven by day length, while blue whale calling behavior was influenced by combinations of sea surface temperature, surface chlorophyll a concentration, and day length. Two manuscripts for peer-reviewed publications have been prepared for these data.

Acoustic recorder development and deployment report

In 2007, in collaboration with Dr. Chris Jones of APL/UW, we developed a processing system using a Blackfin processor, Orfin (Orca Blackfin). This bio-acoustic recorder design used a new processor with improved signal processing capabilities, more device interfaces, and large solid-state data storage (no moving disks). The system was designed both to allow flexible programming for new processing and detection applications and to be low-cost. Large amounts of high-bandwidth acoustic data can be recorded.

Processor: Analog Devices Blackfin BF537E
Sensor: Reson TC4040, TC 4037, or other
Max Frequency: 100 kHz
Storage capacity: 128 GB using 2-32 GB USB sticks
Battery capacity: 120 Ah D-Cell Alkaline
Device Interfaces: Ethernet 100bT, USB 2.0, RS-232
In April 2008, three instruments (Figure 1) using this processor were deployed in the Gulf of Alaska to monitor a part of the Northern Edge Range before, during, and after the 2008 exercise in this area to examine the presence of vocal large whales. Two of the instruments recorded at high sample rates (65 kHz, low pass at 25 kHz) and low duty cycles (1 min. on, 14 min. off), while one instrument recorded at a low sample rate (4 kHz, low pass at 1 kHz) and high duty cycle (10 min. on, 5 min. off). The high frequency instruments were designed to record odontocetes such as beaked whales, while the low-frequency instrument was programmed to record the low-frequency sounds of baleen whales. Just prior to the deployment of these instruments, the active acoustic part of the exercise was scrapped. Nevertheless, the instruments were deployed as planned in order to obtain data in this region for comparison with future exercises (tentatively planned for 2010).

<table>
<thead>
<tr>
<th>Inst. Number</th>
<th>Latitude (North)</th>
<th>Longitude (West)</th>
<th>Depth (Ft.)</th>
<th>Sample Rate (kHz)</th>
<th>Low Pass (kHz)</th>
<th>On/off duty cycle (minutes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>59° 01.634</td>
<td>148° 00.203</td>
<td>77</td>
<td>65</td>
<td>25</td>
<td>1/14</td>
</tr>
<tr>
<td>2</td>
<td>58° 20.884</td>
<td>148° 45.082</td>
<td>72</td>
<td>65</td>
<td>25</td>
<td>1/14</td>
</tr>
<tr>
<td>3</td>
<td>59° 02.883</td>
<td>149° 00.626</td>
<td>88</td>
<td>4</td>
<td>1</td>
<td>10/5</td>
</tr>
</tbody>
</table>

Instrument 1 was deployed on 21 April 2008 at 2009 local (ADT), and instruments 2 and 3 were deployed on 22 April 2008 at 0145 and 0836 local. The two high frequency instruments (1 and 2) were deployed along the shelf break to monitor for odontocetes, while the third, low-frequency instrument was deployed on the shelf to monitor for baleen whales (Figure 2).

Balaenopterid cetaceans were seen, despite very little visual effort, in the vicinity of all three deployments. These included 2 fin whales, 1 humpback whale, 2 minke whales, and 2 unidentified baleen whales.

All three instruments were successfully recovered on 10 and 11 June 2008. Unfortunately, a last-minute software kernel change by the engineer in charge of programming the instruments caused a catastrophic failure such that no data were recorded on any of the three instruments. This was an extremely disappointing development, as the instruments had worked well with a prior kernel both on the bench and during in-water tests. However, we still feel that this area will benefit from passive acoustic monitoring with these instruments. Because we were able to determine the cause, which can be fixed, of the recording failure, the time and effort put into the development of the Blackfin for recording acoustic data were not in vain.
Revisting SOSUS and the Watkins data

Over the past decade, the Navy (CNO[N45] and ONR) in cooperation with the National Oceanic and Atmospheric Administration (NOAA) has increasingly relied on acoustic detection and tracking methods for marine mammal monitoring and mitigation. The reliance on acoustic tools is due in part to the development of the necessary hardware and software, and in part to the capability of acoustics to (1) detect animals underwater, (2) work at night and in poor weather, and (3) record the relevant signals, post-processing them if necessary. In the North Pacific, much of what we know about large whale seasonal occurrence comes from “dual use” of SOSUS arrays (Nishimura and Conlon 1994; Moore et al. 1998; Watkins et al. 2000; Stafford et al. 2001). Since these papers were published, an additional 5-year record from SOSUS has been archived. Benefit from a retrospective analysis is useful because this unique dataset provides long-term baseline data, including seasonal records that can be used with remotely-sensed environmental variables to compare with current and future datasets.

In 2007, a collaborative project with Ms. Mary Ann Daher of the Woods Hole Oceanographic Institution was initiated to revisit detections of large whales in the North Pacific collected by analysts at the Whidbey Island Naval Facility under the direction of the late Dr. Bill Watkins. Two papers resulting from this analysis are currently in preparation: the first is an analysis of long-term trends of blue and fin whales in the North Pacific, and the second is a correlation of these data with oceanographic variables such as sea surface temperature and chlorophyll a concentrations. Abstracts and titles for both of these papers are below.
Submitted to Marine Ecology Progress Series 1/09:

Long-term records of blue and fin whale calls in the North Pacific Ocean: Seasonal and geographic variation 1996-2002. Mary Ann Daher, Kathleen M. Stafford, Joseph E. George, David Rodriguez, and Kimberly Amaral

Abstract

The seasonality and geographic variation of blue and fin whale calls were examined using acoustic recordings made in the deep, offshore waters of the North Pacific Ocean. From 1996 to 2002, two blue whale call types, the northeastern blue whale call (NEP) and the northwestern blue whale call (NWP), and fin whale calls were recorded at the Naval Ocean Processing Facility on Whidbey Island, Washington, using the U.S. Navy Sound Surveillance System (SOSUS) systems. Arrays were selected to provide representative data for four defined regions offshore to the continental shelf edge, designated as Northwest (NW), Northcentral (NC), Northeast (NE) and Southeast (SE). Two arrays were used for each region. All three call types showed distinct seasonal and geographic variation over the entire data set. Generally, the numbers of fin whale calling events detected increased significantly when regressed on both year and date for all but two arrays, NE2 and SE3. NEP blue whale calling events only increased significantly at one site, NE3, and NWP blue whale events did so at four sites but only regressed on date, not year. For all call types and all arrays, there were significant differences amongst monthly means. Blue whale calls dominated the record in the western Pacific, NW, while fin whale events were more abundant in the remaining three regions NC, NE and SE.

To be submitted to Marine Ecology Progress Series or Deep-Sea Research I:

Long-term records of blue and fin whales in the North Pacific Ocean: broad-scale oceanographic correlates. Kathleen M. Stafford, Sue E. Moore, Mary Ann Daher, Joseph E. George, David Rodriguez, and Kimberly Amaral

Abstract

Blue and fin whale calls from acoustic recordings made from four regions in the deep, offshore waters of the North Pacific Ocean were compared with satellite-derived oceanographic data to determine the relationship among whale calling behavior, sea surface temperature (SST), surface chlorophyll a (chl a) concentration and mixed layer depth (MLD) in order to provide a predictive model of whale call occurrence. Both the acoustic and oceanographic data were obtained over broad spatial (30° of longitude by 15° of latitude) and temporal (monthly values) scales. Both blue and fin whale calls were statistically significantly correlated with SST and chl a, but not with MLD. In general, blue whale call peaks were tightly correlated with SST maxima but lagged behind chl a by 3 months. Fin whales, on the other hand, increased as SST was decreasing and showed a greater lag with chl a than blue whales. These general patterns did vary by location. This variability is expected as the four regions studied encompass very different oceanographic regimes from the sub-tropical to the sub-arctic.
Peer-reviewed publications relevant to CNO (N45) from 9/1/07-8/30/08

Acknowledgment:
This material is based on work supported by the Naval Postgraduate School under Grant No. N00244-07-1-0017 (Fleet Industrial & Supply Center San Diego).

Disclaimer:
Any opinions, findings, and conclusions or recommendations expressed in this publication/article/report are those of the author and do not necessarily reflect the views of the Naval Postgraduate School or the Fleet Industrial & Supply Center San Diego.
Initial Distribution List

1. **Defense Technical Information Center**
 8725 John J. Kingman Rd., STE 0944
 Ft. Belvoir, VA 22060-6218
 2

2. **Dudley Knox Library, Code 013**
 Naval Postgraduate School
 Monterey, CA 93943-5100
 2

3. **Erin Oleson**
 National Marine Fisheries Service
 Pacific Islands Fisheries Science Center
 Honolulu, HI
 1

4. **John Hildebrand**
 Scripps Institution of Oceanography
 University of California
 La Jolla, CA
 1

5. **John Calambokidis**
 Cascadia Research Collective
 Olympia, WA
 1

6. **Greg Schorr**
 Cascadia Research Collective
 Olympia, WA
 1

7. **Erin Falcone**
 Cascadia Research Collective
 Olympia, WA
 1

8. **Ching-Sang Chiu**
 Naval Postgraduate School
 Monterey, CA
 1

9. **Curtis A. Collins**
 Naval Postgraduate School
 Monterey, CA
 1

10. **Thomas A. Rago**
 Naval Postgraduate School
 Monterey, CA
 1

11. **Tetyana Margolina**
 Naval Postgraduate School
 Monterey, CA
 1
12. Chris Miller
 Naval Postgraduate School
 Monterey, CA

13. John Joseph
 Naval Postgraduate School
 Monterey, CA

14. Katherine Whitaker
 Pacific Grove, CA

15. Frank Stone
 CNO(N45)
 Washington, D.C.

16. Jay Barlow
 Southwest Fisheries Science Center, NOAA
 La Jolla, CA

17. CAPT Ernie Young, USN (Ret.)
 CNO(N45)
 Washington, D.C.

18. Dale Liechty
 CNO(N45)
 Washington, D.C.

19. Dave Mellinger
 Oregon State University
 Newport, OR

20. Kate Stafford
 Applied Physics Laboratory
 University of Washington
 Seattle, CA

21. Sue Moore
 NOAA at Applied Physics Laboratory
 University of Washington
 Seattle, WA

22. Petr Krysl
 University of California
 La Jolla, CA

23. Mark McDonald
 Whale Acoustics
 Bellvue, CO
<table>
<thead>
<tr>
<th></th>
<th>Name</th>
<th>Institution</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>24.</td>
<td>Ted Cranford</td>
<td>Quantitative Morphology Consulting, Inc. AND San Diego State University</td>
<td>San Diego, CA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25.</td>
<td>Monique Fargues</td>
<td>Naval Postgraduate School</td>
<td>Monterey, CA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26.</td>
<td>Mary Ann Daher</td>
<td>Woods Hole Oceanographic Institution</td>
<td>Woods Hole, MA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27.</td>
<td>Heidi Nevitt</td>
<td>NAS North Island</td>
<td>San Diego, CA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28.</td>
<td>Rebecca Stone</td>
<td>Naval Postgraduate School</td>
<td>Monterey, CA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29.</td>
<td>Melissa Hock</td>
<td>Scripps Institution of Oceanography University of California</td>
<td>La Jolla, CA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30.</td>
<td>Sean M. Wiggins</td>
<td>Scripps Institution of Oceanography University of California</td>
<td>La Jolla, CA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>31.</td>
<td>E. Elizabeth Henderson</td>
<td>Scripps Institution of Oceanography University of California</td>
<td>La Jolla, CA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>32.</td>
<td>Gregory S. Campbell</td>
<td>Scripps Institution of Oceanography University of California</td>
<td>La Jolla, CA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>33.</td>
<td>Marie A. Roch</td>
<td>San Diego State University</td>
<td>San Diego, CA</td>
</tr>
<tr>
<td>No.</td>
<td>Name</td>
<td>Organization</td>
<td>Location</td>
</tr>
<tr>
<td>-----</td>
<td>-----------------------</td>
<td>---</td>
<td>----------------</td>
</tr>
<tr>
<td>34.</td>
<td>Anne Douglas</td>
<td>Cascadia Research Collective</td>
<td>Olympia, WA</td>
</tr>
<tr>
<td>35.</td>
<td>Julie Rivers</td>
<td>Naval Facilities Engineering Command, Pacific</td>
<td>Pearl Harbor, HI</td>
</tr>
<tr>
<td>37.</td>
<td>Chip Johnson</td>
<td>COMPACFLT</td>
<td>Pearl Harbor, HI</td>
</tr>
<tr>
<td>38.</td>
<td>CDR Len Remias</td>
<td>U.S. Pacific Fleet</td>
<td>Pearl Harbor, HI</td>
</tr>
<tr>
<td>39.</td>
<td>LCDR Robert S. Thompson</td>
<td>U.S. Pacific Fleet</td>
<td>Pearl Harbor, HI</td>
</tr>
<tr>
<td>40.</td>
<td>Jene J. Nissen</td>
<td>U.S. Fleet Forces Command</td>
<td>Norfolk, VA</td>
</tr>
<tr>
<td>41.</td>
<td>W. David Noble</td>
<td>U.S. Fleet Forces Command</td>
<td>Norfolk, VA</td>
</tr>
<tr>
<td>42.</td>
<td>David T. MacDuffee</td>
<td>U.S. Fleet Forces Command</td>
<td>Norfolk, VA</td>
</tr>
<tr>
<td>43.</td>
<td>Keith A. Jenkins</td>
<td>Naval Facilities Engineering Command, Atlantic</td>
<td>Norfolk, VA</td>
</tr>
<tr>
<td>44.</td>
<td>Joel T. Bell</td>
<td>Naval Facilities Engineering Command, Atlantic</td>
<td>Norfolk, VA</td>
</tr>
<tr>
<td>45.</td>
<td>Mandy L. Shoemaker</td>
<td>Naval Facilities Engineering Command, Atlantic</td>
<td>Norfolk, VA</td>
</tr>
</tbody>
</table>
46. Anurag Kumar
Naval Facilities Engineering Command, Atlantic
Norfolk, VA

47. Merel Dalebout
University of New South Wales
Sydney, Australia

48. Robin W. Baird
Cascadia Research Collective
Olympia, WA