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1.0 SUMMARY

This report describes a new approach to the problem of generating DNA tag/anti-tag libraries used in
experimental computing methods involving bio-molecules, and in biological assay methods. The
approach couples multi-threaded coding methods and a highly parallel multi-population genetic
algorithm to leverage performance gains made possible by the multi-core CPUs increasingly prevalent in
today’s commodity workstation computers. We explored and exploited algorithm and architecture
trade-offs while developing a multi-threaded code that uses shared memory communication, and
minimal synchronization between threads. We also describe experiments that evaluated performance
and demonstrated ~5X-8X speedups on workstations with dual quad-core CPUs. We observe that
coding effort using the C language and Pthreads parallel programming model is greatly reduced
compared to two previous approaches that used the VHDL language run on reconfigurable hardware
(FPGASs), and the C language with MPI API run on a cluster of computers.



2.0 INTRODUCTION

The purpose of this CRADA was to leverage recent work at AFRL/RI on the hardware acceleration of DNA
Code discovery, and expertise at UNCC on implementing multi-core platform distributed bio-informatics
applications to further explore and improve the state of the art for accelerating the solution of problems
that require lengthy, expensive computations involving DNA binding affinity models. Both CRADA
partners benefited by blending their independent work on algorithms on advanced computing
platforms, and by comparing the results to that obtained in previous work. This project explored the
efficiency and best performance of various parallelization strategies run on a variety of current leading
edge platforms.



3.0 BACKGROUND

The past decade has witnessed a growing interest in exploiting the molecular recognition properties
of nucleic acids to perform logical operations, act as covert physical taggants, as labels and probes in
bio-assays, and potentially as a means for self-assembly of nano-structures, all of which involve
subjecting a combination mixture of DNA molecules to hybridization and enzymatic reactions. The utility
of these applications depends on expensive (meaning long run time) computations that identify sets of
relatively short segments of non-hybridizing DNA drawn from a large universe of possible strands, or
from organism genomes. Unfortunately, these DNA strand searching problems are NP-hard, and this has
limited research on both DNA codeword design for synthetic applications (especially for codes of length
greater than ten bases), and on probe/target set design and optimization for bio-assay microarrays that
use longer DNA strands (16-64 bases). Meanwhile, due to the recent saturation of microprocessor clock
frequencies and limitations of superscalar uniprocessor architectures, microprocessor vendors have
resorted to integrating multiple processor cores on a single chip. It is expected that the number of
processor cores would double with each new silicon generation. The free lunch of software
performance increases driven by higher processor clock frequencies appears to be over, and further
increases in software performance now critically depend on programmers exploiting higher levels of
parallelism inherent in applications. This must be accompanied by programmers developing codes with
application programming interfaces (API’s) that enable access to the multiple cores available in today’s
workstations, as wholesale automated parallelization of codes is beyond the capabilities of today’s
compilers.

This project leveraged recent work at AFRL/RI on the acceleration of DNA Code discovery by using
evolutionary algorithms, and UNCC work on grid and multi-core platform distributed bio-computing
applications, to further explore and improve the state-of-the-art in computing about DNA. Intellectual
property in the form of software program listings was exchanged by the partners. AFRL provided UNC
Charlotte a set of three software programs (described in APPENDIX A) written in C, C/MPI, and VHDL
that implement DNA code discovery using a genetic algorithm (GA), the Length of the Longest Common
Sequence (LLCS), and Pairwise Nearest Neighbor Model (PNNM) Gibbs Energy approximation.

In a series of three technical tasks, workers at UNCC developed and provided AFRL with codes that
implemented the three software applications (GA, LLCS, PNNM) using multi-threaded, shared memory
methods. Work at both UNCC and AFRL evaluated the performance of the resulting codes on a variety
of multi-core architectures. AFRL also developed and tested a version that ran on a Cell Broadband
Engine (CBE) cluster platform.

The preliminary results of work under Tasks | (DNA tag/anti-tag building application using LLCS metric)
and Il (distributed genetic algorithm) were described in an interim technical report delivered to AFRL,
and are described in [14]. The remainder of this report is an expanded version of that paper that also
describes work under Task Il on a version that used thermodynamics based binding energy estimate
metric, and additional performance evaluations on other multi-core platforms.



4.0 INTRODUCTION

DNA tag/anti-tag systems are a common essential component in a number of biological assay and
genotyping methods [1]. For example, single-nucleotide polymorphism (SNP) analysis by polymerase-
mediated single-base primer extension (mini-sequencing) [2] couples a set of probe primer strands (that
target SNP sites) with a set of tag strands (that control binding to readout substrates functionalized with
anti-tags) to realize massively parallelized analysis of genomic content using fluorescence imaging of
DNA microchips, or analysis of microspheres with flow cytometry methods.

The design of high quality tagged probe sets involves two problems, first generating a tag/anti-tag
library, and second pairing individual probes and tags, all in a manner that is subject to a number of
constraints that control unintended binding among other tags and anti-tags, and other probes and
target strands. While paring of individual probes and tags could also be done using a multi-pop GA, that
problem is outside the scope of this project, and we focus here on DNA Tag/Anti-tag set design.

The size and quality of the initial tag/anti-tag library affects both the degree of parallelization
possible (i.e. how many independent chips or tests must be done to cover all of the target SNPs), as well
as the degree of background interference caused by unintended binding that affects SNP call accuracies.
Both the initial tag/anti-tag library design process, and the tag selection and pairing process are
compute intensive, and motivate work to optimize solutions and utilize advanced computing methods
and platforms to obtain solution speedups.

In the Section 5 we briefly review some past work on DNA tag/anti-tag library generation and speedup
methods. Section 6 provides an overview of opportunities and challenges offered by multi-core
computing. In Section 7 we describe our new work that takes advantage of state-of-the-art multi-core
CPUs to implement a multi-threaded version of a multi-population genetic algorithm (GA) to achieve
speedup of tag/anti-tag set design. In Section 8 we describe experimental results for the LLCS and
Thermo metric versions, and we compare the results with that of previous work using MPl and VHDL
FPGA acceleration. Section 9 discusses advantages and limitations of the multi-threaded approach, and
finally, Section 10 provides conclusions and recommendations future work.



5.0 DNATAG/ANTI-TAG LIBRARY DESIGN

The basic problem of DNA tag/anti-tag library design is to compose a large set of relatively short (8-
32 base pair) Watson-Crick strand pairs that bind perfectly within pairs, but poorly across pairs. A variety
of DNA strand hybridization metrics, interaction constraints, search algorithms, coding approaches, and
computing platforms have been used by a number of researchers to work toward efficient solutions of
this and other related problems [3]. DNA Code design has been shown to be NP-complete, thus
practically excluding the possibility of finding any procedure to find maximal sets efficiently [4]. Still,
there is much room for further work, as improved non-optimized solutions will reduce the cost of large
scale genomic analysis, a critical factor in enabling the widespread commercial success of laboratory and
point-of-care individualized genomic content analysis technologies.  For example, streaming chip
multiprocessor micro- architectures that take advantage of the high inter-processor communication
bandwidth and new models of programming have been proposed for customized bioinformatics
applications [7].

A number of possible strand interactions are usually checked to ensure high quality libraries with
low unintended binding across non-interacting pairs. Each word and its reverse complement (RC) word
can be checked against every other word and RC word in the library. Also, each word is sometimes
checked against its own reverse compliment word. All strands can also be checked for hairpinning, GC
content (or melting temperature), and against the genome to be analyzed.

All of these checks require a large number of calculations of some metric that estimates the binding
affinity between strand pairs, and this calculation dominates the solution time as word pairs are added
to the library. Some simple metrics such as Hamming distance can be calculated in O(n) time for strand
length n. Others, such as Edit Distance or Length of the Longest Common Substring (LLCS), require
times of order O(n%), as the dynamic programming methods used to calculate them cannot be
parallelized at the lowest level in software. Still more costly estimates are Smith-Waterman similarity,
thermodynamic methods based on pairwise nearest neighbors [8], and full thermodynamic estimates
(e.g. M-fold).

Because of the large number of possible candidate strands (4"), exhaustive search using software is
impractical for large n due to computational cost, so a variety of greedy heuristic, stochastic, and
evolutionary methods have been used to mine the search space for candidate word pairs. Interestingly,
for the case of building 16-mer RC codes of Edit Distance 6, our own previous experiments have shown
that using a hybrid search approach consisting of 10 minutes of initial library building with a hardware
genetic algorithm (HGA), followed by 1.5 hours of hardware exhaustive search of all possible 16-mers,
has shown that the HGA phase alone finds ~99% of the words that can be found [6]. The disadvantage of
HGA is that it requires porting the application software to a hardware descriptive language (e.g. VHDL),
and a special add-on FPGA board. While the experiments we report here are for the case of length 16
RC Edit distance codes, this approach will also work for longer codes, other metrics, and fuller cases of
the overall problem.

Our basic algorithm was previously implemented in C using the message passing interface (MPI)
protocol [5]. It begins with an empty code library, and uses a distributed, multi-population GA to evolve
candidate words for checking and possible inclusion in the library. During the initial generation, good
words are harvested from the initial population and are replaced in the population by new random
individuals. During subsequent generations, the GA operators are used to improve the fitness of
candidate words. We use an adjustable probability of mating, a rank based probability method for



selection for mating, and single point crossover to generate children for the next generation. For
mutation we select a specified percent of individuals, and for each we check each of the 48 possible
single base mutations (for 16-mers). The fitness of candidate words is measured by checking the desired
constraints among strands in the library and forming a weighted sum involving the number of library
strands that reject a candidate and a quantitative measure of the worst rejection. The constraints we
check are Edit Distance of (word vs. RC word), (word vs. all library words), and (RC word vs. all library
words). Finally, we clean the population at the end of generations, replacing clones and library word
duplicates in the population with new random words.



6.0 MULTI-CORE COMPUTING

Uni-processor performance has saturated in recent years due to power dissipation issues limiting
increases in clock frequencies, growing performance gap between the processor and memory hierarchy,
and saturation of the parallelism possible at the instruction level [10]. Processor vendors have
responded to this challenge by introducing multi-core processor architectures, where multiple cores and
the shared memory hierarchy and interconnect are integrated on the same package and/or die. For
example, the Intel Xeon Quad-core processor integrates two dual core Xeon processors in a package
with the dual core processors sharing the level two (L2) cache integrated on a die. Similar multi-core
architectures are available from vendors such as AMD, IBM and Sun Microsystems. Future multi-core
processors are expected to integrate hundreds of processor cores on a single chip. Intel recently
announced a prototype multi-core processor integrating 80 cores on a single chip [11]. Another
example is the IBM Cell Broadband Engine (CBE) chip which incorporates a general purpose processor
and 6-8 special purpose processors optimized for vector calculations. This chip is available in a number
of platforms, including the inexpensive Sony Playstation 3 (PS3).

The multi-core approach requires application software to exploit the parallelism made possible by
the large number of computing cores and multiple computing threads per core. Inter-processor
communication through the shared on-chip memory hierarchy facilitates low communication latency
compared to distributed memory clusters making possible successful implementation of parallel
algorithms with a relatively high communication-to-computation ratio. Given the dominance of shared
memory architectures in today’s multi-core processors, thread libraries and OpenMP are widely used
parallel programming models.

The next section describes the design of a C/multi-threaded code capable of running on multi-core
processors for the DNA tag/anti-tag library design problem.



7.0 METHODS, ASSUMPTIONS PROCEDURES: MULTI-THREADED CODE
GENERATOR

Our starting point was the C/MPI code described in [5]. We implemented the multi-threaded
version using POSIX Threads (Pthreads) since threading allows for fine grained control and Pthreads is
supported by a wide variety of computing platforms. The initial pre-processing is done sequentially in
the master thread (thread 0). A user specified number of worker threads are spawned by the master
thread with the population distributed equally between the worker threads. Communication between
the threads is done through shared global arrays. Similar to the C/MPI version, each worker thread
starts with an empty library, and a different population of random individuals. At the end of every
generation, all the populations of each worker thread are checked by one of the worker threads (thread
1) to determine the winner thread with the largest library, and the corresponding thread ID is recorded
in a shared variable. The remaining threads then copy the winner’s library when they reach the end of a
generation.

We do not place a blocking mutex on all threads at the end of each generation in order to simplify
coding and avoid possible large time penalties due to thread stalls. Due to the lack of synchronization
between the worker threads, at any point in time different threads may be at different points of
execution in a generation, depending on the scheduling mechanics of the operating system. As a result,
before a non-winner thread copies the winning library, either itself or the winner thread may have
found more words than the winner reported at the winner’s last generation boundary. We use two
checks to detect these conditions just before a winner library is copied by a loser thread. First we read
update the number of words found by the winner library again. Second, we only copy the winner library
if it is larger than the loser’s library. Even with these additional checks, words can be lost due to memory
cache effects causing the winner and losers’ library sizes to be different across the threads. However,
this is not a serious limitation because there are a very large number of possible libraries, and the GA
simply continues to build one of them without the lost words.

At the end of epochs of a few generations, a small number of the best individuals with highest
fitness from each population can optionally be migrated around the threads, in a ring configuration.
Again, to maximize execution speed, very little synchronization exists between the worker threads. Each
worker thread executes GA generations and library updates as described above until one of the worker
threads satisfies one of three user specified termination criteria: a maximum time limit; a maximum
number of generations; or a target library size. The terminating worker thread then updates a shared
mutex protected global variable thus sending the stop condition to the remaining worker threads. Note
that the only synchronization that exists between the multiple threads is reading and possibly updating
the shared mutex protected stop variable. When a stop is issued, all threads then join the master
thread, and the winning library of words is read and reported by the master thread.



8.0 RESULTS AND DISCUSSION

A. LLCS metric version

This section describes a set of experiments done to characterize the performance of the multi-
threaded code using the LLCS metric. We used a Supermicro Superserver 6025B-URB 2U server
equipped with a dual socket quad-core (8 cores in all) Xeon 5450 3.00 GHz CPU, 12MB L2 cache and
32GB RAM running Red Hat Linux 4.1.2-14. The code was compiled using gcc 4.1.2 with no compiler
optimization options enabled. We did experiments that measured performance in terms (time vs.
number of words found), the basic speedup scaling vs. the number of threads (cores), and the effects of
certain GA parameters and operator variations. Since the GA is stochastic, the plots in this section are
point by point averages over 10 runs. The parameters noted in the heading of the figures in this section
are initial population size (i), running population size (r), number of keepers (k, the number of
individuals retained from generation to generation and used to for mating), a random number seed (s, -
1 meaning keyed to thread and time), the number of generations per epoch (e, 0 meaning no passing at
epochs). Other command line options are used to control the number of threads (t), mutation intensity
(z), number of words to generate (w), etc. We chose a particular set of parameter settings as a baseline
(i=r=k=1024, s=-1, w=230, e=0, max time=6 minutes), and compared results obtained using various other
conditions to those obtained with the baseline conditions.

1. Speedup scaling vs. # threads

The first experiment built 16-mer codes of Edit Distance 10 using 1, 2, 4 and 8 threads, as shown in
Figure 1. As expected, more words are discovered sooner (lower curves) using more threads.

We note that the total size of the population processed for each thread is the same, e.g. using 1
thread the thread population was 1024 individuals; using 2 threads the each thread population was 512
words, etc. This means that generation durations were shorter using more threads, so this measure of
speedup scaling does not truly compare the speed of exactly the same calculation steps at the same
point on all curves, but rather is a qualitative comparative measure of solution progress. A linear
speedup scaling of 8x, 4x and 2x speedups is seen in the left portion of Figure 2. This portion
corresponds to generation 0, when words are simply harvested from the initial population with
replacement of picked up words with new random individuals (words 1-50), rather than being produced
by the GA operators as in later generations. The linear speed-up of generation 0 is due the absence of
interaction costs since the threads operate independently of each other here, and the scaling down of
population size per thread with increase in the number of threads. As discussed later, smaller population
sizes find words faster early. After generation 0, words are found using the GA operations and the
resulting interactions between the threads in the form of passing newly found words at the end of
generations causes the sub-linear speed-up seen in the right portion of Figure 2. This effect is also
discussed further in Section 8.



Figure 2 shows the speedup scaling, calculated as the ratio of execution times for the same number
of words generated by 2, 4 and 8 threads to that of 1 thread.

Time vs Word Found (t=1/2/4/8)
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Figure 1. Library growth, # of threads varied.

Speed-up vs Words Found (t=1/2/4/8)
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The next experiment checked the effect of population size on performance, by repeating the
previous experiment with different total population sizes of 512, 256 and 64 for the case of 8 threads.
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Time vs Word Found (p=64/256/512/1024)
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Figure 3. Smaller populations are faster early, but slower as the library size reaches about 150 words.

Figure 3 shows that smaller populations find words somewhat faster early, but the performances
begin to converge as the last few words are discovered. The results were similar using 1 thread. Fitness
evaluation dominates the computation time (~98%), growing exponentially with library size, and
eventually dominating differences due to running the GA operators on different population sizes.

2. Mating:

The next experiment varied the probability of mating by changing the number of individuals kept at
the end of generations to produce children (100%, 50%, 10%), again for 8 threads. Figure 4 shows that a
high probability of mating is disruptive. Higher mating replaces individuals (that were previously
improved by the GA operators) by new ones generated by single point crossover, which can greatly
change fitness. Again the results were similar using 1 thread.

Time vs Word Found (k=10/50/100%)
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Figure 4. Effect of mating probability, 8 threads.
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3. Mutation:

The next experiment tested the effect of mutation intensity, and mutation mode.  Mutation
intensity is controlled by varying the percent of individuals in the population selected for mutation. We
tried two mutation modes which differed if mutation failed to improve fitness: mode 1 mutated the
individual at a random base anyway; and mode 2 replaced the individual with a new random individual.

Effect of % Mutations (M1, z=1/10/100%)
ewg_ga_thread izr=k=1024, s=-1, e=0, t=8, avg of 10 runs
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Figure 5. Mutation intensity varied, mutation mode 1, 8 threads. Very high mutation rates are slower.

Figure 5 shows the results for mutation mode 1, for various probabilities of mutation. Heavy
mutation is disruptive, and the effect was similar for mutation mode 2, as shown in Figure 6. There was
no significant advantage of either mode over the other.

Effect of 2% Mutations (M1 & M2, z=1%)
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Figure 6. Mutation intensity varied, mutation mode 1, 8 threads. Performance is better with lower
percent mutations.
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4. GA/Random:

This experiment looked at the effect of using new random words instead of the GA to generate the
next generation of the population. Figure 7 shows that this very simple heuristic does build libraries,
and that performance scales vs. the number of threads. However, Figure 8 clearly shows that random
search stalls, and GA eventually finds far more words.

Time vs Word Found (Random)
cwg_ga thread i=r=k=1024, s=-1, e=0, t=1,2,4,8, avg of 10 runs

1.0E+03
- 10 (top to bottom)
&
[T}
U s 1
o LlOE+01
E —_—t
1.0E+00 %
8t
1.0E-01
) 50 100 150 200 250
#words found
Figure 7. Speedup scaling for random search (no GA).
Time vs Word Found (GA/Random)
cwg_ ga thread i=r=k=1024, s=-1, =0, t=8, avg of 10 runs
1.0E+03
1.0E+02 _ d
)
] top to bottom
+ 1.0E+01 frap ]
.E : — Bt Random
1.0E+00 J/ e ——BRtGA
1.0E-01
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#words found

Figure 8. Random candidate generation terminates finding far fewer words that GA.
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5. Drifting at Epoch boundaries

This experiment looked at the effect of the number of generations per epoch, and the number of

individuals drifted around the ring of threads at epoch boundaries. Variations of either parameter had
little effect, as shown in Figures 9 and 10.

Time vs Word Found (dr=5, e=0/5/10)
cwg_ga_thread i=r=k=1024, s=-1, t=8, avg of 10 runs

1.0E+03
1.0E+02
g
» 10OE+01 10
: /
- e5
1.0E+00
/ el
1.0E-01
a 50 100 150 200 250
# words found
Figure 9. Performance vs. number of generations in epoch.
Time vs Word Found (e=5, dr=0/5/10)
cwg_ga_thread =r=k=1024, s=-1, t=8, avg of 10 runs
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1.0E402 /
o
‘E /
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E
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1.0E+00
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1.0E-01
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Figure 10. Performance vs. number of individuals drifted at epoch boundaries.
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6. Clean up vs. no clean up

The cleanup step intended to remove clones and duplicate library words from the GA population
had little effect on performance for the baseline conditions because there was no mating, and the
development of clones with only mutation is unlikely. However, with mating the population can fill with
clones, wasting time operating on identical individuals.

Effect of Decloning (90% Mating)
cwg_ga_thread i=r=1024, k=102, s=-1, e=0, t=8, avg of 10 runs

1.0E+03
1.0E+02 /_ i
1.0E+01 / (bottom to top)

time (sec)

/ 8td
1.0E+00 / — 8t no decloning
1.0E-01

0 50 100 150 200 250

#words found

Figure 11. Effect of decloning at end of generations.

7. Distribution of library lengths

The final experiment did 100 runs with the baseline conditions, for 15 minutes each, and noted the
final size of the library. Figure 12 shows the resulting distribution of the library lengths.

Distribution of Library Lengths
(100 runs, baseline conditions)

#runs

206 208 210 212 214 216 218 220 222 224

#f words found

Figure 12. Distribution of library lengths for 100 runs
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8. Barrier synchronization

In order to investigate the effects of lack of synchronization between the worker threads during the
GA operations, barrier synchronization constructs were incorporated into the threaded code. This
ensured that all worker threads were at the same execution point before the winner thread library was
copied by the loser threads, thereby preventing possible loss of words found (see Section 6) albeit with
time lost due to synchronization. However, as seen in Figure 13, a comparison of execution times for
different numbers of threads between the barrier and no-barrier version of the threaded code does not
show appreciable difference in the execution times. This suggests that the time lost due to barrier
synchronization is compensated by the words found by the threads not being lost.

Time vs Word Found (t=1/2/4/8)
cwg_ga_thread _barrier i=r=k=1024, s=-1, e=0, avg of 10 runs
1.0E+03
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8tb
Btnb
—ith
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—_—2th
2tnb
—1th
Itnb

1.0E+02

1.0E+01

time (zec)

1.0E+00

1001

Q 20 100 150 200 250

word found

Figure 13. Comparison of speed-up scaling for threaded code with and without barrier synchronization

9. Comparison with Previous MPI and VHDL FPGA Results

The speed-up behavior of a previous C/MPI version of this application that ran on a cluster of
compute nodes (using 1 processor core per node) is shown in Figure 14 (heavy lines). Also shown are
the speedup curves using the Pthreads version (light lines). The curves for 2 threads is similar, but the
speedups for 4 and 8 threads are lower for Pthreads than for MPI. We believe the difference is due to
shared memory effects and lost words in the Pthreads version. We also note that the MPI version
shows a dip in speedup after generation 0, similar to the Pthreads version, which suggests a similar
effect due to communication.

Speed-up vs Words Found (mpi, slots=1)
ewg_ga_vll i=r=k=1024, s=-1, e=0, r10

10 |
8 = 8t su 8/L mpi
% 6 8t su 8/1 pthreads
E 4t su 4/1 mpi
£ 4 p—— - /
B r _"\-_..______,—-"’ P 4t su 4/1 pthreads
1 k& N = ——2t su 2/1 mpi
= R ———2t su 2/1 pthreads
0 T
0 50 100 150 200

word found

Figure 14. Speed up scaling vs. number of processors in the MPI version.
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We also note here that the communication in the MPI version was tuned and quite different, i.e.
only new words were passed from winner to loser threads, and the synchronization due to MPI
constructs was different from the minimal synchronization in the Pthreads version. It is possible that
the Pthreads version speedup could be improved by using more complex Pthreads signaling and
synchronization methods.

In [6] we reported results for building similar codes using hardware acceleration methods and an
FPGA. Although the mean library sizes obtained in that work were 240 word pairs, those codes included
22 initial words of n/d=16/8 which were determined by construction. Subtracting these initial words
leaves gives an average length of about (240-22) = 218 words, which compares reasonably well to the
results in Figure 12. The average size was slightly higher in the previous work because the hardware GA
was run for 10 minutes, and it achieved a measured speedup of 1000x over software. So, the equivalent
software search time in the previous work (10,000 minutes) was significantly higher than the 15 minutes
used in the present work.

B. Thermodynamic metric

This section describes a set of experiments done to characterize the performance of the multi-
threaded code using the thermodynamic metric [8,13]. Using this metric, we use constraints that allow
a word to be added to the library only if the free energy of intended binding between the word and its
reverse complement lies within a specified range, and if the free energies of unintended binding
between the word and its RC and all other library words fall below a chosen upper limit. Additional
parameters were incorporated into the code to specify an upper bound on the unintended binding
energy (n), a lower bound on the intended binding energy (o) and an upper bound on the intended
binding energy (p). The experimental set up is the same as described above in Section 7, i.e. we mostly
used a baseline set of parameters that included i=r=k=1024, e=0, z=1, run time of 3 or 6 minutes, and
averaged the results over multiple runs. To get an idea of where the new energy constraint bounds
should be set, we calculated the binding energies with the nearest neighbor model for a sample of 1000
randomly selected pairs of 16-mers, as shown in Figure 15. We chose a ‘loose’ set of constraints to be
n=710, 0=729, and p=1400, and a tight set of constraints to be n=710, 0=925, and p=950. (We note
there are methods to translate these energies into melting temperatures).

Histogram of Binding Energies
(1000 random 16 mers, Nearest Neighbor Thermo Metric)

200 -

150 ——

100 —
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o~ m A RN EREN . |

200 300 400 500 600 700 800 900 1000 11001200 1300 1400

#samples

energy

Figure 15. Nearest neighbor binding energy estimates for 1000 randomly selected 16-mer pairs.
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1. Speedup scaling vs. # threads

The first experiment built 16-mer codes with a tight set of constraints using 1, 2, 4 and 8 threads, as
shown in Figure 16. As expected, more words are discovered sooner (lower curves) using more threads.

Again, we note that the total size of the population processed for each curve is the same, e.g. using
1 thread the thread population was 1024 individuals; using 2 threads the thread population was 512
words, etc. Comparing Figure 17 with Figure 2 we see that the amount of time to find the first few
words is about ~10 times larger using the thermo metric with tight constraints than it was using the LLCS
metric. Second, there is slight speed-up apparent early in the curves during the initial random search
on generation 0 (again due to a smaller population size being processed faster with no GA operators for
larger # threads). But due to the tight constraint, only a small number of words are found on generation
0 before switching to GA search. After switching to GA after generation 0 the speedup clearly depends
on the number of threads, as expected. This illustrates that the value of using GA over random search
increases for a harder case of our problem. Figure 17 shows the speedup scaling, calculated as before as
the ratio of execution times for the same number of words generated by 2, 4 and 8 threads to that of 1
thread.

Time vs Word Found (p 1024, 710, 925, 950, 3 min.)
Pthreads, Thermo, Dual Xeon Qud, i=r=k=1024, s=-1, e=0, r1=0
1.0E+03
1.0E+02 =
= 8t
-
< 1.0E+01 , i
£ ' —2
T 10400 — —1t
1.0E-01
0 50 100
word found
Figure 16. Library growth, # of threads varied.
Speed-up vs Words Found
thermo, i=r=k=1024, s=-1, e=0, w 100, r10
10
8 |
7 6 |
-
@
a 4 8t
— it
2
M_ "
0
0 20 40 60 80 100
word found

Figure 17. Speedup scaling vs. # threads.
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2. Speedup scaling with no thread interactions

In order to study the speed-up scaling independent of thread interaction overheads, we disabled all
operations involving copying of library words across threads such that the threads effectively ran
independent of each other. The thermodynamic constraints are utilized with a looser energy binding
constraint. From Figure 18, it is seen that even with no interactions between the threads, for words
found beyond generation 0, the speed-up scaling drops with thread scaling. For a given number of
words, it is seen that the number of generations required by the single threaded case is less than the
multi-threaded case. We believe this effect is due the larger population size for the single threaded case.
Note that for each additional generation the computationally expensive mutation operation needs to be
done. Although the mutation operation is O(population size), the larger number of generations required
with thread scaling results in an overall drop in speed-up. For comparison, Figure 19 shows the speed-up
when the thread interactions are enabled. With thread interactions enabled, there is clearly a beneficial
effect obtained by harvesting words from the larger, distributed, population, and the effect is stronger
for more threads (faster processing of smaller populations). Finally, we note that for looser energy
binding constraints, the speed-up plots resemble those of Figure 2 (using the LLCS metric).

Speedup without Thread Interactions
{thermo version, dual Xeon Quad, loose contraints)
8
7 Speed up (8/1)| |
§ = Speedup {4/1) I
—Speedup (2/1)
-1 51—
=]
T 4
§ 3 —"\ = -
0 T T
0 10 20 30 40 50 60
# words found

Figure 18. Speed-up scaling with # threads with no interaction between threads.
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Figure 19. Speed-up scaling with # threads with interaction between threads.
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3. Speedup scaling on the AMD Opteron quad-core

We investigated the scaling behavior of the multi-threaded DNA tag/anti-tag library generator
employing loose energy binding constraints executing on a work station with dual socket quad-core
AMD Opteron processor (8 cores in all). Figure 20 compares the speed-up scaling for 8 threads for the
dual socket quad-core AMD Opteron, dual socket quad-core Intel Xeon, and a single socket quad-core
Intel Xeon. From Figure 20 we note that overall the quad-core AMD Opteron shows a better speed-up
scaling compared to the gaudcore Intel Xeon.

Speedup vs Platform
(Ptrheads, Thermo Metric, 8 threads)

8 -Dual Opteron Quad su {8/1)
?_ = Dual Xeon Quad su (8/1)
6 rr’ - 1 Xeon Quad su (8,/1)
s 5 .
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g 3 e L\.HN —
a9 f\-.v wﬁvf‘-\fj ~
O ! T T T
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Figure 20. Speed-up scaling with # threads on various platforms.
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C. Speedup scaling on the Cell Broad Band Engine(CBE)

A preliminary version of the Pthreads, LLCS metric application was written for the CBE, and
evaluated on a cluster of CBEs at AFRL containing a number of Sony Playstation 3’s. Each CBE contains a
PPE which is a 64-bit, Dual Threaded Power PC (32KB L1 cache, 512KB L2 cache), and 6 SPEs (RISC Core
with 256KB Local Store), with DMA communication between PPEs and SPEs. This version used MPI
between CBE PPEs, and the IBM SDK 3 API to access the 6 SPEs on each CBE. The method of parallelizing
the application was significantly different in this version compared to the previous Pthreads versions.
First, similar to the MPI version used in previous work [5], it distributed the GA population across CBE
PPEs, here using openmpi, (instead of running separate populations on different threads on the same
node as in the Pthreads version). Second, it parallelized the evaluation of the 48 mutation candidates in
chunks divided across the SPEs (instead of evaluating mutation candidates sequentially on the same
node as in the Pthreads version). We thought this approach would be a better match with the strengths
of the CBE platform by simplifying the code run on the SPEs. As in the Pthreads version, the SPE threads
were set up and started in the main thread running in the PPE, and were left running throughout the
solution, to avoid overhead due to thread creation and joining for each SPE call. Due to development
time constraints, the code in the SPE was not vectorized, and the branches in the SPE code were not
hinted, and the two SPE pipelines were not tuned; all of which would be expected to improve
performance. Two experiments were done with this version, the first to evaluate speedup vs. the
number of SPEs used on one CBE node compared to PPE speed, and the second to evaluate MPI
speedup between large numbers of CBE nodes using only the PPE.

Figures 21 and 22 show the results of the first experiment. First, we see that there is no speedup
during generation 0 (up to about 60 words), because the GA population is managed on the PPE and is a
constant size regardless of the # SPEs used. Second, we see that there is a speed penalty when moving
from the PPE to one SPE, which is expected. Third, there is speedup when more SPEs are used, and
performance is higher using 6 SPEs than when using the PPE, at least for the part of the Figure 21
between 65 and 120 words. Figure 22 also shows an estimate of the performance for 6 SPEs that we
would expect by adding 4 way vectorization in the SPE code, since it should be possible to process four
16-mer checks simultaneously using 64 bit vectorized instructions. The projected ~7X peak speedup is
in line with expectations for this platform, i.e. about a 10x speedup for ‘pointer chasing’ applications (i.e.
not regular array processing like matrix multiplication).
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Figure 21. Performance of CBE version on 1 PS3 node, with # SPEs varied.
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Figure 22. Speed-up scaling (SPUs vs. PPU) with vs. threads on the PS3 CBE.
(Top curve is estimated performance with 4 way vectorized code).

The results of the second experiment are shown in Figure 23 and 24. Here we have run the
distributed GA population on a large number of openmpi nodes, using 2 slots per CBE PPE (since it is
hyper-threaded). Again we see significant speedup in the first part of the curves due to processing
smaller populations with more nodes during generation 0, similar to the Pthreads version. Speedup
improves during the later part of the curves, probably because of less communication since few words
are found on later generations, again similar to what was seen with the Pthreads version. We did not
investigate cache misses with this version, but we would expect that it might be an issue, even though

each node is running 2 threads, compared to the Pthreads version running up to 8 threads.
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(ewg_ga v1l ppu,i=r=k=1024, s=-1, e=0, z=10, r=10)

1.0E+04
1.0E+03 e
np 1
1.0E+02
np &
o 1.0E+01 -
u np 16
T 1.0E+00 .
4]
E 1.0£01 - "
= np 64
1.0E-02
np 128
1.0E-03 T . |
0 50 100 150 200
# words

Figure 23. Performance vs. # MPI nodes using 2 processes running on each PPE,

on multiple CBE nodes.
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Figure 24. Speedup for the data of Figure 23.

Finally, Figure 25 shows a plot of speedup for this experiment, compared to perfect linear speedup.
The speedup falls off with large numbers of nodes, although it is nearly linear for small numbers of
nodes.
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Figure 25. Speedup of MPI CBE experiment, with termination criteria of 150 words found.
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9.0 DISCUSSION

The multi-core computing paradigm allows exploitation of coarse grained parallelism available in
many computationally intensive problems. Since the programming can be done using conventional high
level languages such as C/C++ or Java, it is more accessible to a broader group of users than the
programming required for hardware accelerators based on FPGAs. For example, an FPGA version of the
same algorithm implemented using VHDL achieved a 1000x speedup [6] but was expensive both in
terms of design time and resources - it required a $16K add-on hardware FPGA board. Moreover, the
FPGA platform is far less flexible and scalable compared to a multi-core implementation. Our
multithreaded code was relatively easily extended to incorporate the nearest neighbor pair-wise
thermodynamic metric [8], and could be modified with minimal effort to incorporate other binding
energy estimate metrics such as Smith-Waterman [7], or full thermodynamic estimates (e.g. M-fold)
compared to casting those in VHDL and FPGA.

One can also argue that the C/Pthreads programming paradigm is more accessible than the C/MPI
programming paradigm. For example, the previous C/MPI version of this application required careful
placement, profiling, and tuning of a number of communication events, and selection of GA parameters
to achieve a high compute to communication time ratio. However, the present C/Pthreads version was
successfully parallelized with minimal synchronization between threads.

With hundreds of cores expected to be available on commercial multi-core processors, orders of
magnitude speed up of algorithms is possible without expensive hardware. However, a suitable
parallelization scheme must be chosen that allows load balance and minimization of stalls due to data
dependences.

We have demonstrated that by carefully exploiting the algorithm it is possible to minimize the
critical sections in the code, allowing all threads to operate in parallel and obtain good speed up. In our
case, the heuristic nature of the GA algorithm enabled us to sacrifice some of the words generated in
exchange for minimum synchronization between the threads. Even so, care must be taken to ensure
that poor data locality and false sharing does not cause the shared cache hierarchy to become a
performance bottle neck. In the quad-core Xeon processor used in this work, two dual-core Xeon chips
are paired onto a single multi-chip module (MCM). Each core includes a 32KB L1 cache and each chip
(two cores) share a 4 MB L2 cache. As a result, for more than two threads, the interaction occurs
through the slower main memory resulting in the increased speed-up degradation for the 4 and 8 thread
cases of Figure 2. To verify this further, we measured the L2 cache miss events using the Intel VTune
performance analyzer [9]. For a baseline run of the multi-threaded code, the number of L2 data cache
misses increases by 10.5% when we increased the number of threads from 2 to 4. However, no further
change in the number of L2 data cache misses is observed by increasing the number of threads from 4 to
8. A similar 10.5 % increase in the number of L2 data cache misses was observed in the two threaded
cases when the two threads were bound to cores that did not share the L2 cache. These misses partially
undo the scaling benefits of adding additional cores to the system.
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Unlike the Intel Xeon quad-core, AMD Opteron quad-core integrates all four cores on a single die
with private L1 and L2 caches and a shared L3 cache. Consequently, we see a better speed-up scaling
with the Opteron quad-core as compared to the Xeon quad-core. As multi-core processors with an
increasing number of cores sharing the on-chip cache hierarchy are introduced by processor vendors,
we can expect better thread scaling from a multithreaded implementation of the DNA tag/anti-tag
computing problem. For example, the recently announced Intel 8-core Nehalem processor integrates 8
processor cores on a die with a shared L3 cache [12].

The heterogeneous architecture of the Cell Broadband Engine also provides interesting opportunities for

accelerating the DNA tag/anti-tag library generation problem. That work is ongoing and is outside the
scope of this CRADA.
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10.0 CONCLUSIONS

In this report we have described a new approach that couples multi-threaded coding methods and a
distributed multi-population genetic algorithm and illustrated their use in solving a simple example case
of the DNA tag/anti-tag code design problem. This approach obtains speedups over single threaded
codes by utilizing the multi-core CPUs present in modern workstations. We believe that the
programming difficulty of implementing this approach is reduced compared to a previous C/MPI version
run on a cluster, and the platform is certainly less expensive both in terms of cost and power. While the
performance levels reached by this application run on today’s workstations (up to 8x-64x depending on
the platform product) do not reach those obtainable using reconfigurable hardware acceleration
(1,000x), we believe the programming methods again are a better fit to those widely taught to problem
domain experts. They will also become increasingly important as more cores appear in commodity
workstations

We observed that there are complex interactions between the algorithm and the underlying
architecture when parallelizing the algorithm. While the computing power is generally enhanced by
using additional cores, there may be incremental penalties such as cache misses and lost code words
due to thread interaction overheads (architecture effects) the need to process more generations due to
smaller population size per thread, and the possibility of lost code words due to communication style
(algorithm effects) that present interesting trade-offs. The results so far suggest that unless the overall
problem size is scaled with the number of threads, bringing a large number of cores to bear on the
problem will not yield a strictly proportional speed-up. We also note that the probabilistic nature of the
algorithm and the hardware cache coherence mechanism of shared address space machines make the
theoretical analysis of the problem difficult.
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11.0 RECOMMENDATIONS

Improvements to this work could be made by tuning the inter-thread communication style to
incorporate more sophisticated Pthreads interactions, and perhaps by trying other parallelization
schemes. For example, the present work used separate threads to host separate GA populations, but a
more fine grained parallelization strategy might use separate threads to calculate strand binding affinity
for one candidate word against all words in the library, or for one strand-strand calculation. Also,
SIMD instruction processing is provided on most CPUs, and this could be leveraged to achieve additional
speedup by performing calculations parallelized at the instruction level, e.g. four (or possibly more)
calculations on different strand pairs can be done in using one 64 bit SIMD instruction.

Another possible area for future work to build on the results of this project would be to develop
analytical models to quantify the cost/benefit relationships associated with certain architectural and
algorithm tradeoffs. For example, communication style between Pthreads , cache coherency effects,
and smaller population sizes with more Pthreads are some factors that can lead to lost words and longer
computing times. Although we observed that their negative effects are tolerated by the robust genetic
algorithm analytical models would allow optimization studies that might identify further performance
improvements. Also, dynamic adjustment of GA parameters during run-time might prove interesting.

Another area for future work would be the development of hybrid MPI and Pthreads versions, i.e.
using MPI between nodes, and Pthreads within nodes in a cluster of (possibly heterogeneous) multi-
core nodes. In fact, we did preliminary work on such a hybrid version that used openmpi between CBE
PPEs, and the normal IBM SDK 3 mechanism for using multiple SPEs in the CBE chips, but a similar
version could be developed for use on clusters of multi-core commodity Xeon, Opteron, and SPARC
CPUs.

Finally, the methods described in this report (i.e. the use of evolutionary computing methods and
the Pthreads programming model) could be applied to other similar or larger problems (e.g.
probe/target design for biological assay methods), could incorporate different binding metrics, and
could be evaluated on other computing platforms.
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AFRL
AMD
API
CBE
CPU
CRADA
DMA
DNA
FPGA
GA
GB
GC
HGA
IBM
ID

LLCS
MB
MCM
mer
M-fold
MPI
mutex
NP
PNNM
POSIX
PPE
PPU
PS3
Pthreads
RAM
RC

RI

RISC
SDK
SIMD
SNP
SPARC
SPE
SPU
UNCC
VHDL
VHSIC

13.0 LIST OF SYMBOLS, ABBREVIATIONS, AND ACRONYMS

Air Force Research Laboratory
Advanced Micro Devices, Inc.
Application Programming Interface

Cell Broad Band Engine

Central Processing Unit

Cooperative Research and Development Agreement
Direct Memory Access

DeoxyriboNucleic Acid
Field-Programmable Gate Array

Genetic Algorithm

Giga-Byte

Guanine-Cytosine

Hardware Genetic Algorithm

International Busness Machines Corporation
IDentification

Length of the Longest Common Subsequence
Mega-Byte

Multi-Chip Module

oligomer

Multiple-fold

Message Passing Interface

mutual exclusion

Nondeterministic Polynomial-time
Pairwise Nearest Neighbor Model
Portable Operating System Interface for Unix
Power Processor Element

Power Processor Unit

Playstation 3

POSIX Threads

Random Access Memory

Reverse Complement

Information Directorate

Reduced Instruction Set Computing

System Develoment Kit

Singe Instruction Multiple Data
Single-Nucleotide Polymorphism
Scalable Processor Architecture
Synergistic Processing Element
Synergistic Processing Unit

University of North Carolina at Charlotte
VHSIC Hardware Description Language
Very High Speed Integrated Circuits
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APPENDIX A

Software Code Descriptions

Al. The VHDL code that contain the GA and LLCS metric systolic array functionalities that AFRL/RI
will provide to UNCC under this CRAA reside in directory “C:\annapolis\wildcard4\examples\HGA_DNA”
on a Gateway workstation in the office of the AFRL/RI POC. It consists of a number of .c, .h, and .vhdl
files that can be used to simulate and synthesize an FPGA personalization that implement an application
that can design non-hybridizing DNA libraries of 16 base pair duplexes that satisfy certain user selectable
constraints. The C programs were supplied in a source, include, and build directories that contain C and
other supporting files, executables and a synthesized FPGA image file, and .h files, respectively. The
source files are in C, and the target FPGA is that of the Annapolis Micro Wildcard4 PCMCIA card. The
VHDL codes will be supplied in the format of a ModelSim project that includes synthesizable source
VHDL files for implementing the GA/DNA Library design application. The codes include references to
supporting software specific to the target FPGA device and card, which cannot be distributed by AFRL,
so to completely simulate the codes would require that UNCC purchase of those products (~$2K) in
order to simulate the application. VHDL codes were not further developed under this CRADA. This
code and performance results were described in [6].

A2. The codes that implement a C/MPI version of a distributed Island Model GA/DNA code design
application  for  workstation cluster reside in file  “C:\Danb\BioComputing\BAA 01-
26_BioComputing\biospice\DNA code word generation\zips\200603 03 7 runs_on_latte.zip” on a
Gateway workstation in the office of the AFRL/RI POC. This code and performance results were
described in [5].

A3. The codes that implement a sequential C version of a GA/DNA library design application using
the thermodynamic pairwise nearest neighbor metric reside in directory
“C:\annapolis\wsiipro_pci\thermo version” on a Gateway workstation in the office of the AFRL/RI POC.
This code and performance results were described in [13].

31



32





