High Fidelity Radar Stimulation For Distributed Hardware-in-the-Loop Simulations

Authors
James A. Buford, Jr., AMRDEC
James D. Coombs, AMRDEC
Anthony P. Rainoldi, AMRDEC

Presented by:
James A. Buford, Jr.
Chief, Strategic Defense Functional Area
Systems Simulation & Development Directorate
Aviation and Missile Research, Development and Engineering Center

Presented to:
AIAA
Missile Sciences Conference
Monterey, CA
18-20 November 2008
Report Documentation Page

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.

1. REPORT DATE
01 NOV 2008

2. REPORT TYPE
N/A

3. DATES COVERED
-

4. TITLE AND SUBTITLE
High Fidelity Radar Stimulation For Distributed Hardware-in-the-Loop Simulations

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Strategic Defense Functional Area Systems Simulation & Development Directorate Aviation and Missile Research, Development and Engineering Center

8. PERFORMING ORGANIZATION REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release, distribution unlimited

13. SUPPLEMENTARY NOTES
See also ADM202644. AIAA Missile Sciences Conference Held in Monterey, California on November 18-20, 2008, The original document contains color images.

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

<table>
<thead>
<tr>
<th>a. REPORT</th>
<th>b. ABSTRACT</th>
<th>c. THIS PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>unclassified</td>
<td>unclassified</td>
<td>unclassified</td>
</tr>
</tbody>
</table>

17. LIMITATION OF ABSTRACT

18. NUMBER OF PAGES

19a. NAME OF RESPONSIBLE PERSON

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18
High Fidelity Stimulation Need

- Models & Simulations (M&S) are critical in the today’s development of the complex Ballistic Missile Defense System (BMDS)
 - Testing of the BMDS is costly
 - Geographic dispersion complicates test capability
 - A laboratory BMDS Ground Test (GT) network is enabled by M&S

- M&S are used to evaluate:
 - Design modifications to system architectures
 - Impacts of system hardware changes
 - Software capabilities prior to and after fielding
 - Evaluate system performance against emerging threats
 - Conduct pretest readiness and evaluations

- The BMDS AN/TPY-2 radar requires a high fidelity stimulator to adequately exercise critical software functions and processes such as advanced discrimination and distributed track processing
AN/TPY-2 Stimulation Injection Point Options

Beam Steering Commands

- Antenna
- REX
- Beam Steering Generator
- Exciter
- Receiver
- Signal Processor 1
- Data Processor 1
- Raw A/D
- Transmit/Receive & SP Commands
- SP Replies
- Object Track Reports

Low Fidelity Injection
- Analog Signal
- Limited Target Modeling
- System Verification/Checkout
- Limited Channel Stimulation

Medium Fidelity Injection
- Limited Target and Environment Modeling
- Predetermined Detections with Track Processing Software Only

High Fidelity Injection
- Complex Target and Environment Signature Modeling
- Multiple Channel Stimulation
- Full System Software is Exercised – Detection and Track Performance Testing

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.
AN/TPY-2 Closed Air-Gap (CAG) Configuration

- Radar Tactical Hardware
- AN/TPY-2 Signal/Data Processor
 - BSG & Transmit/Receive Commands
 - SP Commands
 - SP Replies
- Participant Interface
- RDSIS
 - Radar Digital Signal Injection System
- MDSE
 - TEC
 - Test Execution and Control
 - TIU
 - Truth Interface Unit
- CNIP
 - “Snoop” C-Series Messages
 - Tactical Network Connection Point

- • CTTO Demonstration
 Tests scheduled in Dec 08 and Mar 09 as prep for GTI-09

Contractor Product
Government Product
• RDSIS Objective - Develop a Tool that will Provide:
 – Real-Time Simulation of Radar Return Signals to Stimulate the BMDS Radar
 – A High Fidelity Driver for BMDS Ground Testing
• Radar Capabilities Supported by RDSIS:
 – One and Two Pass Configurations
 – Single Beam Search, Multi-Beam Search, Multi-Frequency Search, Multi-Beam-Multi-Frequency Search, Verification, Track, and Discrimination
 – Narrowband, Medium Band and Wideband Waveforms
• Natural Environment Modeling - Incorporate the effects of:
 – Atmospheric Absorption
 – Cloud and Precipitation Attenuation
 – Atmospheric Lens Loss and Refraction
• Signal Characteristics
 – Generate real time I & Q for each Receiver Channel
 – Incorporate the Effects of AGC
 – Include Noise Injection
 – Model Sum and Difference Antenna Patterns (Mainbeam & Sidelobes)
 – Antenna Pattern Modeled for Transmit and Receive Antenna Weighting Functions
 – Include Effects of Outages and Amplitude and Phase Errors
• High Fidelity Modeling of I & Q Samples
 – Utilize Scattering Center Based Threat RCS Models
 – Utilize Threat Dynamics
 – Include Effects Due to Object Body Dynamics
 – Utilize Inputs Provided via 17 Column Trajectory Data Threat Dynamics
Example Data Generation Time Line

<table>
<thead>
<tr>
<th>RP N-2</th>
<th>RP N-1</th>
<th>RP N</th>
<th>RP N+1</th>
</tr>
</thead>
<tbody>
<tr>
<td>t+0</td>
<td>t+40ms</td>
<td>t+80ms</td>
<td>t+120ms</td>
</tr>
</tbody>
</table>

- **Window to Receive Commands for RP N**
- **Window to Generate I&Q Return Data for RP N**
- **Window to Inject Sim Data for RP N**
- **Window to Receive Commands for RP N+1**
- **Window to Generate I&Q Return Data for RP N+1**
- **Window to Inject Sim Data for RP N+1**

- NLT 28 ms
N-Point Real-time Processing for MB & WB Waveforms

List of Scatterer Data

1. Extract scatterer data for particular aspect α, roll ρ and polarization

$\{(x_1, y_1, z_1); \sigma_1 \}$,
$\{(x_2, y_2, z_2); \sigma_2 \}$,
$\{(x_3, y_3, z_3); \sigma_2 \}, \ldots\}$

Scatterer data (3-D location + complex RCS)

2. Compute relative range and range rate for each scatterer, using body orientation and dynamics

$\{(R_1, R_1', \sigma_1), (R_2, R_2', \sigma_2), \ldots\}$

For NB Waveforms, Scatterers are Coherently Summed into a Single RCS Response
Discrimination Testing: As the development of the BMDS matures, advanced techniques for target discrimination will make use of AN/TPY-2 data both at the organic sensor and in the system wide context.

Software Development and Performance Evaluation: The origin of RDSIS has been in the development of software for the AN/TPY-2 radar and will continue to play a vital role in this process. Additionally, standalone performance evaluations of the radar are possible to assess readiness of software builds and system performance.

Ground Test: The continued BMDS ground test campaigns will require multiple instantiations of the AN/TPY-2 radar to conduct system wide tests as more radars are integrated into the BMDS. High fidelity stimulation will enable more accurate system testing and evaluation.

CTTO: Concurrent Test, Training, and Operations applications will make use of high fidelity stimulation for system level testing and training to advance BMDS capabilities.

VOL: Realistic virtual-over-live testing is enabled by injection of complex scenes combined with live data to assess system performance in loading conditions.

Deployable Stimulation: Development of a deployable high fidelity stimulation for fielded radars provides on-site test capability and increases the fidelity of system ground test of fielded assets.

SOLD: The THAAD Sim-Over-Live-Driver (SOLD) utilizes RDSIS as a test asset.

OTHER: Continuing development of other and future X-band radars will implement RDSIS to meet development, test, and training needs. Examples: SBX and EMR
Example Use Case Implementation:
Virtual Over Live (VOL)

BMDS Radar / RDSIS Operating in a Virtual-over-Live Environment

AN/TPY-2 Radar

BMDS SDPE

To/From CNIP

Live Targets

Simulated Target Information Driven Internally or Externally
• Simulations are critical to the development and testing of the Ballistic Missile Defense System
 – Critical to the development of algorithms such as discrimination methodologies

• High fidelity radar stimulation provides a needed capability to assess the readiness and performance of the AN/TPY-2 radar
 – High fidelity target and environment signature modeling improves assessment capability
 – Realtime execution capability is a key factor

• Application of high fidelity stimulation for the varied Use Cases will provide enhanced test and training thus improving the Warfighters capability
James A. Buford, Jr. - Mr. James A. Buford, Jr. is Chief of the Strategic Defense Functional Area, System Simulation and Development Directorate of the U.S. Army Aviation and Missile Research, Development, and Engineering Center. He is also the Ballistic Missile Defense System (BMDS), Hardware-in-the-Loop (HWIL) Chief Engineer for the Missile Defense Agency (MDA) Modeling & Simulation Directorate (DESH). His primary role is as the technical and programmatic lead for the BMDS HWIL Test Framework Missile Defense Systems Exerciser (MDSE). MDSE provides the test framework for MDA's BMDS Ground Tests, Exercises, Training, and Continuous Test Training and Operations (CTTO) venues. Mr. Buford holds a Bachelor of Science degree in Electrical Engineering with a double minor in Mathematics and Computer engineering from the University of South Alabama and has completed an extensive array of graduate and professional development courses at the University of Alabama - Huntsville.

James D. Coombs - Mr. Coombs has over twenty years experience working with air and missile defense simulations, both digital and hardware-in-the-loop, at AMRDEC. He is currently the Chief of the Air and Missile Defense (AMD) Functional Area for AMRDEC’s System Simulation and Development Directorate. His responsibility encompasses AMD simulations for multiple Army programs within the Lower Tier, Cruise Missile Defense, and Integrated AMD program offices. Mr. Coombs served as project lead for the PATRIOT Advanced Capability 3 (PAC-3) HWIL for 13 years. His HWIL experience encompasses testing of the HAWK, PATRIOT Multimode, and ERINT missiles. He is currently serving as the Technical Lead for Radar Stimulator development and integration within the BMDS MDSE Framework. Mr. Coombs holds a Bachelor of Science degree in Electrical Engineering (BSEE) from Tennessee Technological University in Cookeville, Tennessee.

Anthony P. Rainoldi - Mr. Rainoldi has two years experience of working with radar simulations at AMRDEC. He is currently leading the V&V effort for SLAMRAAM M&S in the Air and Missile Defense Functional Area for AMRDEC’s System Simulation and Development Directorate. He has over six years experience with multiple radar systems, include various instrumentation radars, active protection systems, and the AN/TPY-2 radar. Mr. Rainoldi holds a Masters of Engineering (MSE) in Radar from the University of Alabama in Huntsville, Huntsville, AL, and a Bachelors of Electrical Engineering (BEE) Degree from Auburn University, Auburn, AL.