A Simulation-based Integration Approach for the First Trident MK6 Life Extension Guidance System

AIAA Missile Sciences Conference
Monterey, CA
18-20 November 2008

Todd Jackson – Draper Laboratory
LCDR David Monti – US Navy
Scott Berry – Draper Laboratory
James Connelly – Draper Laboratory
Michael Murphy – Draper Laboratory

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.
A Simulation-based Integration Approach for the First Trident MK6 Life Extension Guidance System

See also ADM202644, AIAA Missile Sciences Conference Held in Monterey, California on November 18-20, 2008, The original document contains color images.
Outline

• Overview of MK6LE
 – Goal and Timeline of the MK6LE Life Extension
 – Guidance System Objectives and Concept of Operations
 – Guidance System in Context of Weapon System
 – Physical Decomposition of MK6LE
 – Architecture of MK6LE System

• Role of Simulation in Support of MK6LE Development
 – Support Tools and Infrastructure
 – Evolution of Simulations in Support of MK6LE Goals
 – Simulation’s Contributions
 • Flight Demonstration at CDR
 – Lessons Learned

• Conclusion
Objective:

Extend service life of the MK6 Guidance System

2003 Start

2011 1st Flight

2007 CDR

2013 IOC

2042 Retire

Maintain demonstrated accuracy & reliability

Meet all External Coordinated Interfaces / Environments

Allow for mission adaptability and technology insertion
MK6LE Guidance System Objectives and Concept of Operations

PRE-LAUNCH AND LAUNCH PHASES

BOOST PHASE (~180 sec)

DEPLOYMENT PHASE (~300 - 600 sec)

BALLISTIC PHASE

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.
MK6LE Guidance System in Context of Trident Weapon System

MK6LE Guidance System in Context of Trident Weapon System

MK6 Guidance System

Aerospike

Nose Fairing 3rd Stage Motor

Equipment Section

2nd Stage Motor

Interstage

1st Stage Motor

Courtesy: Lockheed Martin SSC

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.
Physical Decomposition of MK6LE

Gyro Accelerometer Camera Computer

IFOG Alt PIGA 128 x 128 CCD RHPCC MRAM

Non-volatile Memory

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.
Support Tools and Infrastructure

- Central compute facility
- Model Repository
- Auto-coding from ICD
- Test Data Repository
- Scripts for data stripping, scaling, and exchange
Evolution of Simulations in Support of MK6LE Goals

- Managed evolution of simulation capability and appropriate fidelity to meet development need is a key element of the Draper Simulation Based Design methodology
 - “What engineering problem are you trying to solve with simulation?”
- Early identification and planning of simulation needs led to appropriate simulation technology investments.
Simulation’s Contributions

• Architecture trade studies and down select.
• Demonstrated execution of MK6LE design by PDR.
 – Early verification of subsystem requirements.
 – Verification and refinement of ICD.
• Supported software development.
 – Developers worked on model of target processor before hardware was available.
 – Defects were identified in a virtual environment before integration with hardware, shortening integration schedule.
• Demonstrated prototype system by CDR.
 – “Flew” prototype electronics modules built to system specifications in HWiL environment.
Flight Demonstration at CDR
Lessons Learned

• “Design defects” become obvious at the system level.
 – Use simulation and HWiL environments to virtually integrate elements early, don’t wait until all hardware is built.

• Capability and knowledge grow exponentially.
 – Re-use models and tools across efforts.
 – Apply COTS solution when applicable.

• Visibility into the system is a challenge.
 – Plan for integration and debug challenges.

• Simulation can be an expensive venture.
 – Cost and development time increase with fidelity…
 …and everybody wants high fidelity.
 – Identify and meet true needs as development progresses.
Conclusion

• Simulation-based design was invaluable for MK6LE
 – Rich set of simulation environments tailored to meet unique guidance system development needs

• Early integration of the Mk6LE prototype design was extremely beneficial
 – CDR Demonstration goal of HWIL Mk6LE Missile Flight focused the entire design team and matured the design.

• Managed evolution of simulation fidelity to meet development need was a key element of MK6LE’s success.