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Foreword 
 
Many applications require unmanned ground vehicles (UGVs) to travel at high speeds on 
sloped, natural terrain.  Control of UGVs in these scenarios is difficult due to the inherent 
complexity in modeling terrain effects on vehicle motion.  This research has studied 
methods for control of high speed UGVs through the use of simplified models of UGV 
dynamics and terrain interaction.  Simulation and experimental results gathered during 
this work has demonstrated the effectiveness of two distinct control approaches.  Other 
work conducted under this grant has focused on modeling of omnidirectional vehicles.  
Future work will pursue control methods for high speed, omnidirectional UGVs in rough, 
uneven terrain. 
 
Keywords: Mobile robots, potential fields, outdoor terrain, motion planning 
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Problem Statement 

 
Unmanned ground vehicles (UGVs) have important military, reconnaissance, and 
materials handling applications, and are expected to play a significant role in future Army 
operations as part of the Future Combat Systems (FCS) program.  Many applications 
require a UGV to move at high speeds through rugged, natural terrain of varying 
composition.  For example, a UGV on a reconnaissance mission might be required to 
autonomously navigate at high speed along a pre-defined perimeter, through sandy, 
rocky, sloped, and vegetation-covered terrain.  Increased speed over terrain can reduce 
detection risk, increase overall convoy speed, and generally increase UGV effectiveness. 

High speed autonomous navigation in rough terrain is challenging for many reasons.  
Sources of difficulty include nonlinear UGV dynamic effects such as wheel slip, skid, 
ballistic behavior, roll over, and vehicle-terrain interaction.  These factors can strongly 
influence system performance, particularly on loose, steeply sloped, or very rough 
terrain.  Another difficulty is that UGV sensors can contain significant error and 
uncertainty.  High speed operation also requires that navigation algorithms run in real 
time, and thus there is little time for complex computation.  Finally, even with accurate 
models and precise sensing, unexpected situations are likely to occur that will require 
UGVs to perform emergency hazard avoidance maneuvers.  (For example, a UGV 
moving at high speed might not detect a ditch or shell crater until it is close by, due to 
fundamental limitations of on-board range sensors.)   

Model-based approaches to navigation and hazard avoidance are attractive since they 
can yield insight into UGV dynamics on varying terrain conditions.  This is in contrast to 
approaches that rely on ad hoc rules to adapt UGV performance to changing conditions.  
However, at high speeds there is little time to perform model-based navigation methods 
that employ detailed vehicle and terrain models.  Furthermore, it is difficult to accurately 
model complex tire/terrain interactions due to uncertainty about terrain conditions.  
Therefore, despite the attractiveness of model-based navigation algorithms, they are 
difficult to apply in real time. 

The purpose of this three-year research program has been to investigate novel 
algorithms for high speed autonomous navigation and hazard avoidance based on the 
concept of the trajectory space, which is a compact framework for describing a UGV’s 
dynamic performance on uneven, natural terrain.  The trajectory space defines the 
performance limits of a UGV as a function of vehicle parameters, estimated terrain 
parameters (including inclination, roughness, and vehicle-terrain interaction), and hazard 
properties.  Complex dynamic analysis is performed offline, and the results are stored in a 
look-up table as constraints in the trajectory space, allowing for extremely fast (O(µs)) 
on-line computation times.  The trajectory space can also robustly consider uncertainty 
present in vehicle and terrain models and parameter estimates.   

Other work conducted under this grant has focused on modeling of omnidirectional 
vehicles.  Omnidirectional vehicles are those that are able to (kinematically) move in any 
direction instantaneously, regardless of pose.  Such vehicles are of significant interest due 
to their extremely high agility, and ability to move in constricted, cluttered environments.   
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Summary of Results 

 
The work conducted under this grant has fallen into three primary areas.  These areas, 

and the major result(s) for each area, are described here. 
 
• Area 1: The study of a class of high speed UGV control algorithms based on the 

“trajectory space,” a compact framework for describing a UGV’s dynamic 
performance on uneven, natural terrain.   

• Major result: Simulation and experimental results show that the control 
method can successfully navigate a small UGV between pre-defined 
waypoints at speeds up to 7.0 m/s, while avoiding static hazards, even 
while operating on significant side-slopes and in outdoor terrain. 

• Major result: A method were developed for utilizing simple, 
computationally efficient models of UGV motion on sloped terrain to 
avoid vehicle rollover and skidding.  A method was proposed for 
explicitly considering the effect of terrain roughness (i.e. fine-grained 
height variation) on path following accuracy. 

• Minor result: The concept of the potential field, which has been widely 
employed in the robotics community, was here successfully extended to a 
novel class of systems. 

• Note that the primary publication resulting from this work is 
contained in Appendix A.  It thoroughly describes the research results 
that are the product of this area of investigation.  Other relevant 
publications include: 

i. Spenko, M., Kuroda, Y., Dubowsky, S., and Iagnemma, K., 
“Hazard Avoidance for High Speed Unmanned Ground Vehicles in 
Rough Terrain,” Journal of Field Robotics, Volume 23, No. 5, pp. 
311-331, May, 2006 

ii. Spenko, M., Overholt, J., and Iagnemma, K., “High Speed Hazard 
Avoidance for Unmanned Ground Vehicles in Emergency 
Situations,” Proceedings of the 25th Army Science Conference, 
2006 

iii. Spenko, M., Dubowsky, S., and Iagnemma, K., “Experimental 
Validation of High Speed Hazard Avoidance Control for 
Unmanned Ground Vehicles,” Proceedings of the 8th 
International IFAC Symposium on Robot Control, SYROCO, 2006 

 
• Area 2: The study of a high speed UGV control algorithm that fuses elements of 

the “trajectory space” method with a method based on optimal control to result in 
a method for near-optimal navigation of high speed mobile robots on uneven 
terrain.   
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• Major result: Simulation results show that the control method can 
successfully navigate a UGV across uneven terrain in a manner that lies 
(on average) within 10% of the time-optimal solution, however at a 
fraction of the computational cost. 

• Minor result: It was shown that a control method based on the principle 
of the trajectory space could be utilized as a “low level” controller in a 
layered control architecture, with excellent results. 

• Note that the primary publication resulting from this work is 
contained in Appendix B.  It thoroughly describes the research results 
that are the product of this area of investigation. 

 
• Area 3: The study of kinematic models of omnidirectional vehicles (i.e. vehicles 

that are able to (kinematically) move in any direction instantaneously, regardless 
of pose.  Specifically, the kinematics of such vehicles were studied for the case of 
rough terrain operation. 

• Major result: A complete description of the kinematics of a class of 
omnidirectional vehicles driven by Active Split Offset Casters (ASOC) 
modules operating on uneven terrain.  

• Major result: A quantitative analysis of the effect of ASOC module 
kinematic parameter variation, terrain inclination, and terrain roughness on 
vehicle mobility was performed, and design guidelines were developed 
based on these results. 

• Minor result: Based on the analysis performed in this work, the design of 
an omnidirectional mobile robot intended for operation in rough terrain 
was developed.  This design is currently under development with support 
from other Army research funds 

• Note that the primary publication resulting from this work is 
contained in Appendix C.  It thoroughly describes the research results 
that are the product of this area of investigation.  Other relevant 
publications include: 

i. Udengaard, M., and Iagnemma, K., “Kinematic Analysis and 
Control of an Omnidirectional Mobile Robot in Rough Terrain,” 
Proceedings of the IEEE/RSJ International Conference on 
Intelligent Robots and Systems, 2007 

ii. Udengaard, M., and Iagnemma, K., “Design of an Omnidirectional 
Mobile Robot for Rough Terrain,” Proceedings of the IEEE 
International Conference on Robotics and Automation, 2008 

iii. Udengaard, M., and Iagnemma, K., "Design of a Highly 
Maneuverable Wheeled Mobile Robot," Proceedings of the SPIE 
Conference on Unmanned Systems, 2008 
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High Speed Navigation of Unmanned Ground Vehicles on Uneven Terrain  
Using Potential Fields 

 

Shingo Shimoda*1,*2, Yoji Kuroda*1 and Karl Iagnemma*1 

*1 : Massachusetts Institute of Technology 
Department of Mechanical Engineering 

Cambridge, MA  02139  USA 
*2 : RIKEN, Biomimetic Control Research Center 

 
 

Abstract 

Many applications require unmanned ground vehicles (UGVs) to travel at high speeds on 

sloped, natural terrain.  In this paper a potential field-based method is proposed for UGV 

navigation in such scenarios.  In the proposed approach, a potential field is generated in 

the two-dimensional “trajectory space” of the UGV path curvature and longitudinal 

velocity.  In contrast to traditional potential field methods, dynamic constraints and the 

effect of changing terrain conditions can be easily expressed in the proposed framework.  

A maneuver is chosen within a set of performance bounds, based on the local potential 

field gradient.  It is shown that the proposed method is subject to local maxima problems, 

rather than local minima.  A simple randomization technique is proposed to address this 

problem.  Simulation and experimental results show that the proposed method can 

successfully navigate a small UGV between pre-defined waypoints at speeds up to 7.0 

m/s, while avoiding static hazards.  Further, vehicle curvature and velocity are controlled 

during vehicle motion to avoid rollover and excessive side slip.  The method is 

computationally efficient, and thus suitable for on-board real-time implementation 

Keywords: Mobile robots, potential fields, outdoor terrain, motion planning 
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1. Introduction and Related Work 

Unmanned ground vehicles (UGVs) are expected to play significant roles in future 

military, planetary exploration, and materials handling applications [1,2].  Many 

applications require UGVs to move at high speeds over rough, natural terrain.  One 

important challenge for high speed navigation lies in avoiding dynamically inadmissible 

maneuvers (i.e. maneuvers that self-induce vehicle failure due to rollover and excessive 

side slip)[3].  This is challenging as it requires real-time analysis of vehicle dynamics, 

and consideration of the effects of terrain inclination, roughness, and traction.  Another 

challenge for high speed navigation lies in rapidly avoiding static hazards such as trees, 

large rocks or boulders, water traps, etc[4].  Such hazards are often detected at short 

range (particularly “negative obstacles,” or depressions below the nominal ground plane), 

and thus hazard avoidance maneuvers must be generated very rapidly. 

 Artificial potential fields have long been successfully employed for robot control 

and motion planning due to their effectiveness and computational efficiency.  Generally, 

these methods construct artificial potential functions in a robot’s workspace such that the 

function’s global minimum value lies at the robot’s goal position and local maxima lie at 

locations of obstacles.  The robot is “pushed” by an artificial force proportional to the 

potential function gradient at the robot’s position, and thus moves toward the goal 

position while avoiding hazards.   

 First works based on this approach were performed by Khatib as a real-time 

obstacle avoidance method for manipulators [5].  Latombe applied potential field 

methods to the general robot path planning problem, including high d.o.f. manipulators 

and mobile robots operating at low speeds in structured, planar environments [6].  This 
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work proposed various techniques for implementing potential field-based planning 

methods that do not suffer from local minima, a classical problem for potential field 

planners.  Ge et al. applied the potential field concept for dynamic control of a mobile 

robot, with moving obstacles and goal in a structured environment [7].  This work 

addressed the local minima problem by judiciously choosing appropriate forms of the 

potential functions.  Decision-making logic was also integrated into the motion planning 

strategy to avoid local minima.  Path planning using potential fields has also been applied 

to parallel computation schemes and nonholonomic systems [8,9].  In summary, potential 

fields have been applied extensively to the problem of path planning of manipulators and 

mobile robots operating at low speeds in structured, indoor settings [10-14].  These 

methods do not consider the effects of terrain inclination, roughness, and traction on 

UGV mobility, nor do they address the problem of dynamically inadmissible maneuvers.   

 The application of artificial potential fields to mobile robot navigation in natural 

terrain has recently been addressed [15].  This approach relies on a vision-based 

classification algorithm to analyze local terrain and determine the locations of obstacles 

and nontraversable terrain regions.  A conventional potential field planner is then applied 

to the 2-D traversability map.  Since the approach is designed for low-speed operation on 

relatively flat, lightly cluttered environments it does not consider the effects of terrain 

inclination, roughness, or traction, nor does it address the problem of dynamically 

inadmissible maneuvers.   

 Here a local reactive navigation method is presented for high speed UGVs on 

rough, uneven terrain.   In the proposed method, a potential field is defined in the two-

dimensional “trajectory space” of the robot’s path curvature and longitudinal velocity  
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[19,20].  This is in contrast to other proposed methods, where potential fields are defined 

in the Cartesian or configuration space.  The trajectory space framework allows dynamic 

constraints, terrain conditions, and navigation conditions (such as waypoint location(s), 

goal location, hazard location(s) and desired velocity) to be easily expressed as potential 

functions.  A maneuver is chosen within a set of performance bounds, based on the 

potential field gradient.  This yields a desired value for the UGV path curvature and 

velocity.  Desired values for the UGVs steering angle and throttle can then be computed 

as inputs to low-level tracking controllers.   

 The proposed approach has some similarity to the dynamic window approach to 

navigation [16-18]. In that approach, a potential-like field is developed in the 2-

dimensional space of translation and rotational velocities, and a behavior is chosen in the 

space. The method considers goal and obstacle locations, but does not consider dynamic 

constraints (due to rollover and side slip) and terrain conditions (such as inclination, 

roughness, and traction). 

 In Section 2 of this paper the trajectory space is introduced and problem 

assumptions are stated.  In Section 3 potential functions are defined based on dynamic 

constraints, terrain conditions, and navigation conditions.  In Section 4 the navigation 

algorithm is outlined.  In Section 5 the problems of local minima and maxima are 

described, and a simple randomization technique for mitigating the effects of these 

problems is described.  In Sections 6 and 7 simulation and experimental results are 

presented that show that the proposed method can successfully navigate a small UGV 

between pre-defined waypoints at speeds up to 7.0 m/s, while avoiding static hazards, 
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vehicle rollover and excessive side slip.  The method is computationally efficient, and 

thus suitable for on-board real-time implementation. 

2. Trajectory Space Description and Problem Assumptions 

2.1  Trajectory Space Description 

The trajectory space, 2ℜ∈TS , is defined as a two-dimensional space of a UGV’s 

instantaneous path curvature and longitudinal velocity [19,20].  This space clearly cannot 

describe the complete vehicle state, but can rather capture important UGV state and 

configuration information and serve as a physically intuitive description of the current 

vehicle status.  A UGV’s “position” in TS is a curvature-velocity pair and is denoted 

( )v,κτ = .  The relationship of a point in the trajectory space and a vehicle maneuver is 

shown in Figs. 1 (a) and (b).  Note that in this work only positive longitudinal velocities 

are considered.  

C
u

rv
at

u
re

Velocity

(1)

(2)

(3)

(a) Trajectory Space         

(1) (2) (3)

(b) Maneuver Example  

Fig. 1. Trajectory space illustration and maneuver examples corresponding to various 

locations in the trajectory space.  

 

 The trajectory space is a useful space for UGV navigation for two reasons.  First, 

points in the trajectory space map easily and uniquely to the points in UGV actuation 

space (generally consisting of one throttle control input and one steering angle control 
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input).  Thus navigation algorithms developed for use in the trajectory space will map to 

command inputs that obey vehicle nonholonomic constraints.  Second, constraints related 

to dynamic effects such as UGV rollover and side slip are easily expressible in the 

trajectory space, since these effects are strong functions of the UGV velocity and path 

curvature [20].  Trajectory space constraints can also be formulated as functions of 

important terrain parameters, including terrain inclination, roughness, and traction.   

 In the proposed navigation method, a potential field is constructed in the 

trajectory space based on dynamic constraints, terrain conditions, and navigation 

conditions.  An appropriate navigation command is then selected based on the properties 

of this field.  Potential field formulation and a navigation methodology are discussed in 

Section 3. 

2.2  Problem Assumptions  

In this work it is assumed that the UGV has a priori knowledge of the positions of 

widely-spaced (i.e. many vehicle lengths) waypoint and/or goal locations[3,21,31].  Such 

knowledge is often derived from high-level path planning methods that rely on coarse 

elevation or topographical map data.  It is assumed that the locations of hazards can be 

locally detected from on-board range sensors, and might take the form of terrain 

discontinuities such as rocks or ditches, or non-geometric hazards such as soft soil.  

Hazard detection and sensing issues are important aspects of UGV navigation in natural 

terrain, but are not a focus of this work.   

 It is also assumed that estimates of local terrain inclination, roughness, and 

traction can be sensed or estimated.  The inclination of a UGV-sized terrain patch is 

defined in a body-fixed frame B (see Fig. 2) by two parameters, θ and φ, associated with 
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the roll and pitch, respectively, of a plane fit to the patch.  Roughness is defined as terrain 

unevenness caused by features that are less than one-half the vehicle wheel radius in size.  

Roughness is here characterized by the fractal dimension ϖ and is defined over the 

interval [ ]3,2∈ϖ  [22].  The maximum available traction at a wheel-terrain contact point 

is defined as the product of the terrain friction coefficient µ and the normal force acting 

on the terrain.  This model assumes point contact between the wheel and terrain and 

neglects nonlinear effects due to and wheel slip and terrain and/or tire deformation.  Note 

that estimates of terrain inclination, roughness and traction can be derived from elevation 

and visual data via a variety of classification algorithms [22-25].   

 The vehicle mass, inertia tensor, center of gravity (c.g.) position, and kinematic 

properties are assumed to be known with reasonable certainty.  The vehicle is assumed to 

be equipped with inertial and GPS sensors that allow measurement of the vehicle’s linear 

rates and accelerations and position in space with reasonable certainty. 

 Coordinate systems employed in this work are shown in Fig. 2.  A body frame B 

is fixed to the vehicle, with its origin at the vehicle center of mass. The position of the 

vehicle in the inertial frame I is expressed as the position of the origin of B.  The vehicle 

attitude is expressed by x-y-z Euler angles using the vehicle yaw ψ, roll θ, and pitch φ 

defined in B.  (Note that since the UGV suspension is assumed to be rigid the vehicle roll 

and pitch are equal to the terrain roll and pitch.)  The vehicle wheelbase length is denoted 

L, the c.g. height from the ground is h, and the half-width is d.  For simplicity the UGV is 

here assumed to be axially symmetric. 
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IInertial Frame

xI

yI

zI

BBody Frame

xB

zB
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yB

d

h

L

roll θpitchφ

 

Fig. 2. Definition of UGV coordinate system. 

   

3.   Potential Field Definition  

In the proposed method, a potential field is constructed in the trajectory space and vehicle 

maneuvers are selected based on the properties of this field.  The potential field is defined 

as a sum of potential functions relating to each constraint, hazard, and goal or waypoint 

location.  Here potential functions are defined for dynamic rollover and side slip 

constraints, waypoints (and goal) locations, hazard locations, and the desired UGV 

velocity. 

3.1  Potential Functions for Rollover and Side Slip Constraints 

During high speed operation a UGV must avoid dynamically inadmissible maneuvers, i.e. 

maneuvers that self-induce vehicle failure due to rollover and excessive side slip.  This is 

challenging as it requires real-time analysis of vehicle dynamics, and consideration of the 

effects of terrain inclination, roughness, and traction.  Note that although some side slip is 

expected and unavoidable, substantial slip that causes large heading or path following 

errors is detrimental.  Roll-over is also generally undesirable despite the fact that some 

UGVs are designed to be mechanically invertible.    
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 In the proposed approach, constraint functions related to rollover and side slip are 

computed from low-order dynamic models and expressed as potential function sources in 

the trajectory space.  Clearly, higher d.o.f. models are available for predicting rollover 

and side slip, however the proposed models have been shown to be reasonably accurate 

in practice [17]. 

 A rollover constraint for a UGV traveling on uneven terrain can be modeled as: 

 r
xz

r hv
hgdgv δκ −

±
= 2)(  (1) 

where κr is the maximum admissible path curvature, v is the UGV longitudinal velocity, 

g* is the gravitational acceleration of the *-axis  direction in B.  The two solutions to (1) 

correspond to travel on positive/negative inclination slopes, with nonzero gx components 

reflecting the effect of terrain roll.  Note that δr is introduced here as a small positive 

“safety margin” for reasons described below.  A potential function is then defined as: 
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where κMAX is the maximum attainable path curvature for a UGV based on kinematic 

steering constraints, and is assumed to be independent of velocity.  Here, Kr is a positive 

gain parameter to modulate the potential function height.  The introduction of δr in 

equation (1) causes equation (2) to be non-zero at curvature-velocity pairs that approach 

but do not exceed the UGVs predicted stability limit.  An illustration of a potential 

function for the UGV rollover constraint is shown in Fig. 3. 
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Fig. 3. Illustration of potential function of rollover and side slip constraints.   

 

 A corresponding repulsive force is generated as the negative gradient of the 

repulsive potential, as: 
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 This repulsive force grows increasingly large as the UGV curvature exceeds the 

maximum allowable curvature defined in equation (1), and is zero otherwise.  Thus the 
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repulsive force affects navigation only when the UGV is on the verge of executing a 

dynamically inadmissible maneuver due to rollover. 

 Side slip occurs when the lateral traction forces between a UGV’s wheels and the 

terrain is exceeded by the sum of the centrifugal force and lateral gravitational force 

component.  The maximum path curvature that a UGV can track without excessive side 

slip can be modeled as follows: 

 ( ) s
zx

s v
gg δµνκ −

±−
= 2  (5) 

where κs is the maximum admissible path curvature.  Again, δs is introduced for reasons 

identical to those described above.  A potential function is then defined as: 
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 Again, Ks is a positive gain parameter to modulate the potential function height.  

An illustration of a potential function for the side slip constraint appears similar to that 

for the rollover constraint shown in Fig. 3.   

 A corresponding repulsive force is generated as the negative gradient of the 

repulsive potential, as: 
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where: 
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 The repulsive force grows increasingly large as the UGV curvature exceeds the 

maximum allowable curvature defined in equation (5), and is zero otherwise.  Thus the 

repulsive force affects navigation only when the UGV is on the verge of executing a 

dynamically inadmissible maneuver due to side slip. 

 The models employed above are functions of the terrain inclination and traction.  

An example of the effects of varying inclination on constraint equation (1) can be 

observed in Fig. 4.  Here, rollover constraints are shown for the case of flat terrain, 

rolling terrain with θ = 15°, and rolling terrain with θ = 30°.  The solid or dashed lines 

indicate the point at which the value of equation (2) exceeds zero.  It can be seen that as 

terrain inclination increases, the rollover constraint model predicts that a UGV can safely 

execute negative curvature maneuvers (“downslope” turns) at greater velocity than 

positive curvature maneuvers (“upslope” turns).  This is physically reasonable, since 

during negative curvature maneuvers the gravity vector gx component acts counter to 

centripetal acceleration. 

 An example of the effect of traction on constraint equation (5) can be observed in 

Fig. 5.  Here, side slip constraints are shown for the case of flat terrain, with µ = 0.2, µ = 

0.6, and µ = 1.0.  The solid or dashed lines indicate the point at which the value of 
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equation (6) exceeds zero.  It can be seen that as terrain traction increases, the side slip 

constraint model predicts that a UGV can safely execute a fixed-curvature maneuvers at 

greater velocity.  Again, this is physically reasonable, since during travel on high-traction 

terrain the available cornering force is greater than on low-traction terrain.  Thus the 

proposed potential functions can capture the effects of terrain inclination and traction. 

 

Fig. 4. Illustration of effect of terrain inclination on rollover constraint.  

 

Fig. 5. Illustration of effect of terrain traction on side slip constraint. 
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 Terrain roughness influences rollover and side slip by inducing variation in the 

wheel normal forces.  It has been shown that for natural terrain, the presence of 

roughness leads to a distribution of curvature-velocity pairs at which rollover or side slip 

occurs, with the mean of this distribution approximately described by the prediction from 

the rigid body models of equations (1) and (5) [17, 28].  Monte Carlo simulation methods 

have been developed for analyzing this distribution as a function of terrain roughness [27, 

28].  Detailed discussion of the effects of terrain roughness on UGV mobility are beyond 

the scope of this paper. 

 In practice, probability distribution functions related to rollover and side slip can 

be determined as a function of terrain roughness via off-line Monte Carlo simulation 

analysis.  The parameters δr and δs can then be chosen to correspond to 3σ limits of these 

distributions.  A look-up table can then be constructed relating δr and δs to roughness ϖ.  

Since roughness can be measured on-line in real time, δr and δs can be modulated to 

account for roughness.  Thus the proposed potential functions can be adapted for in rough 

terrain scenarios if measurements or estimates of terrain roughness are available. 

3.2 Potential Function for Waypoint Locations 

To enable UGV navigation between waypoints, an attractive potential function is 

composed with a corresponding attractive force that tends to “pull” the UGV toward the 

desired waypoint at a given instant.  The form of the potential function influences the 

shape of the resulting UGV path.  For example, consider a UGV moving toward a desired 

waypoint as shown in Fig. 6.  Two possible paths to the waypoint are illustrated as paths 

A and B, resulting from two different potential functions.  Both paths possess the same 
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initial curvature.  Path B, however, is more direct and thus more desirable than Path A in 

the absence of other constraints.  

Path A

Path B

Way-Point

 

Fig. 6. Comparison of possible UGV paths toward a waypoint.   

 

 To generate direct paths between waypoints, a method illustrated in Fig. 7 is 

proposed.  Let Od be the Euclidean distance between the UGV c.g. and the waypoint.  A 

line connecting the UGV c.g. and waypoint intersects a circle centered at the UGV c.g. 

with radius 2κMAX.  The desired curvature κd to this “virtual waypoint” is taken as the 

curvature that leads to the intersection point.  In the case where MAXdO κ2< , κd is taken 

as the curvature that leads to the waypoint directly. 

Way-Point

Virtual Way-Point

Desired Curvature

Maximum Curvature

                        of Vehicle

Way-Point

Desired Curvature

Maximum Curvature

                        of Vehicle

(1)  Od > 2κMAX (2)  Od < 2κMAX

 
Fig. 7. Computation of desired steering angle using “virtual waypoints.”   
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 A potential function corresponding to the current desired waypoint location is 

then defined as follows: 

 ( ) ( )2
dww KPF κκκ −=  (9) 

where Kg is a positive gain parameter to modulate the potential function height. An 

illustration of a potential function for waypoint location is shown in Fig. 8. 

 

Fig. 8. Illustration of potential function for waypoint location.   

 

 A corresponding attractive force is generated as the negative gradient of the 

attractive potential, as: 

 ( )κρ ww PFF −∇=  (10) 

where: 

 ( ) ( )dww KPF κκνκρ −=∇ 2,  (11) 

 The difference in robot trajectories resulting from the use of virtual waypoints is 

illustrated in a simulation result presented in Section 6.1. 

3.3 Potential Function for Desired Velocity  
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A potential function related to the desired UGV velocity can be simply expressed as 

follows:  

 3)()( dvv vvKvPF −=  (12) 

where vd is the desired UGV velocity and Kv is a positive gain parameters to modulate the 

potential function height.  Note that vd may be a function of position or time to reflect 

high-level objectives.  An illustration of the potential function for the desired velocity is 

shown in Fig. 9. 

 

Fig. 9. Illustration of potential function of desired velocity. 

 

 A corresponding attractive force is generated as the negative gradient of the 

attractive potential, as: 

 ( )νν vv PFF −∇=  (13) 

where: 

 ( ) ( )23, dvvv KPF νννκ −=∇  (14) 
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3.4 Potential Function for Hazard Locations  

A potential function related to hazard locations should consider (at minimum) the relative 

position and orientation of the UGV and hazard(s).  Consider the general situation of a 

UGV approaching a static hazard shown in Fig. 10.  Here κ1 and κ2 are the maximum and 

minimum path curvatures toward the hazard from the current UGV position and velocity.  

A point vehicle representation is assumed and hazard boundaries are computed 

accordingly.   

 Here a potential function for hazard location is proposed that considers several 

factors.  First, path curvatures between κ1 and κ2 are undesirable if the UGV is near the 

hazard, yet can be safely employed if the hazard is distant.  Second, the potential function 

value should be higher at high speed than at low speed since both path tracking accuracy 

and response time decrease with increasing speed.  Third, the orientations of hazard(s) 

relative to the current waypoint (with respect to the UGV position) should influence the 

hazard potential function value, thus allowing a UGV to “pass” hazards without being 

unduly disturbed by them.  This is illustrated in Fig. 11.  

 

Fig. 10. Minimum and maximum steering angle towards a hazard. 
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Fig. 11. Influence of relative locations of waypoints and hazards.  

 

 From these observations, a potential function for hazard locations is defined as 

follows:  
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where Ad is the minimum angle between the current waypoint and the hazard of interest 

(see Fig. 11), ( ) 221 κκ +=X , and ( ) 221 κκσ −= .  Kh, Khd, Kha, and Khv are positive 

gain parameters to modulate the potential function height.   

 The hazard potential function is chosen as a scaled Gaussian with σ proportional 

to the hazard “width” as observed by the UGV at a given distance.  As the UGV 

approaches the hazard or travels at increased speed the magnitude of the potential 

function grows.  As the heading angle to the hazard relative to the current waypoint 

diverges, the magnitude of the potential function diminishes.  An illustration of the 

potential function for a UGV approaching a hazard is shown in Fig. 12.  Note that a 
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single function is employed for each hazard, and multiple hazards can be described as a 

summation of multiple functions.  

 

Fig. 12. Illustration of potential function for single hazard location. 

 

 A corresponding repulsive force is generated as the negative gradient of the 

repulsive potential, as: 
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3.5 Definition of Net Potential Field  

A net potential field is generated as the sum of all proposed potential functions, as: 

 ( ) ( ) ( ) ( ) ( ) ( )∑
=

++++=
n

i
hivwsr PFvPFPFPFPFNPF

1
,,,, νκκνκνκνκ  (18) 
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where n is the number of hazards present and PFhi is the potential function corresponding 

to the ith hazard.  An illustration of a net potential field is shown in Fig. 13.   

 

Fig. 13. Illustration of proposed net potential field. 

 

 A net force field corresponding to the net potential field is generated as the sum of 

all proposed virtual forces: 

 ( ) ( ) ( ) ( ) ( ) ( )∑
=

∇−∇−∇−∇−−∇=
n

i
hivwsr PFvPFPFPFPFNF

1
,,,, νκκνκνκνκ  (19) 

 4. Navigation Algorithm Description 

During navigation, the gradient of the net potential field is computed at the UGV’s 

position in the trajectory space (i.e. its instantaneous path curvature and longitudinal 

velocity ( )v,κτ = ).  A desired curvature and velocity is then chosen in the direction of 

maximum descent as ( )τττ NF+=* .  The desired maneuver *τ  is used to derive 

command inputs for low-level control of UGV steering angle and throttle.  This 

procedure is repeated at a control rate appropriate to the navigation task, usually 1-10 Hz. 
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 Three factors must be considered during implementation of the proposed 

algorithm.  First, not all regions of TS are reachable in a finite time t due to limits on 

UGV acceleration, deceleration, and steering rate.  Thus *τ  should be chosen in a 

subspace of TS termed the “reachable trajectory space” [20].  Second, calculation of the 

potential functions in equation (18) may be corrupted by sensor noise, and thus filtering 

should be performed during the gradient calculations in equation (19).  Third, the desired 

path curvature and velocity must be mapped to steering angle and throttle command 

inputs to perform low-level control.  These factors are discussed below.  

4.1 Reachable Trajectory Space Description 

The reachable trajectory space is computed based on knowledge of the UGV’s 

instantaneous curvature and velocity, and its acceleration, braking, and steering 

characteristics.  For a UGV located at τ  in the trajectory space, an estimate of the 

maximum and minimum attainable velocities in a time t is: 
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where a+ and a– are UGV acceleration/deceleration parameters, respectively, assuming 

constant acceleration/deceleration capability.  The maximum and minimum attainable 

path curvatures for a front-wheel steered vehicle in time t are: 
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where maxκ&  is the maximum rate of change of path curvature.  This parameter can be 

computed  from the single-track vehicle model shown in Fig. 14 [29].  In this model the 
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properties of the front and rear wheel pairs are lumped into single front and rear wheels 

located on the centerline of the vehicle, and: 

 
L

max
max

tanδ
κ

&
& =  (22) 

where maxδ&  is the maximum rate of change of the UGV steering angle.  Fig. 15 shows an 

example of the reachable trajectory space.   

 

Fig. 14. Single-track UGV model for reachable trajectory space calculation.   

4.2 Potential Field Gradient Calculation 

In practical application of the proposed algorithm the calculation of the potential 

functions in equation (18) will be corrupted by sensor noise, and thus filtering must be 

performed during the gradient calculations in equation (19).  Here a plane-fitting 

approach is proposed to compute the potential field gradient.  This approach was chosen 

due to its computational efficiency and ability to mitigate the potentially significant 

effects of noise on the gradient calculation. 

 In the proposed approach the reachable trajectory space, which is nominally 

rectangular, is discretized into nine equal-area rectangular regions.  Other discretization 

geometries and resolutions are possible, however this discretization was found to yield 
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good results in simulation and experimental trials.  A maneuver is chosen via the 

following algorithm: 

1.   The value of the net potential field at the center of each region is calculated 

from equation (18) (see Fig. 15(a-b)); 

2.  A plane fit to the potential field values is calculated and the gradient of the plane 

is computed (see Fig. 15(c)).  The direction of maximum descent is taken as the 

desired maneuver direction; 

3.  The desired maneuver *τ  is chosen as the point on the boundary of the reachable 

trajectory space in the direction of the desired maneuver from the current point. 

Trajectory Space

v

ρ

v

ρ

Potential

v

ρ

Potential

(a) (b) (c)  

Fig. 15. Illustration of gradient calculation algorithm. 

4.3 Command Input Calculation 

To perform low-level control of the UGV, the desired maneuver *τ  is mapped to a pair of 

command inputs for the UGV steering angle and throttle setpoint.  Assuming a single-

track vehicle model (see Fig. 14), steering angle can computed from path curvature as:  

 ( )κδ L1tan −=  (23) 

 The desired maneuver velocity can be used directly as a low-level control 

setpoint, assuming a velocity-controlled vehicle.  A variety of low-level control laws can 
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then be employed to track the desired curvature and velocity.  In this work simple PD 

compensators were employed. 

5.   Local Minimum Problem Discussion 

5.1  Conventional Local Minimum Description 

The existence of local minima is a fundamental problem associated with potential fields 

constructed from multiple potential functions.  A classical local minimum situation for 

Cartesian space potential field methods is illustrated in Fig. 16.  Due to the interaction of 

the repulsive and attractive potential functions associated with the hazard and goal, Area 

A is a possible location of a local minimum.  In Cartesian space potential field 

applications, this would result in the robot stopping in Area A and not the goal location. 

 A second situation is shown in Fig. 17.  Here the goal is located between the UGV 

and a hazard, and the waypoint lies within the region of influence of the hazard potential 

function.  In this case the global minimum of the potential field is not the waypoint 

position.  A UGV might reach this global minimum yet not reach the waypoint.  This 

situation is called a “free-path local minimum.” 

 

 

Fig. 16. Example of conventional local minimum.  
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Goal

 

Fig. 17. Example of conventional free-path local minimum.   

5.2 Trajectory Space Local Maximum and Minimum Description 

Situations that lead to local minimum situations in classical potential field approaches 

often lead to local maximum situations in the proposed method.  For example, Fig. 18 

shows a situation similar to that shown in Fig. 16, with a corresponding trajectory space 

potential field.  In this situation ( )dντ ,0= , κd = 0,  X = 0, Ad = 0, θ = φ = 0°, and µ = 1.0.  

Thus only the hazard potential function influences computation of *τ .  In this situation 

the hazard potential function of equation (15) becomes:  
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and ( ) 0,0 =∇ dhPF νρ .  Thus the symmetry of the hazard potential function causes the 

potential field gradient to be zero in the curvature dimension, and the desired maneuver 

directs the UGV toward the hazard. 

 

Fig. 18. Example of trajectory space local maximum. 
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 Local maxima are unlikely to occur in practice since sensor noise, terrain 

unevenness, and terrain inclination all tend to introduce asymmetry to the net potential 

field.  However, to address this issue Gaussian random noise of small amplitude is added 

to each element of the net potential field during the algorithm described in Section 4.2.  

This method serves to perturb unstable local maxima, and avoid situations such as that 

shown in Fig. 18.  It has been observed empirically that the addition of a small amount of 

random noise does not degrade navigation performance.  

 An example of the effect of this method is shown in Fig. 19.  Here a situation 

similar to that shown in Fig. 16 is presented.  In this case, however, the addition of noise 

causes the UGV to be perturbed from the (unstable) local maxima in the trajectory space, 

and select a maneuver that leads to successful navigation to the goal.   

 

Fig. 19. Example of local maximum avoidance by addition of noise. 

 

 The existence of local minima is possible when a UGV encounters multiple 

hazards.  In contrast to Cartesian space methods, a trajectory space local minima does not 
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result in the UGV stopping at a location that is not the goal location (save for cases where 

v = 0).  Rather, the UGV continues to move at the curvature and velocity corresponding 

to the local minima point.  Thus the trajectory space net potential function is continually 

changing, even if the UGV is “trapped” in a local minima.  

 As has been noted by previous researchers, a simple method for addressing these 

situations is to continue moving according to the total virtual force until the relative 

positions of the hazards has eliminated the existence of the local minimum [7].  Since the 

potential function is continually changing it is highly likely that the local minima will 

migrate or vanish over time.  Though simple, this “waiting” method has been found to be 

effective in practice. 

 Another potential type of local minimum that can occur is a limit cycle, where the 

vehicle follows the same trajectory permanently, usually due to the presence of dense 

obstacles. Methods for avoiding such limit cycles have been developed by previous 

researchers [32]. 

6.  Simulation Results 

Simulations were conducted of a small four-wheeled UGV traveling at high speeds over 

uneven terrain using Matlab and the dynamic simulation software ADAMS 12.0.  

ADAMS is a multibody simulation engine that allows simulation of high d.o.f. systems 

on uneven terrain.  The UGV was modeled as a front-wheel steered vehicle with a mass 

of 3.1 kg and independent spring-damper suspensions with linear stiffness and damping 

parameters k = 500.0 N/m and b = 110 Ns/m, respectively.  The UGV length L = 0.27 m, 

the half-width d = 0.124 m, the height of UGV c.g. from ground h = 0.055 m, and the 

wheel diameter was 0.12 m.   
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 Wheel-terrain contact forces were derived from the magic tire model using 

standard parameters for a passenger vehicle tire operating on asphalt [30].  This model is 

generally accepted for modeling on-road mobility, and was assumed to be a reasonable 

model for off-road mobility when soil deformation is small.  Terrain roughness was 

created using fractal techniques, with fractal number of 2.05, grid spacing of 2 wheel 

diameters, and height scaling of 35 wheel diameters [18].  This corresponds to flat but 

bumpy terrain.  Potential function gain parameters were chosen empirically to balance the 

relative contributions of the various potential functions to the net potential field.  The 

parameter values were set as follows: Kr = 800, Ks = 800, Kw = 0.3, Kv = 0.5 x 10-5, Kh = 

1500, Khd = 0.05, Kha = 10, Khv = 0.07.  These parameters were derived from analysis of 

simulation studies.  Good performance of the algorithm was observed to exist across a 

range of parameters. 

6.1. Effect of Virtual Waypoints 

 Fig. 20 shows a simulation result illustrating the effect of using virtual waypoints 

(see Subsection 3.2). Here the UGV began at (x,y)=(0.0,0.0) and a single waypoint was 

set at (x,y) = (15.0,15.0).  Paths resulting from the use of virtual waypoints are in general 

more direct than paths resulting from widely-spaced user-defined waypoints.  In this 

result, the total length of the trajectory employing virtual waypoints was 21.4 m 

compared to 22.8 m without using virtual waypoints. 
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Fig.20. Influence of Virtual Waypoint 

6.2. Obstacle Avoidance and Way-Point Navigation 

 Numerous simulations were performed to study the algorithm’s ability to guide a 

UGV at high speed among multiple waypoints while avoiding multiple hazards on flat 

terrain.  Results from a representative simulation are shown in Figs. 21-23.  Here the 

UGV began at (x,y) = (0.0, 0.0),  hazards were set at (x,y) = {(15.0, 0.0), (50.0, 22.0)} and 

waypoints were set at (x,y) = {(30.0, 0.0), (40.0, 20.0), (60.0, 20.0)}.  PD control was 

employed for steering angle and velocity control.  The desired velocity during this 

simulation was 5.0 m/s.  For this small vehicle at this speed, both rollover and significant 

side slip were possible.   

 Fig. 21 shows the UGV Cartesian space trajectory and shape of the potential field 

at two locations.  The vehicle safely navigated between three waypoints while avoiding 

two hazards.  Fig. 22 shows that the velocity remained near the desired value of 5.0 m/s 



 36

except during turns of large curvature (points (a), (b), and (c)).  During these turns the 

rollover and/or side slip potential functions caused the velocity to decrease in order to 

avoid a dynamically inadmissible maneuver.  Fig. 23 shows plots of the UGV roll angle 

and slip angle during the trajectory.  Slip angle refers to the difference of the angle 

between the UGV velocity vector at the c.g. and the longitudinal axis of the vehicle.  Due 

to the UGV’s relatively high speed the maximum values of roll angle and slip angle are 

large, but did not lead to a dynamically inadmissible maneuver. 

 

Fig. 21. Map and sample trajectory spaces of simulation result.  
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Fig. 22. UGV velocity and curvature—simulation results. 
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Fig. 23. UGV Roll angle and slip angle—simulation results. 

 

6.3 Effect of Velocity on Navigation 

Simulations were performed to study the effect of desired UGV velocity on algorithm 

performance.  A map of a representative simulation is shown in Fig. 24.  Hazards are 

located at (x,y) = {(25.0, 0.0),  (40.0, 2.0)} and waypoints are set at (x,y) = {(50.0, 0.0), 

(70.0, 0.0)}.  Vehicle and terrain parameters were identical to those in the simulation in 

Section 6.1. 
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 Simulation results are shown in Fig. 25 and 26 for the case where desired UGV 

velocity was 5.0 m/s.  As in the simulations of Section 6.1 the UGV velocity decreased at 

regions of large path curvature in order to avoid dynamically inadmissible maneuvers.  

The UGV safely navigated between two waypoints while avoiding two hazards. 
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Fig. 24. Map and trajectory of simulation result for desired velocity of 5.0 m/s 
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Fig. 25. UGV Velocity and curvature for desired velocity of 5.0 m/s   

 

 In contrast, Fig. 27 and 28 shows results from a simulation of a UGV traveling 

through identical terrain with the same hazard and waypoint locations, now with a desired 
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velocity of 7 m/s.  In this case the UGV successfully skirted both of the hazards and 

reached both waypoints.  The overall path differed significantly from the previous 

simulation, however, due to the increased speed of the UGV and the correspondingly 

reduced achievable path curvature.  However, the UGV safely navigated at a relatively 

high speed while avoiding rollover or significant side slip. 
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Fig. 26. Map and trajectory of simulation result for desired velocity of 7.0 m/s 
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Fig. 27. UGV Velocity and curvature for desired velocity of 7.0 m/s  

 

6.4 Effect of Terrain Inclination on Algorithm Performance 
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  Simulations were performed to study the effect of terrain inclination on algorithm 

performance. An illustration of the scenario is shown in Fig. 28. The hazard and 

waypoint locations are identical to those in the scenario presented in Section 6.2, 

however here the terrain was inclined at a roll angle of 20º with respect to the UGV's 

initial orientation. Vehicle and terrain parameters were identical to those in the previous 

simulations. The desired UGV velocity was 5.0 m/s. 

  Simulation results are shown in Figs. 29 and 30. The resulting UGV trajectory 

shown in Fig. 29 differs significantly from the flat-terrain case (see Fig. 24) due to the 

effect of terrain inclination on trajectory space rollover and side slip constraints. As 

expected, the UGV executed a safe “downslope” maneuver due to potential field 

asymmetry caused by terrain inclination. As in the simulations of Section 6.1, UGV 

velocity decreased at regions of large path curvature to avoid dynamically inadmissible 

maneuvers (see Fig 30). This result highlights the algorithm’s ability to safely navigate a 

UGV even on steeply inclined terrain. 
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Fig.28. Illustration of scenario for terrain inclination analysis 
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Fig.29. Trajectory of simulation result for terrain inclination of 20° 
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Fig.30. UGV Velocity and curvature for terrain inclination of 20° 

 

7.   Experimental Results 
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A limited number of proof-of-concept experiments were performed to study the 

algorithm’s effectiveness in rough, natural terrain.  Experiments were performed on the 

UGV ARTEMIS, shown in Fig. 31 [20].  ARTEMIS is a four wheeled front-wheel 

steered vehicle equipped with a Zenoah G2D70 gasoline engine, 700 MHz Pentium III 

PC -104 onboard computer, Crossbow AHRS-400 INS, a tachometer to measure wheel 

angular velocity, 20 cm resolution DGPS, and Futaba steering and throttle control servos.  

The UGV length L = 0.56 m, the half-width d = 0.29 m, the height of UGV c.g. from 

ground h = 0.26 m, and the wheel diameter was 0.25 m.  The body mass was 28.0 kg and 

the mass of each wheel was 1.85 kg.  Experiments were conducted on flat, bumpy terrain 

covered with grass with an estimated µ = 0.8.  In each experiment, the UGV initial 

position was the origin of the inertial frame, with initial heading aligned with the x axis.  

Unfortunately due to hardware malfunctions only a limited number of experiments were 

performed. 

 First experiments were conducted to study high speed hazard avoidance.  A 

hazard with 1.0 m radius was set at (x,y) = (15.0, 0.0) and a waypoint was set at (x,y) = 

(30.0, 0.0).  The desired velocity was set at 4.0 m/s.  For the ARTEMIS UGV, rollover 

can occur at speeds above 3.5 m/s. 
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sFig. 31. ARTEMIS experimental UGV on outdoor terrain. 

 

 Results from the experiment are shown in Figs. (32-34).  The UGV trajectory is 

shown in Fig. 32.  It can be seen that the UGV successfully avoided the hazard and 

reached the waypoint.  UGV velocity and curvature profiles are shown in Fig. 33.  The 

UGV roll angle profile is shown in Fig. 34.  As in the simulation studies, the velocity 

decreased at periods of large curvature (i.e. around x = 15.0 m) and was controlled to near 

4.0 m/s in hazard-free regions (i.e. after x = 25.0 m).  Finally, the vehicle navigated 

without rollover or side slip.  Each computation cycle, involving construction of the net 

potential field and selection of a maneuver, required approximately 50 ms. 
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Fig. 32. GPS Trajectory of hazard avoidance experiment. 
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Fig. 33. Velocity and curvature of hazard avoidance experiment. 
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Fig. 34. UGV roll angle of hazard avoidance experiment. 

 Other experiments were conducted to study high speed navigation between 

multiple waypoints. Three waypoints were set at (x,y) = {(25.0, 0.0), (30.0, 10.0), (40.0, 

10.0)}.  The desired velocity was 4.0 m/s. The target waypoint was indexed when the 

UGV moved to within 2.0 m of the current waypoint.  An experimental result is shown in 

Figs. (35-37).  Fig. 35 shows that the vehicle successfully navigated between waypoints 

and reached the goal location. Fig. 36 shows that the velocity was controlled near 4.0 

m/s, and decreased during periods of large curvature.  The UGV roll angle profile is 

shown in Fig. 37.  Again, the vehicle navigated without rollover or side slip.  These 
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results suggest that the proposed method can be used for real time navigation of a UGV at 

high speeds.  
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Fig. 35. Trajectory of waypoints navigation experiment. 
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Fig. 37. UGV roll angle of waypoint navigation experiment. 

8.   Conclusions 

This paper has presented a novel potential field-based method for high speed navigation 

of UGVs on rough terrain.  The potential field is constructed in the trajectory space 

defined by a UGV instantaneous path curvature and longitudinal velocity.  Dynamic 

constraints, terrain conditions, and navigation conditions can be expressed in the 

proposed potential field framework.  A maneuver is chosen within a set of performance 

bounds, based on the local potential field gradient.  Issues related to local minima and 

maxima were discussed, and it was shown that a simple randomization technique can be 

employed to address these problems.  Simulation and experimental results demonstrated 

the effectiveness of the method in rough, natural terrain.  The method is computationally 

efficient, and thus suitable for on-board real-time implementation.  Current research 

involves experimental validation of the method on highly rough outdoor terrain. 
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Abstract—This paper proposes a method for near-optimal 
navigation of high speed mobile robots on uneven terrain.  The 
method relies on a layered control strategy.  A high-level 
planning layer generates an optimal desired trajectory through 
uneven terrain.  A low-level navigation layer guides a robot 
along the desired trajectory via a potential field-based control 
algorithm.  The high-level planner is guaranteed to yield 
optimal trajectories but is computationally intensive.  The 
low-level navigation layer is sub-optimal but computationally 
efficient.  To guard against failures at the navigation layer, a 
model-based lookahead approach is employed that utilizes a 
reduced form of the optimal trajectory generation algorithm.  
Simulation results show that the proposed method can 
successfully navigate a mobile robot over uneven terrain while 
avoiding hazards.  A comparison of the method’s performance 
to a similar algorithm is also presented. 

I. INTRODUCTION AND PREVIOUS WORK 
NMANNED ground vehicles (UGVs) are expected to 
play significant roles in future military, planetary 
exploration, and materials handling applications [1].  

Many applications require UGVs to move at high speeds on 
rough, poorly characterized terrain. Ideally, UGVs would 
follow optimal (i.e. minimum time or maximum speed) 
trajectories during these operations to maximize efficiency, 
productivity, or other metrics.   

Optimal performance is difficult to achieve in practice for 
several reasons.  First, UGVs generally have access only to 
coarse-grained (i.e. several vehicle lengths spacing per data 
point) map data during the trajectory planning stage.  Thus, 
while planned trajectories may be theoretically optimal at the 
data resolution available, they are likely to be sub-optimal, or 
even infeasible, at the data resolution relevant to the 
navigation task (i.e. several data points per vehicle length).  
Second, during high speed navigation, UGVs will likely 
encounter unexpected hazards that must be quickly (i.e. 
O(ms)) avoided. To avoid these hazards, navigation 
algorithms must be computationally efficient while 
considering important vehicle dynamic effects such as 
rollover and side slip.  

Despite the wide interest in motion planning, few off-road 
trajectory planners have been developed [2]-[6].  Off-road 
trajectory planners cannot rely on a binary representation of 
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obstacles and free space, which is common to most work on 
motion planning.  Instead, traversability over uneven terrain 
is determined not only by the size of obstacle, but also by 
terrain slope and curvature, and vehicle dynamics and speed.  
A kinematic planner was presented in [3] that computes the 
shortest feasible path for off-road vehicles.  While the 
selected path is ensured to be statically safe, it does not 
account for vehicle dynamics and speed.  A genetic algorithm 
is used in [4] to synthesize paths from segments, each 
evaluated for static stability and for satisfying mission 
constraints.  Another genetic-based planner [6] uses fuzzy 
logic to account for obstacle height in each terrain region, 
which in turn determines vehicle speed.  A similar approach 
to represent traversability is used in [7].   

Off-road planners that explicitly consider vehicle 
dynamics typically search for an optimal path using dynamic 
simulations to determine the traversability or cost of specific 
terrain segments [5, 8].  An exception is the global trajectory 
planner first presented in [2].  It determines traversability 
directly by computing the maximum speed above which a 
vehicle will rollover or skid along a given terrain segment.  
The global search first selects a series of “best” traversable 
paths, which are then further optimized to minimize travel 
time.  Early work derived speed limits for a simple point mass 
robot model [2].  Recent work considered more detailed 
vehicle models [9]. 

Artificial potential fields have long been successfully 
employed for robot navigation. First works were performed 
by Khatib as a real-time obstacle avoidance method for 
manipulators [10].  Ge et al. applied a potential field method 
for dynamic control of a mobile robot, with moving obstacles 
and goal [11].  Latombe applied potential field methods to 
general robot path planning [12].  Path planning using 
artificial potential fields has also been applied to 
nonholonomic systems [13].  Potential field navigation for 
wheeled robots on natural terrain has also been explored [14].  
In general, potential field methods have been used for 
planning and control of low-speed systems, usually with a 
binary obstacle representation.   

This paper presents a method for near-optimal navigation 
of high speed mobile robots on uneven terrain. The method 
relies on a layered control strategy.  A high-level planning 
layer generates an optimal desired trajectory that is 
represented as a series of waypoints.  The trajectory 
generation method is based on the global physics-based 
planner first presented in [2].  In the scenario considered here, 
this trajectory is formulated off-line based on coarse 
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topographical map data, and thus computational constraints 
are minimal.  A low-level navigation layer then guides the 
robot along the desired trajectory via a potential field-based 
control algorithm based on previous work by the authors [15].  
In this method, a potential field is defined in the 
two-dimensional “trajectory space” of the robot path 
curvature and longitudinal velocity based on fine-grained 
elevation data gathered from on-board sensors [16].  Previous 
work required ad hoc tuning of potential field gains to yield 
safe robot navigation in practice.  Here, to guard against 
failure a model-based lookahead approach is employed that 
utilizes a reduced form of the optimal trajectory generation 
algorithm.  Simulation results show that the proposed method 
can successfully navigate a mobile robot over uneven terrain 
while avoiding hazards.  A comparison of the method’s 
performance to a similar algorithm is also presented.  

II. OPTIMAL TRAJECTORY PLANNING  
Motion planning over rough terrain requires the selection 

of a feasible path, and the computation of some velocity 
profile along that path.  If optimal performance is not 
required, the path can be generated first to ensure that the 
UGV is statically stable using a kinematic planner, such as in 
[3].  Then, the velocity profile along that path can be 
computed to ensure that the vehicle is also dynamically 
stable.  While computationally efficient, such a path-velocity 
decomposition cannot yield the time optimal trajectory since 
the kinematic search is not guided by the vehicle’s dynamic 
performance.  For this reason, the search for the optimal 
trajectory is normally done in the vehicle’s 2n dimensional 
state-space, for an n dimensional configuration space.   

To avoid an expensive search in the state-space, the global 
trajectory optimization used here is formulated as a two stage 
optimization that combines a global “kinematic” graph search 
over the terrain with a local trajectory optimization [2].  The 
global search selects promising candidate paths for local 
optimization, thus trading an expensive search in the 
state-space for many simpler searches in the configuration 
space.  A byproduct of this approach is the generation of local 
minima in addition to the global optimal trajectory [2, 17]. 

A. Terrain Representation 
Terrain is here represented by a smooth bi-cubic B patch, 

which is a parametric surface made of a mesh of cubic 
splines.  The need for a smooth surface representation stems 
from the local optimization, which requires a smooth path 
over the terrain surface.   

Topologically, the patch is a warped rectangle in a three 
dimensional space.  This terrain representation does not 
distinguish between obstacles and uneven terrain.  Obstacles 
are simply integrated into the B-patch.  The control points of 
the patch are generated by placing a uniform grid on the 
map-range data.   The resolution of this grid depends on the 
map range.  For short-range planning (up to 100 m), the 
resolution is chosen empirically at half the UGV width.  This 

ensures that obstacles the size of the vehicle and larger are 
depicted by the B-patch.  For long range planning (up to 
several kilometers), the resolution is selected at 100 m 
between control points to account for primary terrain features 
(i.e. hills, ravines, etc.). 

B. Velocity Limits 
The global search produces path candidates for local 

trajectory optimization.  Since we seek the time optimal 
trajectory, the global search selects paths along which the 
UGV can sustain high speeds without violating dynamic 
constraints such as rollover, excessive side slip, and 
maintaining ground contact.  Velocity limits (above which 
some of the dynamic constraints may be violated) are 
computed by mapping the dynamic constraints to constraints 
on the vehicle's speed and tangential acceleration.  For long 
range planning, the UGV is modeled as a suspended point 
mass [2, 18].  For short range planning, the vehicle is 
modeled as a rigid body [9]. 

 
Fig. 1: External forces acting on a point mass UGV model. 
 

Velocity limits for a point mass model are derived by first 
expressing the three external forces shown in Fig. 1 in terms 
of the UGV’s speed and tangential acceleration (see [2,18] 
for a detailed derivation):   

 

2

2

snmmgkR

snmmgkf
smmgkf

rr

qqq

tt

&

&

&&

κ

κ

+=

+=

+=
 (1) 

where ft and fq are components of the friction force tangent 
and normal to the path, κ  is the path curvature, k is a unit 
vector pointing opposite of the gravity force, n is a unit vector 
pointing in the direction of the path center of curvature, and 
the subscripts denote projections along the path coordinate 
frame, t, q, r.   

We can now express the dynamic constraints in terms of 
the external forces (1).  The sliding constraint becomes: 
 2222 Rff qt µ≤+  (2) 

The tip-over constraint becomes: 

 22 )(
h
bRfq ≤  (3) 

where h is the height of the center of mass and b is the lateral 
distance between the wheels.  The contact constraint is 
simply: 
 0>R  (4) 

Substituting (1) into the dynamic constraints (2-4) yields 
three constraints on vehicle speed.  For example, the sliding 
constraint yields the following velocity constraint [18]:  
 02 24 ≥++ csbsa &&  (5) 
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where the coefficients a, b, c are determined from terrain 
geometry, path direction and curvature, and the terrain 
tractive coefficient.  Staying below the speed limits obtained 
from the three dynamic constraints ensures that the vehicle 
does not roll, skid, or lose contact with the terrain.    

C. The Global Search 
 The maximum velocity ms& , above which the vehicle 
cannot follow the given path is an excellent candidate for 
measuring traversability since it accounts for the effects of 
vehicle dynamics, terrain topography, and surface friction.  A 
zero value implies that the vehicle is statically unstable, and 
the given path segment is hence not traversable, whereas a 
nonzero value implies that the given path segment is 
traversable at some nonzero speed.  The velocity limit thus 
offers a scalar function that can distinguish between 
traversable and non-traversable path segments in the 
configuration space.   
 Dividing the path arc length by the velocity limit produces 
a simple cost function that has units of time and can be 
computed for each path segment along the graph used to 
represent the terrain:  

 ∫=
2

1

s

s ms
dsJ
&

 (6) 

 Note that (6) resembles the cost function used to minimize 
time except that here the actual vehicle speed s&  is replaced 
with the speed limit ms& .  Thus, using cost function (6) 
produces the fastest traversable paths, assuming that the 
vehicle travels at its maximum safe speed.  The ability to 
select a traversable path at high speeds without the need for 
an expensive search in the state-space greatly contributes to 
the efficiency of this approach.  
       

 
 
Fig. 2: A global optimal path over rough terrain.   
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Fig. 3: An optimal velocity profile along the path in Fig. 2.  The velocity 
profile stays below the velocity limits.  
 

 The global search first generates a series of “best” 
traversable paths.  These paths are good initial guesses for a 
local trajectory optimization that will minimize motion time 
and take into account the feasible vehicle acceleration along 
the path (ignored during the global grid search).  The local 
optimization consists of a parameter optimization over the 
control points of a B spline that define the path over the 
B-patch.  The end result of this two stage process is a globally 
optimal trajectory that minimizes motion time from start to 
goal, while considering vehicle dynamics, terrain 
topography, and the vehicle’s dynamic constraints.  Figs. 2 
and 3 show an optimal path and optimal velocity profile 
computed by the global search between given end points on 
uneven terrain.  The optimal velocity profile, shown in Fig. 3, 
is computed by switching between the maximum and 
minimum tangential acceleration to avoid crossing the 
velocity limit curve.  Obviously, the optimal velocity profile 
represents the ultimate vehicle speeds along the path since 
any attempt to move faster would cross the velocity limits, 
which in turn would cause the vehicle to either roll, skid, or 
lose contact with the terrain.                

III. TRAJECTORY SPACE NAVIGATION WITH POTENTIAL 
FIELDS  

 Here, a potential field-based navigation method is 
employed as the low-level navigation layer.  It takes as an 
input an optimal trajectory (computed as described in Section 
II) represented as a list of closely-spaced waypoints.  A more 
thorough presentation can be found in [15].   
 The trajectory space, 2ℜ∈TS , is defined as a 
two-dimensional space of a UGV’s instantaneous path 
curvature and longitudinal velocity [16].  This space clearly 
cannot describe the complete vehicle state, but can rather 
capture important UGV state and configuration information 
and serve as a physically intuitive description of the current 
vehicle status.  A UGV’s “position” in TS is a 
curvature-velocity pair denoted ),( kv=τ .  Note that in this 
work only positive longitudinal velocities are considered.  
 The trajectory space is a convenient space for navigation 
for two reasons.  First, the trajectory space maps easily to the 
UGV actuation space (generally consisting of the throttle and 
steering angle). Navigation algorithms performed in the 
trajectory space will select command inputs that obey vehicle 
nonholonomic constraints. Second, dynamic constraints 
related to UGV rollover and side slip are easily expressible in 
the trajectory space, since these constraints are functions of 
the UGV velocity and path curvature. These constraints can 
also capture effects such as terrain inclination and roughness.  
  The coordinate systems used in this work are shown in Fig. 
4. A body frame B is fixed to the vehicle, with its origin at the 
vehicle center of mass. The position of the vehicle in the 
inertial frame I is expressed as the position of the origin of B. 
The vehicle attitude is expressed by x-y-z Euler angles using 
the vehicle yaw θ, roll φ, and pitch ψ defined in B. 
 To perform navigation a potential field is constructed in the 
trajectory space based on dynamic constraints, waypoint 



 
 

 

 

55

locations, and hazard locations.  These issues are discussed 
below. 

IInertial Frame
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BBody Frame
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zB
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Fig. 4. Definition of coordinate system. 

A. Potential Field Constraint Definitions 
 Potential fields are defined based on UGV rollover and side 
slip constraints.  As in the high-level planning layer, these 
constraints are computed from rigid body models.  A rollover 
constraint for a UGV on uneven terrain can be expressed as: 

 2)(
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where κr is the maximum admissible path curvature and g* is 
the gravitational acceleration of the *-axis  direction in B.  
The two solutions to (7) correspond to travel on 
positive/negative inclination slopes with nonzero gx 
components reflecting the effect of terrain roll.  A potential 
field is then defined as: 
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where κMAX is the maximum attainable path curvature based 
on kinematic steering constraints, and Kr is a positive gain 
parameter to modulate the potential field amplitude. 
 A side slip constraint for a UGV on uneven terrain can be 
expressed as: 

 2)(
v

ggv zx
s

µ
κ

±−
=  (9) 

where κs is the maximum admissible path curvature and µ is 
the terrain tractive coefficient.  A potential field is then 
defined as:  

( )( )








<<

<<−−−
=

s

MAXsMAXsMAXs

s

vK
vPF

κκ

κκκκκκκ
κ

||00

||))(()(1
),(

22

 (10) 

 Again, Ks is a positive gain parameter to modulate the 
potential field amplitude.  

B. Potential Field-Based Waypoint Navigation 
 For navigation between waypoints, a desired path 
curvature and velocity must be computed at each instant 
based (at minimum) on the relative location of the robot and 
the waypoint.  A method for computing a path curvature 
based on knowledge of UGV steering kinematics and 
waypoint position is presented in [15].  A potential field 
corresponding to the current desired waypoint location can 
then be defined as follows: 

 2)()( dgg KPF κκκ −=  (11) 

where κd is the desired steering angle and Kg is a positive gain 
parameter to modulate the potential field amplitude.  

C. Potential Field for Desired Velocity  
 A potential field for the desired UGV velocity can be 
simply expressed as follows:  
 2

1 )()( Kv
dvv vvKvPF −=  (12) 

where vd is the desired velocity and Kv1 and Kv2 are positive 
gain parameters to modulate the potential field amplitude. vd 
can be a function of position to reflect mission objectives.  

D. Potential Field for Hazard Locations  
 Consider a UGV approaching a hazard as shown in Fig. 5. 
Here κ1 and κ2 are the maximum and minimum path 
curvatures that intersect the hazard. A potential field for 
hazard locations is constructed based on the following 
observations: 

- Path curvatures between κ1 and κ2 can be safely followed 
until the UGV is near the hazard; 

- The potential field magnitude should be greater at high 
speed than at low speed since control accuracy generally 
decreases with increasing speed; 

- Relative locations of waypoints and hazards should 
influence the hazard potential field value (i.e. to allow 
close passage to hazards to achieve a waypoint).  

 From these observations, a potential field for hazard 
locations is defined as follows:  
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where Od is the Euclidean distance between vehicle and 
hazard, Ad is the angle between the UGV heading and the 
waypoint location, X= ( ) 221 κκ + , σ= ( ) 221 κκ − , and Ko, Kod, 
Koa, and Kov are positive gain parameters to modulate the 
potential field amplitude.  

 
Fig. 5. Minimum and maximum path curvatures intersecting with a hazard. 

E. Definition of Net Potential Field  
 A net potential field is generated as the sum of all proposed 
potential fields, as follows: 
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where n is the number of hazards present and PFo
i is the 

potential function corresponding to the ith hazard.  An 
illustration of a net potential field is shown in Fig. 6.   
 At every timestep, a desired path curvature and velocity are 
determined by calculating the gradient of the net potential 
field at the robot position in TS, then moving in the direction 
of maximum descent.  Details related to these computations 
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and issues related to potential field local minima and maxima 
are described in [15].   
 The potential field navigation method described here has 
been shown to perform well in simulation and experiments.  
However, studies have shown that terrain with 
high-frequency undulation can potentially lead to rollover 
and side slip failures.  This is due to the fact that the potential 
field constraints related to rollover and side slip are computed 
as a function of the average local terrain inclination.  Thus, 
large localized values of inclination can lead to failure. 

 
Fig. 6. Illustration of net potential field. 

 To guard against failures at the navigation layer, a 
model-based lookahead approach has been developed that 
utilizes a reduced form of an optimal trajectory generation 
algorithm.  This approach is described next. 

IV. NEAR-OPTIMAL POTENTIAL FIELD NAVIGATION 
 A common weakness of potential field methods is that it is 
difficult to guarantee convergence and bound system 
performance.  While the potential field-based navigation 
method described here has been shown to perform effectively 
in simulation and experimental studies, the authors have 
observed failures in cases where significant high-frequency 
terrain undulation exists.  This is due to the fact that potential 
functions related to rollover and side slip constraints are 
computed as a function of the average local terrain 
inclination.  Thus, large localized values of inclination can 
lead to failure.  
 To guard against failure at the navigation layer a 
model-based lookahead approach is employed that utilizes a 
reduced form of the optimal trajectory generation algorithm.  
At every timestep, this approach essentially forward 
simulates a robot model over a short time horizon, then 
determines whether the robot will violate any dynamic 
constraints along the resulting trajectory.  Violation of 
dynamic constraints is determined by comparing the robot’s 
predicted velocity profile to the maximum safe allowable 
velocity profile computed via the method described in 
Section II.  If  a constraint is violated, the robot’s desired 
velocity is reduced to the maximum safe velocity along the 
trajectory.  This has the effect of imposing a “safe speed 
limit” on the robot at the navigation layer.  
 The algorithm for calculating a safe robot maneuver at 
every timestep is described here, with T representing the time 
horizon duration and t the “virtual time” in a forward 

simulation loop.  The value of T is here chosen empirically.  
The algorithm is composed of the following steps: 

1. The value of the net potential field at the robot’s current 
position in TS is calculated from Eqn. (14); 

2. The gradient of the net potential field is computed, and a 
desired maneuver (i.e. a (ν,κ) pair) is chosen in the 
direction of maximum descent;  

3. The predicted trajectory of the robot is computed via 
forward simulation of a rigid body model subject to the 
desired maneuver over time dt; 

4. Steps 1-3 are repeated while t < T; 
5. A maximum safe velocity profile is computed over the 

predicted path via the approach described in Section II; 
6. The predicted robot velocity profile  is compared to the 

maximum safe velocity profile.  If the predicted velocity 
profile exceeds the maximum safe velocity profile at any 
point, the robot’s desired velocity is reduced to the 
maximum safe velocity along the trajectory.   

 This approach attempts to exploit the computational 
efficiency of the potential field-based navigation with the 
safety guarantees implicit in optimal trajectory planning.  
Since low-order rigid body models are used in forward 
simulation, computational demands are negligible.  

V. SIMULATION RESULTS 
 Dynamic simulations were conducted of a small UGV 
traveling at high speeds over uneven terrain.  The UGV 
parameters were as follows (see Fig. 4): length L = 0.27 m, 
half-width d = 0.124 m, c.g. height h = 0.06 m, wheel 
diameter = 0.12 m.  The potential field parameters were set as 
follows: Kr = 800, Ks = 800, Kg = 0.3, Kv1 = 0.5 x 10-5, Kv2 = 4, 
Ko = 1500, Kod = 0.05, Koa = 10, Kov = 0.07, T = 1.0 s. 
 Randomized rough terrain was generated using a fractal 
method modified to incorporate gross terrain undulation and 
discrete “peaks.”  Rough terrain with fractal number of 2.05, 
grid spacing of 2 wheel diameters, and height scaling of 35 
wheel diameters was employed.  The near-optimal navigation 
method described above was used to determine the desired 
UGV steering angle and velocity.  PD control was employed 
for steering angle and velocity control.   
 A representative simulation result is shown in Figs. 7-9. Fig. 
7 shows a representative terrain, the optimal waypoints 
generated by the high-level planner, and the actual path 
followed by the low-level navigation layer.  It can be seen that 
the UGV successfully navigates through the desired 
waypoints, thus approximating an optimal path while 
avoiding hazards.  Fig. 8 shows a plot of the UGV velocity 
along the path compared to the maximum achievable velocity 
as computed by the model-based lookahead algorithm.  The 
actual velocity remains near to the optimal velocity, and 
deviates from the desired velocity during hazard avoidance 
maneuvers and turns with large curvature.  Fig. 9 shows plots 
of the UGV roll angle and slip angle during the simulation, 
illustrating the challenging nature of the terrain and 
effectiveness of the algorithm in limiting these quantities. 
 Table 1 shows the results of 25 simulation trials.  The 
proposed near-optimal navigation method safely controlled 
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the UGV in all terrains.  The average percent difference in 
total navigation time between the optimal method and the 
proposed method was 9.6%.  It was observed that the 
“standard” potential-field based navigation scheme (i.e. 
without lookahead analysis) failed on 24% of the simulation 
trials, with a 23.6% average slower navigation time than the 
optimal traveling time.  It should be noted that safer 
navigation with the “standard” approach is achievable, 
however at the expense of greater increase in navigation time. 

 
Fig. 7. Representative terrain map and waypoints generated by high-level 

planning layer and path generated by low-level navigation layer. 
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Fig. 8. UGV velocity (thick) and computed velocity limit curve (thin). 
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Fig. 9. UGV Roll angle (left) and slip angle (right). 

TABLE 1  
SIMULATION RESULTS OF 25 TERRAIN TRAVERSALS 

VI. CONCLUSIONS 
 This paper proposes a method for near-optimal navigation 
of high speed mobile robots on uneven terrain.  A high-level 
planning layer generates an optimal desired trajectory, and a 
low-level navigation layer guides a robot along the desired 
trajectory via a potential field-based algorithm.  To guard 
against failures at the navigation layer, a model-based 

lookahead approach was presented that utilizes a reduced 
form of the optimal trajectory generation algorithm.  
Simulation trials show that the proposed method can safely 
navigate a mobile robot along a near-optimal trajectory over 
uneven terrain while avoiding hazards.  
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Failure [%] 
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Near-optimal 0.0 9.6 
“Standard” Potential-field 24.0 23.6 
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An omnidirectional mobile robot is able, kinematically, to move in any direction regardless of current pose.  To date, nearly all designs and 

analyses of omnidirectional mobile robots have considered the case of motion on flat, smooth terrain.  In this paper, an investigation of the design 
and control of an omnidirectional mobile robot for use in rough terrain is presented.  Kinematic and geometric properties of the active split offset 
caster drive mechanism are investigated along with system and subsystem design guidelines.  An optimization method is implemented to explore the 
design space.  Use of this method results in a robot that has higher mobility than a robot designed using engineering judgment.  A simple kinematic 
controller that considers the effects of terrain unevenness via an estimate of the wheel-terrain contact angles is also presented.  It is shown in 
simulation that under the proposed control method, near-omnidirectional tracking performance is possible even in rough, uneven terrain. 

 
1    Introduction 

Mobile robots are finding increasing use in military [1], disaster 
recovery [2], and exploration applications [3].  These applications 
frequently require operation in rough, unstructured terrain.  Currently, 
most mobile robots designed for these applications are tracked or 
Ackermann-steered wheeled vehicles.  Methods for controlling these 
types of robots in both smooth and rough terrain have been well studied 
[4-6].  While these robots can perform well in many scenarios, 
navigation in cluttered, rocky, or obstacle-dense urban environments can 
be difficult or impossible.  This is partly due to the fact that traditional 
tracked and wheeled robots must reorient to perform some maneuvers, 
such as lateral displacement.  Omnidirectional mobile robots could 
potentially navigate faster and more robustly through cluttered urban 
environments and over rough terrain, due to their ability to track non-
smooth motion profiles. 

An omnidirectional mobile robot is able, kinematically, to move in 
any direction regardless of current pose.  Previous researchers have 
proposed and developed omnidirectional mobile robots employing a 
wide variety of wheel types including roller [7, 8], Mecanum [9, 10], 
and spherical wheels [11, 12]. 

Roller wheel designs, as shown in Fig. 1, employ small rollers along 
the outer edge of a “primary” wheel to allow traction in the wheel’s 
longitudinal direction and free rolling in the lateral direction.  
Omnidirectional motion is obtained by orienting several of these wheels 
in different directions.  These wheels are inexpensive, easy to control, 
and operate well in flat, indoor environments. 

 
Figure 1.  An example of a sliding wheel (from [8]). 

 
Mecanum wheels are similar to roller wheels in that they employ 

rollers along the outer edge of a wheel; however the rollers are aligned at 
an angle to produce angular contact forces with the ground.  Robots 
equipped with four Mecanum wheels, as shown in Fig. 2, can produce 
omnidirectional motion (see Fig. 3).  Again, these wheel types have 
proved to be simple to control and effective on flat, indoor terrain. 

Roller and Mecanum wheels are unsuitable for outdoor environments, 
where debris can clog the rollers and alter the friction characteristics of 
the wheels [13].  Also, the (relatively) small rollers on the edge of each 
primary wheel can be subjected to significant loads, which can lead to 
high ground pressure and large sinkage in deformable outdoor terrain. 

 
Figure 2.  An example of a robot using four Mecanum wheels (from 
[9]). 

 
Figure 3.  A schematic showing the omnidirectional capabilities of a 
Mecanum wheel driven omnidirectional robot (from [9]).  The solid 
arrows indicate the driven direction of each wheel, and the dashed 
arrows indicate translation and rotation of the robot. 

 
Spherical wheel designs, as shown in Fig. 4, employ frictional 

drive rollers to allow rolling in any direction.  Since the drive rollers 
rely on friction to transmit energy to the wheel, debris could 
potentially foul the transmission mechanism in rough, outdoor 
environments.  Due to the two dimensional curvature of the sphere, 
the contact patch is smaller than that of a traditional wheel, leading to 
increased ground pressure given the same ground reaction force. 

 
Figure 4.  A schematic showing a spherical wheel (left) and its use on 
an omnidirectional wheelchair (right) (from [12]). 

 
Near-omnidirectional motion has been achieved using steerable 

wheels [14].  As shown in Fig. 5, these designs have a wheel mounted 
to an orthogonal steering actuator.  The steering actuator can rotate 
the wheel to orient it in any planar direction.  These wheels can 
employ standard tires, and have proven effective in outdoor 
environments.  However they are not truly omnidirectional (i.e. the 
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resulting vehicle kinematics are subject to nonholonomic constraints) 
since they must undergo wheel slip and/or scrubbing to change direction.  
This can result in deteriorated path tracking and substantial energy loss.  
Note that similar designs based on offset caster wheels do allow 
omnidirectional motion with standard tires [15].  Analysis of this design 
has been studied extensively for operation on flat ground. 

 
Figure 5.  A schematic showing a steerable wheel (left) and its use on an 
outdoor mobile robot (right) (from [14]). 

 
An omnidirectional mobile robot driven by active split offset casters 

(ASOCs) was initially proposed in [16] for use in structured, indoor 
environments.  ASOC drives employ conventional wheel designs that do 
not rely on frictional contact, and are thus potentially suitable for use in 
dirty, outdoor environments.  They also can be designed with little 
constraint on wheel diameter and width, and thus can potentially tolerate 
large loads with low ground pressure.  Finally, ASOC modules can be 
integrated with suspension systems that allow for traversal of uneven 
terrain [17].  Therefore ASOC-driven omnidirectional mobile robots 
hold promise for use in rough, unstructured environments. 

In this paper, an investigation of the design and control of an ASOC-
driven omnidirectional mobile robot for use in rough terrain is presented.  
This paper is organized as follows: in Section 2, kinematic and 
geometric properties of the drive mechanism are analyzed, in Section 3, 
guidelines for robot design are presented and an optimization method is 
implemented to explore the design space, and in Section 4, a simple 
kinematic controller that considers the effects of terrain unevenness via 
an estimate of the wheel-terrain contact angles is presented.  These 
analyses can be used as design guidelines for development of an 
omnidirectional mobile robot that can operate in unstructured 
environments.  The optimization method is shown to generate design 
parameters for a robot that has higher mobility than a robot designed 
using engineering judgment.  It is shown in simulation that under the 
proposed control method, near-omnidirectional tracking performance is 
possible even in rough, uneven terrain. 

 

2    The Active Split Offset Caster 
Active split offset caster (ASOC) drive modules possess the ability to 

achieve omnidirectional motion via a driven wheel pair.  Figure 6 shows 
the ASOC module considered in this study.  The assembly consists of a 
split wheel pair, a connecting axle, and an offset link connecting the 
wheel pair to the mobile robot body.  Each wheel is independently 
driven about the axis θ.  The axle connecting the wheel pair can pivot 
about the axis β.  The axle pivot can be passive or active, and allows the 
wheel pair to adapt to terrain unevenness, therefore increasing the 
likelihood of continuous terrain contact for each wheel even during 
travel on rough terrain.  The wheel pair/axle assembly rotates about axis 
α.  As with the axle pivot, the assembly rotation axis can also be active 
or passive.  This axis connects the ASOC module to a robot body or a 
passive or active suspension element.  Loffset is the distance between the 
axis α and the axis θ.  Lsplit is the distance between the wheels. 

 
 

 
Figure 6.  Active split offset caster wheel assembly front view (left) 
and side view (right). 
 

By independently controlling each wheel’s velocity, an ASOC 
module can produce arbitrary (planar) translational velocities at a 
point along its α axis [16].  Two or more ASOCs attached to a rigid 
robot body can thus produce arbitrary translational and rotational 
robot velocities.  Therefore, an ASOC-driven omnidirectional robot 
must minimally employ two ASOC modules, and can employ more to 
meet other design requirements related to thrust, ground pressure, tip-
over stability, etc.  Note that passive or active casters can also be used 
to augment ASOC modules to meet these requirements. 

 
2.1   Isotropy Analysis 
Path following in rough terrain may require a robot to quickly 

change its direction of travel.  All holonomic omnidirectional mobile 
robots are kinematically able to instantaneously move in any planar 
direction.  However, while some omnidirectional mobile robots 
exhibit preferred directions of travel, others exhibit equal mobility 
characteristics in all directions.  Such robots are said to exhibit 
“isotropic mobility.”  Hence, isotropy is used to quantify the system’s 
omnidirectional mobility. 

Kinematic isotropy is defined as the condition in which a robot 
possesses a constant input velocity/output velocity ratio for all 
possible output velocity directions [15].  An isotropy metric is a 
measure of how near a robot is to the isotropy condition, and 
increases from 0.0 for a singular configuration (i.e. purely 
anisotropic, or non-omnidirectional) to 1.0 for kinematic isotropy.  
Ideally, an omnidirectional mobile robot should possess a metric 
value of 1.0 for all joint space configurations, and thus not exhibit a 
preferred direction of travel.  This simplifies path planning and 
navigation by eliminating the effect of robot orientation on movement 
capability.  The output directions considered in this study are two 
planar translations in the robot body frame, and rotation about the 
robot body frame z axis.   

The isotropy metric for a given robot configuration can be 
computed as the ratio of the smallest to largest eigenvalues of the 
Jacobian matrix relating the driving module velocities to the robot 
body velocities [15].  The isotropy metric can be averaged over the 
entire configuration space (in this case, the rotation angles between 
each ASOC and the body, α) to yield an average measure of 
performance that could be used to compare candidate omnidirectional 
mobile robot designs. 

 
2.2  Effect of ASOC Geometric Parameters on Isotropy 
To analyze the effects of ASOC module kinematic parameters on 

isotropy, variations in the wheel radius, Loffset, and Lsplit were analyzed 
over a range of values that represent a practical omnidirectional robot 
design space.  The Jacobian from wheel rotational velocities to α axis 
translational velocities in the ASOC frame is: 
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where vlong and vlat are the longitudinal (x) and lateral (y) ASOC axis 
translational velocities, respectively (see Fig. 6).  The wheel radius 
appears in each term exactly once, and cancels out when the ratios of 
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the eigenvalues are computed, thus the module isotropy is independent 
of the wheel radius. 

In Fig. 7, a plot of isotropy is shown as a function of Loffset and Lsplit.  
An iso-height exists at an isotropy value of 1.0.  This iso-height occurs 
at Lsplit / Loffset =2.0.  The sensitivity of isotropy to perturbations in Lsplit 
and Loffset is relatively high; a 10% change in Lsplit or Loffset decreases the 
isotropy metric value by up to 45% for small ASOC module sizes. 

 
Figure 7.  Mean isotropy for a four ASOC omnidirectional robot. 

 
In Fig. 8, a plot of isotropy values over a range of Lsplit / Loffset ratios 

can be seen.  There exists a single isotropy value for each Lsplit / Loffset 
ratio, indicating that isotropy is not an independent function of both Lsplit 
and Loffset.  This is a useful insight for omnidirectional robot design.  This 
also explains the sensitivity of isotropy to changes in Lsplit and Loffset for 
small ASOC modules sizes, since a unit change in Lsplit or Loffset results in 
a relatively large change in Lsplit / Loffset for small parameter values.  As 
shown in equation (1), Lsplit and Loffset only appear as a ratio, and the 
Jacobian becomes isotropic (i.e. all eigenvalues are equal) when the ratio 
of Lsplit to Loffset is equal to 2.0. 

 
Figure 8.  Average isotropy for an omnidirectional mobile robot driven 
by three ASOC modules as a function of Lsplit / Loffset. 
 

2.3  Effect of ASOC Module Location on Isotropy 
The relative location of ASOC modules with respect to one another 

also affects isotropy.  A vehicle with three modules, shown in Fig. 9, 
was chosen for analysis.  A plot of isotropy as a function of relative 
ASOC angular location is presented in Fig. 10.  Each ASOC had an Lsplit 
/ Loffset ratio of 2.0.  ASOC physical interference was neglected. 

The Jacobian of a three ASOC omnidirectional mobile robot is shown 
in (2).  Analysis shows that maximum isotropy values (1.0) are obtained 
when the ASOC modules are evenly spaced and Lsplit / Loffset =2.0.  The 
value drops to 0 for the degenerate case where all ASOC modules 
coincide.  A similar phenomenon is observed for robots with any 
number of ASOC modules. Thus to maximize isotropy, ASOC modules 
should be equally spaced. 
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Figure 9.  Top view of representative vehicle for ASOC location 
analysis. 
 

 
Figure 10.  Isotropy as a function of ASOC module relative location. 

 
2.4  Effect of Loss of Wheel Contact on Isotropy 
When traversing rough terrain, loss of contact may occur between 

the wheels and the ground.  In this case, system mobility will be 
decreased.  An analysis of the isotropy of robots without full ground 
contact is presented in Table I.  For comparison, robots with two, 
three, and four ASOC modules are examined.  Each ASOC is allowed 
to possess full, partial (i.e. one wheel on the ground), or no ground 
contact.  It is assumed that the ASOC modules are equally spaced and 
have Lsplit / Loffset = 2.0. 

γ1 
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Table I     Effect of Loss of Wheel Contact on Isotropy 

Total # 
ASOCs 

# no 
contact 
ASOCs 

# partial contact ASOCs 

  0 1 2 3 4 
2 0 1.000 0.464 0.000 N/A N/A 

0 1.000 0.706 0.504 0.270 N/A 3 1 0.577 0.367 0.000 N/A N/A 
 0 1.000 0.791 0.656 0.544 0.399 
4 1 0.707 0.574 0.482 0.259 N/A 
 2 0.414 0.265 0.000 N/A N/A 

 
As expected, loss of wheel contact causes reduced isotropy due to a 

loss of full controllability of the ASOC modules.  It can be observed that 
a four ASOC robot with one module that has completely lost terrain 
contact does not perform as well as a three ASOC vehicle in full contact.  
This is due to the fact that the three ASOC robot has equally spaced 
ASOC modules.  Also, given an identical number of wheels without 
terrain contact (e.g., 0 no contact and 2 partial contact vs. 1 no contact 
and 0 partial contact), a robot generally has higher isotropy when terrain 
contact is lost on the same ASOC, since more modules remain fully 
engaged with the ground.  The isotropy loss from partial contact ASOC 
modules reinforces the importance of the β axis axle pivot (see Fig. 6). 

Finally, a vehicle with a greater number of ASOCs will have a 
relatively smaller decrease in isotropy for each lost wheel contact, but 
may have increased difficulty keeping all wheels in contact with the 
ground due to increased suspension complexity.  Introduction of 
additional modules may also increase mass while decreasing the 
allowable wheel size and available battery mass given a fixed overall 
system mass. 

 
2.5 Effect of Terrain Roughness on Isotropy 
Isotropy of an omnidirectional robot can also be affected by terrain 

roughness.  Variation in terrain inclination among ASOC modules, or 
among ASOC module wheel pairs, causes a change in the effective 
value of Lsplit with respect to the body frame, which yields a change in 
Lsplit / Loffset and thus a change in isotropy (see Fig. 11).  Axis β allows 
ASOC wheels to maintain contact during travel on uneven terrain. 

In theory, Lsplit could be modified as a function of terrain inclination 
via an active, extensible axle to cause the effective Lsplit / Loffset ratio to 
always remain near 2.0, thus yielding good isotropy characteristics on 
rough terrain.  In practice, however, such a design would be 
cumbersome and impractical.  Thus it is useful to examine the effects of 
terrain inclination on robot isotropy.  

 
Figure 11.  ASOC module on flat and rough terrain.  Rough terrain can 
cause the module to pivot about the β axis, decreasing the effective Lsplit. 

 
In Fig. 12, a contour plot is presented of the average isotropy over a 

range of static robot configurations and terrain angles.  The vehicle in 
this analysis had equally spaced ASOCs.  The results are independent of 
the number of ASOC modules.  The terrain angle was varied for each 
ASOC independently in a full factorial analysis over each terrain angle 

range.  It can be seen that the Lsplit / Loffset ratio with the largest 
isotropy value increases with the maximum terrain angle.  Larger 
angles decrease the effective ratio and thus the “true” ratio must 
increase.  Maximum average isotropy also decreases slightly with 
increasing terrain angle.  Table II summarizes these findings. 

 
Figure 12.  Mean isotropy as a function of Lsplit / Loffset and terrain 
angle. 

 
Table II    Effect of Terrain on Isotropy 

Terrain angle range Max isotropy Optimum 
Lsplit / Loffset ratio 

0o (flat) 1.000 2.00 
0-15o 0.987 2.05 
0-30o 0.950 2.27 
0-45o 0.895 2.70 

 
3    Design of an Omnidirectional Mobile Robot for 

Rough Terrain 
 

The class of robots analyzed in this paper is man-portable, battery 
powered mobile robots with a maximum enclosed envelope of one 
cubic meter and maximum mass of 65 kg.  The primary design 
objective is to maximize traversable distance over a range of outdoor 
terrain types while maintaining a high level of mobility.  Here, 
mobility is quantified by the system kinematic isotropy, the ability of 
an ASOC module to maintain ground contact, and the maximum 
traversable obstacle height.  The robot must operate under its own 
power, and therefore should maximize mass efficiency to increase its 
battery payload. It should also minimize power loss from motion 
resistance in deformable terrain.  Factors influencing the design space 
include wheel width, wheel radius, ASOC split and offset lengths, 
and the number and relative location of ASOC modules.  Geometric 
constraints that bound the allowable design space must also be 
considered. 

Figure 13 shows an illustration of an omnidirectional mobile robot 
driven by four ASOC modules.  This is a representative configuration 
that will be considered in this work; however the following analysis is 
general and applies to robots with N ASOC modules. 

 
Figure 13.  Illustration of an ASOC-driven omnidirectional mobile 
robot.  This robot has four ASOC modules spaced at 90o intervals. 

 

  

 
 

actual Lsplit 

effective Lsplit 

β 



  Submitted to the ASME/IEEE  
Transactions on Mechatronics 

62

3.1  Geometric Constraints 
The unique geometry of the ASOC and the large range of motion of 

each module constrain the size of some mechanical components.  
Potentially, a control algorithm could utilize the robot’s redundancy to 
relax these constraints (by ensuring that wheel pairs are never directly 
oriented towards each other, for example).  However, such an algorithm 
would likely reduce overall system mobility.  Therefore, a geometric 
analysis of the ASOC module workspace is presented here. 

 
3.1.1  ASOC Workspace Analysis 
The maximum allowable wheel size that does not risk inter-ASOC 

interference can be calculated by simple geometric analysis of the 
module workspace.  As seen in Fig. 14, the minimum distance between 
adjacent ASOC axes, da, must be at least twice the maximum radius of 
the ASOC module workspace, rworkspace.  This radius is the distance from 
the vertical axis to the most distal point on the wheel: 

( ) ( )22
. 5.0 wheelsplitwheeloffsetenvelopewheel tLrLr +++= ,              (3) 

where Loffset and Lsplit are the ASOC split and offset lengths, respectively, 
and rwheel and twheel are the wheel radius and width, respectively.   

 
Figure 14.  The circles represent the boundaries of the ASOC module 
workspace.  To avoid ASOC interference, they should not intersect. 

 
3.1.2  Maximum Pivot Angle Analysis 
In rough terrain, the passive pivot axis (see Fig. 6) allows the ASOC 

wheels to conform to terrain unevenness.  A potential limiting factor of 
the pivot axis travel is wheel-shaft interference (see Fig. 15). 

 
Figure 15.  Rear view of ASOC with wheel-shaft interference. 

 
The maximum allowable rotation angle of β can be calculated as the 

angle at which the inner rim of the wheel intersects the vertical shaft that 
connects the module to the robot body.  This occurs when  

ββ sincos5.0 .effectivewheelsplit rL =              (4) 

where β is the angle of the pivot rotation and rwheel.effective is the vertical 
distance from the center of the wheel to the section of the rim that 
intersects the shaft, as shown in Fig. 16. 

 
Figure 16.  Depiction of rwheel.effective. 
 
 

The value is calculated as 
22

. offsetwheeleffectivewheel Lrr −= .              (5) 

Note that when Loffset > rwheel, the shaft and wheel cannot interfere.  
However, such a configuration could allow obstacles to collide with 
the ASOC axis before they contact the wheels, which is undesirable.  
In a nominal configuration, the maximum value of β is given as 
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3.2  Design Optimization 
A full factorial design optimization was performed using the 

objectives discussed in Section 2 (system kinematic isotropy, the 
ability of an ASOC module to maintain ground contact, and the 
maximum traversable obstacle height) and constraints outlined in 
Section 3.1 (workspace limitations, module interference, and 
maximum suspension travel).  The optimization parameters are the 
number of ASOC modules, Lsplit, Loffset, rwheel, and wwheel.  An objective 
function, J, is expressed as a sum of the normalized mobility 
parameters:  

*
max

max
**

max

max
* d

d
h
h

K
KJ +++=

β
β ,  (7) 

where K is the kinematic isotropy, βmax is the maximum β axis pivot 
angle, h is the maximum traversable obstacle height, and dmax is the 
maximum traversable distance.  The star superscript refers to the 
maximum value of each parameter in the design space.  The 
optimization consisted of a full factorial analysis over the design 
space to maximize the value of J. 

In this analysis, kinematic isotropy and the maximum pivot angle 
are calculated as described Sections 2.2 and 3.1.2, respectively.  The 
maximum traversable obstacle height is assumed to be a linear 
function of the wheel radius. 

The optimization algorithm estimates maximum traversable 
distance by first determining the maximum available onboard energy.  
For the purposes of this study, it is assumed that the vehicle is 
powered by batteries with an energy density ρenergy of 576 kJ/kg 
(similar to that of lithium-ion batteries) [18].  The maximum 
allowable onboard battery mass, Mbattery, is the difference between the 
non-battery mass (i.e., wheels, structural components, electronics, 
etc.) and the predetermined total allowable mass.  The total allowable 
mass was chosen as 65 kg.  Wheel and ASOC masses are computed 
as a function of their sizes. 

The energy consumed during forward travel is then estimated 
using an expansion of a semi-empirical formulation for compaction 
resistance on deformable terrain [19].  
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In (8), CR is the compaction resistance (N), M is the total vehicle 
mass (kg), nwheels is the number of wheels (i.e., twice the number of 
ASOC modules), and n, kc, and kφ are terrain physical constants 
(shown in Table III [20, 21]).  Note that this estimate holds for 
straight-line driving and does not consider other resistive forces (such 
as bulldozing forces) or energy used by other onboard devices. 

 
Table III     Terrain Parameters 

Terrain type n kc (kPa/mn-1) kφ  (kPa/mn) 
Dry sand 1.1 0.9 1523.4 

Sandy loam 0.7 5.3 1515.0 
Clayey soil 0.5 13.2 692.2 

Snow 1.6 4.4 196.7 
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The maximum traversable distance is approximated as 

CR
M

d energybattery ρ
=max

.  (9) 

Since the optimization compares similar systems, motor and 
drivetrain efficiencies are assumed identical for all candidate designs 
and therefore are not considered in the calculations. 

 
3.3  Design Optimization Results 
Table IV compares the values of the optimized mobility parameters of 

robots with three, four, and five ASOC modules.  The robots were 
optimized for travel over sandy loam.  Results are presented relative to 
the robot with three ASOC modules. 

 
Table IV     Effect of Number of ASOCs on Mobility Parameters 

# ASOCs K βmax h dmax 
3 0% 0% 0% 0% 
4 0% 0% 0% -41.4% 
5 -2.2% 16.2% -60.9% -52.9% 

 
A robot with four ASOC modules has similar values of kinematic 

isotropy (K), maximum β axis pivot angle (βmax), and maximum 
traversable obstacle height (h) as a three ASOC robot, however, adding 
the fourth module decreases available battery mass, and therefore 
decreases maximum traversable distance (dmax).  A fifth ASOC module 
requires smaller wheels, resulting in lower maximum traversable 
obstacle height, but higher maximum β axis pivot angle. 

Table V shows the values of the optimized geometric parameters for a 
three ASOC robot.  Optimized values were calculated for each of the 
four terrain types shown in Table III, assuming travel through 
randomized rough terrain with an angle range of 0-30o.  Table VI shows 
the change in mobility parameter values for optimized designs compared 
to a baseline design with parameters determined by engineering 
judgment (Loffset=0.15 m, Lsplit=0.20 m, rwheel=0.15 m, wwheel= 0.03 m). 

 
Table V    Geometric Parameters from Optimization 

Terrain type Loffset (m) Lsplit (m) rwheel (m) wwheel (m) 
Dry sand .144 .325 .148 .090 

Sandy loam .144 .325 .148 .112 
Clayey soil .134 .306 .139 .133 

Snow .144 .325 .148 .054 
 

Table VI    Mobility Parameter Increases From Optimization  
Terrain type K βmax H dmax 

Dry sand 13.2% 85.2% -1.4% 18.1% 
Sandy loam 13.2% 85.2% -1.4% 29.5% 
Clayey soil 12.8% 82.8% -7.4% 31.9% 

Snow 13.2% 85.2% -1.4% 3.3% 
 
In all cases, the optimized offset lengths were slightly smaller than 

the wheel radii, which yielded large allowable β tilt angles.  The Lsplit to 
Loffset ratios were all near 2.27:1, thus maximizing isotropy for the given 
terrain roughness range. 

As presented, the optimized parameter values for the relatively 
deformable terrains (i.e. dry sand and snow) resulted in wheels with 
narrower widths compared to those optimized for relatively rigid terrains 
(i.e. sandy loam and clayey soil).  The thinner widths lead to decreased 
wheel weight.  One could also minimize ground pressure by choosing a 
wider wheel with smaller radius, but for a given a depth of sinkage, a 
tall, narrow wheel has significantly less compaction resistance than a 
short, wide one.  For the relatively rigid terrains, a wider wheel was 
preferred as it allowed a greater onboard battery mass, thus increasing 
maximum traversable distance. 

 
3.5  Point Vehicle Design 
This section presents a point robot design with four ASOC modules 

(Fig. 17).  This robot utilizes a four bar linkage suspension that achieves 
a maximum travel of 0.33 m.  The wheels have a 0.163 m radius, the 
largest allowed given a body length (Lbody) of 1 m and the workspace 

constraints outlined in Section 3.1.1.  A maximum pivot angle of 30o 
and a high isotropy is achieved with an Lsplit of 0.21 m and an Loffset of 
0.10 m (see Sections 3.1.2 and 2.5) yielding Lsplit / Loffset = 2.1.   

 

 
Figure 17.  A four view drawing of a point vehicle design. 

 

4     Kinematic Analysis and Control 
The previous section presented analysis of an ASOC driven 

omnidirectional mobile robot for operation in rough terrain.  During 
operation, control systems must coordinate ASOC motion while 
adapting to terrain unevenness.  This section presents a kinematic 
controller that allows omnidirectional mobility in rough terrain. 

 
4.1  Kinematic Analysis 
Coordinate frames for an ASOC driven omnidirectional mobile 

robot were defined using Devanit-Hartenberg (D-H) notations shown 
in Table VIII.  Coordinate frame assignments are shown in Fig. 18. 

 
Table VIII    Joint Representation in D-H Notation 

Joint 
number di ζi ai ξi 

1n 0 2π(n-1)/N r 0 
2n h -(α+π/2) 0 π/2 
3n Loffset -β 0 0 

4n,m 0 0 (-1)mLsplit /2 0 
 
In the notation above, di is the distance between frame i and frame 

i+1 along the zi+1 axis, ζi is the angle between xi and xi+1 about zi+1, ai 
is the distance from zi to zi+1 along xi+1, ξi is the twist angle between zi 
and zi+1 about xi+1, n is the ASOC number, m is the wheel number, r is 
the body radius, and h is the vertical distance from the ASOC base to 
the vehicle body. 

 z  x  
Figure 18.  Coordinate frame assignments for an ASOC-driven 
omnidirectional mobile robot.  Note that some wheel and axle frames 
are hidden for clarity. 
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Here a three-dimensional model is considered.  A body-fixed frame 
(“1”) is allowed 6 DOF with respect to an inertial frame (“0”).  The 
interface of each ASOC module link and the robot body/suspension 
frame (“2n” where n refers to the ASOC number and N is the total 
number of ASOCs) is defined on the body a distance r from the center of 
the body.  A frame (“3n”) at the bottom of each ASOC module link is a 
distance h below the previous frame and can rotate about axis α.  The 
next frame (“4n”) is defined on the axle at the midpoint between the 
wheels, and can rotate about β.  For convenience, a frame is also defined 
at the center of each wheel (“5n,m”) where n refers to the ASOC number 
and m refers to the wheel number).  These redundant frames are fixed 
with respect to the axle frame.  There is no specified wheel-ground 
contact frame, as each wheel may have no contact or several moving 
contact points. 

Coordinate transformation matrices are defined as follows: 
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where Tp
q is the matrix transforming motion from frame p into frame q.  

Thus the transformation from the body center frame to the wheel n,m 
frame is 
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Using these relations, the wheel velocities required to generate a 
desired body center velocity can be determined. 

 
4.2  Kinematic Control 
A simple kinematic control scheme was developed based on the 

preceding kinematic analysis.  Given a desired body translational and 
rotational velocity defined in an inertial frame, the velocity for each 
ASOC wheel can be determined despite the effects of terrain 
unevenness. 

First, the velocity of the link between the ASOC module and robot 
body is computed by: 
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where         and         are the planar velocity vectors of the link and body, 
respectively,   is the yaw rate of the body, and r and ζi locate the link i in 
the body frame.  Note that this control method aligns the thrust vectors 
of each ASOC with the direction of travel, minimizing internal forces.  
The wheel velocities that yield the desired ASOC link velocity are found 
as [16]: 
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and hence: 
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where Vn,m is the forward linear velocity of wheel n,m in the wheel 
frame (“5n,m”), and is computed as Vn,m=Rωn,m where R is the wheel 
radius and ω n,m is the wheel angular speed.  Angular velocity is 
controllable via simple PD or other schemes. 

Terrain roughness causes ASOC modules to tilt (i.e. rotate about 
β).  Wheel velocities then possess non-zero components in the body’s 
z dimension. The effects of module tilt can be compensated in the 
controller via computation of an effective Lsplit (see Fig. 11).  The 
wheel velocity component in the body’s x-y plane appears on the left 
side of (18).  Inclusion of the effects of out of plane wheel velocity 
components in (17) yields: 
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where γn,m is the angle between the velocity vector of wheel n,m and 
the x-y plane in the body-fixed frame (see Fig. 19). 

 
Figure 19.  Wheel-terrain contact angle, γn,m.  The gray vector is 
parallel to the velocity of the wheel.   

 
Figure 20 shows a block diagram of a scheme for rough terrain 

omnidirectional mobile robot control.  The input is a desired velocity 
profile defined in the inertial frame.  It is assumed that the robot’s full 
state can be estimated.  The desired velocity profile is converted to a 
desired velocity in the body-fixed frame based on the robot’s current 
position and orientation.  ASOC module link velocities are then 
computed via (15).  Desired wheel velocities can then be calculated 
using (18), here assuming knowledge or estimates of wheel-terrain 
contact angles.  Wheel-terrain contact angles can be estimated via 
axle-mounted force sensors (to measure wheel-terrain interaction 
normal force direction) or via kinematic estimators [21].  PD 
controllers command each wheel to track the desired wheel velocities.  
Actual velocities can be determined via odometry; however more 
sophisticated methods (such as visual odometry) are required to 
estimate wheel slip [22]. 
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Figure 20.  Control scheme of an omnidirectional mobile robot. 

 
4.3  Simulation Results 
A dynamic model of an ASOC-driven mobile robot was developed to 

study the performance of the control method described above.  The 
kinematic controller was implemented to allow the robot to track a 
desired velocity profile over rough terrain.  Independent PD control 
loops allowed each wheel to track its desired velocity. 

The robot parameters for the simulation were as follows: body 
length=1 m, total mass=65 kg, wheel radius=0.10 m, Lsplit=0.20 m, 
Loffset=0.10 m.  The control gains for each wheel were Kp=7.3, Kd=0.02.  
Wheel-terrain interaction forces were determined via a simple coulomb 
friction model with µ=0.6.  Terrain elevation was modeled as a 
triangularized mesh with elevation points possessing a standard 
deviation of σ.  In initial simulations it was assumed that the robot 
possessed perfect knowledge of wheel-terrain contact angles.  Wheel-
terrain contact locations were determined by making a thin wheel 
approximation and finding the intersection points between the wheel and 
the local triangular mesh patches. 

To study the omnidirectional capability of the robot, a desired 4.5 m 
square path was commanded at a constant speed of 1.5 m/s.  This 
corresponds to 1.5 body lengths/second.  

 

 
Figure 21.  Example of terrain used in simulation, with σ = 4.5. 

 
In the following simulations, σ was chosen as 0, 1.5, 3.0, and 4.5 cm, 

yielding maximum terrain inclination angles of approximately 0o, 20o, 
35o, and 45o, respectively. 

 
Figure 22.  Top view of robot path tracking a square on rough terrain. 

 

In Fig. 22 it can be seen that the robot was able to track the desired 
path with good fidelity, even in very rough terrain.  In these 
simulations, the controller had error and noise-free, continuous 
absolute position data.  Table IX presents the RMS error for this trial 
for each terrain roughness. 

 
Table IX    RMS path tracking error for several terrain heights 

σ RMS error (% body) 
0.0 8.67 
1.5 8.89 
3.0 10.48 
4.5 11.59 

 
Although an omnidirectional robot can kinematically perform zero 

radius turns at any velocity, dynamic effects may reduce path tracking 
capability at higher velocities.  Figure 23 shows that the vehicle is 
able to maintain a high velocity magnitude when the body was 
changing direction.  During these simulations, the velocity never 
dropped below 48% of the nominal commanded velocity. 

 
Figure 23. Velocity magnitude during path tracking. 

 
Further simulations were conducted to study the effects of utilizing 

wheel-terrain contact angle knowledge in the controller and 
knowledge of robot absolute position.  Simulations were run with and 
without absolute position updates at 0.5 Hz and with and without 
knowledge of wheel-terrain contact angle.  Simple dead reckoning 
was used estimate vehicle position in simulations without absolute 
position knowledge and to interpolate between updates in simulations 
with absolute position knowledge.  Path tracking results are shown in 
Fig. 24.  Numerical results are shown in Table X. 
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Figure 24.  Top view of the body trace during square tracking on rough 
terrain for varying levels of controller knowledge. 

 
Table X    RMS path tracking error for varying controller 
knowledge 

Controller Knowledge RMS error (% body) 
Absolute position w/ contact angle 6.96 

Absolute position w/o contact angle 17.71 
No absolute position w/ contact angle 21.28 
No absolute position w/o contact angle 86.31 

 
Note that the path tracking error in simulations with absolute position 

information is bounded, while the tracking error in simulations without 
absolute position data is not.  When absolute position information is not 
available, a 75.3% reduction in path tracking error is seen when the 
vehicle controller uses wheel-terrain contact angle information.  This is 
useful for the many situations where position information from GPS, for 
example, may be unavailable.  Even with absolute position updates, path 
tracking error is reduced by 60.7% when the controller wheel-terrain 
contact angle information.   

 
5    Conclusions 

In this paper, the design and control of an omnidirectional mobile 
robot driven by active split offset casters for use in rough terrain has 
been studied.  An isotropy analysis was conducted to determine the 
optimal geometry and layout of the ASOC modules.  This analysis 
indicates that equally spaced modules with Lsplit / Loffset = 2.0 yield a 
robot with equal mobility capability in all directions on flat terrain.  On 
rough terrain, a larger ratio is desired, and robot isotropy degrades 
slightly.  It also shows that isotropy is independent of wheel radius, 
which increases the scalability of the design. 

Numerous design considerations for omnidirectional mobile robots 
were presented.  An optimization algorithm was implemented to derive 
values for ASOC module and wheel geometries.  For illustration, a man 
portable robot was designed, but the geometric constraints and the 
optimization algorithm are scalable and can be applied to robots of any 
size.  It was shown that the designs suggested by the optimization have 
improved performance when compared to a non-optimized design.  
Through deliberate ASOC geometric parameter selection, it was possible 
to increase estimated traverse distance and mobility versus a baseline 
design. 

A kinematic controller was developed and its performance was 
studied on both flat and rough terrain.  The effects of wheel-terrain 
contact angle information and absolute position knowledge on 
performance were studied.  Simulation results showed that an 
omnidirectional mobile robot is able to track a square trajectory with 
good performance despite local terrain inclinations angles near 45o.  It 
was also shown that substantial path tracking improvements were 
possible if wheel-terrain contact angle information was used in the 
controller. 
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