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The problem of extracting environmental information from remotely sensed ocean color 
spectra is fundamental to a wide range of Navy needs as well as to basic science and 
ecosystem monitoring and management problems. Extraction of bathymetry and bottom 
classification is especially valuable for planning military operations in denied access 
areas. The ability to simultaneously generate error estimates on retrieved values is often 
equally important to the ability to retrieve the environmental information itself; this can 
be accomplished using the kNN techniques reported in this project. 

We have developed mechanisms that (1) provide a more robust prediction than the 
previous LUT methods, and (2) provide confidence intervals to the predictions. We 
focus on a k-Nearest Neighbor (kNN) approach where we select not the single best 
match, but rather the top 50 matches. We provide a statistical measure that allows us to 
describe the range around the predicted estimate of bathymetry. The kNN approach does 
produce a more robust, accurate map of bathymetry than using a single value LUT 
approach. In addition, the ability to use spatial correlations to filter anomalous values 
and improve retrievals, as developed in this project, greatly enhances the reliability of the 
retrievals. 
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LONG-TERM GOAL 

The overall goal of this work is to refine and validate a spectrum-matching and look-up-table (LUT) 
technique for rapidly and accurately inverting remotely sensed hyperspectral reflectances to extract 
environmental information such as water-column optical properties, bathymetry, and bottom 
classification. 

OBJECTIVES 

We (PI - Bissett, and C. Mobley, N0001406C0177) are developing and evaluating techniques for the 
extraction of environmental information including water-column inherent optical properties (IOPs) and 
shallow-water bathymetry and bottom classification from remotely-sensed hyperspectral ocean-color 
spectra. We address the need for rapid, automated interpretation of hyperspectral imagery. The 
research issues center on development and evaluation of spectrum-matching algorithms, including the 
generation of confidence metrics for the retrieved information. 

APPROACH - Year 1 

In previous work, a Look-Up Table (LUT) algorithm was used in accurately predicting bathymetry 
(Mobley et al. 2002, Bissett et al. 2004, Bissett et al. 2005, Mobley et al. 2005). In this study we apply 
the k-Nearest Neighbor (kNN) algorithm. Instead of basing a prediction upon a single nearest 
neighbor, as in the case of the LUT, a prediction is arrived at via a combination of multiple entries 
within the table. We show that this method leads to an increase in the accuracy and precision of 
bathymetry. The additional predicted values allow for the creation of confidence intervals around the 
mean. This would not be possible using only the single nearest neighbor. We show that the 
confidence interval surrounding the observed mean is also likely to contain the true depth. The kNN 
algorithm can also be used on bottom type and inherent optical properties. When the classes are 
categorical rather than real-valued, the majority vote is used in order to determine the appropriate 
classification. 

When classifying new spectra, the Euclidean distance between each spectrum in the database is 
calculated. The k nearest neighbors to that spectra (those having the smallest distances), are 
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considered sufficiently qualified to predict the corresponding class labels. In the general case, the class 
of a pixel is determined by a majority vote from the k nearest neighbors. In the event of a tie, a 
prediction is made randomly from amongst the majority classes. This method is equivalent to the 
standard LUT algorithm when k=l. 

In the event the prediction is a real-valued number, such as the case with bathymetry, additional 
information is available by considering the predictions as a random variable having a measurable 
distribution. In our case, the mean prediction from all of the k neighbors is calculated. When using the 
mean rather than a majority vote, predictions with smaller granularity than the LUT itself can be made. 
Consider the case where half of the closest entries predict a depth of 5.0m and the other half predict a 
depth of 5.5m. Instead of deciding randomly between an equal majority of 5.0m and 5.5m predictions, 
a more reasonable prediction might be 5.25m. 

A nearest neighbor algorithm which produces predictions based solely upon the closest matching 
pattern is prone to noise. This noise is inherent in the training set. The spectrum for one particular 
depth, bottom type, and set of inherent optical properties may closely match a multitude of spectra 
from a few different classes. kNN relies on the increased probability that a spectrum presented for 
classification will come from the majority class of proximate training spectra, rather than a single 
"lucky" spectrum. A two dimensional representation of this problem is shown in Figure 1. While the 
target example "square" is closest in distance to the training example "O", it is more likely that the 
correct prediction is "X". 
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Figure 1. Xs and Os are the classes of examples belonging to the training set. The target concept, 
, is closer to the O than any X. In kNN, multiple nearest neighbors vote on the appropriate class. 
Ifk = 1, class O is chosen. Ifk > 1, class X is chosen, the number of which is dependent on the 

value ofk, and in which will include O in the retrieved set. The estimate of the target concept may 
then be calculated from any number of statistical calculations on the set ofXs, e.g. mean, majority 

vote, etc. 

By using multiple nearest entries in the LUT, the manifestations of sensor and atmospheric noise in the 
predicted image can also be reduced. Small but random fluctuations of the test pixels may result in 
different predicted values, resulting in a "speckling" of the image. In contrast, choosing the majority 
class creates a less variable space from which to make a decision, making it is less likely to produce 
different classifications due to small amounts of noise in the spectra. 
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Real valued predictions enable the calculation of an observed mean, //. They also allow for the 
calculation of an interval surrounding jx by recording the observed standard deviation, a . We 
characterize the predicted depth values as being distributed as a random variable X~N(/j,cr) and build 
a confidence interval around // such that with probability p = 1 - a , fx is contained within such an 
interval. This method does not provide a probability that the true depth is actually contained within 
such an interval (it may be that the training set does not include the appropriate classes to produce an 
accurate match). Rather, we hope that the true depth is also contained within this interval. 

Let n be the number of neighbors used in calculating the mean. From Statistics, Equation (1) 
establishes bounds around fi. 

\~a = P{-z<Z<z) 

= />(-Z<^ff<z) 

= P(ju-^<V<M + ^) (1) 

Unfortunately, the number of training examples used is not particularly helpful in calculating the 
standard error a /n. In particular, the presumption of independence in (1) is particularly problematic 
since a computer generated table of spectra is simply being resampled n times without replacement in 
obtaining the value of ju. The number of different samples containing any one depth value is limited 
by the parameters used during generation of the LUT. For this reason, we have chosen to set n equal to 
one regardless of the number of neighbors used. This simplification is shown in Equation (2). 

fi-zd<fu<fi + zd (2) 

Finally, the LUT may not allow for depth predictions no finer than half of the specified granularity 
between depths, g. While it is possible for /u to be any real number, this is not reliable (all predicted 
depths could equal 1 .Om when the true depth is 1.1m). This necessitates the addition of granularity 
into the equation. Our final confidence interval is shown in Equation 3. 

jj. - Za — g < TrueDepth <ju + Za + — g (3) 

We construct a database of Rrs spectra using Ecolight. In generating the database, 25 IOPs, 122 
bottom types, and 50 depth values ranging from 0.01m to 25.0m in 0.5m increments were used. The 
corresponding Rrs spectra were generated for each combination of these three variables. The total 
number of entries in the LUT was 25 * 122 * 50 = 152,500; each entry containing 40 wavelengths 
from .4025 to .5975 microns in .005 micron intervals. 

We have applied these algorithms to an image of Looe Key (Figure 2). The Looe Key image is a 
3060x3257 image with 1,977,774 pixels available for classification. Ground truth data is available for 
the bathymetry, obtained via LIDAR. This allows additional analysis to be performed on the accuracy 
of our bathymetry predictions, and on the validity of our confidence interval. 



Figure 2. This HSI was collected during October 2002 during a joint NRL, NA VO, FERI, USACE 
exercise to collect simultaneous LIDAR and hyperspectral data.  The data used in this study is from 

the red region shown in the center of the image. 

We use a z value of 3 in generating the confidence bounds. This corresponds to an or value of 
.001349. We choose &=50 nearest neighbors which is equal to the number of depth values for each iop 
and bottom type combination in the table. 

RESULTS - Year 1 

In Figure 3. the true bathymetry map is shown with the predicted bathymetry map using only the single 
closest neighbor and using the 50 nearest neighbors. Visually, using the 50 nearest neighbors produces 
a smoother and more lifelike view of the bathymetry than using only a single neighbor. Comparisons 
with the depths given in the LIDAR image show that using the additional entries in the LUT for 
classification and averaging the results produces a more accurate representation of the true depth. 





Figure 3. Depth maps for k=I nearest neighbors (top) vs k=50 nearest neighbors (middle) and the 
LIDAR data (bottom). Using SO nearest neighbors produces a smoother more accurate graph when 

compared against 1 nearest neighbor to the LIDAR data. 

The mean squared error using one entry from the LUT is 2.84 meters, meanwhile it is 2.60 meters 
using 50 entries. This represents a reduction in error by approximately 8.5%. Two histograms 
showing the frequency of the errors in meters are shown in Figure 4. Using 50 nearest neighbors 
produces two peaks each closer to 0m error than using only 1 neighbor. Likewise, errors of greater 
than -7.5m are no longer present in the data, and using 50 entries clearly reduces the largest errors of 
approximately -8.75m. As the two histograms are nearly overlapping for points 0 to 0.5m in error, 
using the larger number of neighbors is doing more than simply increasing depth classifications. 
Notice also that while the algorithm peaks at zero, very rarely are depths shallower than predicted. 
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Figure 4. Depth Error Histogram for k=l nearest neighbor and k=50 nearest neighbors. Negative 
values have been predicted as being shallower than the true depth. 

For this problem, the availability of LIDAR ground-truth data allows us to locate which pixels fall 
outside of the range of the error bounds. This map is shown in Figure 5. The large area marked with a 
box where the confidence interval predominantly fails to accurately contain the true mean is Hawk 
Channel. The water in this location has been previously identified as having large errors resulting 
from IOP classes that were not described in the training set. This highlights the errors found when a 
measured spectra is produced by classes beyond those available to the training set, and in this case is 
beyond the recognition capabilities of the kNN algorithm. 

An interesting observation is made by comparing the ratio of the margin of error to the mean with the 
percentage of error for each pixel. In other words, we compare the value d in Depth ± d% to the error 
percentage after classification. This comparison is found in Figure 6. Namely, an image of these d 
values looks very similar to an inverted image of the percentage of error map. This implies that low d 
values correspond negatively with low error, and vice versa. One would expect that a low margin of 
error would mean the algorithm is very confident in its decision, and the percentage of error would be 



very low. For this image, this turns out to be almost exactly the opposite. 

Analysis has shown that shallow depths produce a much higher signal-to-noise ratio (/J/<J) than do 
their deeper counterparts. Yet we know from experimentation that more accurate predictions are made 
at shallow depths. There are two separate factors causing this seemingly non-intuitive interaction. 
First, the even granularity of the training set means that a prediction which is "one-off affects 
shallower depths greater than it does deeper depths. For example, in our dataset, a pixel for which 
kNN is repeatedly predicting 1.5m and 2.0m will have a higher standard deviation to mean percentage 
(also known as coefficient of variance) than repeatedly predicting 24.5 and 25.0m. 

Figure 5. Error interval accuracy map. Black pixels exceeded the error bounds.  The red box 
surrounds Hawk Channel, a region of very deep water beyond the recognition capability of this 

algorithm. 

Furthermore, deep pixels have less coloration due to bottom type than do shallower pixels. Assuming 
the closest spectra in the training set is in fact the spectra containing the appropriate depth, bottom 
type, and IOPs, the next closest spectra is necessarily going to belong to a different one of any or all of 
these classes. Ideally all the correct depths would be identified as neighbors. However at shallow 
depths, bottom types have a greater affect on the spectra, hence neighbors are more likely to be of the 
same bottom type, not depth. Hence, the neighbors are more stable at deeper depths. 



SUMMARY - Year 1 

The previous use of the LUT approach provided good agreement between predicted and measured 
values of bathymetry. We have been experimenting with mechanisms that (1) provide a more robust 
prediction to the real-value and categorical classes, and (2) provide confidence intervals to the 
predictions. In this study, we focus on a k-Nearest Neighbor (kNN) approach where we select not the 
single best match, but rather the top 50 matches. We provide a statistical measure that allows us to 
describe the range around the predicted estimate of bathymetry in which we would expect that the true 
bathymetry to lie. The selection of a larger number of predictions does not ensure that we have an 
accurate prediction, for if the measured remote sensing reflectance spectrum is a function of classes 
(bathymetry, IOPs, and bottom reflectance) not contained with the training set, then all the predictions 
will be in error (see Hawk Channel example). However, the kNN approach does produce a more 
robust, accurate map of bathymetry that using a single value LUT approach. 

Figure 6. In the confidence map on the left, whiter pixels have a larger margin of error. In the 
percent difference map on the right, whiter pixels have greater error. These seems counter intuitive 

until (1) the relationship between granularity and depth is considered (shallower depths are more 
impacted by the errors induced from coarse data bathymetry), and (2) the deeper waters will exhibit 

more similarity given that the spectra will be less impacted by bottom reflectance, thereby yield a 
lower range in the estimated bathymetry. 

APPROACH - Year 2 

The LUT methodology is based on a spectrum-matching and look-up-table approach in which the 
measured remote-sensing reflectance spectrum is compared with a large database of spectra 
corresponding to known water, bottom, and external environmental conditions. The water and bottom 
conditions of the water body where the spectrum was measured are then taken to be the same as the 



conditions corresponding to the database spectrum that most closely matches the measured spectrum. 

In previous LUT work, we have simultaneously retrieved water column IOPs, bottom depth, and 
bottom classification at each pixel from the remote-sensing reflectance Rrs spectra. This is much to ask 
from a simple Rrs spectrum, but we have shown that all of this information is uniquely contained in 
hyperspectral reflectance signatures and that the information can be extracted with considerable 
accuracy (Mobley et al., 2005). 

Previous work has considered only retrievals based on the closest matching LUT database Rrs spectrum 
to a given image spectrum. However, exactly which database spectrum most closely matches the 
image spectrum can be influenced by noise in the image spectrum. Another way to do the retrievals is 
to find not just the closest-fitting database spectrum, but to find the k closest fitting spectra. Each of 
these k spectra corresponds to different environmental conditions (bottom depth, bottom type, or water 
IOPs). The retrieval can then be taken as the mean value (or some other statistic, such as the most 
frequently occurring value) of the k values. If these k spectra all correspond to very nearly the same 
environmental conditions, then we can be confident that the retrieval is not strongly influenced by 
noise and is, presumably, correct to within a small error. However, if the k closest spectra correspond 
to widely differing environmental conditions, then we are much less confident of the correctness of the 
retrieval. A measure of the confidence in a depth retrieval can be based on the standard deviation of 
the distribution of the k retrieved depths, for example. It should be noted that even if the value of an 
environmental parameter as obtained from the k closest-matching spectra analysis value is the same as 
the value obtained for the closest-matching spectrum, the distribution of the k values can be used to 
compute error estimates for the retrieved quantity. Indeed, the real value of this technique often lies in 
the generation of confidence bounds on retrieved quantities, which in application may be as important 
at the retrieved value itself. In the literature this approach to classification and error estimation is 
known as k Nearest Neighbor (kNN) analysis. 

WORK COMPLETED - Year 2 

This year's work centered on evaluating the kNN method for obtaining quantitative measures of the 
uncertainty of the depth retrievals, i.e., for putting error bars on the retrieved depths at each pixel. 
Examples of depth retrievals and associated error metrics are shown below. We also evaluated a 
number of different metrics for determining the closeness of two spectra. 

In addition to the work discussed here, we performed a detailed analysis of LUT depth and bottom 
classification retrievals in the localized area of Horseshoe Reef, Lee Stocking Island, Bahamas, for 
which bottom classification information was available from underwater transects by divers. The LUT 
results were in good agreement with ground truth for percent coverages of sediments, corals, and 
mixed bottom types over the reef. A paper on that work is now in press (Lesser and Mobley, in press). 

We also applied the LUT methodology to imagery of optically deep turbid waters in Puget Sound, 
Washington. That work (not shown here) showed the need for improved methods of atmospheric 
correction of hyperspectral imagery because the retrievals for a given image were sensitive to the 
atmospheric correction scheme used (empirical line fit or TAFKKA). It was also found that in 
optically deep waters the LUT-retrieved bottom depth was roughly equal to the penetration depth at the 
wavelengths where the water was clearest, rather than a retrieval of infinitely deep water. (The 
penetration depth at a given wavelength is defined as the inverse of the diffuse attenuation coefficient 
for downwelling plane irradiance and gives an estimate of how far a sensor can "see" into the water 



column at that wavelength.) The reason that LUT retrieved the penetration depth rather an infinite 
depth in optically deep waters is not yet understood. 

During this period we also performed an analysis of several statistical measures of "best"1 fit of the 
kNN retrieved bathymetry estimates using the 2002 FERI/NAVO/NRL/USACE Joint Looe Key 
HyperSpectral Imaging (HSI) and LIDAR Experiment (Bissett et al, 2005; Figure 7). This analysis 
included both vector distance and angular separation in an attempt to determine which measure of best 
fit would be appropriate for use in retrieving bathymetry, IOPs, and bottom classification estimates. 

RESULTS - Year 2 

The LUT approach to retrieving IOPs, bottom reflectance, and bottom depth information from remote- 
sensing reflectances has performed well in its application to various PHILLS images of optically clear 
and shallow waters (e.g., Mobley, et al., 2005). This year we re-analyzed imagery from the Lee 
Stocking Island (LSI), Bahamas, area, for which acoustic bathymetry data were available to study the 
utility of kNN analysis in generating error maps corresponding to the retrieved bathymetry maps. 
Figure 7 shows an RGB PHILLS image taken near LSI; Figure 8 shows the corresponding acoustic 
bathymetry. 

Figure 7. An RGB image of the Horseshoe Reef area made from a PHILLS hyperspectral image 
taken May 20, 2000.  The bottom includes areas of highly reflecting ooid sands, low reflecting, 

dense sea grass beds, and low to intermediate reflecting areas of mixed sediments, corals, sea grass, 
turf algae, and macrophytes. 
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Figure 8. Acoustic bathymetry coverage for the area corresponding to Fig. 1.  The black dots show 
the locations of the acoustic pings; the solid black area had no acoustic coverage.  The acoustic 

depths are used for validation of the LUT-retrieved depths at the corresponding pixels. [The color 
coding identifies the depth, binned into 2 m bins for convenient viewing.] 

When doing a depth retrieval on this image with k= 1, i.e., when using only the closest-matching 
database spectrum (with the Eucledian distance metric; see Table 1) at each image pixel, the LUT 
bathymetry was on average 7.0% or 0.4 m too shallow; 66% of the pixels were within ±1 m of the 
correct (acoustic) depth, and 87% of the pixels were within ±25% of the correct depth. When the 
retrievals were done with k = 30 and the retrieved depth was taken to be the mean of the 30 values, the 
LUT bathymetry was on average only 1.8% or 0.04 m too shallow. The other two statistics changed 
very little. Thus the kNN retrievals were on average deeper, which is correct, but the spread of 
retrieved vs. acoustic depths was essentially unchanged. This is likely because that spread of values is 
influenced by errors in geolocation of image vs. acoustic points (discussed in Mobley et al., 2005), 
which cannot be rectified by any analysis technique. Figure 9 shows the retrieved depths for k = 1, and 
Figure 10 shows the retrievals defined as the mean of 30 values. The most noticeable difference is that 
the deeper waters at the upper right of the image are somewhat deeper for the k - 30 retrieval. 

The k retrieved depths at each image pixel were used to generate two kinds of error maps for the depth 
retrievals. Figure 11 shows the map of the standard deviation of the 30 retrieved depths. This map 
gives an estimate of the absolute error in the retrieved depths. As would be expected, the standard 
deviation of the retrieved depths is greatest for the deepest water. However, some shallow areas with 
dark bottoms also have large standard deviations. 

Figure 12 shows the map of the standard deviation divided by the mean depth, which gives a map of 
the relative errors in the depth retrievals. Overall for this image, this error metric is in the 0.05 to 0.15 
range, although some areas with dark bottoms have larger relative errors. In general, areas with bright 
bottoms (ooid sands, in this image) have the smallest relative errors in the depth retrievals. 

These error maps are in qualitative agreement with what is expected from signal-to-noise 
considerations, i.e., bathymetry for shallow or bright-bottom areas is retrieved most accurately, and 
deeper areas and areas with darker bottoms have more uncertainty in the retrieved bathymetry. 
However, the combination of LUT spectrum matching and kNN analysis allows us to generate 



quantitative error estimates on the retrieved bathymetry. Such error maps cannot be generated by 
simpler algorithms that work only with the image spectrum (e.g., band ratio algorithms). 

Figure 9. LUT depth retrieval obtained from the closest matching database spectrum (k = I). /The 
color coding identifies the depth, binned into 2 m bins for convenient viewing.] 

kNN  mean 
depth  (m) 

Figure 10. LUT depth retrieval computed as the mean of the k = 30 closest matching database 
spectra. Note that the retrievals are somewhat deeper than those for k = 1. [The color coding 

identifies the depth, binned into 2 m bins for convenient viewing.] 



Figure 11. Standard deviation of the LUT depths for the k = 30 closest matching spectra.  The 
standard deviations of the retrieved depths are greatest in deeper waters and in areas with dark 

bottoms. 

kNN std dev/ 
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Figure 12. Ratio of the standard deviation (Fig. 11) to the mean depth (Fig. 10) for k = 30.  This 
figure shows that the relative depth error is generally in the 0.05 to 0.15 range over most of the 

image. Greater relative errors occur over some areas of darker bottoms. 

The analysis on Horseshoe Reef was completed using a traditional Euclidean distance calculation (see 
Table 1). However, there are a number of different statistical measures of "best" fit that could be used 
to complete the kNN retrievals. Table 1 lists those that we explored using the Looe Key HSI/LIDAR 
data (Figure 13). 



Table 1. Metrics for measuring the closeness of two spectra i andj. Here xik means Rn spectrum i 
at wavelength k, and the sums are over wavelength. The two spectra that give the minimum value of 
the metric are the closest. 

Vector Distance Separation Equation 

Euclidean: Sum (over wavelength) of squared point distances v S"- (x<* ~ XA ^ 

Manhattan: Sum of absolute point distances / A_, | X^ — X^ \ 

Chebyshev: Closest absolute maximum point distance mf^ ' *'* ~ Xj* ' 
I   V      _ v       I 

Canberra: Sum of absolute point distances divided by absolute yn     '   '*      ft ' 
point values ^J*=I | X.^ | +1 X J* 

2^=J*'*-    xj Bray Curtis: Sum of absolute point distances divided by sum of 
absolute point values "V"   (x  + x t) 

Vector Angle Separation Equation 

2-*=i •*»*' XJ* 
Angular Separation: Cosine angle between two vectors rz^j    2      „      " 

\    (% — x V (x  — x } 
Correlation Coefficient: Cosine angle between two vectors where z^t-i^- ^   ~i' v *     i> 
the coordinates are centered at the mean JV" (Xjt -x,)2 • V" (xk-x) 

Figure 14 shows the results over the joint HSI/LIDAR coverage area. It is evident in this data set that 
vector distance is the best measure for goodness of fit, and that the Manhattan distance calculation is 
the best calculation. There were some areas that were fit best by angular separation. These areas were 
primarily best fit by the Correlation Coefficient. The distance measure takes into consideration the 
magnitude of the RTS signal, as well as the spectral shape. Its use is only appropriate where there is 
high confidence in the calibration of the sensor measured water-leaving radiance and the subsequent 
removal of atmospheric and illumination effects. Most spectrum matching techniques avoid the use of 
the magnitude because of problems in sensor calibration and atmospheric correction. We demonstrate 
here the enhanced retrieval resulting from the distance measurements possible with /?rs data using 
spectra retrieved from a high confidence sensor and processing. 

Figure 15 shows the best fit using only Manhattan and Correlation Coefficient measures. It can be 
seen that there are areas where the Correlation Coefficient achieves better matches than the Manhattan. 
This is primarily seen in shallow water areas where the magnitude of the signal is strong enough to 
allow for the secondary effects of spectral shape to provide a more enhanced fit. Table 2 summarizes 
these results. 



Table 2. Depth errors for various metrics, averaged over the entire image.   RMSE - Root Mean 
Squared Error (meters), ABSE = Absolute Mean Squared Error (meters). 

Manhattan 
- RMSE = 2.25 
-ABSE = 1.79 

Correlation Coefficient 
- RMSE = 5.97 
- ABSE = 4.54 

Combination Man+Cor 
- RMSE = 2.31 
- ABSE = 1.68 

Best Possible Method 
- RMSE=2.07 
- ABSE = 1.43 

Figure 13. Joint HSI/LIDAR Experiment coverage area.  The red area denotes region of joint data 
coverage. 



Figure 14.  Visual results of statistical measure analysis of best fit.  The color coding shows which 
distance metric gave the best agreement between LUT and LIDAR bathymetry. Overall, vector 

distance was better than vector angular separation in determining best fit. The Manhattan distance 
calculation was better than Euclidean.  There were some areas where angular separation was better. 



Figure 15. The same area as Figure 14, with only the best vector distance (Manhattan) and angle 
separation (Correlation Coefficient).  This image shows that over shallow waters the Correlation 

Coefficient sometimes retrieved better matches than the Manhattan calculation. This results from 
the fact that the spectra magnitudes are large enough from the bright shallow water signal to allow 

for better certainty from the angular separation. 

APPROACH - Year 3 

The LUT methodology is based on a spectrum-matching and look-up-table approach in which the 
measured remote-sensing reflectance spectrum is compared with a large database of spectra 
corresponding to known water, bottom, and external environmental conditions. The water and bottom 
conditions of the water body where the spectrum was measured are then taken to be the same as the 
conditions corresponding to the database spectrum that most closely matches (by some chosen metric) 
the measured spectrum. 

In previous LUT work, we have simultaneously retrieved water column IOPs, bottom depth, and 
bottom classification at each pixel from the remote-sensing reflectance Rrs spectra. This is much to ask 
from a simple Rrs spectrum, but we have shown that all of this information is uniquely contained in 
hyperspectral reflectance signatures and that the information can be extracted with considerable 
accuracy (Mobley et al., 2005; Mobley and Lesser, 2007). 

Our initial work considered only retrievals based on the closest matching LUT database Rrs spectrum 
to a given image spectrum. However, exactly which database spectrum most closely matches the 
image spectrum can be influenced by noise in the image spectrum. Therefore, last year's work 
considered retrievals based not just on the closest-fitting database spectrum, but on the k closest fitting 
spectra. Use of the k (typically k = 30 to 50) closest spectra not only allows various statistical 
estimates of the retrieved information (depth, bottom type, etc), but also provides statistically based 
error bars and confidence statements about the retrieved information. 

This year's work continued the process of examining various ways to improve retrievals, in particular 
by taking advantage of spatial correlations in the environmental variables from one pixel to the next. 
We also examined the errors in the LUT RTS database generation associated with the use of unpolarized 
(scalar) radiative transfer calculations (using a special version of HydroLight), compared to exact (but 
very time consuming) calculations that included polarization. 

WORK COMPLETED - Year 3 

Previous retrievals (e.g., Mobley, et al., 2005; Lesser and Mobley. 2007) have processed each image 
pixel independently of its neighbors. However, there is usually a strong spatial correlation in 
neighboring pixels because water depth and IOPs, and bottom type, often do not change greatly from 
one pixel to the next (i.e., on a scale of one to a few meters). We therefore examined various ways to 
spatially smooth the input Rrs spectra (before processing) and/or the output environmental values (after 
processing) to take advantage of spatial similarities in small blocks of pixels (e.g., 3x3 or 5x5 blocks 
centered on the pixel of interest). 

Colleagues Y. You, G. Kattawar, and B. Hauss and Mobley also did detailed comparison runs using 
coupled ocean-atmosphere vector radiative transfer codes available to You and Kattawar to quantify 



the errors resulting in upwelling atmospheric radiances and in Rrs when the ocean and the atmosphere 
are modeled (1) using polarized (vector) radiative transfer (RT) theory, (2) unpolarized (scalar) RT, 
and (3) a vector atmosphere but a scalar ocean. We considered upwelling radiances just above the sea 
surface (relevant to RTS spectra measured for ground truth and to the generation of the LUT database), 
at 3,000 m altitude (relevant to airborne remote sensing platforms as employed in our work), and at the 
top of the atmosphere (relevant to satellite remote sensing). A paper on those results has been 
submitted to Applied Optics (You, et al., 2008). 

In addition to the work discussed above, M. Lesser and Mobely published (Lesser and Mobley, 2007) a 
detailed analysis of LUT depth and bottom classification retrievals in the localized area of Horseshoe 
Reef, Lee Stocking Island, Bahamas, for which bottom classification information was available from 
underwater transects by divers. The LUT results were in good agreement with ground truth for percent 
coverage of sediments, corals, and mixed bottom types over the reef. 

Finally, a patent titled "Spectral Imaging System" was granted to the collaborators on this LUT work. 
That patent covers various aspects of both image acquisition hardware and image analysis software, 
including the LUT methodology. 

RESULTS-Year 3 

We investigated two types of spatial smoothing. The first smoothes the image Rrs spectra before 
performing the LUT matching, and the second smoothes the retrieved depths (or other quantities, such 
as IOPs or bottom reflectances) after performing the LUT matching. The two types of smoothing can 
be done independently or in combination, and in combination with the kNN analysis techniques 
investigated last year. 

To spatially smooth an Rrs spectrum, we considered an n*n block of pixels centered on the pixel of 
interest, with n= 1, 3, 5, ...(«= 1 corresponds to no spatial smoothing). Let /?rs(ij,>.) be the image 
spectrum at pixel (ij). We reasoned that we want to average the "good" spectra in the n*n block of 
pixels centered on (i,j), but we do not want to include any anomalously large or small "bad" spectra 
that might be contaminated by sun glint or whitecaps (or other causes). For n = 3, we have a 3x3 block 
of 9 pixels centered on (i,j). To help eliminate anomalously large or small "bad" spectra, we discarded 
the highest and smallest values of the 9 spectra at each wavelength, and averaged the remaining 7 
values. For n = 5, we have a 5x5 block of 25 pixels. In that case, we discard the highest 2 and lowest 
2 values, and averaged the remaining 21 values. If some of the pixels are flagged as land, clouds, or 
whitecaps, or if (i,j) is next to the image boundary, there are fewer than n2 valid pixels. We then have 
a reduced number of pixels to work with, but the procedure is the same: discard the highest and lowest 
values and average the remaining values. The original /?rs(i,j,>.) is then replaced by the average 
spectrum computed from the n*n block of pixels. Note that this algorithm is applied independently at 
each wavelength. Thus the particular spectra that are eliminated at one wavelength may or may not be 
the spectra that are eliminated at another wavelength. 

To smooth the retrieved depths we again consider nxn blocks of pixels. Now, however, we do not 
discard the high or low values of the retrieved depths before averaging. The reason is that when doing 
kNN matching, the kNN algorithm already, by its very nature, may have omitted the high or low 
values, or done some other sort of filtering or averaging of the k retrieved depths at each pixel. We 
therefore omit only pixels in the n*n block that are flagged as invalid (land, cloud, etc), and we then 
average the remaining (usually n2) depths to obtain the spatially smoothed depth for the pixel at the 



center of the n*n block. 

Figure 16 shows a 3D perspective plot of the bathymetry near Lee Stocking Island (LSI), Bahamas; 
LSI is the gray area at the upper left of the image. This figure shows the results for no spatial 
smoothing (n = 1) of either the input RIS spectra or of the retrieved depths, and the closest-matching (k 
= 1) database spectrum was used. This baseline retrieval corresponds to the retrievals shown in 
Mobley et al. (2005). The pixel-to-pixel variability of the retrieved depths is quite apparent. Figure 17 
shows the quantitative comparison of the retrieved vs. acoustically measured depths for the pixels 
where an acoustic depth was available. We see that the average retrieved depth is about 7% (0.4 m) 
too shallow, with a standard deviation of 1.2 m between retrieved and measured depths. 68% of the 
pixels have retrieved depths within ±1 m of the acoustic depth, and 87% are within ±25% of the 
acoustic value. 

Figures 18 and 19 show the corresponding results from a combination of kNN matching and spatial 
smoothing. Figure 15 shows the 3D plot of retrieved depths when (1) the input Rrs spectra are 
smoothed using a 5x5 spatial grid, (2) the retrieved depths are then obtained as the median of the 
closest k = 30 spectra, and (3) the retrieved depths are then smoothed using a 5x5 grid. The final 
retrieved depths are now clearly much smoother from pixel to pixel. Figure 19 shows the quantitative 
errors for Figure 18. We now see that the average error is only 0.8% (0.04 m) too shallow, with a 
standard deviation of 0.9 m. Now 76% of the all pixels are within ±1 m of the acoustic value, and 95% 
of all pixels are within ±25% of the acoustic value. 

The combination of spatial smoothing and kNN analysis clearly improves the average accuracy of the 
retrieved depths and reduces the pixel-to-pixel variability. 

The LUT Rrs database is generated by a special version of the HydroLight radiative transfer model, 
which solves the unpolarized (scalar) radiative transfer equation (RTE). Omission of polarization in 
the database generation leads to some error in the computed RK spectra. We therefore examined (with 
the assistance of Y. You, G. Kattawar, and B. Hauss) the nature of these errors through numerical 
simulations using coupled ocean-atmosphere radiative transfer codes that solve the polarized (vector) 
RTE. We evaluated the errors in upwelling radiances due to the omission of polarization in either the 
ocean or atmosphere for a wide range of oceanic and atmospheric conditions, sun and viewing 
geometries, and wavelengths from 415 to 865 nm. We considered the errors at the sea surface 
(relevant to Rn computation for the LUT database and to sea truth measurements used for validation of 
remote sensing imagery), at 3,000 m altitude (relevant to airborne remote sensing platforms), and at the 
top of the atmosphere (relevant to satellite ocean color remote sensing). 

Figures 20 and 21 illustrate the errors in the water-leaving radiance when both the ocean and the 
atmosphere are modeled with the unpolarized RTE (left panels), and when the atmosphere and sea- 
surface reflectance are polarized but the ocean is unpolarized (right panels). It is seen that the errors in 
the water-leaving radiance are less than 3% when the underwater RT calculations are performed using 
the scalar RTE (as is done in HydroLight), whether or not the atmospheric calculations are performed 
with scalar or vector codes. Surface waves have almost no effect on these errors compared to the 
effects of sun and viewing geometry and water and atmospheric conditions. These results justify the 
use of the computationally efficient HydroLight scalar ocean radiative transfer model to computed /?rs 

spectra for the LUT database, so long as errors up to 3% can be tolerated. This is indeed the case for 
most ocean color remote sensing, since the errors owing to imperfect sensor radiometric calibration 



and atmospheric correction of the imagery are often greater. The results for 3,000 m and top-of- 
atmosphere comparisons, and for other parameter values, can be found in the You et al. (2008) paper. 
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Fig. 16. LUT-retrieved depths plotted as a 3D surface and viewed in perspective. Lee Stocking 
Island is the gray area at the upper left. The pixel-to-pixel spikiness or variability of the depth 
retrievals is quite apparent.  The three black lines show the depths at each pixel along selected 

transects of the area. The corresponding quantitative comparison of LUT-retrieved vs. acoustic- 
measured depths is shown in Fig. 17. [The figure shows a 3D perspective plot of retrieved depths at 

each pixel with the depth color coded: red is 0-2 m to purple is >12m deep.] 
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Figure 17. LUT vs. acoustic depths for the no-smoothing, closest-match retrieval of Fig. 16, 
displayed in various ways. [Thefigure compares the differences in retrieved and measured depths 

in four different ways.] 
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Figure 18. The 3D perspective of the retrieved depths when 5x5 spatial smoothing in performed on 
both the input Rn spectra and the output depths, and the retrieved depth is the median ofk = 30 

closest matching spectra. The pixel-to-pixel spikiness or variability of the depth retrievals greatly 
reduced compared to what is seen in Fig. 16. The corresponding quantitative comparison ofLUT- 
retrieved vs. acoustic-measured depths is shown in Fig. 19. [The figure shows a 3D perspective plot 

of retrieved depths at each pixel with the depth color coded.] 
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Figure 19. LUTvs. acoustic depths for the smoothed kNN retrieval of Fig. 18, displayed in various 
ways. Compare with Fig. 17. [Thefigure compares the differences in retrieved and measured 

depths in four different ways.] 
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Figure 20. Errors in the water-leaving radiance just above the sea surface for low (Chi = 0.1 mg m 
), medium (Chi = 1) and high (Chi = 10) chlorophyll concentrations. This figure is for 415 nm, sun 
at a 50 deg zenith angle, viewing at right angles to the sun, from nadir to horizon. Solid lines are 
for a clear atmosphere, dashed lines are for a very hazy atmosphere. [Curves show errors of less 

than ±3% in the water-leaving radiance for a wide range of chlorophyll concentrations./ 
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Figure 21. Errors in the water-leaving radiance just above the sea surface for wavelengths of415, 
555, and 865 nm.   low (Chi = 0.1 mg m'3), medium (Chi = 1) and high (Chi = 10) chlorophyll 

concentrations. This figure is for a low chlorophyll concentration of 0.1 mg m'3, sun at a 50 deg 
zenith angle, viewing at right angles to the sun, from nadir to horizon. Solid lines are for a clear 

atmosphere, dashed lines are for a very hazy atmosphere. [Curves show errors of less than ±3% in 
the water-leaving radiance for a wide range ofwavelengths. ] 



IMPACT/APPLICATION 

The problem of extracting environmental information from remotely sensed ocean color spectra is 
fundamental to a wide range of Navy needs as well as to basic science and ecosystem monitoring and 
management problems. Extraction of bathymetry and bottom classification is especially valuable for 
planning military operations in denied access areas. The ability to simultaneously generate error 
estimates on retrieved values is often equally important to the ability to retrieve the environmental 
information itself; this can be accomplished using the kNN techniques reported in this project. 

The previous use of the LUT approach provided good agreement between predicted and measured 
values of bathymetry. We have been experimenting with mechanisms that (1) provide a more robust 
prediction to the real-value and categorical classes, and (2) provide confidence intervals to the 
predictions. In this study, we focus on a k-Nearest Neighbor (kNN) approach where we select not the 
single best match, but rather the top 50 matches. We provide a statistical measure that allows us to 
describe the range around the predicted estimate of bathymetry in which we would expect the true 
bathymetry to lie. The selection of a larger number of predictions does not ensure that we have an 
accurate prediction, for if the measured remote sensing reflectance spectrum is a function of classes 
(bathymetry, IOPs, and bottom reflectance) not contained with the training set, then all the predictions 
will be in error (see Hawk Channel example). However, the kNN approach does produce a more 
robust, accurate map of bathymetry that using a single value LUT approach. In addition, the ability to 
use spatial correlations to filter anomalous values and improve retrievals, as developed in this project, 
greatly enhances the reliability of the retrievals. 

TRANSITIONS 

Various databases of water IOPs, bottom reflectances, and the corresponding Rrs spectra, along with 
the specialized Hydrolight code and spectrum-matching algorithms have been transitioned to other 
NOAA and Navy HIS projects for use in comparisons of LUT and LIDAR bathymetry. 

RELATED PROJECTS 

This work is being conducted in conjunction with Dr. Curtis D. Mobley at Sequoia Scientific, Inc.. 
who is separately funded for this collaboration. These techniques developed here are now being 
applied to imagery of Australian coastal waters in a comparison of several different hyperspectral 
remote sensing algorithms for a variety of environments. That comparison study is being led by A. 
DekkerofCSIRO. 
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