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ABSTRACT

In recent years, there has been a resurgence of interest in US Air Foree in space access and
therefore Air Foree is interested in the hypersonic aerodynamics of its future spacc opcrations
vehicles, long-range-strike vehicles and military-reusable launch vehicles. Hypersonic flows
about space vehicles produce flow fields in thermodynamic non-equilibrium with local Knudsen

numbers K, =A/L (where A4 is the mean free path of gas molecules and Lis a characteristic

length) which may lic in all the three regimes — continuum, transition and rarcfied. Flows in
continuum regime can be modeled accurately by the Navier-Stokes (NS) equations; however the
flows in transition and rarefied regimes require a kinctic approach such as the Direct Simulation
Monte Carlo (DSMC) method or the solution of the Boltzmann cquation.

The objective of this research project has been to develop a computational methodology and
a code for computing hypersonic non-equilibrium shock wave flows of multi-component reactive
gas mixtures of diatomic gases using the Generalized Boltzmann Equation (same as the Wang-
Chang Uhlenbeck equation which accounts for the degenerate cnergy levels) at Knudsen
numbers in transitional and rarefied flow regimes. Secveral milestones have been achicved:

1. A 3D Generalized Boltzmann Equation (GBE) solver has been developed for a Cartesian
mesh. The solver has been validated by computing the 1D shock structure in nitrogen for
Rotational-Translational (R-T) rclaxations and comparing the numerical results with the
experimental data for Mach numbers up to 15. The solver has been cxercised successfully for
computing the 2D blunt body flows in nitrogen and 3D flow from a rectangular jet of nitrogen in
vacuum for RT relaxations. The issues of stability of the algorithm and the possibility of
reducing the number of rotational levels in the computations without compromising the accuracy
of the solutions have been rigorously addressed.

2. A computational methodology has been developed to compute the hypersonic shock
structure in diatomic gases including both the RT and Vibrational-Translational (V-T)
rclaxations. 1-D shock structure in nitrogen has been computed including both R-T and V-T
relaxations and has been validated by comparing the results with the experimental data.

3. A computational methodology has been developed to compute the hypersonic shock

structure in a non-rcactive mixture of two diatomic gases. 1-D shock structurc has been



computed in an inert mixture of nitrogen and oxygen for R-T relaxations. To accomplish this, the
GBE is formulated and solved in “impulse space” instead of velocity space.

4. A new two-level kinetic model has been developed for computing the RT relaxations in a
diatomic gas and has been validated by comparing the results with the solutions of completc
GBE. The modcl is about twenty times morc cfficient than thc GBE in computing the shock
structure. It should be noted that the model is different than the BGK model; it accounts for both

elastic and inelastie eollisions.



1. INTRODUCTION

In recent years, there has been a resurgenee of interest in US Air Force in space access and
therefore Air Foree is interested in the hypersonie aerodynamies of its future space operations
vehicles, long-range-strike vehicles and military-reusable launch vehieles. Hypersonic flows
about space vehicles produce flow ficlds in thcrmodynamie non-equilibrium with local Knudsen

numbers K, =A/L (where A is the mean frce path of gas molecules and L1is a characteristic

length) which may lie in all the three regimes— continuum, transition and rarefied. Therefore,
therc is an important need for a single unified Computational Fluid Dynamies (CFD) code that
can treat all the three flow regimes in thermodynamic non-equilibrium aceurately and cfficiently.
Flows in continuum regime can be modeled accurately by the Navier-Stokes (NS) equations;
however the flows in transition and rarefied regimes require a kinetie approach such as the Direet
Simulation Monte Carlo (DSMC) method or the solution of the Boltzmann equation.

One of the critical issues in accurate prediction of non-cquilibrium flows is the ability to
simulate the translational and internal energy mode relaxation of polyatomic (in particular
diatomic) molecules present in these flows. Relaxation of diatomie molecules in non-cquilibrium
flows is very different from that of monoatomic molccules due to the internal degrees of
freedom; therefore it is important to study the effect of the internal degrees of freedom upon the
energy transfer between colliding diatomic moleeules. It turns out that the simulation of internal
energy mode relaxation is fundamentally different in the continuum (NS) and kinetic approaches.
In the continuum approach, NS equations contain the source terms of reaction probabilities for
quantifying the thermal and chemieal non-equilibrium effects which are typically available from
experiments for equilibrium conditions that have the translational temperature dependence. For
flows with Kn ~ 0.01, this approach bascd on NS equations is very effective in computing
hypersonie flows with small deviation from translational non-equilibrium [1]. However, at
higher Kn for flows in transition and rarefied regimes, the kinetic methods based on the
Boltzmann equation provide more detailed information on the degree of non-equilibrium.

During the past fiftecn years, following Bird [2], DSMC methods have been developed for
computing non-equilibrium flows of monoatomie and diatomie gases [3-5]. Typieally, in most of
the DSMC solvers, the diatomic molccules are modeled assuming quantized rigid rotors for

rotational cncrgy levels and anharmonic oscillators for vibrational energy levels. Elastie cross-

5




seetions arec based on Variable Hard Sphere (VHS) model and inelastie ecross-sections
(Rotational-Translational (R-T) and Vibrational-Translational (V-T)) are based on Borgnakke-
Larsen model [6] assuming constant or temperature dependent ecollision numbers ZR.
Dissoeiation eross-sections are based on the Weak Vibrational Bias model [7] or its vaniants.
However, it has been shown that the non-equilibrium rarefied flows of diatomie gases, in which
the gas molecules transfer energy among translational, rotational and vibrational degrees of
freedom, eannot be acecurately predicted by using the simple eollision models in DSMC methods
[8]. In recent years, considerable effort has also been devoted toward the development of
approaches using simplified models of Boltzmann equation (e.g. BGK type models) that inelude
the multi-translational tempcratures, rotational relaxation, and dissoeiation kineties [9,10], whieh
have shown some promise. However, these approaches also have limitations, espeeially in
prediction of strong shoeks cneountered in hypersonie non-equilibrium flows. Additionally, the
transition and rarefied regimes are characterized by the formation of narrow boundary layers
with sharp vanation in flow parameters, the zones with considerable compression of a gas at the
seale of the molecular mean free path, and the low density stagnation zones. Thus the most
accurate description of the physies of these flows can be obtained by solving the Boltzmann
equation for a diatomie gas, namely the Wang-Chang-Uhlenbeck Master Equation [11] or a
generalized Boltzmann equation for a reactive mixture of gases.

In solving the Boltzmann equation by a finite-difference method, the principal difficulties
arise in caleulation of the multi-dimensional collision integral; the approximation to the collision
integral must tend to the actual one as the mesh size in the veloeity space tends to zero. In reeent
years, therc has been significant progress toward the development of an efficient and aeeurate
numcrical method for the solution of Boltzmann equation for a monoatomie gas [12-15]. In this
method, the Boltzmann cquation 1s solved on fixed spaee and velocity grids by a finite-difference
method. A projeetion method (that ensures that the veloeities before and after eollision belong to
the same grid of disercte ordinates) 1s employed for the evaluation of the collision integral that
ensures exact conservation laws for mass, momentum, and energy as well as zero value of the
integral under thermodynamie equilibrium (when the distribution funetion is Maxwellian). The
last property eliminates the numerical error of computing the principal part of the solution

outside the Kundsen layers and shoek waves and thus considerably inereases the accuracy and




efficiency of the method. The differential part of the Boltzmann equation is approximated by an
cxplicit second-order flux-conservative scheme. The combined system of difference equations
(for the collision integral and the diffcrential part) is solved by the splitting method which splits
the solution process in two stages: the collision relaxation and frec molecular flow. This method
has been developed by Professor Cheremisin of thc Computing Center of the Russian Academy
of Scienee [12-15]. It has been extensively applied by him and many other rescarchers [16]
including the author of this report {17-21]. The key numerical features of this method are: (a) it is
fully conservative, (b) it preserves the positiveness of the solution, (¢) it does not disturb the
thermodynamic equilibrium and thereforc can be applied for computing flows approaching
continuum regime, (d) it is essentially deterministic and therefore does not produce statistical
noise, (¢) it employs numerically efficient integration grids that make it very efficient, (f) it can
cmploy a variable mesh that may exceed the local mean free path in the regions of low gradicnts,
and (g) the method can be easily parallelized. It has several advantages over the DSMC method
e.g. thec DSMC method requires mesh spacing less the mean free path in the entire field, it
employs not very realistic molecular potentials (like VHS) instead of the more accepted ones like
the Lennard-Jones potential with established paramecters for cach gas (c.g. N2 and O2), and for
inelastic collisions DSMC method employs models that are not physically justifiable. For
example in the most commonly used Borgnakke-Larson model [6] in the DSMC method, the
molecules are divided in two parts: the molecules in major part collide elastically and in the rest
with internal —translational encrgy transfer that presumes a thermodynamic equilibrium. This
model is therefore not very accurate.

The objective of this rcsearch projcct has been to develop a computational methodology and
a code for computing hypersonic non-equilibrium shock wave flows of multi-component reactive
gas mixtures of diatomic gases using the Generalized Boltzmann Equation (same as the Wang-
Chang Uhlenbeck cquation which accounts for the degenerate energy levels) at Knudsen
numbers in transitional and rarefied flow regimes. It should be noted that in the GBE, the intcrnal
and translational degrees of freedom are considered in the framework of quantum and classical
mcchanics respectively. The gencral computational methodology for the solution of the GBE is
similar to that for the classical BE for a monoatomic gas cxcept that thc cvaluation of the

collision integral becomes significantly more complex duc to the quantization of rotational and



vibrational energy levels. The transition probabilities, elastic and inelastie eross-scetions cte. of a
gas molccule are needed for the solution of the collision integral. Lennard -Jones potential with
two free parameters is used to obtain the elastic cross-section of the gas molecules, and the so
called “combinatory relations™ are used to obtain parameters of Lennard-Jones potential for an
interaction of molecule A with molecule B knowing the parameters of A and B [11]. The
probability of transition in inelastic collisions is determined using the approach by Beylich [22,
23]. These inputs allow for the caleulation of the Boltzmann Collision Integral in GBE for a
diatomic gas and a reactive mixture of gascs.

Several milestones have been achieved:

1. A 3D Generalized Boltzmann Equation (GBE) solver has been developed for a Cartesian
mesh. The solver has been validated by computing the 1D shock structure in nitrogen for
Rotational-Translational (R-T) relaxations and comparing the numerical results with the
experimental data for Mach numbers up to 15. The solver has been exercised successfully for
computing the 2D blunt body flows in nitrogen and 3D flow from a rectangular jet of nitrogen in
vacuum for RT relaxations. The issues of stability of the algorithm and the possibility of
reducing the number of rotational levels in the computations without compromising the aceuracy
of the solutions have been rigorously addressed.

2. A computational methodology has been devecloped to compute the hypersonic shock
structure in diatomic gases including both the RT and Vibrational-Translational (V-T)
relaxations. 1-D shock structure in nitrogen has been computed including both R-T and V-T
relaxations and has been validated by comparing the results with experimental data.

3. A computational methodology has becn developed to compute the hypersonic shock
structure¢ in a non-reactive mixture of two diatomic gases. 1-D shock structurc has been
computed in an inert mixture of nitrogen and oxygen for R-T relaxations. To accomplish this, the
GBE is formulated and solved in “impulse space” instead of velocity space.

4. A new two-level kinetic model has been developed for computing the RT relaxations in a
diatomic gas and has been validated by comparing the results with the solutions of complete
GBE. The model is about twenty times more efficient than the GBE in computing the shock
structure. It should be noted that the model is different than the BGK model; it accounts for both

elastic and inelastic collisions.




2. TECHNICAL APPROACH

As mentioncd before in Section 1, gas flows in continuum-transition regime, where the

Knudsen number K, is O(1) [0.1<K, <10], are charactcrized by the formation of narrow,

highly non-equilibrium zones (Knudsen laycrs) of thickness of thc order of molccular free path
A; the flow structure is then determined by the fast kinctic proccsses. Moreover, in case of

unstcady flows, an initial Knudsen time interval is of the orderr, = A/v, wherc v is the

molccular velocity. Thus, the Knudsen layer can be computed accurately only by directly solving
the Boltzmann equation. Alternative approaches which approximate the Boltzmann cquation to
account for departure from equilibrium, namely thc higher-order continuum equations such as
the Burnett cquations [24, 25], Grad’s moment cquations [26] or Eu’s equations [27] as well the

particle methods such as DSMC [2-4], have becn shown to havc limitations.

2.1 Solution Method for the Classical Boltzmann Equation

In this section, we briefly describe the finite-diffcrence method that is currently cmploycd
for solving the classical Boltzmann cquation (BE) of classical mechanics for a monatomic gas in
translational non-cquilibrium. In solving the Boltzmann cquation by a finite-differcnce method,
the principal difficulties arisc in calculation of the multi-dimensional collision integral; thc
approximation to thc collision integral must tend to the actual one as the mesh size in the
velocity space tends to zcro. In rccent ycars, there has been significant progress toward the
development of an cfficient and accuratc numerical mcthod for the solution of Boltzmann
equation for a monoatomic gas [12-15]. In this method, the Boltzmann equation is solved on
fixed space and velocity grids by a finite-differcnce method. A projcction method (that cnsures
that thc vclocitics before and after collision belong to thc same grid of discrcte ordinates) is
employed for the evaluation of thc collision integral that ensures cxact conscrvation laws for
mass, momcntum, and energy as wcll as zcro value of the intcgral under thcrmodynamic
equilibrium (when the distribution function is Maxwellian). The last property climinates the
numerical crror of computing the principal part of the solution outside the Kundscn layers and
shock wavcs and thus considerably increases the accuracy and cfficiency of the method. The
differcntial part of thc Boltzmann cquation is approximated by an cxplicit sccond-order flux-

conscrvative scheme. The combined system of difference equations (for the collision intcgral and
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differential part) is solved by the splitting method which splits the solution process in two stages:
the ecollision relaxation and free molccular flow. The method deseribed below is second-order
accurate and is quite efficient; it is due to Cheremisin and his colleagues [12-15].

Consider a gas of molecules without internal degrees of freedom and seck a solution to

the 2-D Boltzmann cquation:

[ T =
at’ﬂfx ax+§y o I(f./)=-L(f,N+G(f.f) (1
In equation (1), collisions in L(f, f)=wv(f)f and G(f, f) have the form
®© 2xb,, x 2xb,,
Lf )= [ [[f-f-g-b-db-de-dg and G(f. )= [ [[f-f1-g-b-db-de-d&, . (2)

A standard notation is used in equation (2): b and & are the impact parameters of a
molecular collision; f,f,f and f are functions of velocity vectors &,&,& and &
respectively. The first two vectors are the pre-collision veloeities; the last two are the post-
collision ones; g = |§ —§l|; b, is the upper limit of the impact parameter; and the vector £ has
the components & ,&, and £, . The space of veloeity & is restricted to a domain ©Q where an N-

point uniform grid is defined, with grid points £, and a mesh size veetorh = (h, h,, i) . Equation

(1) 1s approximated by a set of N equations for f, as:

Yoo B,y O,

o T oy P (3)

+ é:ﬂ.y

The method used for caleulating the collision integrals deseribed in [12, 13] ensures that

a computation performed to any numerical accuracy is consistent with the conservation laws. If

¥, denotes the collision invariant veetor, ¥, = (1,£,,£7), then

b3k (4)
B

and at any grid point &,

[ﬂ(fM,/i’fM.(x)zo' (5)




Here, f, , is the equilibrium Maxwellian distribution function for gas molecules at a grid
point &, . The last condition substantially improves the accuraey of calculation of the integral 7,

in those subdomains whcre the state of the gas is close to the thermodynamie equilibrium [14].

System of equations (3) is solved by the method of splitting with rcspect to physical

processes [15, 16]. On an interval[t’,#"'], we consccutivcly solve the collisionless transport

equations

ofy o, of, C

— 4 — e——= 0q J = 4 6
o+ Gn et ay =0, S = (©

and the collisional relaxation equations

afﬂ/a[:lﬂ, fﬂi=f£'j+', (7

written for each grid point (the grid-point index is dropped).
By splitting with respeet to spatial variables, system of equations (6) is approximated by
a second-order accurate (in 4, and 4 ) explicit scheme [28]. The set of nonlinear equation (6) is

solved by an integral form [15]. For time stepr =7"' - ¢

i+l

fi = f+ [Ldr (8)

To resolve fast kinetie proeess, the condition T < 15 where 15 is the mean time between
collisions, should be satisfied. Cheremisin and his eolleagues have written a Boltzmann solver
using the above method. This solver has been extensively validated by eomputing flows with
Knudsen numbers ranging from 0.01 to 10 by the author of this report and Professor Cheremisin
for computing hypersonic flows with translational non-equilibrium [17]. This solver was
extended for solving the Generalized Boltzmann Equation (GBE) for diatomic gascs; the

methodology is deseribed in Section 2.2.

2.1.1 The Stability Condition for the Algorithm Described Above in Section 2.1

The main algorithm of the conservative projection method deseribed above in Seetion 2.1
has two parts. First, there is the splitting of the adveetion equation and seeond the integration of

rclaxation cquation. For the advection equation, when an explieit st order method is applied, the
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CFL condition defined by the maximum moleeular veloeity should be satisfied, i.e.

& T /h<1. For a higher-order explieit method, instead of unity on the right hand side of

above eondition, a number less then 1 (for example 0.5) appears.
For the solution at the relaxation stage, there are no exactly defined stability parameters.

However an important role is played by the parameter ¢, that limits the proportion of rejected

contributions. It should be sufficiently small. Usually, it should be of the order of E-4 or E-5. For
strict computation, it should be equal to 0, but then the CPU time becomes very large. In

practice, the optimal choice of & depends on a problem. The wrong choice may influence the
results of the solution, and even lead to the divergenee of the solution. When &, is chosen and
the number of integration (Korobov’s) nodes is given, the maximal value of the time step 7, at

the relaxation step can be determined. For the stability of the eomputations, the time step of the

algorithm should be chosen asz = min(z,,,7,) .

The Boltzmann equation covers gas flows in all regimes: from free molecular, which is
extremely viscous from the view point of continuum fluid dynamies, to the Euler gas dynamies
with zero viscosity. The algorithm eontains a number of parameters whose values depend on a
particular problem. These parameters are: the diseretization steps in eoordinate and veloeity
variables, the time step, and the limits in the veloeity spaee. If these parameters are not chosen
correctly, the solution may be wrong or diverge, because it doesn’t eorrespond to the physical
reality. For example, if the gas is very far from the thermodynamie equilibrium, and onc takes
the coordinate step 7> A (loeal mean frec path) or the time step is not sufficiently less the mean
molecular inter-collision time, the algorithm will produce wrong results and may diverge. The
use of the same parameters for a near continuum flow however may be O.K. The situation is
analogous to the application of the Euler gas dynamics equations to a viscous low Reynolds
flow. Therefore the parameters of the algorithm that define the approximation of a partieular

problem should be properly chosen. The same conelusions are true for the algorithm employed

for the solution of GBE or the Wang-Chang Uhlenbeek equation deseribed in Seetion 2.2




2.2 Solution Method for the Generalized Boltzmann Equationn for a Diatomic
Gas (Wang-Chang-Uhlenbeck Equation)

Nonequilibrium processes in a gas with internal degrees of freedom of molecules ean be
studied by using the generalized Boltzmann equation or the Wang-Chang-Uhlenbeek equation,
where the internal and translational degrees of freedom are considered in the framework of
quantum and elassical mechanies respectively. For small deviations from loeal thermodynamic
equilibrium, an asymptotic method developed for this equation yields hydrodynamic equations
including the effect of the internal degrees of freedom on the viseosity and thermal conduction of
the gas [11]. The GBE or Wang-Chang-Uhlenbeck equation (WC-UE) for a diatomic gas in
thermodynamic non-equilibrium ean be written in the form:

s, . 9
=l éi—z
0

- > [ -£1)g0) ddg, 9)

Jokd o)

In Equation (9), dQ =sin@dfde, f,= f(i,&,x,t) is the distribution function, where i is
the sct of quantum numbers determining the internal state of the moleeule; &, is the velocity of

the molecule in the ith state; g=|§,—§j ; indices i,/ and k,/ correspond to the molecular

states before and after the collision respectively; and o is the eross section for the collision

responsible for this change of the internal states. There is no summation with respect to the
repeated index /.

The eross seetions for direet and inverse collisions are related as
go, (g,0.p)dEdé, =g 0,/ (g7,0,0)dé, d¢, (10)
The magnitude g’ =|§k —§,| of the velocity after the collision and veloeities &, and ¢

are determined from the laws of conservation.

" ’ 4Ae 5 i
g =g l—m—gz,ék :«fO—O.Sg ,and §I=§0+0‘5g . (11)

In equation (11), m is the molecular mass; Ae=¢, +e¢, —e, —e,, where ¢, is the energy of

the ith internal state and & =0.5( +¢&). The condition mg® >4Ae determines the




admissibility of the transition(i, j)— (k,/). We set 0',.‘,'.'=0 for forbidden transitions. The

probability of the transition (i, j) — (k,/) is defined as

kl
a..
w_ Yy Ko_ Y
p[i -O.—,where Gij = 2 0',] (12)
kJd

i

and satisfies the condition 0 < p,.';’ <1 and the normalization condition
S Pl =, (13)
kJd

We assume that o is independent of the internal molecular state and is equal to the

elastic scattering cross sectiono; =0,(g,0). The introduction of quantities o, and p

obviously transforms equation (9).

2.2.1 Numerical Solution Procedure for GBE

The problem of numerically solving the Wang-Chang-Uhlenbeck (WC-U) equation [29]
reduces to the construction of a method of calculating its right-hand side, the generalized

collision operator, which can be represented as/, = —L, + G, , where

L=ao, % Lj [ /.1, p; gdQd¢, (14)
&IV Q

and

G =0, % [[fifip) gdQds, . (53
kYO

As in the case of the classical Boltzmann equation (1), an effective numerical method
must ensure that the collision operator must be (i) conservative and (ii) be equal to zero on the
equilibrium distribution function.

Operators L, and G, are calculated on the j, xS, lattice, where S, is the uniform lattice
in volume V of velocity space and j, is the number of quantum levels.

Similar to the case of a one-atom gas, we consider the functional

ao

Q@,f)=0, T j [ Jof.1,pdod e, (16)

bbbl e

Taking functions ®(&) in the form




®'=0.5[0,0(6 - £)+0,0(¢" ~&))] and (17)

@' =0.50,,0(& — &) +08,0(& -], (18)

where 0, is the Kronecker delta and (& - &) is the three-dimensional delta function, we

obtain
L(£)=0(P,f,)and (19)
G (&) =0, f). (20)

Functions (19) and (20) are calculated on the uniform cubic lattice consisting of N sites
S, =1{i,j,k1,¢,,¢,,0,9}, such that($),,(E), €S,. Let (£),=¢, and(¢), =&, .The values
(&), and (&), for each site of this lattice are calculated by equation (11). The arrangement of
vectors¢,, &, &, , and &, for thevth site of cubic lattice S, is schematically shown in Fig. 1,

where the three-dimensional velocity lattice is given as a plane lattice and subscript v is omitted.

The value L',,J = L',,(é‘,) calculated in site £" =&, € S, by equation (19) is determined by the part
of the cubic sum fori, =n, @, =y and j, =n, B, =y as

L= BZ(@M‘ 8,0 +0, 0,5 )4, (21)

270, jV . .
where B="00 A, =f, [, (PI)g SN0, A=/, S, (P))g,sin6,,  and

v

Jio=fGE,,x,0). In what follows, the subscript v will be omitted where possible. Since
velocities &, and &, are not in the sites of lattice S, G, , is calculated with the replacement of
equation (18) by projector @ into pairs of sites £,, &, and &, &, , which are nearest to
&, and &, and are shown in Fig. 13:

D7(&,) =(1-18,,0(, —£,)+6,,6(5, &)+ 18, 4.0, —£,.,)+0,,.06(,-&, )], (22)
where s =(s,,5,,5,) is the vector whose components take values 0, -1, and | and that determines

the site that is nearest to £, and shown in Fig. 1. As a result,

G",_v = BZ {[(] i r)(ankayl it anlav;l) + r(ankay_l+s Aty anlay_u—c)]A}v . (23)

]




The coefficient r, 1s determined from the laws of conservation for each site of the cubic
formula, i.e., for each contribution A, to operators L, andG, . The conservation of mass

follows from the form of ®™, and the conservation of momentum follows from the symmetric

arrangement of lattice sites &, §,,, and &,, &, = with respect to vectors &, and &,. In terms

of the notation

2

2 2 2 - : mé&,
E :ﬁjuﬁ,gl = i +m§” ,and E, =%+—§”—“ (24)

2

¢ 3 9 2 2 ?) 9

the law of encrgy conscrvation, when contribution A, is split, has the form E; = (1-r)E, + rE, .

) % N e
pdrK X\\
Bu-s /g',, A N\ N\

\ i
K S
\P\ N \ Sa+s
\,\“~ 3 ] //
~—_1 1

Figure 1: Schematic of an Inelastic Collision

= . . - :
Thereforcr =—"—— which satisfics the condition 0<r<1 bccause cither & =k, S8,

2 1

or £, < E,<E,. It is important that s, is independent of A, . For this reason, additional latticc
sites &, , &, , &4, .and &, and coefficient 1, can be preliminarily determined for cach
sitc of cubic lattice S, , and then extended lattice S*. can be used repeatedly, e.g., in various sitcs
of physical spacc. Each contribution A, can be treated as the result of a "collision” transferring

molccules from sitesi, j to sitesA, g andA+s, g —s. In order to cnsure that condition (ii)

above is satisficd, we consider a pair of invcrsc collisions to sitesi, j from sitcs A, u# and A+,
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u—s with weights (1-r") andr’, respectively. The probability p,.j"f' is determined from

equation (10), and coefficient r* from the condition

EAY(1-r")+ EA? = EJAY(1-r") + A2r7], (25)

where

A = fk_/lf,ﬂp;‘.'g sin(#) and (26)

A = fy s P g 5IN(O). 27)
A(l)r

Asaresult, r’ = (28)

A+ AP -r)

An analysis similar to the above gives the contribution of inverse collisions in the form

L, =BY {(0-r" )840, +0,,0,)A" + (3,0, ,,,+8,0,,.)A"},, and (29)

Gy, =B {(8,0,, +0.8,)l1-r)A" +r'a”1},. (30)
Finally, the collision operators arc determined as

Lo, =3+ E2), Gy, =5(Gra G, G

For any arbitrarily lattice of integration sites S, , condition (ii) is satisfied to within an
aceuracy no worse than O(h), where 4 is the step of lattice S, . For degenerate levels of internal

energy, equation (9) must be modified so as to reduce the number of substantial levels.

Let j, levels be separated into J, groups of degenerate levels,J =0,,...,J,,, with

degencration degree g¢;. We determine the distribution funetion asF,:quq:q,.fq,

whereg € J . Substituting o, =o,p, into equation (9), summing this equation over the groups

of levelsi, j,k, and / forming degenerate levels /,J,K and L, and returning to the old notation,

we arrive at the equation

a—f;+§ia_f;=6 Z J-J‘(q,-qjﬁ(f; _qkqlf’_j})gp;la'Qdfj &

ot & e
for which equations (21), (23), (29) and (30) are valid with the change A —gq,qA,

A qkq,A(” ,and A? > qkq,A(z’.
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2.2.2 Modeling of Transition Probabilities, Elastic & Inelastic Cross-Sections

The computation of collision integral in equation (9) requires the knowledge of the

collision cross-sectiono,’ responsible for the change of intcrnal states of the molecules. This
cross-section can be calculated from equation (12) if the probability of transition (i, j)} — (k,/),
p,.'l‘.' and the clastic scattcring cross-scction o, are known for a given gas or a mixturc of gascs.

For DSMC simulations of real gascs, Koura [7] has given modecls of clastic cross-section,
rotationally and vibrationally inelastic cross-sections, and dissociation and reccombination cross-
scctions. Thesc cross-sections can be used for shock wave simulations in Nitrogen, Oxygen, and
in a mixture of Oxygen and Nitrogen. In the simulations, one may use these models (or similar
models used in DSMC simulations [4]) as well as other models, which have proven to bc more
accurate. [t has becn recently shown by Beylich [30] that Lennard-Jones (LJ) modcl gives better
prediction for the structure of normal shock waves in Helium and Argon than Hard-Sphere (HS)
modcl bccause the scattering behavior of LJ is very different from the HS modcl. In our
calculations, we employ the LJ modcl [11] for calculating the clastic cross-section of diatomic
gases e.g. Nitrogen, Oxygen, and a mixturc of Nitrogen and Oxygen. For calculating the
rotationally inelastic cross-sections, wec cmploy the transition probability model duc to Beylich
[22, 23] based on an intcrlaced systcm of rigid rotors which has shown excellent results for
shock wave structure in Nitrogen. The model gives the transition probabilities as follows:

1
P = B [a,exp(-A - A, — A, —A,) +a—exp(—A3 -A,)],
0
where A, =| Ae, + Ae, |/ e,,, A,=2|Ae,-Ae|/e,,,
A, =4|Ae | e, +e,) .0, =4]|Ae | /(e,,+e,), (33)
and a)‘fl . qkql /(qlq/) 4 eer = mg2 /4 > elm = eer +eri +er/ :

In equation (33), g, is the dcgeneration, and ¢, is the rotational encrgy of the i-th level. This

model can be easily extcnded to Oxygen. For calculating the vibrationally inclastic cross-

sections, wc cmploy the transition probability model described in Reference [7].




2.2.3 Computation of Shock Structure in a Diatomic Gas

Thcse computations were performed for validation of the Generalized Boltzmann Solver.
In particular, both the computations with other methods such as DSMC and BGK-type models
[9] as well as experimental data [31, 32] arc available for shock structure in Nitrogen for both
weak and strong shocks. The calculation of the shock structure using equation (9) requires the

calculation of rclaxation of vibrational levels and rotational levels. The energy of j th vibrational
level is given by €] = ha{j + 5] and the equilibrium distribution for the vibrational temperature

T, is given by

v _ 1
n, =nZ, expl—

where Z is the vibrational partition function. For Nltrogen,lTw =3340K and for Oxygen it is

2230 K, where k is the Boltzmann's constant. The energy level with the rotational quantum

R+
21

r

number j has the degeneracy of degree ¢, =2 +1 and energye’ = , where I, is the
J J g J r

moment of inertia of the molecule. The equilibrium distribution of the gas density » over levels

for temperature 7, is given by the expression

n i+ 1)}

35
LT, )

n=nZ'(2j+ l)exp[—

2

: p =29K and for Oxygen it is 2.1 K. The values of

r

The rotational constant for Nitrogen

ho h
— and
k 21 k

for a nitrogen and oxygen molecule have been obtained from [33]. From the

values of vibrational and rotational constant for nitrogen and oxygen, it is obvious that the
vibration levels are excited at high temperatures, but the rotational levels are excited at any
temperature. Therefore in most of the cases, only a few vibration levels can be considered. At
room temperature for Nitrogen, about 20 rotational levels are sufficient for calculations, and at

least 25 levels are needed for Oxygen. When the temperature rises, the needed number of levels
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increases. For shock wave in Nitrogen at Mach 2 to 11, about 30 to 60 levels may be needed.

Although the computational difficulty in number of arithmetic operations increases more

than J*times, fortunately, for a large number of levels one can consider the spectrum as
continuous and use the reduced number of efficient levels. Such is the approach applied in
statistical physics where the statistical sum is replaced by an integral. When a reduced number of
levels are used, one can consider the rotational levels in GBE or WC-UE in the framework of
classical mechanics. In fact, Beylich [22, 23] has successfully employed this approach; he
computed the probability of R-T transfer for continuous spectrum, and then made it discrete
using the notion of a rotational quantum. One could do the same, but with an arbitrary
“quantum”.

The SW structure is formed as a final stage of the evolution of a discontinuity in the initial

distribution function. The problem is considered for the interval - <x<[L, with the

discontinuity atx=0. The initial distribution function on both sides of the discontinuity is

described by the velocities and spectral levels. It has the form

m(&—u'?Y _2i+1 e.
(Gou )y 2] (- Loy, (36)
2T 0 T

S(E,x) =n"[m/(22T"*)]"? exp[-

where Q. denotes the statistical sum. Parameters (n,7,u)"’ are defined by the Rankine-
Hugoniot relations withy =7/5. At the boundary, the initial distribution function is kept
constant. The characteristic dimensional parameters needed in the computation are the gas
density n, the initial translational temperature7,, and the mean-free-path time 7 at this
temperature. The initial distribution function at ¢+ =0 can be taken as Maxwellian with
translational velocities. Lattices S, and S, with about 5000 and 0.5 x 10° sites respectively are
sufficient. Time integration is performed according to the scheme in [12, 14] using an
appropriate time step, e.g. At =0.0057r based on the calculations performed in [17]. In Section 3,
the results of computations for SW structure in nitrogen at high Mach numbers are presented for

R-T relaxations, for both R-T and V-T relaxations, and for an inert mixture of two diatomic

gases.
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2.2.4 The Choice of Efficient Rotational Levels
For real gases, except for some light ones like Hydrogen, the rotational energy

quantume¢, , 1s very small compared to the thermal energy (at the usual conditions when the gas
temperature is not close to the absolute 0 K). For example, for Nitrogen one hase,, /k =2.9K ,
and for Oxygene¢,,/k =2.1K . Let the characteristic gas temperature beT,. We then define the
non- dimensional parameter y =¢,,/kT,. When y <<1 the spectrum contains a large number of

levels and is dense. It can be considered as a “near continuous” spectrum. Because it may be
difficult in some cases to compute the real spectrum with all the levels, an approximate approach
can be employed without loss of accuracy. It is not a strict approximation, but rather a

reasonable model of the spectrum. One considers the spectrum as continuous and applies some

step of the discretization £ preserving the degeneration rules. From physical consideration, one

should preserve the condition y*=¢ /kT_ <<1,orat least y*<1 . This condition signifies that

the energy threshold for the excitation of the rotations everywhere in the flow remains
sufficiently small, as it is for the real spectrum. One may therefore suppose that better

approximation is obtained with small y * | but larger value of y * leads to a fewer number of the
efficient levels and may save the computational effort. According to our test computations of the
SW problem for a wide range of Mach numbers from M= 2 to 25, the choice y*<0.25 gives
quite satisfactory results. Additionally, it can be noted from equation (33) that for Nitrogen the
probabilities of transitions from the levels i,/ to the levels &,/ don’t explicitly contain the

value of the rotational quantum. This gives an additional support for the proposed reduction in

the rotational levels.

2.3 Solution of Classical / Generalized Boltzmann Equation for a Mixture of
Monoatomic / Diatomic Gases

For solving the classical Boltzmann equation for a mixture of monoatomic gases or the
Generalized Boltzmann equation for a mixture of diatomic gases, these equations are formulated
in impulse space. These formulations are described below. It should be noted that these
formulations and solution methodology are completely new and have been developed for the first

time by us for 3D Generalized Boltzmann equation. Some previous work for an inert binary
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mixture of monoatomic gases for the solution of ID classical Boltzmann equation with
cylindrical symmetry in velocity space has been reported by Raines [34].
2.3.1 Mixture of Monoatomic Gases

The system of Boltzmann kinetic equations for a mixture of monoatomic gases containing

K components is usually written in the form

of, .o .
—+¢—=1,i=1..,K 37
ot é’ﬁx ' 37)

The collision integrals have the form

o 2z b,

L= [ [ ] f—-ff)gbabdeds,,i=1,...K,j=1...K (38)

x

Here b, is the maximum interaction distance and the following abbreviations have been used:

fi= %0, f; = fi(Ex0, f, = f(E.x0. f; = [,(E.x,1), whereg 5| & —&, |, bandgbeing
the impact parameters of the binary collision. The six components of the post collision velocities
vectors & and {,‘;. are defined by the three scalar conservation laws for the impulse, the energy
conservation law, and by the two impact parameters. For construction of the conservative
method of evaluation of the collision integrals for a gas mixture one needs to transform the
equations from velocity variables to the impulse variables defined asp, =m¢& , m. being the
molecular mass. Thus,
(&%) > (P, X,0), [(E, %0 [ (p,,X,1). (39)

From the condition of normalization on the particle density #, of a specie

If;dg = If,dp =n,, one obtains

fr=m’f (40)

In new impulse variables, the system of Boltzmann equations takes the form

IR ik 41
ot m o0x

The collision integrals take the form

=2
J

2z b,

[ [ f =1 1)gbdbdgdp,, g =Ip,/m,—p,/m,| (42)
0 0

&‘—;8
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Note that in the subsequent equations, asterisks in equations (41) and (42) will be omitted. The
integrals will be computed on a limited Cartesian impulse space (2.

The system (41) is solved on a uniform 3-dimensional grid p, with N, points in impulse

space Q). For brevity, the values of the collision integrals and distribution functions in the grid

nodes are marked as /,  and f, . The system (41) of K equations is transformed in the system of

N,K equations

&, Py I,
o i=1.L, K, y=1.,N g
~ s i 4 0 (43)

For evaluation of the integrals (42), one builds the 8-dimensional uniform integration grid
E= f, ’é:jv »b,,®, in impulse spaces QxQx2zxb with N nodes in such a way that impulse
nodes p,, and p,, belong to the gridp,, . The integration grid nodes for which the post-collision
impulses p'; or p', fall outside Q are excluded.

Consider a mixture component xat the grid nodey. Introduce a combination of Dirac ¢ -

functions and Kroneker symbols &

ni®

¢n,, = §n,i§(pi - pi_,) t é‘n‘jé‘(pj T pj,;‘) - 6,”6([) 'i_ P,-,,) + 5,,,5([) ‘j | p,,",) (44)

The collision operator for the » -th component at the node y can be written in the form

withés, , =1,if n=1,ands,, =0,if n#/.

2r b

1=%ZZ [ ] ;[¢”,,.(f.-'f,-' ~ 1, £,)g bdbdgdpdp, (45)

Q 0
The integral is evaluated as a sum at the grid=..
The conservative projection method for evaluation of (45) consists of replacing the two last & -
functions in (44) by decompositions with a splitting coefficient r, <1that has to be defined from
the energy conservation law. For each contribution to the integral sum, omitting the sub-index v,
one makes the decomposition
5(p,—p,,)=(1-r)5(p,,~p,, ) +rdé®,,.,~p.,)
s(p,-p,,)=(1-r)5p,,-p,)+réP,, . ~p,,) (46)
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In (46) the grid nodes p,, and p, are the nearest ones to the post collision vectors p, and

p'jcorrespondingly, whenp, .., p,, are some complimentary nearly located grid nodes.

Jopi-s
Hence, the contributions to the collision integral in two near grid points are replaced by the
weighted contributions in two pairs of the closest nodes.

The necessary condition to make this decomposition conservative is the fulfillment of the
impulse conservation law. The transformation of the kinetic equation to the impulse space and
the application of the uniform grid in Q provide this condition.

Let p,and p,be the impulses before collision, andp',, p'; are the post collision impulses. We
select the initial impulses at the grid nodes, therefore they can be presented as p, =kA
andp; =k,h, where k, and k, are integer vectors and /s the mesh of the impulse space.

The impulse conservation law gives

p.+P, =P *P, (47)

Let the grid node nearest to p', be p =k, and that nearest to p', bep,. Letp, =p'—Ah.
From (47) one getsp', = (k, +k, —ky )i — Ak, therefore p, =p, + Ah and one gets

P.,+P, =P, *P, (48)

In a similar way, if the nodesp,, and p,..are properly chosen, one can prove the equality

P,*+P, =Ps,+tP, (49)

From (48) and (49) it results that the decomposition (46) preserves the impulse conservation law,

The decomposition coefficient r can be defined from the energy conservation law.

Let the v -th energy contribution to the nodes p,and p; be

Py

2
Pi ]
—E =A (—t — 5 50
0= pta ) (50)
27V’ : P
where A, = N /./;8,b,, V being the volume of the Qspace. Then the contribution to the
viT0

nodesp;, p, is
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) 2
Py B
2m. 2m.

i J

Ey=4,( ) (5D

and the contribution to the nodesp,. , p, , is

P,,c

E A (p/1+s LN bl
2m,

— (52)

One should select the nodesp,,,, p,_,in such a way that the value E, lies between E andE,.

The coefficient r,can be defined from the energy conservation lawE, =(1-r,)E, +r,E, that

gives
rv=g°_g‘,05r,,31. (53)
ST

We have demonstrated that the transformation of the variables in the system of the Boltzmann
kinetic equations from velocity space to the impulse space makes it possible to build the
conservative projection method for the evaluation of the collision integrals.

2.3.2 Mixture of Diatomic Gases

The extension of the method described in section 3.3.1 to a mixture of diatomic gases described
by a system of Wang Chang-Uhlenbeck equations (WC-UE) or generalized Boltzmann equations
(GBE) can be done in an analogous manner. The GBE for a single component gas can be written
in the velocity space as

0 0 ¥
el

Pré

2x by,

[ [/, 1s02 - 1.1p)PE g pbdbdpde, (54)

00

Here indices a,f3, y,0 mark the energy levels, a)” =(9,95)1(4,9;) - 4, 1s the degeneration of
the energy level «, P”‘s is the probability of transition from levels a,fto the levels y&,
8.5 =&, =&, |- For rotational levels one hasg, =2a +1 in most cases. For vibrational levels, the

degeneration is absent andg, =1. We assume that the degenerations are the same for all

components of the mixture.

The generalization of (54) to the mixture of gases is quite evident:

a o 2x b,
f'a Sia s = I I J.(fi-sz.sa’fg—ﬁa /8P Sapbdbdod, , (35)

ot i BXd
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To build the conservative method of evaluation of the collision operator on the right hand side of
(55), the equation is transformed to the impulse space in a similar way as in the case of the

mixture of mono atomic gases. One gets

af;a Pia af;a s j
e Do oSS [ [t s0 ~ a9 L5 Sugbilbdpip, (56)
ot m; 0 i BXs = 0

S ey 3

The important feature of inelastic collisions is that the impulse conservation law holds in the
same form as given in equation (47) for the elastic collisions. As a consequence, the similar
decomposition of the additions in the collision operator can be made with the single difference
that the formulae (50-52) contain the energy AFE transferred between the translational and

internal degrees of freedom. One can exclude this value from consideration by choosing E,as

the kinetic energy after the collision

2 2
2m. 2m

i J
The formula (53) for the splitting coefficient 7, remains the same.
2.3.3 Special Case: Solution Methodology for a Binary Mixture of Diatomic Gases

In this section, we describe the solution method for a binary mixture of two diatomic gases
as a special case of general methodology described in section 2.3.2. This methodology has been
successfully coded to compute the hypersonic shock structure in an inert mixture of two gases as

shown in Figure 11. It should be noted that it is applicable to a reactive mixture as well. We

denote the distribution functions for the mixture components as f,“(p,x,?), where uppcr index

a marks the specie, and indexi marks the internal energy level. The generalized Boltzmann

kinetic equations for the two components of the mixture can be written as:

Y 2 pov g
o m, ' '

(58)

afiz +L£=R:2.2) +Ri(2.l)

ot m, Ox

where the collision operators are given by:
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0 27 by i

R™ =3 .[ .[ I(ﬂﬁ'wéf’—f,-'f})f’“"’u gybdbdedp,

Jk —x 0 0

© 25 by il

RO =3 [ [ [ ol - 127)Po g hdbd,

Jk —x 0 0

w0 27 by i

R =3 [ [ [ 770l - £1)P" ] g babdpdp,

Jkl —x 0 0

R‘_(z.l) = Z ]‘

Kl

2]:1’
0

These equations have been written in the impulse spacep =(p,,p,,p.) in order to apply the

K ‘ Kl
[(f2 fl@f - 12 1) P*; g, bdbdpdp,

0

conservative projection method described in section 2.3.2. The molecular masses should be
normalized by some characteristic mass, for example m, = 2mm, /(m, + m,), or simplym, =m, .

For masses close in values, the choice between two methods of normalizations is not important.

We consider two main cases:

Casel: The characteristic length of the flow is not large enough for the vibration levels to be
excited.
In this case the vibration levels are frozen and one may consider only the energy transfer

between translational and rotational levels (RT transfer). The collision operators
RM™ R™P R R™ include only purely elastic collisions and those with RT energy transfer.
For most gases, including Nitrogen and Oxygen, because of small value of the rotational energy

quantum all the collisions are not elastic. The characteristic time of the RT process is 4 to 5 times

larger than that for the elastic relaxation toward the local thermodynamic equilibrium. The main
problem consists in evaluation of collision operators R\, R** R R™" . When this is done,

the solution of the system (58) can be obtained by the application of the usual splitting procedure

described in section 3.1 at a time step 7 :
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Step (a)

i *
o m, 0Ox
2% bAd
d- P Y _,
ot m, 0x
Step (b)
ﬂ = RN 4 pUD (59b)
o '
i;zzR(z.z) + RN
6[ i i

At the second step the collision operators are evaluated with the functions marked by (*). It is

natural to apply at this step a sub-splitting in the form

I‘.
5.6 = RO (60a)
ot
I
Lo (60b)
t

and a similar procedure for the second equation of (59b). Here in (60a) the collision operator is
computed by the distribution function f;" and in (60b) by the distribution function .

A simple symmetric modification wherein the equation (60a) is solved atz/2, then (60b) is
solved at 7 , and finally (60a) is solved at z/2 can be applied for to increase the accuracy.

Case2: The characteristic length of the flow is so large that the vibration levels are also excited.
In this case one should take into account the huge difference in characteristic relaxation times for

RT and VT processes. Letr , =er, , and Q , denote the VT collision operator. Then the

rot *

inelastic parts of the corresponding collision operators can be estimated asQ,, = &R, £ <<1,

rot °

where the indices on the components and the energy levels have been omitted. The kinetic

equations then take the form (vibration level is marked by the index @ )

L R

ot e =Ri(,lc;”+Ri(.It;2)+ i(,lz;”'*' gl (61a)
m

t.a
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Yo, p Y

e =Ri(.i'2)+Ri(.f,'”+ .-(_fz'Z)’LQ-(z'” (61b)
: 1

La

In principle, all the collision operators can be evaluated as the GBE operators, but this task is

enormously difficult because the total number of levels now is equal toi , -«,, , where the

index indicates the numbers of the rotational and vibration levels. To make the problem solvable
for a mixture one may apply the two-level model approach for the RT collision operators
described below (without loss of accuracy), while the operators of VT exchange being evaluated
in the complete GBE form. In this case the total number of the energy levels will be only two

times the number of vibration levels thereby significantly reducing the computational effort.

2.4 Two Levels Kinetic Model for R-T Relaxation in a Diatomic Gas

The proposed model equation is aimed at simplifying the simulation of the rotational-
translational (RT) energy exchange in a gas. Such simplification is highly needed for complex
processes in which rotational excitation is accompanied by the vibration - translational (VT)

energy transfer. The model consists of 2 levels: the ground level with the rotational energy ¢, =0

and the excited level with some energye¢, >T,_ , where T is the maximum temperature in the

max * max

problem under consideration. We call the proposed model as “2LRT” model. The distribution

function is also composed of two parts, f and f, with corresponding populations of the levels
being n,andn,. The gas density is n=n, +n, and the rotational energy isE , =¢,n,. Let the
density of the gas at some point be , the kinetic energy £, , and the rotational energy E . One

can then determine the populations of the levels by the simple formulas n,=E /¢,

rot

andn, = n—n,. Maximal value of E , is given by E_ =nT__

therefore n, <nT__ /&,, and one

max

obtains 0O<mn,<n andn >0. HavingE,

in

one can determine the equilibrium

temperature 7, =2(E,, + E

rot

)/ 5n, and the equilibrium rotational

populationsn, , <nT, /&, n n—n These parameters determine the equilibrium

l.eq = 2.eq°

distribution functions f, ,,and f, ,, .
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For construction of the model equation we begin with the Wang Chang—Uhlenbeck

equation (WC-UE) for the considered 2 levels system ({i, j,k} =1,2).

o 10t="y. [P (ht - 118, bdbdpde, (62)

Sk
In equation (62), we replace the collision operator by an elastic collision operator (), and the
non-elastic operator Q. This replacement can not be strictly justified, as it is assumed in [35],

because for RT exchange the purely elastic collisions present an exception, and about all the
collisions are accompanied with the transfer of relatively small part of kinetic energy to/from the
rotational energy. On the other hand, because of small inelasticity of interactions the main
collision relaxation process is close to the case of elastic collisions, except that one should take
into account the inelastic transfer of the energy.

The elastic operator is the same as the Boltzmann collision integral for a two-component

gas mixture:

0.0 =2 [ (1"~ 118 pdbdpde, (63)

The non-elastic operator is taken in a relaxation form:
Q. =-v(f _-I;.M) (64)
It was found by a number of numerical experiments that the choice for f,, in equation (64) as

the Maxwellian distribution functions f;, is possible, but is not the best. The function f,

represents the elliptic distribution defined by the diagonal elements of the temperature tensor

P

fo=n, (%)”(Tf TOToY " exp(-me? | 26T, —me? | 2KT", —me? 1 26T), (65)

xtyytz

wherec, =&

X

~u,c. =& —-v,e,=¢ —w, and u,v,w are the components of the bulk velocity

vector. The components 7., of the temperature tensor are defined by self-similar transformation
of the initial components

Loy =T L) (66)
The use of the function given in cquation (65), instcad of thc Maxwellian, mcans that the

inclastic opcrator @, prescrves to somc extent the shape of the distribution function in the
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veloeity space. The RT relaxation frequency can be defined as a part of the relaxation

frequency v of the BGK model equation

v, =ayv (67)

The non-clastic operator contributes to the evolution of the velocity distribution function toward
the cquilibrium state. To take into account its influence one should diminish the clastic collision
operator by a factor(1-a,v,), 0<a, <l. Finally, the proposed R-T relaxation model contains

two operators, the inelastic operator given by equation (64) with the frequency given by the
equation (67), and the elastic operatorQ,,, =(1—aw,)0,,,. The cocfficients a,anda, can be
determined from comparisons of the solutions of the proposed model with solutions of the WC-U
equation. This model has been suceessfully applied to compute the hypersonic shoek structure in

Nitrogen with RT energy transfer as shown in Figures 12 and 13. There is good agreement

between the results of two levels RT model and those obtained with solution of complete GBE.
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3. RESULTS

Several milestoncs have been achieved which are deseribed below. The details are given in
References [18-21]. In what follows, some key computational results are presented.

1. A 3D Generalized Boltzmann Equation (GBE) solver has been developed for a Cartesian
mesh. The solver has been validated by computing the 1D shock strueture in nitrogen for
Rotational-Translational (R-T) relaxations and ecomparing the numerical results with the
cxperimental data for Mach numbers up to 15. Figurc 2 shows the comparison of computed
solution with the experimental data of Alsemeyer [31] for shock structure in nitrogen at Mach
10; excellent agreement is obtained [19]. Figures 3, 4 and 5 show the details of the computed
solutions for shock structure at M =15 [19]. Figure 3 shows the variation in flow properties over
the shock thickness, Figure 4 shows the rotational spectrum i.e. the variation in population
density of various rotational energy levels at different locations in the shoek wave, and Figure 5
shows the variation in rotational spectral populations in the shoek region and upstream and
downstream of the shock. Figures 4 and 5 arc very instructive in providing the information as to
which rotational energy levels contribute most to the shock strueture. The solver has been
excereised suceessfully for computing the 2D blunt body flows in nitrogen up to Mach 7 and for
Knudsen numbers ranging from 0.01 to 10 [20]. Figure 6 shows the flow field econtours for
density and rotational tempcraturc at Kn = 0.1 when the flow is in transitional regime. Figures 7
and 8 show the flow properties along the stagnation line. These results are in good agreement
with the DSMC calculations performed by Dr. Bondar in Professor Ivanov’s group in
Novosibirsk, Russia using the “SMILE” codc. The solver has also been exercised successfully
for computing 3D flow from a reetangular jet of nitrogen exiting in vacuum for RT relaxations.
Figures 9(a) — 9(c) show density, temperature and rotational temperature contours respectively in
z = 0 planc, and Figure 9(d) shows the varnation in density, temperature and rotational
temperature along the centerline of the 3D rectangular jet of nitrogen exiting in vacuum. The
issues of stability of the algorithm and the possibility of redueing the number of rotational levels
in the computations without compromising the accuracy of the solutions have also becn

rigorously addressed.
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Figure 2: Shock Wave Structure in Nitrogen for
M=10; n = computed density, n,experimental
density, T = total temp, Txx = translational temp,
Trot = rotational temp (normalized)
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Figure 4: Rotational Speetrum in SW in
Nitrogen at M =15
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Figure 3: Shock Wave Strueture in Nitrogen for

M =15, n = computed density, T = total temp,

Txx = Translational temp, Trot = rotational
temp (normalized)
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Figure 5: Variation of Spectral Population in
SW in Nitrogen at M=15
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Figure 8: Rotational Temperature along the Stagnation Line for Flow Past a Blunt Body, M =7
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(a) Density Contours in plane z=0 (b) Temperature Contours in plane z =0
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(e) Rotational Temperature Contours in z =0 (d) Variation in Properties along the Jet Centerline
Figure 9: 3D Supersonic Flow of a Rectangular N; Jet in Vacuum, M =2, T = 200K, dy = 2A, dz = 8%
2. A computational methodology has been developed to compute the hypersonie shoek
structure in diatomic gases including both the RT and Vibrational-Translational (V-T)
relaxations [18]. 1-D shock structure in nitrogen has been computed including both R-T and V-T
relaxations and has been validated by comparing the results with experimental data. The V-T
methodology is eurrently being extended to 3D in the 3D Boltzmann solver deseribed in the item

1 above. Figure 10 shows the variation in flow properties aeross the shoek at M =6 and M =10.

3%
n
T
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25

()M =6 (b)y M =10
Figure 10: SW in Nitrogen including both R-T and V-T Relaxations
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3. A computational methodology has becn developed to compute the hypersonic shock structure

in a non-reactive mixture of two diatomic gases. 1-D shock structure has been computcd in an inert

mixturc of two gases with R-T rclaxations. To accomplish this, the GBE is formulatcd and solved in

“impulse space” instcad of vclocity spacc. Figure 11 shows the shock structure in a binary mixture

of two gases of mass ratio my/m; = 2, and thc ratio of molecular diameters d,/d;=1.5. It should be

noted that it is easier to compute the shock structure in an inert mixture of oxygen and nitrogen

bccause the mass ratio is 1.143 and molecular diameter ratio is 1.0. The code can be casily applicd to

a mixture containing

(@) M =2

an arbitrary numbcr of specics.
14
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(b) M =5

Figure 11: SW in an Inert Mixture of Two Diatomic Gases

4. A new two-level kinctic modcl has been developed for computing the RT relaxations in a

diatomic gas and has bcen validated by comparing the results with thc solutions of completc

GBE [18].The model is about twenty times more efficient than the GBE in computing thc shock

structure. It should be noted that the model is different than the BGK model; it accounts for both

elastic and inelastic collisions. Figures 12 and 13 show the comparisons of flow propertics using

the two-level kinetic level and the complete GBE for hypersonic shock structure in nitrogen with

R-T relaxations at M = 2.4 and 10. The agreement betwcen the two solutions is excellent at

lowcr Mach number of 2.4 and is reasonablc at M =10. It should be noted that a similar model is

currently under development for V-T relaxations. These models can provide extremely cfficient
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solutions for gas flows of diatomic gases with both R-T and V-T relaxations with acceptable

aceuracy.
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Figure 12: Comparison of SW in Nitrogen with R-T Relaxations with Complete GBE and
Two- Level R-T Model (shown by *), M =2.4
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Figure 13: Comparison of SW in Nitrogen with R-T Relaxations with Complete GBE and

Two-Level R-T Model (shown by *), M =10.
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