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The work presented in this paper summarizes an effort to advance the current state of 
vehicle health reasoning practice as a fundamental element of an Integrated Vehicle Health 
Management (IVHM) approach. This effort seeks to integrate detection, diagnostic, and 
prognostic capabilities with a hierarchical diagnostic reasoning architecture into a single 
synergistic, embeddable commercial off-the-shelf (COTS) unit. Three avenues have been 
pursued to advance the capabilities of health reasoning in support of IVHM. First, the scope 
of the systems/subsystems being monitored by the underlying Health and Usage Monitoring 
System (HUMS) has been expanded. The HUMS is comprised of subsystem specific 
prognostic and health management (PHM) modules developed to process raw measured data 
and supply condition indicators (CI) targeting several flight critical areas from advanced 
aerospace applications: such as electro-mechanical actuators (EMA), engine performance, 
power train vibration, and structural impact detection and isolation. Second, a hierarchical, 
model-based reasoning approach has been developed to isolate and classify latent failure 
mode manifestations existing in the condition indicators output by the diagnostic and 
prognostic algorithms and utilize this information to assess the functional availability of the 
vehicle and its constituent subsystems. At the lowest level, the embedded reasoning seeks to 
classify latent failure mode indications from raw sensor data or condition indicators 
considered as evidence sources and isolate the root cause mechanism along with the 
accompanying severity. In addition, a confidence assessment is determined by considering 
the temporal element and how many times a particular piece of indicting evidence has 
repeated in the previous N evaluation iterations. The mid-level of the reasoning architecture 
is employed to determine the overall functional availability of the constituent subsystems, i.e. 
what are the implications of the detected failure modes on the capability of the subsystem? 
At the highest level of reasoning provided, the functional availability assessments, or 
condition indicators, from all underlying subsystems are utilized in conjunction with any 
applicable remaining useful life assessments to facilitate informed decisions about whether 
or not the requirements of scheduled flight operations can be fulfilled. Additionally, the 
temporal element is again exploited to determine the existence of a failure propagation path 
and isolate the most likely root cause failure mode. The final avenue is a demonstration on a 
COTS platform, built upon the PC-104 data bus architecture that provides a solid data 
acquisition and processing foundation. The work presented here highlights an end–to–end 
approach for addressing mission-critical subsystems across an advanced aerospace platform, 
from data acquisition to communication of intelligently reasoned root-cause failure mode 
and functional availability assessments made at the subsystem, system, and vehicle levels. 
Integration of this technology is believed to greatly support and enhance the efficacy of an 
IVHM system in managing the operation and maintenance of the host platform, facilitating 
proactive management, reducing operating costs, and improving operational availability. 
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I. Introduction 
Integrated Vehicle Health Management (IVHM) is the next evolutionary step in condition based asset 

management, endeavoring to build on the safety and readiness benefits obtained from legacy Health and Usage 
Monitoring Systems (HUMS) while also enhancing the scope of the systems covered beyond the traditional drive 
train monitoring. Over the years the evolution of data acquisition, processing, and storage capabilities has enabled 
continuous advancements in the practice of Prognostics and Health Management (PHM) and condition-based asset 
management approaches. For air vehicles, this has resulted in increased autonomous operation in flight as well as on 
the ground; reduced ground maintenance and repairs, facilitated by regular system health checks in flight; and 
improved safety and reliability via the continuously improving efficacy of the systems monitoring health1. IVHM is 
an integration and coordination of both the embedded aspects of health and usage monitoring and advanced 
reasoning onboard with the ground based supporting infrastructure all focused on mitigating the impact of detected 
component failures on mission readiness. 

As the name implies, the functional foundation of IVHM in its true sense is highly integrated into the vehicle, its 
constituent subsystems, and the supporting ground based infrastructure. In broad terms an IVHM system can be 
thought of as an enabling, decision support tool which provides autonomous, timely, and accurate assessments of a 
vehicle’s health and functional availability to operations personnel. The greater vision of the system seeks to include 
utilizing this information on the ground to facilitate decreasing operational costs and increasing operational 
readiness in order to provide significant life cycle benefits to aerospace programs. As such, a pragmatic view of an 
IVHM approach would be realized through two distinct areas of functionality: The first, an embedded aspect, 
facilitating the goal of on-board vehicle health monitoring as summarized by Ofsthun2; “to have the vehicle 
dynamically identify any degradation in functional performance that may affect safety or successful field operations 
as well as to identify the specific subsystems that require maintenance to restore full operational capability.” The 
knowledge gained from the embedded IVHM functionality must then be forwarded along to a ground-based aspect 
of the greater system to be used by operations personnel. The ground based system provides the interface between 
the onboard monitoring and reasoning functionality and operations, maintenance, and logistics personnel and 
infrastructure, facilitating informed, condition based asset management and support. The scope of this paper shall 
remain focused on the embedded implementation of the IVHM architecture in aerospace applications.   

The development of an IVHM system to monitor advanced aerospace platforms is predicated upon expert 
knowledge of the vehicle and the subsystems called upon for its operation.   Engineers tasked with development of 
an IVHM system require a detailed understanding of the critical subsystems, their dominant failure mechanisms, and 
the characteristics of failure interaction and propagation. Pareto analysis of these subsystems, in conjunction with 
relevant Failure Modes and Effects Analysis (FMECA) provide a solid starting point. Overall system safety and 
operationally critical subsystems are given a high priority when considering which subsystems to target. FMECAs 
of these subsystems provide insight into the physical effects of dominant failure modes and into how to isolate these 
manifestations as evidence to indict the particular fault. The developer weighs this information along with the ‘real-
world’ constraints of available data acquisition and processing capabilities to formulate the cost/benefit design 
choices and model the embedded aspect of the IVHM system.  Developing a model of the IVHM system prior to 
installation provides two distinct benefits: First, the model provides the functional blueprint to develop the Health 
and Usage Monitoring System (HUMS). The model is then exercised to ensure a satisfactory level of health 
monitoring coverage is provided by the system prior to its development in software and implementation in hardware. 
Second, the model provides the functional architecture which is exploited by the embedded reasoner to isolate root 
cause failure modes and remaining functionality available in the presence of a detected failure. Figure 1 provides an 
overview of the process described. The feedback loop outlines an updating process wherein certain parameters 
within the PHM model can be modified based on user feedback to improve the results obtained from the reasoner.   
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Figure 1. IVHM Development Process
II. PHM MODEL 
aper begins by addressing model development of the PHM functionality required to provide the desired 
ealth monitoring coverage to the targeted vehicle. The model of the underlying PHM system provides the 
n for both functional areas of the Embedded IVHM system presented in Figure 1, the Enhanced HUMS 
edded Reasoning: First, guiding development and optimization of the enhanced HUMS for the vehicle, 
 LRU coverage, sensor selection, and algorithm development. Second, the information characterizing the 
f various evidence sources in indicting their respective failure modes and functional hierarchy information 
y the subsequent reasoning processes also resides in the PHM system’s model.  
icant working knowledge of the vehicle and its subsystems is necessary to effectively design the PHM 
r the platform. The suggested approach would employ a Pareto analysis of the dominant subsystem failures 
ed by a vehicle, followed by a Failure Modes Effects and Criticality Analysis, FMECA, of the subsystems 
g the Pareto. At this point safety and mission criticality judgments are combined with reachability (the 
 to monitor, measure, and assess) considerations to identify which failure mechanisms the final PHM 
lity will target. Developers can then tailor subsystem specific approaches when developing the PHM 
employed in the HUMS, gaining maximum benefit from use of a minimum set of sensors. Modeling the 
 of a PHM approach, including sensors, evidence sources, failure modes, and functional dependencies, 
velopers to ensure adequate coverage of the underlying subsystem’s failure modes and gain maximum 
f the onboard aspect of the IVHM system.  

thcoming section outlines the process employed by the reasoning engine in ranking failure modes based on 
ation contained in the PHM system model. The model-based aspect of the reasoning process comes from 

ent understanding IVHM developers must have of the relationships between the targeted failure modes of 
nd the evidence sources which are called upon to indict them. In addition to this information, knowledge is 
f the functional dependencies which exist between line replaceable components, LRCs, and subsystems, as 
etween subsystems and the vehicle. To this end, a model is required of the PHM system developed to 
he health state of the underlying system. The functional awareness is less important for the lower level 
, but is critical to reasoning at the higher levels.  
HM Design™ modeling environment has been utilized for model development. This design tool offers 

rs two parallel environments to graphically model the functionality of a health management system: the 
al Model and the Health Management Design. The Functional Model palette provides an environment 
e functional relationships between components, assemblies, and subsystems comprising a system can be 
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organized and defined. The Health Management Design palette offers a medium to visualize and store failure 
modes, effects, health management techniques, sensors, and the relationships between these elements.  

 Developers begin with the top functional level of the vehicle. This level consists of the main functional areas 
comprising the vehicle for which PHM coverage is desired. The Functional Model palette is populated with blocks 
or Areas which represent systems, subsystems, assemblies or components. A cascading development process is 
employed to break down the high-level systems until sufficient fidelity is attained such that all remaining 
functionality is representative of either a component or a LRC. The blocks are linked by color-coded lines 
representing functional interaction or dependencies; green lines represent fluid/flow connections, red lines represent 
mechanical connections and blue lines signify the electrical connections. Figure 2 illustrates the coarse, high-level 

system model containing the functionality represented in this 
design program. Notice that a block (Area) has been defined 
in the model corresponding to each of the targeted 
subsystems, propulsion, flight control actuators, drive train 
and structural monitoring. Each Area represents hierarchical 
subsystems, assemblies, and components of a physical 
system in the functional model. A red line between the 
Propulsion block and the Drive Train represents a 
mechanical link between the engine and the drive train.  

A closer inspection of the ‘EMA’ Area, Figure 3, reveals 
five constituent subsystems making up the Functional Model 
of the electro-mechanical actuator subsystem. Similar high-
level subsystem diagrams are available for each of the 
subsystems shown in Figure 2. The cascading development 
process breaks down the functionality employed in the 
subsystems until sufficient fidelity is reached. At that point, 
any of the following conditions may exist: the remaining 
components can no longer be divided, only line-replaceable-

units exist, or it is no longer practical to monitor the operation of the subsystem at any lower levels. The tree 
structure in the pane on the right of Figure 2 reinforces the hierarchical structure of the Areas defined in the model 
and also facilitates easy navigation among the different functional levels.  

In conjunction with the Functional Model development 
environment, PHM Design™ also offers developers the 
Health Management Design palette on which to develop a 
graphical representation of the desired PHM system. 
Information typically assembled for a FMECA is combined 
with information regarding the PHM system developer’s 
capability to detect emerging faults, i.e. sensors and 
detection and diagnostic algorithms. Fault/Failure Modes 
(red ovals) for the respective subsystems and components 
are mapped along with Symptoms/Effects (yellow ovals), 
available sensors (eyeball), health assessment algorithms 
(‘graph’ icon), BIT/discrete health indications (traffic 
lights), and maintenance actions (multi-colored rectangles) 
to facilitate development of a comprehensive health 
management system. Failure modes are introduced for all of 
the targeted subsystems and replaceable units.  Figure 4 
provides an example implementation of some information 
contained in an actuator FMECA. Failure modes (red ovals) 
generally manifest themselves in some manner of Symptom/Ef
connectivity.  The symptom in turn is monitored by a diagnosti
represented by the connection between these elements. Finally,
and as such is connected to a sensor (eyeball).  

F
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In the diagram, the vertical 
“IN” and “OUT” mux bars 
represent connections coming 
from and going to other parts of 
the system.  For example, one of 
the failure modes coming into 
the EMA motor is from the acme 
configuration element of the 
EMA. If the nut seizes to the 
screw it would produce the same 
symptom/effect as a motor 
bearing seizure. 

PHM Design™ offers an 
efficient means of graphically 
representing the targeted systems 
and their respective PHM 

capabilities. The process of first building up the functional relationship and then augmenting this with the PHM 
capabilities available at each successive level of model fidelity provides a hierarchical approach on which to develop 
the reasoning logic. This graphical representation serves as an intuitive means of formulating and visualizing the 
framework which must be employed in the Embedded Reasoner System to determine root-cause failure modes at the 
vehicle level. 

 
Figure 4. Health Management Design Example of an EMA Motor 

III. Enhanced Health and Usage Monitoring System 
The overall function of IVHM is that of a decision support tool providing invaluable real-time health state and 

functional availability information in order to facilitate optimal asset management. To achieve this goal the IVHM 
system requires its own source of information regarding the health state of safety and mission critical systems on 
which to base its assessments; this responsibility is incumbent upon the enhanced Health and Usage Monitoring 
System (HUMS). The HUMS is comprised of multiple subsystem specific PHM modules responsible for processing 
measured data to obtain Condition Indicators (CI) which capture and reflect the current health state of the 
underlying line replaceable units (LRU) comprising the various functional levels. The HUMS achieves this with the 
support of an embeddable COTS data acquisition and processing platform capable of supporting high data 
throughput rates necessary to support advanced signal processing techniques employed by the subsystem specific 
diagnostic modules. The enhanced HUMS discussed here provides the foundation of health information, captured in 
the diagnostic features or condition indicators, necessary to support IVHM for the vehicle. Acting on the stream of 
data coming real-time from sensors and other data sources employed, the HUMS brings the health monitoring 
coverage, designed via the process laid out above, to fruition on the vehicle.  

The enhanced HUMS is comprised of subsystem specific modules. The system discussed here incorporates 
modules targeting structural impacts, drive train, engine performance and vibration, and electromechanical actuators 
used to control various flight and operational duties. The modules process, either raw analog data acquired from 
sensors, or digital data obtained from other sources.  Output results delivered from the on-board processing provide 
CI to the subsequent reasoning process. These condition indicators correlate directly to evidence sources upon which 
to classify targeted operational anomalies within the vehicle’s components and subsystems. The approaches 
employed in the diagnostic modules can be categorized into three general types based on the type of algorithm 
supplying them: Built-In Test (BIT), Diagnostic, and Prognostic evidence.  

A BIT can be thought of as an intelligent indicator light, indicating the presence or absence of an anomaly in a 
given system or component. Although a BIT is intelligently designed, it can be influenced by system noise leading 
to false alarms and intermittent indications. A Diagnostic type algorithm is a more informative type of evidence 
source, often referred to as gray-scale evidence, due to its ability to provide varying levels of anomaly indication. A 
Diagnostic can provide confidence that a fault exists, severity of the fault, or a condition index (health value) of a 
component or system. Still, Diagnostics often do not provide a clear correlation with the root cause failure mode that 
has occurred, especially if the failure has occurred at an upstream system or component. In those cases, higher level 
reasoning is required. At the more advanced level, Prognostics have the ability to estimate when a fault will become 
a functional failure or reach a critical severity level. Prognostics offer the advantage of providing advance warning, 
by predicting remaining useful life (RUL) or time to failure (TTF), before the situation becomes critical, so that 
serious consequences can be averted or maintenance can be scheduled appropriately. 
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The following sections outline the approaches adopted by the various modules to provide timely condition 
indicators categorizing the health state of key mission critical subsystems. 

A. Structural Impact Monitoring 
One of the areas of interest in implementing comprehensive vehicle health monitoring functionality includes the 

detection and localization of impact events on key structural and flight control surfaces. These impacts may cause 
damage that ultimately affects the vehicle’s ability to complete the required mission. In the arena of unmanned 
flight, without a pilot on board to make critical decisions, autonomous assessment of damage becomes more 
important to operational success.  A technique has been developed and implemented that can assess the location and 
damage level resulting from impacts on structural components that occur during flight3.  

The embeddable structural health monitoring software module accepts raw vibration signals from strategically 
placed accelerometers on a structural panel. The continuous monitoring procedure looks for sudden increases in 
vibration levels. If an impact is suspected to have occurred, further processing takes place to determine the location 
and estimate the severity of the impact. The analysis is based on using the relative time of arrival of the wave energy 
propagating away from the point of impact to the sensor locations. Applying a combination of advanced signal 
processing techniques and lookup tables enhances the accuracy.  

A potential extension of this technology is to perform fatigue analysis given the assessed structural damage level. 
This would provide a means to calculate the amount of time the craft can remain airborne before a damage induced 
crack grows to a critical, flight-ending size. The approach is based on crack growth formulations and fatigue 
calculations; implementation requires knowledge of static and cyclic loading profiles on the structural member 
under consideration.   

B. Drive Train – Bearings 
Rolling element bearings form an integral part of many machinery applications. Failure of a bearing can be 

critical, especially in an airborne vehicle. Faults in bearings within the drive train of a vehicle can be detected and 
diagnosed based on changes in the measured vibration near these critical components. The enhanced HUMS 
employs an embeddable software module that performs bearing diagnostics using data from one or more COTS 
vibration sensors. 
The bearing module performs both conventional vibration analysis as well as specially developed procedures. In the 
time domain, statistical vibration features are calculated that can be trended to indicate the presence of a drive train 
fault. These include RMS, kurtosis, skewness, and other commonly used statistical measures. In addition to time 
domain feature extraction, the vibration signal is transformed to the frequency domain where further analysis takes 
place. In the frequency domain, the diagnostic module examines the energy at particular frequencies to extract 
features that can be used to isolate faults to a particular bearing in the drive train. The primary bearing frequencies of 
interest correspond to the bearing’s characteristic fault frequencies, namely the Ball Spin Frequency (BSF), Ball 
Defect Frequency (BDF), Ball Pass Frequency Inner Race (BPFI), Ball Pass Frequency Outer Race (BPFO), and the 
Fundamental Train Frequency (FTF).4 In addition to this conventional analysis, the raw vibration signal is also 
processed using an ImpactEnergy™ routine. ImpactEnergy™ is a customizable, COTS sensor compatible, 
amplitude demodulation-based procedure for detecting high frequency excitations induced by periodic impulses 
from bearing defects. This signal processing method allows the spectrum magnitudes at key frequencies to be more 
easily extracted from noisy signals. The features computed from the ImpactEnergy™ signal serve as early warning 
indicators for impending failure, and often provide advance warning before conventional vibration features would 
respond.4 In general, shifts in the conventional and ImpactEnergy™ features when trended over time can be 
indications of degrading bearing health. These bearing diagnostic techniques have been successfully applied to a 
number of machinery test rig applications and in engine test cells5. 

Prognostics based on statistical life distributions for specific bearing geometry can provide an estimate of the 
remaining time a bearing can be expected to perform its required function. The expected life is a function of load 
and speed, but within the software this prediction can be tempered by evidence of the existence of a fault and 
incorporating bearing fatigue calculations.  

C. Drive Train – Gearboxes 
Gears are commonly found in many mechanical systems and are a critical element of power transmission. A 

failure in the drive train gearing can result in a serious compromise in operation, potentially leading to catastrophic 
failure. The drive train module applies vibration based techniques to provide coverage of critical gear and shaft 
failure modes. Some of the potential faults that can be detected include gear tooth cracking and fracture, and tooth 
surface pitting. 
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Vibration analysis techniques for identifying gear faults are founded on basic engineering principles. Gear faults 
generate events in the vibration signature that are synchronous with the rotation speed of the gear. Gear fault 
detection is best performed utilizing Time Synchronous Averaging (TSA) to reduce the effects of random noise and 
emphasize vibrations caused by the gearset under consideration. Although the extraction of gear fault detection and 
tracking features from a vibration signal is well understood and documented in literature, this procedure has been 
enhanced and customized for this application. The process is performed on vibration data collected from a sensor 
located near a critical gearset, from which trendable features are computed. A technique has developed to perform 
the analysis without requiring a synchronized tachometer signal, which saves computing resources.6 

 Prognostics based on crack growth models for specific gear geometry can provide an estimate of the remaining 
time before a defect reaches a critical size. This approach depends on extensive finite element modeling performed 
in advance. These results are cross referenced based on the estimated crack size currently present in the gear.  

D. Drive Train – Shafts 
In addition to allowing the computation of gear diagnostic features, the TSA signal processing is leveraged to 

provide information about the condition of shafts in the drive train. Vibration features are extracted from the signal 
that indicate shaft faults such as cracking and unbalance. This portion of the analysis looks for increases in the 
magnitudes of the TSA vibration spectrum at shaft rotating frequency and higher orders.  

E. Engine Performance 
Advanced vehicles often have many monitored engine parameters utilized in the electronic control of the engine 

that may be made available for subsequent analysis by a health monitoring system. Engine performance monitoring 
is based on exploiting the availability of these monitored gas path parameters, including spool speeds, temperatures, 
pressures, and flow rates at key points in the engine. Degradations in the engine’s performance will commonly 
manifest themselves as gradual shifts away from expected values corresponding to the current operating state of the 
engine, as illustrated in Error! Reference source not found. and Figure 6. The embedded engine performance 
monitoring module implements a model based approach based upon detecting and classifying these shifts as they 
occur. This technology assesses signal health and system performance by employing a combination of signal 
processing, statistics, and data-driven modeling techniques. The process is illustrated in Figure 7. Measured engine 
parameter data are input to the model, which provides expected values as output. These expected values are then 
evaluated relative to the original measured data to determine the residual value. These residual values used together 

form a pattern which can then compared to the characteristic degradations like those depicted in Error! Reference 
source not found. and Figure 6. Subsequent reasoning can then be applied to isolate the source of the performance 
degradation to a specific section of the engine. The techniques described here have been implemented successfully 
in gas turbine engine test cells78.  

Figure 5. Effects of High Pressure Compressor
Degradation on Engine Parameters7 

Figure 6. Effects of Low Pressure Compressor 
Degradation on Engine Parameters7 
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Consideration of mechanical vibrations in the engine’s moving parts augments the engine performance 
evaluation to form a more complete propulsion monitoring system. Techniques described elsewhere in this paper 
can be applied to drive train components specific to the engine such as rolling element bearings. In addition, engine 
orders (1x, 2x, and higher harmonics of running speed) can be tracked to provide indications of a variety of faults  

Prognostics based on fatigue accumulation models for specific components and engine configurations can 
provide an estimate of the remaining life before maintenance or overhaul is required. These models are a function of 
specific usage, mission profiles, speeds and loads, and can be adjusted by diagnostic indicators of the existence of 
faults. A much simpler approach can be implemented which tracks Total Accumulated Cycles (TAC) to provide a 
rudimentary approach to assessing engine life consumption.  This approach, applied to gas turbines, monitors very 
generalized engine speed movements to gauge the severity of thermal transients and assess usage accumulation. 

Figure 7. Model Based Vehicle-level Anomaly Detection, Diagnostics, and Trending 

F. Actuators 
Linear actuators are used extensively in aircraft for everything from manipulation of flight control surfaces to 

weapon release systems. One commonly applied type of actuator is the electro-mechanical actuator (EMA), which 
uses an electric motor and gearset to produce linear or rotary motion. EMAs have some advantages over equivalent 
hydraulic actuators; less weight, size, and complexity, characteristics that allow them to gain acceptance for 
aerospace applications.  

The EMA module implemented in the HUMS employs two technically independent approaches to yield an 
overall assessment of EMA health. A model based approach utilizing only command and response information from 
the EMA’s controller employs a core group of diagnostic features, including local gear stiffness, frictional damping, 
and torque constant to determine EMA system health. In this implementation the model based approach illustrated in 
Figure 7 utilizes command signals as input and exercises a model of the actuator system varying the values for the 
three diagnostic features until a suitable match is found, measured by a minimization of the residual between the 
modeled response and the measured response. The set of the three diagnostic features then serve as the axes of a 
three dimensional failure space wherein different failure modes propagate through the failure space on different, 
unique paths. A second technique utilizes vibration data collected from an accelerometer to monitor the 
characteristics of the rolling elements in the actuator. This approach utilizes traditional vibration based features to 
determine overall actuator health. Results from the two approaches are then evaluated by the low level reasoning to 
assess EMA health. 
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IV. VEHICLE AND SUB-SYSTEM LEVEL REASONING 
One of the key aspects distinguishing an IVHM approach from a basic HUMS is an enhanced reasoning 

capability. Reasoning, within the IVHM system, processes Condition Indicators (CI) obtained from the subsystem 
specific HUM modules to determine the current health state of the vehicle and its constituent subsystems. This goes 
beyond the basic diagnoses of observed condition indicators by attempting to quantify the remaining functionality, 
which has been reduced by the indicted failure mode(s). The reasoning engine employs a hierarchical architecture to 
not only identify failure modes in line replaceable components (LRC), but also determine the functional impact in 
terms of remaining functional / operational availability at the subsystem and vehicle levels. When analyses result in 
an ambiguous outcome the reasoner attempts to isolate the root cause or at least reduce the ambiguity group. The 
reasoner also attempts to provide estimates of the severity of the underlying failure and the remaining useful life of 
the LRC where prognostic capabilities are available. The reasoned results output by the IVHM system provide real-
time health and remaining functionality information useful to operations personnel for decision support. 

At the lowest level, diagnostic reasoning seeks to classify latent failure mode indications from raw sensor data or 
diagnostic feature data processed by the subsystem specific modules within the HUMS. The mid-level of the 
reasoning architecture is employed to determine the overall functional availability of the constituent subsystems, i.e. 
what are the implications of the detected failure modes on the functional availability of the subsystem? The vehicle 
or system-level reasoning, the highest level of on-board reasoning, share this task of determining and quantifying 
functional availability, but from a vehicle or system-wide perspective. At this highest level, the functional 
availability assessments, or condition indicators, from all underlying subsystems are utilized to determine the 
capability of the vehicle to continue operations as expected or needed.   

A. Low-level Reasoning 
Typically, PHM approaches implemented in intelligent health and usage monitoring modules are designed to 

target from one to numerous failure modes within a specific LRC, assembly, or subsystem, often utilizing a common 
set of diagnostic features. Low-level reasoning seeks to sort out the evidence provided by these diagnostic features 
and identify the failure mode or modes most likely present. Two approaches are employed in achieving this 
objective: First, an abductive rule-based reasoning approach where qualitative and quantitative knowledge of the 
manner in which the failure modes manifest themselves in the diagnostic features is applied to correlate the observed 
features to the most likely diagnosis. This knowledge can be obtained either during the design process, from similar 
systems already fielded, or from a FMECA. The second method applies an alternative, model-based reasoning 
approach building upon the effectiveness with which the knowledge applied in the first method indicts the correct 
failure mode. The model-based approach applies parameters, further explained below,, which characterize the 
efficacy of evidence sources, over time, to accurately indict a given failure mode, to rank the likelihood of a given 
failure being present given the current observation of the diagnostic features. This second reasoning scheme is only 
employed when ambiguous or conflicting results are obtained from the first approach.  

 
1. Rule-based Reasoning 

Abductive, rule-based reasoning calls upon the diagnostic features for the low-level reasoning functionality. 
Reasoning at this level is called upon to interpret diagnostic features; map the feature values to known failure 
modes; and report their corresponding severity and confidence where possible. In general terms, abductive reasoning 
maps from a set of observations to a hypothesis which best explains or accounts for the observations9.  Numerous 
approaches can be employed to accomplish rule based reasoning. Some of the more common approached include 
application of hard threshold values to features to determine excessively high or low levels. Artificial intelligence 
approaches are also well suited to the reasoning task at this level. Neural networks and fuzzy inference systems 
determine diagnoses based on the set of input feature data presented to the classification system. Neural networks 
generally require a training step to map input data to failure modes, severity, and confidence. Fuzzy Inference 
Systems (FIS) require development of an expert system rulebase to interpret the soft input membership values. The 
concept of soft membership values, employed in FIS, allows for shades of gray to interpret the feature values 
relative to black and white absolute of a threshold-based classification technique. Another low-level reasoning 
approach, referred to as FORM (First Order Regression Method), classifies failure modes based on an N-
dimensional feature space. Here, each of the diagnostic features output from a specific diagnostic module represent 
an axes of this N-dimensional feature space. Prior knowledge is required of the characteristic degradation paths 
followed by targeted failure modes as they mature and propagate through the feature space. The current set of 
diagnostic features represents a location in this feature space. A diagnostic assessment can be made by conducting a 
proximal analysis of the current observation relative to the known failure propagation paths.  
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Each of the approaches highlighted above yields results pertaining to a specific set of known failure modes. 
However, the potential remains for an ambiguous assessment from the various reasoned results. In this eventuality, 
an additional step is required to reduce the size of the ambiguity group and rank the remaining entries from most to 
least likely. 

 
2. Model-Based Reasoning 

The reasoning engine employs a second approach in the event that an ambiguity group results from the initial 
low-level reasoning process. Model based reasoning derives its name from its dependence upon a model of the PHM 
system developed for the monitored system(s), such as the models discussed above. The PHM model is loaded onto 
the hardware during IVHM system initialization and all model querying events take place with that embedded copy 
of the model. The premise of the approach is to assign each plausible failure mode a score, or rank, by considering 
the historical efficacy of a piece of evidence in indicting the particular failure. Evidence may originate from sources 
such as; Built-In-Test (BIT), diagnostic algorithms, prognostic algorithms, usage information, etc., monitoring the 
particular failure.  

A proprietary model-based reasoning tool called ReasonPro™ has been utilized at the core of the reasoning 
engine. At the low level of the architecture, this reasoning technology is employed to rank the possible failure modes 
from an ambiguity group by analyzing various evidence sources. The premise of ReasonPro™ is to assign each 
ambiguous failure mode a score, or rank, by considering the historical efficacy of all the active evidence sources, 
Built-In-Test (BIT), diagnostic algorithms, prognostic algorithms, usage information, etc., monitoring the particular 
failure. The efficacy or performance over time of 
the evidence sources is summarized in two 
parameters, Real Fault Probabilities and False 
Alarm Probabilities. The probability of a fault 
existing given that an evidence source has 
detected it corresponds to the Real Fault 
Probability (RFP); the ideal monitor (a.k.a 
diagnostic feature, diagnostic indicator, health 
indicator, evidence source) has an RFP of one. 
The False Alarm Probability (FAP) is related to 
the likelihood of an evidence source activating 
indicating the fault, given the absence of a fault. 
The ideal monitor has an FAP of zero. As an 
example, in Figure 8, we know that a diagnostic alarm, an inspection, and a sensor value reaching a threshold are all 
indicators of failure mode one. In this case, the diagnostic and inspection yield a positive result and are thus referred 
to as Positive Evidence, but the sensor value hasn’t reached the threshold value and is therefore termed Negative 
Evidence. Each of these evidence sources has an associated RFP and FAP which get applied, see Eq. (1), to 
determine the failure mode’s score relative to indictment.  

ReasonPro™ also capitalizes on the notion that the absence of anticipated information in the presence of a fault 
(negative evidence) can also lend insight into the true health state. The core ranking equation, shown in Eq. (1), 
mitigates the indictment of a failure mode by the potential of the monitor going active without the presence of a fault 
and the inactive (negative) evidence weighted by how likely the monitor is to detect a true fault (Real Fault 
Probability). These values of False Alarm Probability and Real Fault Probability between each evidence and failure 
mode are updated based on historical information and can be updated as more data are collected.  

 
 
Figure 8. Model Based Reasoning Approach 
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3. Evidence Preprocessing 
The primary objective held close by IVHM system developers is to make every effort to minimize the possibility 

of the system issuing false alarms, positive indications of a nonexistent fault. This directive is driven by an industry-
wide desire to reduce support costs associated with system operation. In addition to reduced mission readiness, the 
net result of issuing false alarms is a maintenance and logistics infrastructure that must sustain substantial overhead 
in order to support replacement of equipment that may not be faulty. To this end, a preprocessing step has been 
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added to the reasoning architecture which modifies the incoming CI values prior to evaluation by the reasoner. The 
preprocessing step has two fundamental assumptions at its core. First, components don’t get healthy by themselves. 
A faulted LRU will remain faulted until some maintenance or repair action is taken. There are perceived exceptions 
to this assumption, as in the case of intermittent failures. Many intermittent failure modes are likely caused by a 
temporary condition which exists external to the scope of the diagnostic approaches developed to monitor the 
suspect LRU. These external influences, if prevalent enough to warrant the cost, are a prime target for improvement 
of the employed PHM approach. The concept of intermittence leads us to the second assumption: Diagnostic 
evidence sources have a noise floor associated with normal operation which must be accounted for by the reasoning 
approach. In the case of gray scale evidence, attention is required only when the values progress beyond some pre-
determined level of expectation. As such, 
prior knowledge is required to determine 
the appropriate level of significance and 
consideration must be given to an inherent 
amount of variability as a particular CI 
transcends this level. Considering BIT 
evidence sources, their underlying test is 
also often built upon some measured value 
which will have an associated level of 
measurements noise, again manifesting in 
variability as the measured value crosses 
the initiating level.  

An approach has been implemented 
which windows the evidence values over a 
short duration of time prior to processing.  
A weighted average is then calculated from 
the data as shown in Eq. (2). The weighting 
process serves to introduce a linear 
forgetting factor such that the latest values 
are given a greater significance than earlier 
values. Figure 9 has been included to 
illustrate the forgetting process. The 
contributions made by the initial values are pale in significance relative to the most recent values. The weighting 
values linearly decrease from one to 1/(length of the window) in  decrements of 1/(length of the window). Utilizing 
a weighted average in alternative to the original CI values as they appear from the HUMS modules serves to 
dampen, smooth, any inherent variability and help to insure that values evaluated by the reasoner are truly 
significant and not just a peak value from a measurement oscillation in the noise floor.  
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Figure 9. Forgetting Factor Applied to Evidence Sources 
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4. Severity Assessments 
Detection of an emerging failure mechanism from within the condition indicators is only a portion of the 

information required to optimally manage vehicle health. Quantifying the severity level of the indicted fault is of 
equal importance. In lieu of an accurate prognostic estimate of remaining useful life, severity provides the most 
meaningful means of determining how big of a concern an indicted failure mode needs to be. A severe fault likely 
warrants immediate action, whereas an incipient fault may require little more than being placed on a ‘watch’ list.  
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In general, condition indicators have varying capabilities with regard to assessment of severity levels. BIT 
evidence offers little in support of determining severity due to their Boolean nature. Gray scale CIs provide the best 
chance of directly correlating fault severity to their inherent range of output values. In addition, these varying 
capabilities, or sensitivities, are not always well defined with solid discernable states. An ideal CI would exhibit a 
well behaved, linear correlation between amplitude and severity level, once out of the noise floor. Realistic 
indicators have varying degrees of correlation over their range of output. A methodology is required which 
facilitates the fusion of various CI values with differing correlation characteristics to level of severity. 

A Fuzzy Inference System (FIS) provides an intuitive methodology to handle this shortcoming and combine and 
fuse evidence from numerous sources into one meaningful assessment. In effect, the methodology provides a 
flexible means of mapping the input space (diagnostic features) to the output space (known failure mode severity). 
Fuzzy inference systems utilize ‘membership functions’ to facilitate this mapping process. A Membership Function 
(MF) is a curve that defines how each point in the input space—the range of values of the diagnostic feature—is 
mapped to a membership value (or degree of membership) between 0 and 1. The input space is sometimes referred 
to as the universe of discourse. Through thoughtful consideration of the characteristics of the evidence source in its 
ability to implicate a severity, membership functions can be constructed which accurately capture and reflect this 
knowledge. The membership values are then combined in the mapping process using logic operators like AND, OR, 
and NOT to determine the implications of the inputs on the output membership functions. The final step determines 
an output ‘hard value’ reflecting the severity rating of the indicted failure mode. 

The fuzzy inference methodology utilizes the pre-processed diagnostic features as the “hard input” values. The 
fuzzy logic system then “fuzzifies” the hard input by evaluating the degree of membership each hard input has in 
each of the fuzzy sets defined by the membership function, Low, Medium, and High in the example (See Figure 10). 
Fuzzy inputs are then evaluated using the rules established in the rule base. The format of the rules comprising the 
rule base associated with the evidence sources and failure modes follows a familiar structure—IF antecedent THEN 
consequent. Developing a system of expert rules would prove a daunting and impractical task and so a default 
assumption will be implemented that a direct correlation exists between the modes of the fuzzy sets capturing the 
input and the correlated output domains. That is to say, if the input is low then the output is low, etc. Provisions may 
be made for accommodating exceptions to this assumption.  
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A fundamental example of the process is 
provided below in Figure 10. The input and 
output membership functions are displayed 
at the top. These are simple examples of 
membership functions to be used when an 
evidence source exhibits a linear correlation 
between the magnitude of the hard input 
(diagnostic feature) and the severity level of 
the particular failure mode. The next rows 
depict the fuzzification of the input values 
and the corresponding implication on the 
output membership function. Two hard input 
values are provided, 5.1 and 7.4. These 
values would be obtained from a diagnostic 
algorithm. Finally the plot on the bottom left 
illustrates the aggregate output fuzzy set 
from which the final hard value is 
determined. Several options are available to 
defuzzify the final value; the geometric 
centroid is one method commonly used. 
Intuitively, the centroid method can be 
viewed as a "compromise" among the output 
actions recommended by different rules. 

The FIS approach is desirable due to its 
scalability and flexibility. A library of 
membership functions is available, 
representative of characteristics typically 
observed in a diagnostic feature’s response 
to failure mode severity. The reasoning 
algorithm can then call upon the most 
representative MF when evaluating 
particular diagnostic features relative to the 
targeted failure modes. The application of 
the IF—THEN rules and aggregation is 
commutative so the order in which the 
evidence sources are evaluated does not 
matter. Finally, a weighting can be applied 
to the evidence sources and rules in 
instances where the developer has more 
confidence in some diagnostic features than 
in others. 

B. Mid-level Reasoning 
Building on the health state information 

provided by the low-level reasoning, the 
mid-level reasoner will determine the 
functionality available from the subsystem(s) 
employing the component(s) indicted by the 
low-level reasoning. The mid and high-level 
reasoning will also employ a model based 
approach. The approach for assessing 
remaining functionality will be based upon 
the remaining functionality of the LRU in 
concert with the criticality of the anomalous 
component in enabling the subsystem to 
perform its role as needed. Operational criticality alludes to the functional dependence of the parent subsystem 

Figure 10. Fuzzy Inference Diagram of the Process Involved 
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employing the failing component on the faltering LRC to function as required or expected. As an example, if we 
consider a car’s engine; the operational criticality of a timing belt breaking is great, whereas, the operational 
criticality of the thermostat sticking open is much lower. The criticality assessments are parameters obtained from 
expert knowledge and contained in the model representing the vehicle’s PHM system. The operational criticality of 
faltering or failed components is combined into a single overall assessment of the subsystem’s capacity to perform 
its designated role as designed.  

The efficacy of the mid-level reasoner to assess subsystem functional availability is predicated on two tasks: 
First, the ability to initiate and execute queries of the PHM model based on results obtained from the low-level 
reasoning. This process traverses the functional layers of the subsystem under investigation to ensure the failure 
modes reported by the lower levels do not have a root cause which can be attributed to an upstream functional 
dependence. The effect is to traverse back up the same ‘cascade down’ process discussed earlier and employed in 
modeling the PHM system. Second, the reasoner’s ability to intelligently combine results, obtained from the queries, 
to assess the subsystem’s functional availability, as well as potentially isolate a possible root cause initiated from a 
component upstream in the functional dependence hierarchy. This final step combines the results obtained from 
querying the PHM model to verify the likely failure modes and their respective severities from the subsystem 
perspective and modify the indicted failure modes if necessary. These results, in concert with the operational 
criticality rolled up from the indicted LRC through each subsequent level in its implementation path, are used to 
determine the overall functional availability of the subsystem. The overall functional availability assessment made 
for the subsystem is then passed up to the high-level reasoner to determine its implications on the vehicle’s 
functional availability.  

The first task outlined above seeks to trace through the functional levels of the PHM system model to determine 
if a lower level diagnosed failure is likely caused by some upstream event. The PHM system modeling tool used 
here allows developers to model the propagation of failure modes from on functional area to another, illustrated in 
Figure 11. Utilizing this functionality one can determine the likely source of any detected failure mechanisms.  The 
link between failure modes features a Propagation Probability (PP) parameter to quantify the likelihood that the 
upstream failure mode caused the downstream failure. A low PP value is interpreted as the higher failure mode 
could possibly have caused the lower fault, but not likely. A PP of one can be interpreted as the high failure mode 
did cause the lower failure mode, e.g., the severed fuel line did cause the detected drop in fuel pressure. This may 
not completely eliminate the reporting of the fault identified at the lower level but it may serve as a consideration 
when ranking them for further action.  

The second aspect of the mid level reasoning process endeavors to roll up the functional limitations brought 
about by the detected failure modes and provide a remaining functionality assessment for the subsystem(s) 
containing the indicted LRU(s) and their parent functional areas. This process begins by determining the functional 
availability remaining at the LRU in the presence of the fault condition.  Any given LRU may be comprised of a 
number of components providing services towards the overall execution of its designed purpose. The internal 
components may or may not have failure 
mechanisms addressed by a PHM approach. For 
those which are, a technique is applied to 
determine the effect the current diagnosed health 
state has on the overall capability of the LRU to 
function as required. This process first looks at 
the effect each individual failure mechanism 
within the component has in diminishing the 
overall functionality of the LRU. The functional 
availability is based on a combination of the 
severity of the diagnosed fault and the functional 
criticality parameter. The functional criticality 
(FC) is a zero to one value, determined by 
system experts and stored in the PHM model, 
which reflects the dependence of the LRU on the 
lost functionality contained in the indicted failure 
mode.  

Figure 11. Failure Mode Propagation from External LRU
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 Remaining functional availability 
assessments are calculated for each failure mode 
of the LRU targeted by the IVHM system. Figure 
12 illustrates an example of the PHM model for a 
LRU with three associated failure modes. The 
failure modes are have no links directly between 
them leading to the assumption of independence 
between the services diminished by the failure 
modes. FA values have been determined utilizing 
Eq. (333333) for each of the failure modes 
represented within the LRU. The next step will 
combine these FA values to provide an overall 
assessment of the functionality still remaining in the LRU, Eq. (4).  
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Figure 12. Functional Availability Assessment 
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Following the functionality assessments made for the LRUs with 
detected faults a subsequent process rolls up the implications to the 
subsystem level. The procedure followed attempts to draw distinctions 
between independent relationships between functional areas, serial 
dependencies, and parallel dependencies between functional areas when 
determining the appropriate value. The rules applied in combining 
values are directed by the interpretation of the manner in which the 
functional areas of the subsystems are mapped relative to each other. 
Additionally, the operational criticality parameter is implemented, 
recalling that operational criticality alludes to the degree of dependence 
the parent subsystem employing the faltering LRC has on its remaining 
functionality. As in the case of functional criticality, Operational 
Criticality (OC) is a zero to one value, determined by system experts 
and stored in the PHM model.  
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Figure 13. Subsystem Comprised of 
Functionally Independent LRUs  

Operational criticality is considered in cases where functionally independent components are combined. 
Considering first the case of independent functional areas (LRUs), as represented in Figure 13, a weighted average is 
applied to determine remaining functionality of the parent system, Eq. (5).  
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Serial dependencies are addressed with a robust approach which 
has been used in the reliability domain. In a series configuration, all 
the components of the subsystem must be functional to maintain the 
required function of the subsystem. Thus, a failure of any one item of 
the subsystem will cause failure of the system as a whole.10 Figure 14 
provides an example of a subsystem with serial dependencies among 
the LRU as it appears in the PHM model. Here, a product rule, Eq. 
(6), is applied due to the fundamental understanding that the 
successful operation of an LRU is contingent upon the operation of 
the upstream LRU and that a degraded upstream LRU lowers the best 
possible operation of downstream components. There is also an 
underlying assumption that all the components making up the parent 
system, monitored by PHM functionality, are equally critical to the 
overall operation of the subsystem and thus no operational criticality parameter is employed to the components 
within the upper-most child level of the subsystem. 

Fi = A

Fi = B Fi = C

Fi = A

Fi = B Fi = C
 

Figure 14. Subsystem Comprised of 
Serially Dependent LRUs 

 ∏=
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The approach applied to subsystems with parallel dependencies 
among internal components also uses principles from the reliability 
domain. In a parallel configuration, the subsystem fails only when all 
the items in the subsystem fail. Thus, a failure of any one item of the 
subsystem will not cause failure of the system as a whole, only the 
failure of every item.10 Generally, all the items contained in the 
subsystem are presumed to be identical in function as in the case of 
redundant systems. Figure 15 provides an example of a subsystem 
with parallel dependencies among the LRU as it appears in the PHM 
model. Here, Eq. (7) is applied to determine the overall functionality 
remaining in the subsystem. Again, the same underlying assumption 
that all the components making up the parent system, monitored by 
PHM functionality, are equally critical to the overall operation of the 
subsystem and thus no OC parameter is employed to the components 
within the upper-most child level of the subsystem.  It is important to recall that at this point we consider only the 
dependency of the parent on the child in order to function as expected when discussing operational criticality. 
Clearly, if we broaden our discussion to incorporate considerations of risk the criticality of the third LRU in Figure 
15 is much greater than that of the first.  
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Figure 15. Subsystem Comprised of 
Parallel Dependent LRUs 
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The procedures outlined above are utilized to traverse from functional level to functional level within the PHM 
model until all child functionality indications are combined to determine the remaining capability at the parent 
subsystem to operate as required.  

C. High-level Reasoning 
The high-level (system or vehicle-level) reasoner builds upon the results obtained from the low and mid-level 

reasoners. The role of system-level reasoning is to examine the functional capabilities of all the constituent 
subsystems. This information aids in determining the overall ability of the vehicle to perform the functions or 
actions required to maintain operations within a predetermined list of mission critical requirements. The same 
mechanics are employed in determining the functional availability at the vehicle level as those employed at the mid-
level. The highest level of the PHM model is interpreted, based on the presence and type of connections linking the 
primary functional areas, in determining which equations to call upon to combine mid-level functionality 
assessments.  

The approach for assessing degradation of the functional availability of the vehicle is based upon an additional 
set of Operational Criticality values provided for the primary constituent subsystems, analogous to the approach 
employed at the mid-level with respect to the subsystems dependence upon the operational criticality of the LRCs. 
Here, the operational criticality alludes to the dependence the parent system has on faltering subsystems to function 
as required or expected. However, at the vehicle level this parameter can reflect safety, flight, or mission criticality. 
These criticality assessments are also provided as expert knowledge and embedded in the model representing the 
PHM system employed by the vehicle. The operational criticality of faltering or failed subsystems is combined into 
a single overall assessment of the system’s capacity to perform its designated role as required, but can be quickly 
broken down into the primary constituent functional areas for a more detailed view of the current health and 
operational state of the vehicle. 

V. IMPLEMENTATION HARDWARE 
One of the factors significantly influencing the depth and effectiveness of an IVHM system is the processing 

capability of the supporting hardware with which the system is implemented. The design objective when considering 
hardware implementation was to support the advanced multi-rate signal acquisition and processing requirements of 
an IVHM system with maximum use of commercial-off-the-¬shelf (COTS) hardware. Advances in sensor 
technology, data acquisition, and data processing have facilitated this level of support and allow the boundaries of 
system health and usage monitoring to continuously expand. While sensor availability, selection, and placement are 
also very important factors, this discussion focuses on the data processing hardware and supporting software.  

Throughout the hardware selection and accompanying software design processes, many overall design objectives 
needed to be considered. Objectives such as light weight, small form factor, and significant COTS support in the 
marketplace were primary considerations. Additional equally important considerations included environmental 
conditions, vehicle interfacing requirements, on-board data archiving requirements, ease of development, and data 
throughput, including sensor type and required bandwidth. 

All of the HUMS software modules described in this paper require sensory input in order to produce meaningful 
output. The multi-rate data acquisition and 
processing requirement was motivated by the 
dependence on accelerometer data to support the 
structural, drive train, and electromechanical 
actuator health monitoring modules. The high 
frequency techniques require that the signals be 
acquired at high sampling rates, on the order of 
50-150 kHz, even though typical sensors have a 
nonlinear response at these frequencies. In other 
cases, low bandwidth data inputs on the order of 
less than 100 Hz are sufficient for parameters that 
do not change at high rates for a given process, 
such as temperature and pressure or control 
parameters. The embedded HUMS hardware must 
provide signal conditioning and a constant current 
power supply for accelerometers, allowing high 
bandwidth vibration data to be directly acquired 

Figure 16. Embedded Reasoner COTS Hardware 
Configuration 
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from the sensor. When available, sensors already in place on the vehicle for other purposes can be leveraged to 
provide the necessary input. The required signals can either be acquired directly from the leveraged sensor in 
parallel, or the digitized data from other data acquisition systems can be accepted into the HUMS modules.  

To meet the data throughput requirements of the embedded system, a COTS solution, presented in Figure 16, is 
employed which features two parallel acquisition and processing paths; one dedicated to high bandwidth data, the 
other focusing on lower speed processing requirements.  Separate data acquisition (DAQ) cards are employed. The 
low bandwidth DAQ module is capable of acquiring 16 differential or 32 single ended analog input channels at a 
500 k-samples/sec aggregate sampling frequency and 12-bit resolution. Higher bandwidth signals, such as those 
containing vibration data, are sampled by the high bandwidth DAQ module; this module supports 1.25 M-
samples/sec on a total of 8 differential or 16 single ended 12-bit analog channels. 

The digital signal processing DSP module consists of a 500 MHz fixed point processor with 128 MB of 
synchronous dynamic random access memory (SDRAM). Numerically intensive algorithms performed on the high 
bandwidth sensor data (such as vibration analysis, etc) are executed on the DSP, leaving the CPU free for system 
processes, and less processor intensive PHM algorithms.  

The CPU module chosen for this implementation utilizes a 650 MHz Celeron processor with 256 MB of 
SDRAM running embedded Linux operating system. Low bandwidth processing required by the HUMS and 
reasoning modules, and algorithms that require floating point precision are processed here, along with any system 
processes required for operation. 

Implementing the IVHM modules on hardware not only requires a suitable processing platform, but also an 
efficient data management architecture integrated into the hardware to manage and monitor data flow throughout the 
system. Onboard the CPU, all data transfer and algorithm interaction is handled by a proprietary communication 
system based on a multicast distribution approach. This architecture allows for data transfer to occur from one 
process to one process, one process to many processes, or from many processes to one process. The system itself is 
separated into four distinct layers of 
interaction as depicted in Figure 17. Each 
block within a layer is a separate system 
level process, this segregation of 
functionality not only provides logical 
distinction between processes and their 
functions, but also provides functional 
separation in case any process should 
experience an error causing it to fail. 

The Input layer is the closest logical 
layer to the hardware; it gathers raw data 
from either the command shell (system 
inputs), the low bandwidth DAQ card, or 
the processed results posted from the 
algorithms running on the DSP and posts 
the results to the ioBroker residing on the 
Communication layer.  

The Communication layer consists 
solely of the ioBroker, the backbone of the 
software architecture. Individual processes 
communicate with the ioBroker through 
use of a proprietary messaging system 
based on Unix sockets. Processes can either choose to subscribe to messages coming from a designated source (like 
data from the low bandwidth DAQ) or post messages, depending on the function of the process. 

The Process layer encompasses all of the on-board IVHM processes dedicated to data analysis and reasoning. 
Each process chooses to subscribe to data that is required by any algorithms it requires to execute; when data are 
available from that source, the ioBroker will pass the data to the receiving process where it is analyzed and, if 
applicable, a result is returned to the ioBroker. 

The Output layer is an analog of the input layer; any data that needs to be transmitted to a remote location, or 
stored locally for offline analysis is routed to the output layer. Processes can be added to the output layer to support 
communication with off-board systems. The PC-104 architecture supports a wide range of protocols such as 
Ethernet, USB, RS-232, RS-485, as well as a number of military grade protocols for use in almost any application. 

 
Figure 17. Block diagram of Data Communication Architecture
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VI. Conclusion 
The discussion provided here outlines a reasoning approach in support of Integrated Vehicle Health Management 

which provides real-time health state and remaining available functionality information from the various levels of 
functionality; LRU, assembly, subsystem, and overall system or vehicle. The architecture of the IVHM approach 
incorporates enhanced PHM algorithms within an enhanced health and usage monitoring system (HUMS) to provide 
condition indicators (CI) to the advanced reasoning architecture. The reasoner itself is tightly integrated into all 
functional levels of the vehicle, or system, targeted by health monitoring functionality, via the PHM model. Details 
extracted from the modeled PHM system are used to facilitate the hierarchical reasoning process by aiding in root 
cause isolation, at the low levels, and also by guiding the appropriate approach for rolling up the implications of 
detected low level failure mechanisms on higher level functionality throughout the various functional levels, at the 
mid and high levels. Implementing this functionality within an embeddable COTS data acquisition and processing 
platform summarizes the on-board aspect of the IVHM system. However, the on-board facet of IVHM is only a 
portion of the functionality required to users. Recall, IVHM was introduced as a decision support tool for operations 
personnel. As such, the other key aspect is presenting the health and functional availability information to personnel 
on the ground in an intuitive and useful manner. The ground station functionality warrants mentioning here even 
though outside the scope of this paper. 

The ground station receives output from the embedded hardware via a combination of periodic wireless transfers 
and post-flight downloads. The wireless downloads contain the current state-of-health information output by the 
reasoner. This packet of information includes any detected failures in the replaceable units as well as the resultant 
functional availability assessments. Post-flight downloads also include a host of condition indicators obtained from 
the subsystem specific diagnostic modules and archived using onboard solid-state memory. The ground station 
provides a means to organize and present the health and availability information to operations personnel; offering an 
overview panel for easy one-source viewing of the current health state of all monitored subsystems, while also 
providing a means to probe deeper in the event anomalous operation is reported. Functionality is also provided to 
archive and trend CI data from the diagnostic modules to aid in prognostic assessments. The end result is an intuitive 
interface between the vehicle and its health status and the people charged with its operations. 
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