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Abstract— Development of robust prognostics for digital 

electronic system health management will improve device 

reliability and maintainability for many industries with products 

ranging from enterprise network servers to military aircraft. 

Techniques from a variety of disciplines is required to develop an 

effective, robust, and technically sound health management 

system for digital electronics. The presented technical approach 

integrates collaborative diagnostic and prognostic techniques 

from engineering disciplines including statistical reliability, 

damage accumulation modeling, physics of failure modeling, 

signal processing and feature extraction, and automated 

reasoning algorithms. These advanced prognostic/diagnostic 

algorithms utilize intelligent data fusion architectures to 

optimally combine sensor data with probabilistic component 

models to achieve the best decisions on the overall health of 

digital components and systems. A comprehensive component 

prognostic capability can be achieved by utilizing a combination 

of health monitoring data and model-based estimates used when 

no diagnostic indicators are present. Both board and component 

level minimally-invasive and purely internal data acquisition 

methods will be paired with model-based assessments to 

demonstrate this approach to digital component health state 

awareness. 1 

 

Index Terms— Automated reasoning algorithms, physics of 

failure modeling, prognostic and health management (PHM) 

 

ACRONYMS 

 AF  –  Acceleration Factors 
 BIT – Built-in Test 
 COTS – Commercial off-the-shelf 
 HASS – Highly Accelerated Lift Testing 
 MOSFET  – Metal-oxide-semiconductor Field Effect 

Transistor 
 MTTF – Mean Time to Failure 
 µP – Microprocessor 
 PHM – Prognostics and Health Management 
 PoF – Physics-of-failure 
 RISC – Reduced Instruction Set Computer 
 RUL – Remaining Useful Life 
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1. INTRODUCTION 

IGITAL electronic boards are found in numerous facets 
of modern day life where consumers have come to 
depend on their reliability to operate effectively in both 

both professional and private endeavors. Furthermore, the 
commercial and military markets demand even greater 
reliability constraints on semiconductor manufactures where a 
system failure could produce catastrophic results. Diagnostic 
methods have been implemented in a variety of existing 
electronic systems (e.g. BIT), which are effective in 
identifying sources of malfunctions post-failure within the 
system; however, fail to track system usage throughout the 
systems’ lifespan necessary when attempting to offer 
instantaneous health state assessments. A clear opportunity 
and vital need exists to improve digital electronic system 
health state awareness and prediction through development of 
PHM techniques.  

The goal of proactive fault monitoring is to prevent the end 
user from experiencing the effects of the failure and ideally 
provide advanced notice of impending failure in due time to 
allow corrective measures to be taken prior to failure (i.e. 
reduce duty cycle, offload utilization, or schedule repair). 
Achieving this objective requires knowledge of how 
component-level failure manifests throughout the system and 
insight as to which measurands offer indication of incipient 
signs of failure. In this paper, the authors illustrate how 
cradle-to-grave health state awareness can be achieved 
through the teaming of model-based assessments in the 
absence of fault indications and a data driven approach used 
to track indicators of failure providing failure mode 
classification. Test results from accelerated testing of a 
CMOS device are presented as a basis to indicate the ability 
to capture fault indicators indicating impending failure and 
track the degradation of performance measurands. The 
application of complementary prognostic techniques such as 
physics-based component damage accumulation/aging models 
based on projected operating conditions, empirical (trending) 
models, and system level failure progression models are 
discussed as providing a solid foundation on which to develop 
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which to develop verifiable prognostics assessment.  

The ultimate implementation of the technology developed 
under this program will provide a comprehensive and 
effective diagnostic/prognostic solution, requiring minimal 
sensor retrofitting or hardware modifications, suitable for 
deployment on wide-ranging applications across the multiple 
facets of digital electronics including integration into digital 
electronic boards residing in COTS embedded computer 
system, industrial or commercial computing platforms, or 
adding capabilities to automated test equipment. 

2. DEVICE RELIABILITY 

The reliability throughout the lifespan of a population of 
devices is commonly illustrated through the familiar “Bathtub 
Curve”, shown in Fig 1. The curve coveys an initially high, 
yet decreasing rate of failure, at the conception of the device 
due to anomalies in manufacturing process, handling or 
installation defects. Manufactures generally perform “burn-in” 
tests or HASS to purge the population of the units prone to 
premature failure; doing so advances the remaining 
population to the “useful” life stage where failures still occur, 
yet at a low and assumed to be constant rate. The final phase 
of life, referred to as the wearout stage, occurs when time-
dependent environmental, electrical or mechanical stress age 
the physical properties of the device past nominal operation 
limits increasing the likelihood of failure amongst the 
remaining population.  

 

Fig 1: Device Reliability illustrated through the “Bathtub” 
Curve 

Analysis of failures throughout the lifespan identifies 
numerous failure mode possibilities triggered by various 

failure mechanisms. A failure mechanism is defined as the 
physical phenomenon causing the onset of failure; common 
examples in mechanical systems are vibration, corrosion, high 
friction, etc. The underlying failure mechanism becomes 

evident to the user through failure modes which are tangible 
observations of how the system or device failed; for example 

for example overheating, unexpected shutdown, and reduced 
performance are observable failure modes. Commonly, single 
failure modes can be attributed to multiple failure 
mechanisms. 

The approach presented herein identifies specific failure 
mechanisms prevalent in triggering failure throughout the 
“useful” and wearout stages of life. Accelerated aging 
techniques were selected and applied to test articles to 
increase the likelihood of failure due to the desired failure 
mechanism. The devices tested were verified as successfully 
passing “burn-in” procedures performed by the manufacturer 
aimed at decreasing the likelihood of early onsets of failure, 
thereby shifting the sampled population towards the “useful” 
life stage. Fig 2 illustrates the concept of multiple sources of 
failure modes, randomly distributed in time and normally 
distributed in contribution to failure rate, vertically 
amalgamating to the constant failure rate assumed throughout 
normal life. Through selectively applying accelerated aging 
techniques, targeting individual underlying failure 
mechanisms, individual failure modes may be investigated by 
pushing the device towards the wearout phase of life enabling 
observation of system level responses and performance 
degradation as the end of life approaches. These characteristic 
changes as the device transitions from useful life to end of life 
are of most interest when attempting to identify, classify, and 
track incipient signs of impending failure. 

 
Fig 2: Contribution of Multiple Failure Modes to Device 

Reliability 

3. DIGITAL DEVICE FAILURE MECHANISMS 

The realm of digital devices is vast, spanning devices from 
FPGAs and DSPs to general purpose processors and certain 
forms of volatile and non-volatile memory. Despite functional 
and topological dissimilarities, all digital devices share a 
common functional dependence on semiconductor devices, 
specifically transistors. Moreover, MOSFETs are ubiquitous 
in digital electronics accounting for close to 99% of the FET 
market [1].  Thus, understanding the physics-of-failure at the 
transistor device level is paramount when attempting to 
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attempting to quantify failure modes and mechanisms within 
digital systems.  

Devices are continually subjected to aging through electrical, 
mechanical and environmental stresses inherent to operational 
conditions throughout a given lifetime. Development of 
physics based diagnostic and prognostic analyses of the 
device or system health status is possible if knowledge of the 
time-dependant effects of these aging processes can be 
determined. Documented semiconductor PoF models can be 
used as a basis to derive system level models describing the 
tendencies and responses of the system as it reacts over time 
to the environmental conditions present. There are four main 
semiconductor failure mechanisms that contribute to aging 
tendencies of MOSFET devices: 

1. Thermal cycling 
2. Electromigration 
3. Hot carrier effects 
4. Time-dependent dielectric breakdown 
 

The vast majority of semiconductor devices are based on 
silicon fabrication; however the following failure mechanisms 
can be extended to other materials such as silicon-germanium, 
gallium arsenide, and silicon carbide providing a powerful 
foundation to analyze virtually all digital devices.  

A. Thermal Cycling 

Thermal cycling is one of the main environmental 
acceleration factors that produce MOSFET aging. Device 
degradation occurs because thermal cycling deteriorates the 
thermal circuit which allows the device to release generated 
heat.  

When a device composed of multiple materials, such as an IC, 
is exposed to the stress of thermal cycling, it deteriorates until 
a fracture or void space is produced (see Fig 3). Dissimilar 
materials are used to produce the heat transfer path to release 
heat generated by a functioning semiconductor device. In 
general, these materials have different coefficients of thermal 
expansion that make the device more susceptible to cracks or 
fractures due to the forces originated by thermal expansion 
and contraction. These fractures among different materials 
deteriorate the functionality of the device, but do not directly 
interfere with the software operation of the device. 

 

 
1 2 3 41 2 3 4

 
 

Fig 3: Void Area Creation Process Due to Thermal Cycling 

The cracks caused by thermal cycling compromise the 
semiconductor’s ability to transfer heat. The reduction in 

conduction ability does not destroy the semiconductor itself, 
but accelerates the aging process for other failure 
mechanisms. 

Damage caused by thermal cycling accumulates every time a 
device experiences a power-up and a power-down cycle. 
Thermal cycling eventually weakens metallic contacts, 
triggering the occurrence of gate-oxide breakdown or contact 
migration. The Coffin-Manson model, shown below, can be 
used to estimate the number of thermal cycles before failure 
for a specific device. 

 
q

f TTCN
−

∆−∆⋅= )( 00  (1) 

Nf  = Number of cycles to failure ∆To = Cycle in the Plastic region  

Co  = Material- Dependant Constant 

∆T = Entire Temperature Cycle 

q     =  Material–Dependant Constant 

(see Table 1) 

  

TABLE 1: COFFIN-MANSON COEFFICIENTS 

Material q 

Ductile metal (solder) 1-3 

Hard metal alloys (Al-Au) 3-5 

Brittle fracture( Si and Dielectrics) 6-9 

 

B. Electromigration 

Electromigration is the mass transport of the metal due to 
momentum transfer between the conducting electrons and the 
diffusing metal atoms. This phenomenon was observed and 
defined in metals, but can also be related to highly doped 
semiconductors (with negative thermo impedance). The 50th 
percentile time to failure due to electromigration is calculated 
using the equation given below. 

 
kT

Ea

ejAt ⋅⋅=
−2

050  (2) 

Ao = Constant T =  Temperature in K 

J  = Current density k = Boltzmann’s constant 

Ea = -0.1 to 0.2eV  

 

C. Hot Carrier Effects 

As MOSFETs begin to age, the dielectric material of the 
device begins to degrade. The silicon dioxide (SiO2) bonds of 
the dielectric break as a result of interaction between highly 
charged electrons, also known as hot carriers. This 
phenomenon is very important in MOSFET technology where 
the presence of high electric fields facilitates the creation of 
hot carriers, as shown in Fig 4.  
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The four common hot carrier injection mechanisms are [2]: 

1. Drain avalanche hot carrier injection (DAHC) 
2. Channel hot electron injection 
3. Substrate hot electron injection 
4. Secondary generated hot electron injection 
  

Drain Avalanche Hot Carrier (DAHC): This phenomenon 
produces the most accelerated device degradation under 
normal operating temperatures. This occurs when the voltage 
applied at the drain under non-saturated conditions is higher 
than the voltage applied to the gate (VD>VG). High electric 
fields found near the drain accelerate the carriers into the 
drain's depletion region. 

Acceleration of the channel carriers: This phenomenon, 
also known as impact ionization, occurs when the accelerated 
carriers collide with Si lattice atoms, creating electron-hole 
pairs in the process. The displaced electron-hole could gain 
enough energy to overcome the electric potential barrier 
between the silicon substrate and the gate oxide, producing 
gate isolation deterioration. This leads to an increase in the 
gate current and a reduction in the sub-threshold voltage (Vth). 

Substrate hot electron injection: Due to the influence of the 
drain-to-gate field, hot carriers are generated in the substrate. 
These hot carriers are injected and become trapped in the gate 
oxide layer, causing the same degradation as DAHC. 

Secondary generated hot electron injection: The number of 
electrons that become trapped in the interface between doped 
regions grows over time modifying the threshold voltage (Vth) 
and its conductance (gm).  

 
Fig 4: MOSFET Cross-sectional Visualization of Hot Carrier 

Effect 

Independent of their origin, hot carriers produce two types of 
deterioration in FET technologies. The first is acceleration in 
time-dependant electrical breakdown of the oxide barrier 
(SiO2), and the second is migration and degradation of the 
semiconductor.  

A median time-to-failure approximation for hot carrier 
injection is given below: 

 
kT

E

n
a

eIBt ⋅⋅= )(050  (3) 

Bo = Constant k = Boltzmann’s constant  

n  =  2-4 T = temperature in Kelvin (K) 

Ea  = -0.1 to 0.2eV 

 

I  =  N-channel - peak substrate current, 

     P-Channel - peak gate current 

 

An example of a SiO2 progressive breakdown in a MOSFET 
is shown in Fig 5. 
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Fig 5: Gate Current Increase in an Accelerated MOSFET 

Aging Test 

D. Time-Dependent Dielectric Breakdown 

In general, time-dependent dielectric breakdown relates to the 
SiO2 oxidation barrier deterioration under normal operating 
conditions. The reduction in life can be computed as [2]: 

 
kT

ZTX

bTa
T
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e
V
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−
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(  (4) 

Bo = Constant Z = 8.37E- 4 eV/K 

a  = 78 k = Boltzmann’s constant 

b  = -0.081 T = temperature in Kelvin (K) 

X  = 0.759eV V = gate voltage 

Y  = -66.8 eV·K  

 

These PoF mechanisms serve as the basis for the accelerated 
aging processes performed on the test devices. 

4. TARGET DEVICE SELECTION 

An appropriate digital component or device was needed to 
focus the development of PHM technology upon. A range of 
digital component categories was considered for evaluation: 

���� Digital Signal Processor 

���� Microprocessor 

���� Microcontroller 

���� Field Programmable Gate Array 

���� Application Specific Integrated Circuit 

���� Static/Dynamic Random Access Memory 

(SRAM/DRAM) 

 

While each of these digital component categories typically 
serves different functional purposes, they are structurally very 
similar. With the transistor as the common denominator, the 
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denominator, the component’s function may have a greater 
influence on its susceptibility to faults than the actual 
architecture. For example, memory devices are regularly 
implemented with built-in error checking for a certain level of 
fault tolerance; FPGA’s often run massively parallel, 
independent operations where a fault to a single element may 
have a negligible impact on the operation of the entire 
component. Microprocessors are a category of digital 
components that may be more susceptible to faults due to their 
complexity, large scale, and generally demanding role and 
responsibilities. These characteristics suggest a more 
significant risk associated with an undiagnosed fault in a 
microprocessor, and a greater need for effective PHM. In 
consideration of this information, the microprocessor was 
selected as the focus of development. 

A desire to use commercially available products meeting 
preferred testing parameters resulted in identification of 
Genesi’s Pegasos PowerPC computing platform. The 
PegasosPPC utilizes a 360 CBGA MPC7447 processor on an 
affordable and completely removable edge card which inserts 
into a fully populated motherboard (see Fig 6). The MPC7447 
host processor is a high-performance, low-power 32-bit 
implementation of the PowerPC RISC architecture with a full 
128-bit implementation of Freescale's AltiVec™ technology 
[7]. It has a robust data processing core incorporating a 
powerful 128-bit vector processing unit, double-precision 
floating-point arithmetic unit, superscalar data bus 
architecture, and sizable on-chip L2 cache memory. The 
capabilities of the MPC7447 are representative of processors 
commonly used in military, commercial and private digital 
systems thus an ideal point of origin for digital PHM 
development. 

 
Fig 6: Processor Test Platform 

One attractive feature of this product lies in the separability of 
the processor from its supporting circuitry (e.g. north/south 
bridge, interface controllers and memory). The power filtering 
components accompanying the processor on the edge card, 
shown in Fig 6, were easily removed and replicated on an 
intermediary board. Isolating the processor in such a manner 
facilitated a primary objective of focusing accelerated aging 
exclusively on the processor itself thereby increasing the 
likelihood that end-of-life system failure would originate 
within the processor.  

5. ACCELERATED FAILURE TESTING  

Operating conditions that exceed specified conditions are 
commonly referred to as acceleration factors. Electrical AF 
depend on device parameters such as voltage and current 
whereas mechanical AF depend on the geometry or packaging 
of a device, or the mechanical stress on solder joints and 
metal interconnects. The remaining AF may depend on 
environmental conditions, such as ambient temperature, 
external electromagnetic interference, humidity, or radiation 
and are known as environmental AF. The accelerated failure 
testing performed introduced specific electrical and 
mechanical stresses into the system. By subjecting the µP to 
elevated operating conditions outside the specified operating 
range, accelerated aging rapidly advanced the µP through its 
normal operational lifespan to the wearout phase ultimately 
leading to observable failure. 

The following three variants of accelerated tests were 
performed: 

1. Thermal Oscillation 
2. Combinational Environment 
3. Thermo-Electrical Stress  

 
A. Thermal Oscillation 

A µP daughtercard was placed in a programmable thermal 
chamber (see Fig 7) where the temperate was oscillated 
between preset limits with one hour cycle time to maximize 
the number of cycles performed per day. The temperature 
extremes employed for thermal cycling tests were extended 
beyond the minimum and maximum specified device storage 
temperatures (-55oC and +150oC) [7]. Baseline tests were 
conducted before and after cycling due to the impracticality of 
operation with the motherboard while in the chamber.  

 
Fig 7: Environmental Test Chamber used for Thermal 

Oscillation and Thermal with Vibration  

B. Combinational Environment 

A µP daughtercard was secured to a custom vibration fixture 
(see Fig 8) connected to an electro-dynamic shaker and 
installed into the thermal chamber. The µP daughtercard was 
subjected to a fixed frequency sine wave vibration, imperially 
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imperially tested to induce maximum response (i.e. natural 
frequency), while simultaneously being subjected to identical 
thermal cycling as described above. 

 
Fig 8: Internal View of Environmental Test Chamber 

C. Thermo-Electrical Stress  

The power supplied to the µP under test was switched from 
the motherboard ATX supply to a variable linear benchtop 
supply. A µP daughtercard was operated normally with the 
motherboard while the variable external supply applied the 
necessary core power to the processor while the motherboard 
continued to source power from the ATX supply. By isolating 
the processor power from the motherboard power, control 
over the aging profile of the processor was achieved. Once 
nominal operating conditions were established, the voltage 
was increased allowing the µP to operate at voltages beyond 
operational limits. The initial voltage for the thermo-electrical 
accelerated failure test was selected to coincide with the 
maximum operating voltage and temperature (1.6V and 
100°C, respectfully) specified by [7]. The standard heat sink 
was removed and a 120 cfm fan was focused on the µP to 
maintain a nominal temperature of 100°C as subsequent trials 
progressed. Separate trials were conducted restricting and 
unrestricting the die temperature as the core voltage was 
increased. 

6. TESTING RESULTS 

Impact developed a suite of test algorithms in a Linux 
operating environment to provide baseline tests prior to and 
after each accelerated aging process. The test suite allowed 
independent and simultaneous exercise of each execution unit 
present within the µP (i.e. simple ALU, complex ALU, 
AltiVec unit, etc.), enabling analysis of functional degradation 
of individual operational sectors and total processor 
utilization. To ensure complete processor operation, the 
instruction fetch, memory and load/store sectors where 
inherently accessed when exercising execution units. In 
addition, the test suite provided vital control over loop 
iterations and number of runs allowing optimization of run 
time for each unit ensuring measurable performance results. 
Additional software was developed in the LabVIEW 

programming environment to measure, record and analyze test 
results (see Fig 9). 

 
Fig 9: Data Acquisition, Logging, and Analysis/Test Suite 

Interface 

A. Data Analysis  

The analysis of test data from the myriad of tests performed 
showed a distinct ability to identify and capture incipient 
signs of failure prior to functional failure of the system. 
Moreover, the varied accelerated aging processes illustrated 
discernable trends in degradation progression, as shown by a 
comparison of Fig 10 and Fig 11, underwriting the ability to 
identify individual modes of failure and develop effective 
PHM techniques for digital systems. 

 
Fig 10: Feature Tracking of Thermo-Electrical Aging Process 

The baseline measurements taken after successive Thermo–
Electrical aging processes revealed an exponentially 
increasing trend in the highest fidelity feature measurement 
(see Fig 10). Each aging cycle escalated the core processor 
voltage, thereby increasing the electric field between the gate 
and substrate region in addition to increasing the electron 
mobility through the drain-to-source channel. The 
combination of these phenomena accelerated/excited electrons 
to the point of becoming trapped within the silicon dioxide 
(SiO2) dielectric. This testing procedure was deemed effective 
in accelerating and analyzing failure modes associated with 
electric failure mechanisms, such as electromigration, hot 
carrier effect, and TDDB. 
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Fig 11: Feature Tracking of Thermal Oscillation & Vibration 

Aging Process 

The compiled data extracted from each baseline test 
performed after every 24 hour thermal oscillation with 
vibration (i.e. 24 thermal cycles/test) identified a remarkably 
different degradation profile (see Fig 11) to that of the 
Thermo-Electrical aging process. The highest fidelity feature 
measurement specific to vibratory and thermal stress factors 
indicated a linear degradation as the processor aged over time. 
Overall, the measured data supports the proposed theory of 
solder joint fatigue and void area creation; as the processor 
under test is subjected to increasing vibratory stress, the 
interconnects and solder joints begin to fatigue triggering 
distinct failure modes, separable from those identified through 
electrical AF. 

The results from baseline tests conducted after each series of 
Thermal Oscillation showed no measurable effects to the 
overall health of the processor. The DUT was subjected to 
over 400 hours of temperature oscillations beyond maximum 
device ratings with no discernable effect. Although Thermal 
Oscillation was deemed the least efficient method of 
accelerated aging within the allotted time frame to evoke 
rapid damage within the processor, Impact recognizes that 
thermal cycling, along with other environmental stress factors 
play an important role in digital systems and is continuing to 
pursue this type of failure progression in ongoing 
development endeavors. 

B. Representative Life Consumption Assessment  

The data acquired during Thermo–Electric accelerated life 
testing supports the use of the Hot Carrier Effect failure 
mechanism to support damage accumulated in the µP. A 
derivation based on the associated MTTF approximation 
yielded a model that effectively accounts for the life of the µP 
consumed as a result of time spent operating at increased 
temperatures. It is reasonable to expect, and indeed was 
demonstrated in testing, that operating a µP at temperatures 
significantly above those recommended reduces the life of the 
µP at vastly accelerated rates. 

A representative model with assumed coefficients and actual 
test data provides an observable representation of the effects 
of temperature on an operating processor. The histogram 
displayed in Fig 12 represents the entire life of a sample µP. 

The vertical bars show the amount of time the µP was 
operated at discrete temperatures. It can be observed that 
extensive operation at low temperature has a largely 
insignificant effect on the total life of the unit. Brief periods 
of operation at increasingly higher temperatures consume 
larger and larger fractions of the unit’s total life.    

 
Fig 12: RUL Assessment Based Upon Modeled Feature Data 

Further testing is required to empirically determine accurate 
approximated values as well as providing a distribution of 
lifetimes to use as an estimate of total life. 

7. PATH FORWARD 

In addition to developing system level physics of failure 
models, Impact Technologies is leveraging an existing Impact 
diagnostic/validation technology termed SignalPro which is 
capable of learning the relationships between an arbitrary set 
of inputs (be they features or raw sensor values) to evaluate a 
digital boards and its components at a system level. SignalPro 
represents a data driven condition monitoring approach to 
diagnostics with prognostics provided by trending.  

Impact Technologies’ SignalPro analysis engine offers a 
system monitoring approach that can be used to evaluate 
electronics system performance by employing a combination 
of signal processing, statistics, and data-driven modeling 
techniques. A complete SignalPro system model is created by 
evaluating “healthy” data during a process called training. The 
generated model captures the interrelationships among sensor 
readings or extracted features. During this training period, 
signal preprocessing is performed and the signal relationships 
and acceptable deviations are quantified. 

Previously acquired historical data are captured and sent to 
the training engine, which finds the most efficient system 
representation. Statistical and correlation-based features 
extracted from these data further characterize the individual 
signal behaviors. Finally, an empirical system model is 
created that captures these interrelationships and the accepted 
deviations.  
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During monitoring, real-time data is used with a prediction 
model to assess whether the system is operating within 
acceptable limits. The model creates an estimate of the 
expected sensor values based on relationships between the 
new measurements and historical data. These data sets are 
compared to the actual data streaming in from the system, 
generating a residual signal. This residual signal is further 
analyzed to reveal unexpected (and potentially faulty) 
conditions. 

 
Fig 13: System Health Assessment and RUL Analysis 

In addition to the data driven approach provided by the 
SignalPro analysis engine, PHM algorithms are being created 
for critical components within the system providing a system 
level model, incorporating usage based monitoring, to add 
prognostic assessments. The health assessments provided by 
each of these independent paths can then be fused at a system 
level reasoner to provide a high confidence analysis of the 
health and RUL of the electronic system, as illustrated by Fig 
13. 

8. CONCLUSION 

The authors have shown the distinct ability to capture fault-to-
failure progression data through as series of accelerated aging 
tests designed to isolate and increase the likelihood of failure 
due to specific known failure mechanisms. The matriculated 
failure modes were quantified through minimally invasive 
monitoring of system feature data as the device degraded over 
time. The developed understanding of semiconductor device 
failure and the ability to measure and trend such shifts in 
performance indicates the potential to develop prognostic 
health monitoring techniques for a wide breadth of digital 
components and systems.  

The achievements discussed have made the first steps towards 
a prognostic ability for digital electronics; however, there is 
considerable work left ahead. Ongoing development of 
prognostic modeling algorithms paired with data-driven 

analysis, fused with reasoning methodologies, offer a viable 
avenue to obtain predictive insight into digital system 
reliability and bring PHM for digital electronics to fruition.  
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