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Abstract 
 

 
Improved factors of safety for quantitative estimates for grid and time 

convergence uncertainties for CFD solutions are proposed for situations when Richardson 

extrapolation estimated order of accuracy kp  is larger than the theoretical order of 

accuracy 
thkp  and correction factor 1<Ck<2. The improved uncertainty estimates are 

shown to provide more reasonable intervals of uncertainty for 
thk kp p> (1<Ck<2). 
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I. INTRODUCTION 
 

Current procedures for quantitative estimates for grid and time convergence 

uncertainties for CFD solutions are based on first-order Richardson extrapolation (RE) 

error estimates with factors of safety (FS) used for expanded uncertainty estimates. 

Roache [1,2] proposed the grid-convergence index (GCI) with FS=1.25 for systematic 

grid-triplet studies using RE estimate for order of accuracy kp  (k=G for grid, k=T for 

time, and k=P for similar parameters) and FS=3 for 2-grid sensitivity studies using 

theoretical estimate for order of accuracy
thkp . The GCI is widely used and recommended 

by ASME [3] and AIAA [4]. The authors and colleagues proposed a correction factor 

(Ck) method [5,6] with linearly increasing FS vs. distance from the asymptotic range 

(AR) ( 1) / ( 1)k kthpp
k k kC r r= − − , which was based on analytical benchmarks that approach 

the AR with 
thk kp p< . FS was reflected for 

thk kp p> . FS using Ck is smaller than 

FS=1.25 for solutions very close to the AR, whereas FS using Ck is much larger than 

FS=1.25 for solutions far from the AR, which is the typical situation for industrial 

applications. Ck has the “common-sense” advantage compared to GCI in providing a 

quantitative metric to determine proximity of the solutions to the AR and approximately 

accounts for the effects of higher-order RE terms. The Ck method has been used in ship 

hydrodynamics CFD workshops. 

A deficiency of both GCI and Ck methods is that for 
thk kp p>

 
the uncertainty 

estimates are unreasonably small in comparison to uncertainty estimates for 
thk kp p<  

with similar grid refinement ratio kr , solution changes between fine and medium 

grid/time 
21kε  and distance k kthp p−  from the AR, which results from too small RE error 

estimate: 

 

21

1

*

1k k

k
RE p

kr
ε

δ =
−

         (1) 
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In the GCI method FS=1.25 is much too small and in the Ck method linearly increasing 

FS is also too small. Herein, an improvement to the Ck method is proposed with 

polynomial increasing FS for 
thk kp p>

 
based on reflecting the grid/time uncertainty from 

thk kp p<  for 
thk kp p> . The improved uncertainty estimates are shown to provide more 

reasonable intervals of uncertainty for 
thk kp p> . 

 

II.  IMPROVED FS FOR RE ESTIMATED LARGER THAN THEORETICAL 

ORDER OF ACCURACY 

 

Grid and time convergence studies are conducted with multiple solutions (at least 

3) using systematically refined grid sizes or time steps. For monotonic convergence, 

procedures for estimating grid and time errors are based on RE, which assumes that the 

error terms are in the form of power series expansion. Results from the numerical 

solution of the one-dimensional wave and two-dimensional Laplace equation analytical 

benchmarks show that RE error estimate using Eqn. (1) has the right form/trends, but is 

only qualitatively not quantitatively accurate due to poorly estimated 
thk kp p<   

 

                     ( )
( )
32 21

ln

ln
k k

k
k

p
r

ε ε
=         (2) 

 

except when solutions are very close to the AR. The error estimate can be improved using 

correction factors, i.e., 
1 1

* *
kk k RECδ δ= , which is used to estimate the uncertainty for 

uncorrected solutions by bounding the error *
kδ  by the sum of the absolute value of the 

corrected RE error estimate and the absolute value of the amount of the correction with 

provision for 10% FS in the limit of 1kC = . 
1

*
kk REFS U δ=  is reflected from 

thk kp p<  

for 
thk kp p> [6]. Thus for uncorrected solutions, 
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      (3) 

 

For corrected solutions, 
CkU

 

is based on the absolute value of the amount of the 

correction: 
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      (4) 

 

kC  [6] method is equivalent to the GCI, but with a variable FS that increases linearly 

with the distance of solutions increases from the AR, as shown in Fig. 1. 

Verification studies have shown that the estimates of kU  and CkU using Eqns. (3) 

and (4) are too conservative for 
thk kp p> , as explained previously. An improved 

approach is to reflect the uncertainty itself with respect to the distance from the AR 

instead of reflecting the FS. First, kp
kr  in Eqn. (1) is re-expressed based on the definition 

of Ck: 

                                                                    

                                                   ( )1 1kk thpp
k k kr C r= − +

    
 (5) 

 

Second, Eqn. (1) is substituted into Eqn. (3) for 0<Ck≤0.875 with the use of Eqn. (5), 

which results in an alternative form of Uk 

 

                              ( ) ( )
212 1 1 0 0.875

1kth

k
k k kp

k k

U C C
C r

ε
= − + < ≤⎡ ⎤⎣ ⎦ −

      (6) 

 



4 
 

                
Figure 1.  Factors of safety for correction factor and GCI verification methods. 

 

Third, to enforce the same Uk for 1.125≤Ck<2 as the Uk at the same distance to Ck=1 

within 0<Ck<0.875, Ck in Eqn. (6) is replaced by 2-Ck. Thus for the same kr , 
thkp , and 

21kε , Equation (6) becomes: 

 

                                  ( )
1

*2 1 1 1.125 2
2 k

k
k k RE k

k

CU C C
C

δ
⎧ ⎫

= − + ≤ <⎡ ⎤⎨ ⎬⎣ ⎦−⎩ ⎭
  (7) 

 

Additionally, two 3rd order polynomials instead of two quadratic functions as used in [6] 

are used to generate smoother curves of FS for 0.875<Ck≤1.0 and 1.0<Ck<1.125, 

respectively. The use of higher order polynomials allows not only the FS magnitude but 

also the first order derivative of FS with respect to Ck to be continuous at Ck=0.875, 1.0, 

and 1.125, which are used to determine the four unknown coefficients for each 

polynomial. Following [6], the magnitude and 1st order derivative of FS at Ck=1 are 1.1 

and 0, respectively. Incorporating all of the above revisions the kU  and 
CkU  are given by:  
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Compared to Ck [6], the improved Ck method introduces an additional term ( )2k kC C−  

to compute kU  for 1.125≤Ck<2. When Ck increases, this term increases rapidly from 1 to 

infinity, which amplifies FS when solutions are further away from the AR. The improved 

Ck method is only applicable for 0<Ck<2. Ck=0 is the border of convergence and 

divergence such that grid errors/uncertainties are infinite due to infinite 
1

*
kREδ  as a result 

of pk=0, i.e. solution changes for the medium and fine grids are equal to those for the 

coarse and medium grids. For Ck>2, solutions are too far from the AR and also regarded 

as divergent. Figure 1 compares FS predicted by the improved Ck, Ck [6], and GCI 

methods with a zoomed in view near the AR shown in Fig. 2.  

Compared with the Ck [6] method, the improved Ck method is more conservative 

for Ck>0.875 except with the same FS at Ck=1. The intersection points between the 

improved Ck and GCI methods depends on value FS used in GCI, e.g., for FS=1.25 

intersection points are Ck= (0.875, 1.06) and (0.75, 1.12) for uncorrected and corrected 

solutions, respectively. When solutions are between the intersection points, i.e., closer to 

the AR, the GCI method is more conservative than the improved Ck method. When 
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solutions are outside the intersection points, i.e., further from the AR, the GCI method is 

less conservative than the improved Ck method. 

 

 

Figure 2.  A zoomed in view of factors of safety for correction factor and GCI 

verification methods. 
 

III. EXAMPLES FOR SHIP HYDRODYNAMICS APPLICATIONS 

 

To demonstrate that the improved Ck method predicts more reasonable intervals 

of grid uncertainties than Ck [6] and GCI methods for industrial applications, the three 

methods are applied for a recent study [7] that used computational towing tank 

procedures for single run curves of resistance and propulsion for the high-speed transom 

ship Athena barehull with a skeg using the general-purpose solver CFDShip-Iowa-V.4 

[8]. Extensive verification (for grid) and validation (not shown herein) studies are 

conducted by continuously refining the grid from the coarsest grid (grid 7 with 360,528 

points; 1 4.26y+ = ) to the finest grid (grid 1 with 8.1 million points; 1 1.52y+ = ) for the 

Athena bare hull with skeg with 2 degrees of freedom (pitch and heave) at Froude 

number (Fr) 0.48. The grids are designed with a systematic grid refinement ratio rG = 21/4, 

which allows 9 sets of grids for verification and validation (V&V) with 5 sets with rG = 
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21/4 (5,6,7; 4,5,6; 3,4,5; 2,3,4; and 1,2,3), 3 sets with rG = 21/2 (3,5,7; 2,4,6; and 1,3,5), and 

1 set with rG = 23/4 (1,4,7). Figure 3(a) and 3(c) show the solutions with EFD data for the 

resistance coefficients and ship motions, respectively. Figure 3(b) and 3(d) show the 

relative solution changes between two successive grids with iterative errors for the 

resistance coefficients and ship motions, respectively. The coarsest grid 7 is too coarse as 

its solution is out of the trend shown for the other grid solutions. Nε  shows systematic 

decreasing for CTX, CfX, and trim with I NU ε<  for the coarse grids. Nε  shows oscillatory 

decreasing for CPX and sinkage, which is caused by the problem of separating the iterative 

errors UI and Nε  for the fine grids as they are of the same order of magnitude. Overall UI 

is insensitive to the refinement of grids and the average IU  is 0.18%, 0.15%, and 0.2% 

for CTX, sinkage and trim, respectively. CTX monotonically converges for 6 sets of grids 

except those with the coarsest grid 7 involved, whereas motions are more difficult to 

converge. Verification results for monotonic converged solutions are presented in Tables 

1 and 2 for the total resistance coefficient and ship motions, respectively. CG shows large 

range of oscillations (0.07≤CG≤2.42 for CTX and 0.40≤CG≤16.92 for ship motions) 

indicating that the solutions are not yet in the AR.   

 

Table 1.  Verification study for CTX of Athena bare hull with skeg (Fr=0.48). UG is %Sfine; 

CTX is based on static wetted area; Factor of safety for GCI is 1.25 
 

 

 

 

 

 

 

 

 

 

 

 

               As shown in Table 1, UG of CTX for grids (4,5,6) is unreasonable large as it is too 

far away from the asymptotic range. UG of CTX for grids (1,2,3) using the Ck [6] is 

Grids Refinement 
Ratio

 

RG 

( )21 32G Gε ε
 

pG CG UG (%) 

Xing and 
Stern 

Ck [6] GCI 

2, 4, 6 2  
0.63 1.32 0.58 4.90 4.90 3.34 

1, 3, 5 2  
0.40 2.66 1.51 3.59 1.16 0.72 

4, 5, 6 4 2  
0.97 0.16 0.07 125.2 125.2 52.7 

3, 4, 5 4 2  
0.80 1.27 0.59 7.23 7.23 4.98 

2, 3, 4 4 2  
0.60 2.98 1.64 8.73 4.27 1.07 

1, 2, 3 4 2  
0.50 4.00 2.42 — 1.11 0.58 
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unreasonable small due to the deficiency discussed above. Excluding these two numbers, 

the average UG are 2.53%, 4.39%, and 6.11% for the GCI, Ck [6], and improved Ck  

methods, respectively. For 
thG Gp p>  on grids (2,3,4), the improved Ck method predicts 

more reasonable UG (8.73%), which is 2 times the magnitude using Ck [6] method and 

one order of magnitude larger than that using GCI. When solutions are closer to the AR, 

the differences between the UG using the three methods decrease. As shown in Table 2 

for trim on grids (1,3,5) where CG=1.09, UG is of the same order of magnitude for the 

three methods. Nonetheless, the improved Ck method is more conservative than GCI and 

GCI is more conservative than the Ck [6] method, which is consistent with the 

observation in Fig. 2 for 1.06<CG≤1.125. 

 

Table 2.  Verification study for motions of Athena bare hull with skeg (Fr=0.48). UG is 

%Sfine; Factor of safety for GCI is 1.25 
        
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
             

Overall the improved Ck method provides more reasonable uncertainty estimates 

for 
thG Gp p>  than the Ck [6] and GCI methods. More accurate and efficient iterative 

methods (e.g. multi-grid) are needed to speed up the convergence and reduce the IU  

especially for the fine grids for improved assessment of grid convergence. Further 

refinement with 1 1y+ <  may also help reach the AR but requires at least 38 million grid 

points, which raises issues of code efficiency and available computer resources. 

 

Parameter Grids Refinement 
Ratio 

RG 

( )21 32G Gε ε
pG CG UG (%) 

Xing and 
Stern 

Ck [6] GCI 

Sinkage 1, 3, 5 2  0.31 3.4 2.25 — 1.80 0.64 

Sinkage 2, 3, 4 4 2  0.13 12 16.92 — 1.37 0.05 

Trim 1, 3, 5 2  0.48 2.13 1.09 4.67 3.88 4.12 

Trim 4, 5, 6 4 2  
0.86 0.89 0.40 42.87 42.87 24.42 

Trim 2, 3, 4 4 2  0.53 3.69 2.16 — 8.91 3.35 

Trim 1, 2, 3 4 2  
0.53 3.71 2.18 — 4.64 1.73 
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                                             (a)                                                                                 (b)   
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  (c)                                                                    (d) 
Figure 3.  Verification for resistance and motions for Athena bare hull with skeg 

(Fr=0.48): (a) resistance coefficients, (b) relative change ( )1 1 100N N NS S Sε −= − ×  and 

iterative errors for resistance coefficients, (c) sinkage and trim, (d) relative change εN and 

iterative errors for sinkage and trim. 

 
 

 
IV. CONCLUSIONS AND FUTURE WORK 

 
Improved factors of safety for quantitative estimates for grid and time convergence 

uncertainties for CFD solutions are proposed for situations when Richardson 

extrapolation estimated order of accuracy kp  is larger than the theoretical order of 
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accuracy 
thkp . The improved uncertainty estimates are shown to provide more reasonable 

intervals of uncertainty for 
thk kp p> and 1<Ck<2. 

Since numerical solutions of the analytical benchmarks conducted so far approach 

the AR with 
thk kp p< , it is desirable to validate current verification procedures using 

more advanced numerical benchmarks for complex flows such as backward-facing step 

flow as the solutions will likely approach the AR similarly as industrial applications, i.e., 

with oscillatory 1-Ck. The more advanced numerical benchmarks can also be used to 

validate the validation procedures. 
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