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ABSTRACT

Analyses wereconducted to demonstrate the effectivenessoofposite
wrapped columns formproving the survivability of existingreinforced
concretemultistory buildings taattacks byexplosives. Different standoff
distances and charggzeswere considered.Two building designsvere
analyzed: one in whicthe building membersveredesigned primarily for
gravity loads (UBC seismic zone 1) and one in whithmemberswere
designed to resist seismic loads (UBC seismic ZQneStructural response
predictions were performedith the three-dimensional Lagrangian finite
element codeDYNA3D, using a concrete material model especially
designed to predict nonlineaoncrete responses éxplosive loads. The
results indicatéhat undersome circumstances composite wcam be an
effective means to retrofit agxisting facility to lessen its vulnerability to
blast loads.

Keywords: blast effects, reinforced concrete, composites, FRP.

INTRODUCTION

A study [Ref. 1], based on numerical analyses performe®YMA3D, confirmed the
vulnerability of conventional reinforcecbncretemultistory buildings toattacks by explosives.
The focus of these analyses was on the prediction of the survivability of the perimeter columns of
a typical multistorybuilding when subjected to blast loads fronpassible terrorist explosive
device. Twabuilding designs were analyzed: one in whitchbuilding membersveredesigned
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mainly for gravity loadgUBC seismiczone 1) and one in whidine members werelesigned to
resist seismic loads (UBC seisnzione 4). Both cases were considered stheeone 4design
includes significantly higher laterakinforcement (for confinement purposes) whathances
the resistance to shear.

Numerical analysebave demonstrated [Ref. 1] that structucallapse of a multistory
building as awhole maystart by the failure of perimeter columns tre first floor. Retrofit
techniquesonsisting of strengthenindpe columns with round steel jacketgere assessed and
found to markedly increase the survivability of the columns [Ref. 1].

In this paper the effect on th&urvivability of columns wrapped with compositesl be
examinedusing the same numerical analyses methods previously usedhéorsteel jackets.
Structural response predictiorsse computed withthe three-dimensional Lagrangian finite
element cod®YNASD [Ref. 2], using aconcretematerial model especially designed to predict
nonlinearconcrete responses &xplosive loads. This study also includethe use of different
charge sizes and standoffs so that architecturednsiderationsthat limit the threat €.g,
increasing standoff) can be evaluated.

MODELING OF COLUMNS FOR BLAST ANALYSIS

To simplify the problem of computinghe response of theolumns only a portion of the
multistory building ismodeled, as indicated Figure landshown in Figure 2. Th#ocus of the
analysis ighe response of thiast floor column. Theother portions othe structureshown in
Figure 2areincluded to providehe correct boundargondition forthe first floor column. To
further simplify the problem,the loading applied consists of only airblaste( fragment and
debris effects are ignored) and is applied only to the columns; engulfment is ignored. The airblast
was generated separatelsing closed form expressions derived fralata €.9.,as described in
Ref. 3). The pressures reflected @fe exterior surfaces are predictedth relatively high
fidelity (in contrastwith the pressurdield insidethe building, which is complexand difficult to
predict).

Some ofthe significantfeatures offirst principle calculationpresented irthis paper are
the inclusion ofthe effect of confinement on the concrsteength and ductility, the effect of
strain ratei(e., apparent material strengthening due to rapid loading), and the capability to model
the direct shear responsé®( dynamic shear failure [Ref. 4, 5]). rajor issue in computing
the column response ielated tohaving sufficient fidelity inthe modeling to capture both
localizedshear andending failure mechanisms. The localizéear response, which occurs in
the first few milliseconds ofthe column’s overall response, is especially important to predicting
the survivability of reinforcedconcretecolumns. Gravityeffects arealso included through the
application of the load at the top of the column as shown in Figure 2.

ANALYTICAL PROCEDURE USED TO EVALUATE THE RETROFITS

Conventional Multistory Design. To measure the effectiveness of traious retrofit
designs, a baseline desifor a multistory building (Figure 1)was generated, as shown in
Figures 3and 4. Two designgvere developed: one in whidihe columnsand beams were
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Figure 1. Overview of multistory building used in evaluation.

designed mainly for gravity loads€., consistent with UBC seismic zone 1) and one in which the
columnsand beams weredesigned to resist seismic loadse.( consistent withUBC seismic
zone 4).This allowsthe evaluation tancludethe effects of the increaselictility and ultimate
strengths associated with a building designed for a highly active seismic zone.

Portion of Building Used for Analysis. To reduce computational demands, onkirgle
bay from the bottom threstories ofthe building isused for the respong®edictions (Figure 2).
Symmetry is assumed along the east-west edges of this section. While this is an approximation, it
does produce anodel of reasonablaccuracy andize for evaluatingthe effects oftomposite
wrap. To keep thenodel simple with little compromise the column responsdhe southedge
of the bay floor and girders are fixed at the location of the first interior column.

Loading. Airblasts at three different ranges(, 10, 20, 40 feet) were calculated for two
different ANFO chargesizes (.e., 1,500 and 3,00b). Thepeak reflected pressure aimapulse
at themid-height ofthe first floor column aregiven in Table 1. The gravity load is applied to
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Figure 2. Sections modeled in the analyses.

eachelement in the meslihe gravity load fromthe upperstories is applied as a pressure load
over the top of theolumn, as shown in Figure 2. Diféant pressurdistoriesare applied to the
exterior faces of the first and second story columns.

Material models. The material models fahe concrete and steel reinforcemardude
elastic-plastic behaviorrate effects, and fracture. The new concrete material model
implemented in DYNAS3D[Ref. 7] includes softening togeth&ith a fracture-energypased
localization limiter toprevent anyspurious mesh sensitivity. Ftre analyses, aASTM A 615
Grade 60 steel was used for reinforcement, withiure strain of 13%. Theoncrete had a

Table 1 - Characteristics of airblast loads applied to the first story

Load Case Charge Size Standoff
Number Ib (Kg) ft (m)

1 10 (3.05)
2 1500 (682) 20 (6.10)
3 40 (12.2)
4 10 (3.05)
5 3000 (1364) 20 (6.10)
6 40 (12.2)

Peak Reflected Peak Reflected
Pressure Impulse
psi (MPa) psi-s (KPa-s)
8100 (55.9) 3.7 (25.5)
2500 (17.2) 1.7 (11.7)
420 (2.9) 0.9 (6.2)
12000 (82.7) 6.9 (47.6)
4400 (30.3) 3.2 (22.1)
840 (5.8) 1.6 (11.0)

Note: height of burst was 6 feet (1.83 m)
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Figure 3. Typical details associated with the building for a north-south section.

nominal strength of 5,000 psi (34MdPa). For this particular study a relativelyeak carbon
wrap was used with a thickness of 0.019 inch (0.5 mm) per layer, a strengtKksf(342 MPa)
and a stiffness of 76ksi (52 GPa). Only six layers ofthe composite were applied (additional
layers would further stiffen the column and reduce the deflectidgfigure 5depicts some of the
behaviors modeled fahe concrete.Materialdata and details fahe material modelsre given

in References 7 through 11.

Composite wrap concepts.The chief benefit ovrapping areinforced concreteolumn
with a composite is gained frothe effect that increased confinement has onstrength and
ductility of concrete, as shown in Figure 5. In thigplicationthe wrapwill be most useful in
mitigating direct shear failure [Ref. 12], but d@an also provide increased axiahd bending
capacities [Ref. 13]. Composite or fiber reinforced plastic (FRP) amamosteffective when
circular, which requires a grofitl as depicted inFigure 6. Figure @lepicts the wraplesigns
used in this study for the columns on the first and second floors of the building shBigare 3.
This type of column wrap has been shown to significantlyease theolumn ductility, typically
from a ductility of 1.5 to 1QRef. 12, 13]. As a consequenttes type of column retrofit(using
either steel or FRP jackets) has been extensigplylied in California for highwaybridge
columns [Ref. 14].



The column wrapconcept isprimarily 8-#10 VERT.
dependent on the lateralilation of the
concrete causing an increase in its I
confinement by forcingthe wrap into
circumferential tension. Concrete in
uniaxial unconfined compression exhibits a
constant Poisson ratio of about Quatil v
approximately 75% ofthe compressive
strength, corresponding to a volumetric 2'-6"
compression phase. Atthat point

extensive internal  cracking  starts
developingand the apparerRoisson ratio

starts increasing to 0.5, whetleere is no 8—#11 VERT.
further volume variation. For increasing
compressionthe apparentPoisson ratio
keeps increasing until the owrall
volumetric strain becomes zerahen
becomes positivgnet volume increase).
This is shown in qualitatively in Figure 7 ‘
[Ref. 15]. Theability of the numerical
material model to reproduce the volumetric 2_g”
expansion phase is the key to the proper
representation of the confinement effect.
Figure 8 showsthe corresponding output
from the new concrete material model for a
singleconcrete element inniaxial unconfined compression. As a secondary bensfit {0 the
increased confinement), the wrap provides additional shear reinforcement.
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Figure 4. Column cross sections.

With respect to theomposite material, although carbon (or graphite) gladsfibers
havetypically been used focolumn retrofits [Ref. 14], aramid fibers.(j. Kevlar) may be more
appropriate for blast loads, due to their impact resistance.

Mesh. Theconcrete portions of theolumns and girders are modeled withthree-
dimensional eight-node brick elementsie reinforcement isexplicitty modeled with truss
elements.Shellelements, which replicatle nonlinear flexural behaviogre used tanodel the
floors and floor joists. The mesh for the iscolumns {.e., without composite wrap) is shown in
Figure 9.

VALIDATION OF RESPONSE PREDICTIONS

There is not much experimentdata in the open literature bwhich to evaluate the
accuracy and applicability of the models used to predict the effeblasié on structures. Most
test data is eithecompromisedbecause ofts incompletenesse(g, lack of complete material
characterization), fatally flawede (g, ill-defined boundary conditions asdten occurs in tests
involving single structural members, such as slabs and beams), or is derived from vedi@otss
programsand is notwidely disseminated. One validation stuthat is available formodels
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Figure 5. Fit of material model to experimental data for concrete.

similar to the ones shown in thpsper is presented in [Ref. 6]. That paper stuthedresponse
of substantial dividing walls to close-in charges. The metric for validatiotheaglocity of the
debris, which were predicted within 10% of the test data.

ASTM C39 compression tests carried out on 6-inch (15.2 cm) diameter concrete cylinders
jacketedwith two layers of acarbon composite resulted in a strength increase of 20%edla
strain of about 0.005Figure 10 showshe testresults for plairand jacketed concrewylinders.
Figure 11 showshe DYNA3D predictionsfor both cases. It is apparent that the concrete
material model is able to properly represent the jacketing effects.



CIRCULAR
COMPOSITE

EFFECT OF RETROFITS WRAP

The response ofthe as is -
column is illustrated by a plot of the®
deformed shape of thdirst floor ™~
perimeter column shown in
Figurel2(a). The corresponding {
response for thecircular composite
wrapped column is shown in
Figurel2(b) for comparison. As can
be seen fromthe results, a circular
composite wraggan have aubstantial
beneficialeffect on the performance of
the columns.
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Table 2 provides a summary of

the midspan deflection fothe various
column designs considered. For a small ™|
standoff of 10 feet(3.05 m), the _
unwrapped columnfails for both ©
charges, but a circular composite wrap !
can prevent théailure for the smaller N
charge. For a standoff of 4€et Y
(12.2 m), no failure is predicted. Zone
4 columns are somewhat more resistant o
to shearing. The thickness of the 2 -6
composite wrapcan be increased to
make it effective or a different.¢,
stronger or stiffer) fiber might be used.

,~~ SQUARE
COMPOSITE
WRAP

[\
Y

CONCLUSIONS Figure 6. Wrap designs for zone 1 (zone 4 design

< Similan,
The effects of standoff and is similar)

composite wrap on enhancitige Hast

resistance of conventional reinforced conciaRimnswere analyzed. It was showhat the
direct shear failure of first floor perimeteolumns is a potential major collapse mechanism for
the building as a whole. Wrapping the columns with a circular compositepneapnts collapse
for most ofthe casestudied. Square composite wrap columnsret perform asvell as the
circular wrapped ones; for example, onlslaght improvement from 1.9 inches to 1.6 inches
(mid-height displacementdccurred for the 20-foot standoff 1,500 Ib charge, Begire 13.
However, using a stiffer carbon fiber €.g, E = 15 Msi) wouldreduce themid-height
displacement from 1.6 to 0.9 inchedhis is consistent with static tests on square wrapped
columns. Adding a slighturvature €.g, a 2-inch radius) to the corners of thesarh square



columns hadeen found in static tests to markedhprovethe response of theolumns. This
design concept will be examined in a future paper.

Table 2 - Maximum displacements for first floor perimeter column.

Maximum Midspan Displacement, in (cm)
Standoff TNT Yield Zone 1 Zone 4
ft (m) Ib (Kg) No Wrap  Circular Square  No Wrap  Circular
Composite Composite Composite
Wrap Wrap Wrap
10 (3.05) 1500 (682) failure 5.2 (13.2) — failure 4.3 (11.0)
3000 (1364) failure failure — failure 14 (35.3)
20 (6.10) 1500 (682) 1.9 (4.8) 0.7(1.8) 1.6(4.1) 0.96(2.4) 0.5(1.3)
3000 (1364) failure 3.5(8.8) failure failure 2.9 (7.4)
40 (12.2) 1500 (682) 0.17 (0.4) safe — safe safe
3000 (1364) 0.79 (2.0) safe — safe safe

Notes: 1ft=0.3048m, 1in=254cm, 1lb=0.454 Kg
For the cases where similar calculations indicated that no failure would
occur the column was deemed safe.
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