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Abstract: In recent years, significant focus has been placed on the development and 
implementation of advanced prognostic and health management (PHM) technologies in 
military and industrial applications.  The term PHM encompasses anomaly, diagnostic 
and prognostic algorithms as well as higher level reasoning algorithms for isolating root 
causes of faults/failures and directing optimal operational or maintenance actions.  In 
such systems, two current deficiencies exist. First, for a variety of reasons, component 
and subsystem interactions in such systems are poorly realized.  The issue manifests itself 
as multiple dependent “boxes” indicating faults with shotgun tests or valuable domain 
expertise required to de-conflict and reduce ambiguity groups.  Secondly, complex 
systems still largely rely on expert rule-bases for reasoning which are notoriously 
difficult to maintain over a life cycle and are prone to logical conflicts.  This paper begins 
to address these deficiencies by outlining a simulation-based process for automatically 1) 
realizing complex system interactions for optimal PHM system design and 2) building 
and maintaining model-based reasoning architectures where decisions and conclusions 
naturally precipitate out of a more manageable system model.   
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Introduction:  Prognostic and health management embraces a philosophy that works to 
maximize a piece of equipment’s availability to perform a task or mission, while 
simultaneously minimizing its maintenance cost.  In recent years many PHM packages 
have entered the market incorporating near real time automated monitoring, data analysis, 
diagnostic routines and more advanced, embedded algorithms driven prognostic 
applications predicting remaining useful life.  The plethora of information derived 
throughout these multiple layers all garner inputs for decision support tools. These inputs 
give maintenance planners the knowledge to take appropriate actions.  In light of the data 
now made available to maintainer’s, the next natural progression of questions to be asked 
is “What action should be taken first when sensors may be indicating that several 
available maintenance actions could correct the failure at hand?”  A reasoning engine that 
learns from its previous experiences and provides guidance on the most likely next course 
of action is a decision support tool that will compliment the PHM philosophy. 
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Prescription-Based Maintenance Management System (PBMS) is such a maintenance 
reasoner engine that directs the performance of maintenance tasks only when there is 
sufficient evidence of a need.  Towards that, a system of monitoring, detection, diagnosis 
and prognosis will guide the users to a probable set of maintenance tasks to correct an 
occurring discrepancy.  The next appropriate step will be to prescribe the most likely 
corrective action, “prescription,” to remedy the situation.  This process flow is displayed 
in Figure 1 below.  An effective Prescription-Based Maintenance Management System 
will ultimately reduce the overall operation and support (O&S) costs of shipboard 
systems, through the efficient use of manpower, equipment and spare parts. 
 

 
 

Figure 1:  Prescription-Based Maintenance Concept 
 
Overall System Architecture:  As with any support tool emphasis must be placed on 
creating a system architecture that has scalable attributes and that easily communicates 
with other systems through an open architecture environment.  The PBMS application 
interacts with existing Navy systems such as the Integrated Condition Assessment 
System (ICAS), existing diagnostic or prognostic agents, scheduling software, electronic 
instructions, and maintenance databases.  Open system standards are used where 
interaction with other software modules is expected.  Evolving Open Systems 
Architecture for Enterprise Application Integration (OSA-EAI) standards is used for 
undefined external interfaces where compatibility is required.  Capabilities and 
provisions are being provided for future interfacing with a mission readiness assessment 
system.  The PBMS external interfaces are outlined in Figure 2. 
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Figure 2:  PBMS Data/Info Integration 
 
During a SBIR Phase II program, Impact Technologies, LLC developed the PBMS shell 
in the Tcl/Tk programming language displayed with XML for web base capability.  
Tcl/Tk is an extremely versatile high-level language with a large pallet of Graphical User 
Interface (GUI) elements and Open System Architecture object links such as COM, 
DCOM, CORBA and XML.  The XML modeling approach is used to model and analyze 
the reasoner-based system. The developer can use standard notation to model system 
components, behaviors, and users.  This approach is widely accepted for distributed 
object-oriented systems. This architecture enables systems in dynamic link library (DLL) 
files to interface with the evaluation system through a standardized OSA protocol.  An 
XML-based Maintenance Integrated Model (MIM) will be integrated into the core 
application program.  The MIM incorporates a fault tree type database with the 
appropriate condition monitors and maintenance tasks in a graphical portal. 
 
  



 
Figure 3:  PBMS Integration with ICAS 

 
As an integral part of the PBMS, information from diagnostic or prognostic agents is 
utilized to trigger appropriate maintenance actions.  Machinery health assessments from 
diagnostic or prognostic agents are passed through ICAS to the PBMS as failure mode 
evidence sources for maintenance reasoning.  Other classes of information and data such 
as operating mode are also being exchanged as required. The PBMS application wrapper 
is interfaced between the ICAS application and TCP/IP messaging service, Figure 3, 
where a data demand function pulls the appropriate data and information from ICAS to 
the PBMS application.  The PBMS module itself directly interfaces with the MIM that 
has previously captured the knowledge associated with the CBM technologies and 
maintenance tasking.  The overall system architecture envelops three distinct agents: 
Maintenance integrated model, PBMS Reasoner, and Reinforced Learning. 
 
Maintenance Integrated Model (MIM):  The Maintenance Integrated Model 
incorporates a fault tree type database with the appropriate condition monitors and 
maintenance tasks in a graphical portal.  The majority of the information in the MIM 
should come from system Failure Modes, Effects, and Criticality Analysis (FMECA).  
The FMECA information that is required to build a complete MIM model is listed below.   

• Functional Elements (Systems, Subsystems, Components) and hierarchy 
• Relationships between functional elements (Mechanical, Electrical, Fluid) 
• Failure Modes or Faults 

o Failure Rate (1/MTTF – related to Weibull Parameters) 
o Weibull Shape Parameter 
o Severity (1:Negligible, 2:Marginal, 3:Critical, 4:Catastrophic) 

• Symptoms and Effects 
• Relationships between Failure Modes and Effects (Fault Tree) 
• Probability of Propagation between each element of the fault tree 
• Monitors or Algorithms (Built in Test or Discrete, Diagnostics, Prognostics) 

o Probability of Detection for BIT or Diagnostic 
o Probability of False Alarm for BIT or Diagnostic 
o For Prognostics, use Accuracy 
o Algorithm Life Cycle Cost 

• Sensors that are required for the Algorithms 
o Sensor failure rate 



o Sensor Life Cycle Cost 
• Relationships between Monitors and Symptoms/Effects or Failure Modes 
• Maintenance Tasks that mitigate failure modes (Unit, Intermediate, Depot) 

o Hardware cost to perform task 
o Labor cost to perform task 
o Hours of downtime required to perform task 
o Unscheduled task penalty factor 
o Maintenance Task Effectiveness 

• Connectivity between Maintenance Task and Failure Mode 

•  

 
 

Figure 4:  Example MIM with annotations 
 
All MIM information is stored in specially formatted XML database files.  As needed, 
any of the layers may access the file to extract pertinent information.  The XML files 
contain two types of elements – components and connections.  Components refer to 
systems, subsystems, system elements, faults and failure modes, effects, monitors, 
sensors, and maintenance tasks.  Each component instance has a variety of associated 
attributes.  Connections can refer to mechanical, electrical, and fluid links between 
system elements, or associations between various health management components (faults 
and failure modes, effects, monitors, sensors, and maintenance tasks).  The structured 
XML approach allows standardized code to be used to read and interpret the data.   
 
 
 



PBMS Reasoners:  The reasoning algorithm being developed under this task represents 
the logical process through which decisions are made by the PBMS.  In this case, a 
Reasoning algorithm must be able to identify root cause failure modes and corrective 
actions (maintenance tasks) based on all available evidence, information/knowledge 
sources and a practical set of restraints.  
Most present day maintenance practices involve an experienced person to troubleshoot an 
observed problem with a system and decide upon the appropriate maintenance action.  
Currently used Interactive Electronic Tech Manuals (IETM) step the maintainers through 
a series of tests / procedures on the basis of convenience, cost or, at best, likelihood of 
success. The most modern IETM have “meta-tags” which act as handles for indexing to 
certain tasks.  If something in the IETM is incorrect, it remains incorrect until a human 
changes it.  The suggested maintenance tasking is static and most importantly, human 
interpretation is required to characterize and classify evidence.  The automated reasoning 
algorithms and agent-based approaches demonstrated in this application can circumvent 
these issues of classification and characterization of sometimes incongruent data, to make 
a logical progression from failure modes to most appropriate maintenance tasks. 
 
Evidence-Based Maintenance Reasoning:  In the Phase II program, Impact 
Technologies is developing a knowledge-based fusion algorithm that is capable of 
performing failure mode and maintenance task ranking, as well as root cause isolation 
within a system containing a variety of information and knowledge sources already 
mentioned.  While novel in its integration capabilities, the technique is based on 
fundamental mathematical principles and can significantly improve upon the 
performance of the results from the techniques previously introduced.  A standard 
FMECA of the system provides the basic requirement of information for the proposed 
Impact Reasoner implementation. 
The Impact Fusion Reasoner (IFR) will have two modes under which it 
receives/processes information to act upon: Initialization and Evidence Activation.  
Essentially, Reasoner information calculated in the initialization mode will be based on 
static model attributes such as evidence to failure mode dependencies, false alarm rates 
and real fault probabilities.  During initialization, two steps will be required before 
reasoning can actually take place: Connectivity Matrix generation (CM) and Evidence 
Sub Graph (ESG) identification. The CM is generated by exploring the relationships 
between failure modes and monitors configured in the model.  Figure 5 illustrates an 
example where Boolean numbers are used to generate the connectivity (note: the term 
“monitor” is equated with any piece of evidence). A value of “1” indicates that a piece of 
evidence is able to directly observe the effects of a specific failure mode. No direct 
observation corresponds to a value of “0”.  
 

 
Figure 5: Connectivity Matrix 

 



The Evidence Sub Graph (ESG) can be extracted from the Connectivity Matrix. An ESG 
contains generic monitors (i.e. evidence) that are directly or indirectly related to the same 
failure modes in the system.  Two generic monitors observing a fault would be 
considered indirectly related through a failure mode while the relation between a monitor 
and an observable fault is direct. 
 
The Reasoning Process Invoked Upon Monitor Activation:  The Reasoning process is 
broken into three major steps: Time-based (temporal) considerations, Failure Mode Ranking 
and Failure Rate Adjustment.  Each monitor could have time delays associated to its 
responsiveness to fault detection, as well as failure propagation paths with associated monitors 
that activate in a temporal sequence.  As an example, consider the fact that an oil leak may 
only be identified after a prescribed amount of oil has been lost.   Accounting for delays is an 
important feature that insures that all potential evidence that may be used to indict a root 
failure mode has been considered before a conclusion is reached (see Figure 6 as an example). 
 

 
Figure 6: Reasoning with monitor time delays 

 
Accounting for Positive and Negative Evidence:  Positive and Negative Evidence, along 
with Real Fault Probabilities and False Alarm Rates need to directly contribute to the failure 
mode ranking process.  Positive Evidence may be defined as evidence that indicts a failure 
mode consistent with the evidence sub-graph (ESG). An absence of evidence when it is 
expected may be defined as Negative Evidence.  Figure 7 illustrates these concepts for three 
Monitors capable of observing a single Failure Mode in a generic example.  Consider Failure 
Mode 1 to be a lube oil leak for a generic piece of machinery.  One could characterize at least 
three pieces of evidence that, when combined, should indict this problem 1) loss of pressure 2) 
loss of oil level 3) observation of oil on the ground.  If evidence 1 and 2 are present but not 3, 
there is imperfect evidence indicting the lube oil leak failure mode.  It is entirely possible; 
however, that the oil may be evaporating, the leak wasn’t found or that the pressure and level 
readings are inaccurate. 
 



 
Figure 7:  Positive and Negative Evidence Sources 

 
Real Fault Probabilities and False Alarm Rates:  The probability of a fault existing given 
that a monitor has indicted it is (P (FM/Monitor)) and corresponds to the Real Fault 
Probability (RFP). The False Alarm Rate (FAR) is related to the potential of a monitor 
activating given the absence of a fault (P (Monitor/~FM)). Equation 1 illustrates how the 
ranking of a given failure mode is determined through the consideration of Positive evidence, 
Negative evidence, FAR and RFP.  This is a fundamental equation of the Impact Reasoner. 
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The Positive Evidence contribution is reduced by 1 minus the potential of a monitor 
going active without the presence of a fault (False Alarm Rates). Negative Evidence 
contribution is reduced by 1 minus the potential of a fault existing but going undetected 
(1-Real Fault Probability). The numerator is normalized by the sum of the total potential 
of the system. The Rank ranges from 0 to 1, with the highest number being the best score.   
A second step is required to complete the ranking process, which addresses failure rates 
and can be used to break “ties” on ranking. 
  
Accounting for failure rates:  The initial ranking algorithm alone will not account for a-
priori failure rates.  For example, if the 2 failure modes have equal initial ranks, consideration 
of the historical failure rate of one relative to the other can act as the tie-breaker.  The premise 
in the failure rate adjustment process is that, while failure rate statistics have no place in the 
initial ranking they can be appropriately mapped into a ranking adjustment of the potential set 
of root cause failure modes. 
 
The ranking adjustment can be performed through a predefined look up chart, which 
converts the original rank to an adjusted rank based on failure rate values. The chart is a 
function of initialization variables, failure rates and original ranks.  The initialization 
algorithm provides crucial parameters necessary in mapping the charts dynamic nature.  
Such a chart is illustrated in Figure 8. The values on the abscissa represent the original 
ranking values based upon Positive and Negative evidence. The ordinate includes two 
separate axes: a failure rate log-scale axis and a scale factor axis. The failure rate values 
are converted into a scale factor, which defines the y-intercept of a specific line. The log 
to linear scale conversion is based on the fact the failure rate are usually orders of 



magnitude apart (i.e. 1E-6 vs. 1E-5).  The chart contains a mapping of two main regions 
separated by a variable ranking limit. 
 

 
Figure 8:  Failure Rate Adjustment Chart 

 
The ranking limit can be adjusted along the abscissa changing the distribution of the set 
of lines and subsequently affecting the two regions. Failure rates will be irrelevant for 
any rank values that fall to the right of the limit.  Any values to the left of the limit will be 
affected. The adjusted rank for a given failure mode is a calculated ratio of the original 
rank and a factor number provided by the chart as shown in Equation 2. 
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The derivation of the correction factor requires the y-intercept and the slope of the line.  
Interpolating between two axes defined on the ordinate outputs a y-intercept measure on 
the factor scale axes. 
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The slope of the line is calculated from Equation 4. The Rank Scale ranges between the 
origin and the ranking limit.  
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The corrector factor is calculated from Equation 5 and substituted into Equation 2.  Using 
the original rank input, the slope of the line and its y-intercept the corrector factor is 
calculated and substituted into Equation 2. 
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The ranking adjustment process as stated will only allow failure mode rankings to 
improve based on failure rates.  
 
Reinforced Learning:  Q-Learning is among a series of Reinforcement Learning (RL) 
algorithms with a common objective aimed to successfully solve problems that require 
complex decision processing. Reinforcement Learning is a combination of fields such as 
dynamic programming and supervised learning, which lead to powerful intelligent 
machine learning systems. One of the biggest advantages of these techniques is the 
model-free aspect. The applicability of reinforcement learning algorithms is independent 
from the structure of the system taken into consideration.   
Q-Learning has been integrated in the MIM environment to reinforce the maintenance 
task decision processes and address the evolvable aspect of the paradigm. Suppose a 
maintainer is presented with a problem or symptom which leads to the choice of multiple 
solutions that may not necessarily lead to an effective maintenance action. No matter 
which solution the maintainer decides to perform, the reinforcement learning system 
records these problem/solutions relationships and their outcome. During the course of 
time the RL system will ultimately lead the maintainer to choose the most effective 
solution to the given problem.  
The following relationships formally introduce the reinforcement learning model. 

- S : A discrete set of environment states  
- A : A discrete set of agent actions  
- R : A set of scalar reinforcement signals 

An agent is connected to its environment through actions. For every interaction, an agent 
receives an indication of the current state, s, of the environment. Once the agent knows 
the current probable state, it chooses among a set of actions. The selected action ‘a’ will 
consequently change the state ‘s’ of the environment. During the transition from the 
current state to the new state a scalar reinforcement signal ‘r’ is used to reward or 
penalize the action based on its outcome. After numerous interactions and transitions the 
agent will gain useful experience that will lead to choosing the optimal action ‘a’ for a 
given current state ‘s’. Once the system has learned over time, a policy can then be used 
to choose which actions should be performed when a state is encountered. The value of 
the state is defined as the sum of the reinforcements over a discrete number of 
interactions. The optimal policy can be calculated by indexing the mapping between state 
and actions that maximize the sum of the reinforcements.  
 



The advantage of Q-learning is that initially, when the optimal state to action 
relationships are not entirely known, the agent may have the option of randomly selecting 
an action. Q-learning allows arbitrary experimentation and simultaneously preserves the 
current best estimate state values. The final results in Q-learning are not contaminated by 
experimental actions, which will only ultimately reward or penalize the state action pairs. 
In order to obtain meaningful values, it is necessary for the agent to try out each action in 
every state multiple times allowing the reinforcement updates to assign penalties or 
rewards based on the outcome.  
The Q-learning equation is presented below:  
 

)),(max),((),()1(),( 1 asQasrasQasQ ttttttt +++−= γαα  (6) 
 
Where, Q is defined as the sum of all reinforcements for the state action pair (s, a) at a 
given time (t). 

- α is the learning rate parameter [0,1] 

- γ is the discount parameter [0,1] 

 

The learning rate parameter α carries a significant importance in adjusting the 
algorithms’ learning behavior.  α controls the weighting on current and previous 
knowledge represented in the state-action pair values. As the learning rate parameter 
approaches 1, new experience outweighs previous experience. As it approaches 0, 
previous experience outweighs new experience. For the state – action pairs, representing 
task effectiveness of a maintenance action relative to a fault, α is set closer to 0, 
outweighing previous experience to new, which translates in assigning more importance 
to the maintenance task history performance.  
 
The discount parameter γ controls the weighting on the new state action pair. For the 
current application, the parameter is fixed to a constant and provides scaling to the state-
pair values, which does not affect the overall results of the Q-Learning algorithm.  
The mapping between state and action pairs can be represented in an n x m matrix where 

- n represents the number of possible states  
- m represents the number of possible actions  

 
 

 
Figure 9:  Q Learning Matrix 

 
The Q-Matrix may be a representation of the Task Effectiveness of a particular 
maintenance action (a) directly connected to a failure mode (s). The outcome of the 



performed action leads to a state transition. The state transitions are defined in the 
following two cases and illustrated in Figure 10 below.  
 

- Case 1 : Given a Failure Mode (S), if any particular selected action is successful, 
the state will transition from the current fault state to a healthy state.  

- Case 2 : Given a Failure Mode (S), if any particular selected action is not 
successful, the state will transition from the current fault state back to its current 
fault state or to a different fault state. The transition to a different faulty state 
could be an indication that the failure mode was not clearly identified until after 
the maintenance action was performed. 

 

  

Figure 10:  Decision Process Flow Chart 
 
Implementation of the Application:  The overall PBMS software package will be used 
to enhance existing CBM processes currently used for naval applications.  The PBMS 
offers “plug and play” capability with software packages such as ICAS and enables the 
ability to intelligently recommend maintenance actions based on health management 
evidence, logistics, economics, and other factors.  The design of the PBMS software 
architecture is flexible in that it may receive both archived and real-time data.  Because it 
will be used to assess real-time information, the domain logic was designed to minimize 
response time.  The reasoner also relies on close interaction with the MIM to perform its 
function.   
 
The reasoner layer takes in evidence sources in the form of CBM monitor activations, 
processes the evidence in conjunction with a MIM, and outputs a list of probable failure 
modes and ranked maintenance task recommendations.  The overall maintenance ranking 
can be modified to account for criteria weighting factors, availability, and scheduling.  
The current suite of ranking criteria includes: hardware and labor cost, availability or 
downtime considerations, safety, and criticality.  Considerations such as common 
procedures, part/tool/labor availability, and upcoming scheduled tasks are factored into 
the domain logic.   



 
The Human System Interface (HSI) provides a real-time link between the outputs of the 
PBMS (the system) and its user (the human).  It is represented by a Graphical User 
Interface (GUI) that will present the information to the user in a manner that is easily 
understood as seen if Figure 11. 

 

 
 

Figure 11:  PBMS Graphical User interface 
 
The HSI presents the maintenance technician with recommended maintenance actions 
and accepts maintainer feedback. Work order generation capabilities have been 
incorporated into the design based on the PMS Viewer format. Feedback provided by the 
user shall be used to update failure mode and maintenance task rankings, and if necessary 
update the MIM to make it more effective.  Specifically, the PBMS reasoner must know 
which maintenance tasks were performed and whether or not they were successful.   
 
The ship’s information systems contain data that are updated in near real time and can be 
utilized by the PBMS.  The Integrated Condition Assessment System (ICAS) contains 
event, fault and Built-in-Test (BIT) data.  This evidential data is input to the PBMS and 
activates evidence when a fault condition is detected.  Typically, the evidence trigger is a 
BIT or diagnostic, but several prognostic enhancements are available that will submit 
Remaining Useful Life (RUL) data as evidence to the PBMS. 
 



The PBMS reasoner takes in the evidence provided by ICAS and, utilizing a subsystem’s 
predefined Maintenance Integrated Model (MIM), determines the most likely failure 
modes and consequential maintenance tasks required to correct the fault. Once the 
maintenance tasks have been defined, the reasoner queries the Consolidated Onboard 
Ships Supply data base to determine whether or not the appropriate tools, parts, materials 
and personnel are available to complete the maintenance task. The reasoner flags the 
tasks that are missing resources so the human-in-the-loop can make a more informed 
decision for maintenance scheduling. 
 
The final component of the PBMS is the activation of a learning mechanism through 
maintainer feedback.  The feedback system is used to determine if a prescribed 
maintenance task was successful at correcting a fault condition.  The link between failure 
modes and maintenance tasks is accordingly strengthen or weakened based on the success 
of the task or lack thereof. 
 

 
 

Figure 12: Connectivity between PBMS & PMS Viewer 
 
Conclusions:  A comprehensive approach has been presented to guide maintainers to the 
optimal maintenance actions as diagnosis through automated Condition-based 
maintenance systems.  This integrated approach operates in open system architecture, 
using accepted OSA standards, to easily communicate with disparate data systems.  The 
PBMS reasoners implement a variety of techniques such as Fusion reasoning Real fault 
probabilities, False alarm rates and advanced Reinforce learning.  Finally, a human 
system interface concept was presented for illustrating how information from a 
complicated health management system could be presented to an end user.   
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