Award Number: W81XWH-05-1-0018

TITLE: Interfering with DNA Damage Signals: Radiosensitizing Prostate Cancer Using Small Peptides

PRINCIPAL INVESTIGATOR: Bo Xu, M.D., Ph.D.

CONTRACTING ORGANIZATION: Southern Research Institute
Birmingham, AL 35205

REPORT DATE: November 2008

TYPE OF REPORT: Annual

PREPARED FOR: U.S. Army Medical Research and Materiel Command
Fort Detrick, Maryland 21702-5012

DISTRIBUTION STATEMENT: Approved for Public Release; Distribution Unlimited

The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy or decision unless so designated by other documentation.
1. REPORT DATE
1 Nov 2008

2. REPORT TYPE
Annual

3. DATES COVERED

4. TITLE AND SUBTITLE
Interfering with DNA Damage Signals: Radiosensitizing Prostate Cancer Using Small Peptides

5a. CONTRACT NUMBER

5b. GRANT NUMBER
W81XWH-05-1-0018

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)
Bo Xu, M.D., Ph.D.

E-Mail: xu@sri.org

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Southern Research Institute
Birmingham, AL 35205

8. PERFORMING ORGANIZATION REPORT NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
U.S. Army Medical Research and Materiel Command
Fort Detrick, Maryland 21702-5012

10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for Public Release; Distribution Unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
The major goal of this project is to identify small inhibitory peptides that can target critical DNA damage responsive pathways in order to develop novel therapeutic agents for prostate cancer radiotherapy. Previously we have demonstrated that small fusion peptides containing SMC1 phosphorylation and NBS1 ATM binding sequences can inhibit ATM activity and decrease prostate tumor cell clonogenic survival after radiation, therefore these peptides can be tested for in vivo activities of radiosensitization. In order to achieve this goal, we generated a series of tumor homing peptides containing these sequences and proved tumor specific targeting of the peptides. Ongoing experiments include approaches to reduce radiation damage to normal tissues and to evaluate of the fusion peptides as radiosensitizers in prostate cancer xenograft models.

15. SUBJECT TERMS
ATM, SMC1, NBS1, DNA damage, radiotherapy, peptides

16. SECURITY CLASSIFICATION OF:
a. REPORT
U

b. ABSTRACT
U

c. THIS PAGE
U

17. LIMITATION OF ABSTRACT
UU

18. NUMBER OF PAGES
8

19a. NAME OF RESPONSIBLE PERSON
USAMRMC

19b. TELEPHONE NUMBER (include area code)
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>4</td>
</tr>
<tr>
<td>Body</td>
<td>4</td>
</tr>
<tr>
<td>Key Research Accomplishments</td>
<td>6</td>
</tr>
<tr>
<td>Reportable Outcomes</td>
<td>6</td>
</tr>
<tr>
<td>Conclusion</td>
<td>7</td>
</tr>
<tr>
<td>References</td>
<td>8</td>
</tr>
</tbody>
</table>
INTRODUCTION

The goal of this project is to identify and characterize small inhibitory peptides that can sensitize prostate tumor cells to radiation therapy both in vitro and in vivo. We aim to target critical DNA damage responsive pathways. Since that last two performance period, we have identified several peptides that can interfere with ATM-mediated pathways. ATM is a protein kinase critical for the cellular survival after radiotherapy. ATM phosphorylates a series targets including the Structural Maintenance of Chromosome protein one (SMC1)(Kim et al., 2002; Kitagawa et al., 2004; Yazdi et al., 2002) and Nijmegen Breakage Syndrome 1 (NBS1) (Lim et al., 2000) to limit the amount of radiation sensitivity. We have developed several peptides that function as radiosensitizers in vitro by targeting ATM phosphorylation of SMC1 and NBS1-ATM interaction (Cariveau et al, 2007). Therefore Task 1 and 2 of this project have been completed. In this performance period, we initiated in vivo studies (Task 3) to test the efficacy of the peptides as powerful radiosensitizers in a prostate xenograft model.

BODY

Task 3. To study radiosensitizing effects of the peptides on a prostate cancer xenograft model in nude mice.

1. Development of the THM-peptides for in vivo studies.

We first generated a set of fusion peptides containing the CNGRC tumor homing motif (THM) for the mouse studies. These include THM-only, THM-wtSMC1, THM-mtSMC1, THM-wtNIP, and THM-scNIP. The CNGRC sequence was linked to the N-terminus of the peptides. Biotin was labeled at the N-terminus of the fusion peptides in order for in vivo detection. Since it was possible that the THM sequence may have an inhibitory effect on NBS1-ATM interaction, we first tested the potential effect in PC-3 cells treated with the peptides/irradiation (0 or 6Gy). 2 hours after IR, cells were harvested and co-immunoprecipitation experiments were performed using an anti-NBS1 antibody. The immunoprecipitates were then immunoblotted with anti-ATM or anti-NBS1 antibodies. Our data demonstrate that the THM sequence does not interfere with the NBS1-ATM binding (Figure 1). Therefore these peptides are suitable to further studies.

<table>
<thead>
<tr>
<th>IR</th>
<th>IgG</th>
<th>DMSO</th>
<th>THM</th>
<th>WT</th>
<th>SC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

Figure 1. The tumor homing motif (THM) does not affect NBS1-ATM interactions. PC-3 cells treated with the THM fusion NIP peptides were irradiated (0 or 6Gy). Immune precipitation was performed with a rabbit anti-NBS1 antibody. Immunization blotting was performed with monoclonal anti-ATM and NBS1.

2. Establishment of PC-3 xenografts.

The in vivo studies were performed in the Department of Cancer Therapeutics at the Drug Development Division of Southern Research Institute. Specific pathogen-free, 4-6 week old male nu/nu (nude) mice were obtained from Harlan, Sprague, Dawley and housed in sterilized filter-topped cages kept in laminar flow isolators. PC-3 tumor cells (2 x 10^6 per mouse in PBS) were
injected s.c. into the flanks of the mice. In all experiments, tumors were allowed to establish and grow before any treatment is initiated.

3. In vivo distribution of the peptides

When tumors reached approximately 100 mm3, animals were randomized and treated with the THM-only, THM-wtNIP, THM-scNIP, THM-wtSMC1, or THM-mtSMC1 peptides at doses ranging from 0.5-2 mg/kg by one of two routes: intraperitoneal (ip) or intra-tumoral injection (it). 0, 6, 12, or 24 hours after injection, the mice were euthanized, and the tumor tissue and normal tissues surrounding the tumor tissue were obtained. The samples will be assessed by a flow-activated cell sorting (FACS) analysis when stained with an FITC-conjugated streptavidin antibody. These experiments provided information on how fast the peptide could reach the tumor tissue, how long they would remain in the tumors, and whether or not the peptides would also accumulate in normal...
Localization of the peptides within tumor tissues was analyzed by dissection of the tumor tissues up to 24 hours after peptide injection. The tumor tissue specimen was stained with FITC-conjugated streptavidin, and immunofluorescence microscopy performed. We found that the tumor tissues injected with either route of the THM peptides showed at least of 80% of positive staining with an anti-streptavidin antibody, suggesting that the peptides can accumulate in tumor tissues (Figure 2A). Immuno-histochemistry experiments to investigate the localization of the THM peptides in tumor and normal tissues reveal that the THM-fusion peptides can specifically accumulated in tumor, but not in normal tissues (spleen and intestine) (Figure 2B).

4. Xenograft radiation.
We also performed preliminary experiments in order to obtain a radiation dose range for the xenograft studies. Mice with PC-3 xenografts reached 100 mm³ were randomized and injected with peptides via i.t. Following a short interval to allow peptides to target tumors, mice were irradiated with a Precision X-RAD 320 Irradiation System. The dose rate for the irradiator at a distance of 50cm was 2.8Gy/min, while at a distance of 25 cm is 5.6 Gy/min. During the radiation procedure, mice were briefly (less than 5 minutes) restrained in a Plas Labs (Lansing, MI) clear plastic mouse-restraining device (tube) to allow the tumors to be targeted by radiation. Initial experiments have shown that 15Gy of local radiation was lethal to the majority of the mice, due to radiation damage to intestines. To overcome this, we will 1) reduce the radiation dose to 10Gy, 2) shield the intestine area during radiation; and 3) reduce the area to be irradiated.

KEY RESEARCH ACCOMPLISHMENTS
1. We have generated several THM-fusion peptides for in vivo studies;
2. The THM peptides have demonstrated tumor specific localization in PC-3 xenografts (Task 3a).

REPORTABLE OUTCOMES
A. Publications and meeting presentations:

B. Awards/honors:
Xi Tang, postdoctoral fellow, AACR-WICR Brigid G. Leventhal Scholar Award for the 2008 AACR annual meeting

C. Invited seminars/lectures:
1. “DNA damage response mechanisms, from fundamental biology to cancer drug discovery”, Georgia State University, Atlanta, GA, December 7, 2007,
2. “Recent Advances in Cancer Drug Discovery”, Samford University School of Pharmacy, March 12, 2008
CONCLUSIONS
During the last performance period, we have generated several small inhibitory peptides that can interfere with DNA damage-induced signaling pathways mediated by ATM for \textit{in vivo} studies. We have shown the \textit{in vivo} tumor targeting ability of the THM-fusion peptides. We have also observed significant radiation damage to the intestine area after radiation. Experiments are ongoing to reduce the intestinal damage and evaluate the radiosensitization effects of the fusion peptides. We have been granted a six-month no-cost extension to complete the project.
REFERENCES

