EVALUATION OF MODERN HYDROGEN MASERS*

Albert Kirk, Paul Kuhnle and Richard Sydnor
Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California

ABSTRACT

During the last two years the Jet Propulsion Laboratory (JPL) has been conducting an evaluation of modern hydrogen masers in a program sponsored by the National Aeronautics and Space Administration (NASA). The goal was to perform a series of tests and evaluations which would be as complete, accurate and unbiased as possible. A board of nationally recognized experts in hydrogen masers and in frequency and time was selected to design the testing program, supervise the tests and release the final report. This board consisted of:

Hugh Fosque NASA Headquarters Chairman
Joel Smith JPL Convening Authority
Norman Ramsey Harvard University
Robert Vessot Smithsonian Astrophysical Observatory (SAO)
Victor Reinhardt Goddard Space Flight Center (GSFC)
Richard Sydnor JPL
James Barnes National Bureau of Standards, Boulder (NBS)
Gernot Winkler United States Naval Observatory (USNO)
Andrew Chi GSFC
Arthur Zygielbaum JPL Executive Secretary

The maser types tested were the SAO VLG-11B, the GSFC NR and, as a result of the testing process, the JPL DSN. The masers were tested for environmental sensitivities (magnetic field, temperature, barometric pressure) and long-term aging. Allan variance runs of 72 days were made in order to attain averaging times from several seconds to 10^6 seconds. Auto- and cross-correlation techniques were used to determine the effects of uncontrolled parameters such as humidity. Three-cornered-hat and other data reduction techniques were used to determine the characteristics of the individual masers.

*The research described in this paper was carried out by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration.
Evaluation of Modern Hydrogen Masers

Report Date:
DEC 1982

Report Type:

Dates Covered:
00-00-1982 to 00-00-1982

Performing Organization Name:
California Institute of Technology, Jet Propulsion Laboratory, Pasadena, CA, 91125

Sponsoring/Monitoring Agency:

Distributor/Availability Statement:
Approved for public release; distribution unlimited

Supplementary Notes:
Proceedings of the Fourteenth Annual Precise Time and Time Interval (PTTI) Applications and Planning Meeting, Greenbelt, MD, 30 Nov - 2 Dec 1982

Abstract:
see report

Subject Terms:

Security Classification of:

<table>
<thead>
<tr>
<th>a. Report</th>
<th>b. Abstract</th>
<th>c. This Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>unclassified</td>
<td>unclassified</td>
<td>unclassified</td>
</tr>
</tbody>
</table>

Limitation of Abstract:
Same as Report (SAR)

Number of Pages:
34

Name of Responsible Person:

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18
INTRODUCTION

The three maser types evaluated represent the newest models manufactured by the Jet Propulsion Laboratory (JPL), the Goddard Space Flight Center (GSFC) and the Smithsonian Institution Astrophysical Observatory (SAO). The characteristics that distinguish these from earlier laboratory models are: transportable for routine field operation anywhere in the world, highly reliable, well documented, ease of servicing, equipped with built in instrumentation for simplified verification of performance and diminished dependence on the operating environment.

The GSFC Hydrogen Maser is manufactured by Johns Hopkins University Applied Physics Laboratory (APL) as the model NR. GSFC and APL supplied serial number four (4), identified in this paper as NR-4. The Smithsonian Astrophysical Observatory supplied one model VLG 11B serial P14 which is identified as SAO 14. This test series was conducted in the Interim Frequency Standard Test Facility located at JPL in Pasadena, California. JPL designed and maintains two reference Hydrogen Masers in this facility. These two frequency standards are identified as DSN2 and DSN3.

A considerable amount of data was collected with the goal of assessing the current state of the art of active hydrogen maser technology and to gather information that will be used to evolve a development program for the next generation of atomic frequency standards used by NASA.

The data in this paper is a small but representative sample of all the data that was collected during the tests. An official JPL report will be published in three volumes under the heading "Hydrogen Maser Comparison Test." Volume I is an executive summary covering all aspects of the test but limited in detail and amount of data. Volume II contains detailed descriptions of all tests and a complete set of all but the raw data. Volume III consists of all raw data such as magnetic tapes, strip charts, terminal print outs and log books. Due to the bulk of Volume III data specific records should be requested by those interested.

TESTS PERFORMED

A list of this test series is shown in Table 1.

(1) Verification of Inputs, Outputs and Proper Functioning of Controls

After receiving the masers, all subsystems were checked to make sure they were functioning according to JPL's and the manufacturer's expectations. Some anomalies were found and corrected by JPL or the manufacturer. The information gained was that more thorough testing is essential prior to shipment. This operation guaranteed that all subsequent tests were done with properly operating masers and assured a fair comparison of performance with minimal interruptions.
(2) I.F. Meter Calibration

To allow correct interpretation of the data that was collected, certain conditions must be stated. Maser cavity output power is one of those. Since output power of a maser is normally indicated on a front panel display, which is derived from an I.F. power measurement, the display is calibrated with reference to the actual maser cavity output power by substituting a precisely known signal for that of the cavity output. The resulting calibration charts are shown in Figures 1 and 2.

(3) Pressure Control Setting Dependent Parameters

The operating point of a maser is a function of the hydrogen gas pressure setting. Output power, line Q, vacuum current and hydrogen source dissociator efficiency are determined by this setting. All these variables were recorded for different pressure control settings and the data subsequently graphed. Of particular interest is the relationship of line Q vs. output power. Knowledge of this data is essential for diagnostic purposes. This "baseline" data was also used to determine the optimal operating conditions of each maser for all subsequent tests. The measurement results are shown in Figures 3, 4, 5 and 6.

(4) Environmental Tests

a. Output Frequency Vs. Input Voltage

The DC input voltage was stepped between 22 and 31V while the output frequency was monitored. Sufficient time was allowed between each voltage step for the maser frequency to shift and settle. This test sequence was repeated several times. The NR-4 showed no measurable frequency shift above the recorded noise level of 1×10^{-14}. The SAO-14 indicated variations on the order of 5×10^{-15}. This value is at the level of the measurement uncertainty. The results shown are for the entire 22 to 31 VDC test range. Figure 7 shows the output frequency variations of NR-4 and a reference maser during the above test sequence.

b. Output Frequency Vs. Ambient Magnetic Field

A 90-inch diameter helmholtz coil was placed about the hydrogen maser under test to produce a DC magnetic field aligned with the maser’s vertical axis. Initial testing was done by varying the magnetic field in small steps first in one direction up to a specified maximum value then back to zero and then continuing in small steps in the opposite direction up to the specified maximum value and again back to zero. Thus the test went around the "loop" once. Output frequency, Zeeman frequency and output power were measured and recorded at each step as shown in Figure 8. This test is difficult to perform since any overshoot in field variations causes hysteresis distortion. Repeatability was poor. It does however show the effects of hysteresis and the fact that the slope is influenced by the way the test is done.
All subsequent testing was done by stepping the magnetic field equally above and below the ambient field five times. The corresponding output frequency shifts were averaged and tabulated in Figures 9 and 10. Notice that in general the hydrogen maser output frequency is more sensitive to changes in the magnetic field when the maser is operated at a higher hydrogen flux setting and also when the ambient magnetic field is varied by smaller increments. It should be noted that the data shown is for homogeneous magnetic field variations applied to the hydrogen maser's vertical axis only.

c. Output Frequency Vs. Ambient Temperature

The maser was placed in the test chamber and two separate temperature tests were performed. For one test the maser was allowed to stabilize at approximately 23°C then the temperature was increased by 3 degrees centigrade and held within ±1°C of the setpoint until the hydrogen maser output frequency was stable. Due to random walk and aging of the test and reference hydrogen maser, the "stable frequency" is difficult to determine over a period of several hours. Hence a minimum of five thermal time constants was allowed before the temperature was decreased by 3°C. The second test was performed in a similar manner except the temperature was stepped between 21°C and 29°C. During this test as well as all others, environmental data such as temperature, humidity, atmospheric pressure and ambient magnetic field was continually recorded. It should be noted that during the temperature test the humidity inside the test chamber varied appreciably and in correlation with temperature. Since our test chamber is not equipped to control humidity, it is difficult to separate the influence that this parameter has on the hydrogen maser output frequency. The measurement results showed a coefficient $\Delta f/\Delta T$ of -7×10^{-15} for the SAO-14 and -1.4×10^{-14} for the NR-4. Temperature test results are shown in Figures 11 and 12. During this test the line Q of SAO-14 was 1.7×10^9 and that of NR-4 was 1.65×10^9.

d. Output Frequency Vs. Barometric Pressure

The maser was placed in the test chamber and the temperature was held constant. Several tests were performed. The test chamber barometric pressure was varied ±12" H₂O while the hydrogen maser output frequency was monitored. What distinguished one test from another was the rate at which the (barometric) pressure was changed and the dwell time. It was generally found that for fast pressure changes (±24" H₂O in less than 30 minutes), the output frequency varied slightly more than for slow pressure changes (±24" H₂O in greater than 30 minutes). It should be noted that the frequency change was of a transient nature, that is after an initial maximum deviation the frequency tended to return towards the original value. Since the frequency changes were generally small for the ±12" H₂O pressure step, measurement uncertainty due to noise and random walk of the test and reference masers is quite significant and the uncertainty is dependent on dwell time. We found for a typical slow step that the barometric pressure coefficient $\Delta f/\Delta P$ for the SAO-14 is $+5 \times 10^{-15}$, $\pm 5 \times 10^{-15}$, and for the NR-4 is $+1 \times 10^{-14}$, $\pm 5 \times 10^{-15}$. Figures 13 and 14 show some typical data recorded during the barometer pressure test.
Output Frequency Vs. Time

The output frequency of a hydrogen maser at any given time depends on its random behavior, its susceptibility to the environment and its aging mechanism. Random behavior as a function of measurement time can be predicted. A statistical technique of measuring this behavior is known as the Allan Variance which results in a sigma/tau plot of frequency stability vs. measurement time.[1] This type of measurement was performed and will be discussed in the following section. It should be clearly understood however that when the systematic effects of the environment and aging on a masers output frequency dominate over its random behavior, which is usually the case for measurement times greater than a few thousand seconds, the Allan Variance plot ceases to convey random behavior and must be interpreted carefully. There are methods of removing long term drift but the degree of success depends on precise knowledge of this drift. The method we used to determine long term behavior of output frequency vs. time was to manually spin exchange tune the masers periodically and plot the resulting maser cavity frequency as a function of time. This was combined with measuring the relative frequency offset of the various masers involved at the time they were tuned to separate output frequency changes due to cavity aging from other effects. The resulting data clearly shows that cavity aging can be significant.

Figure 15 is a plot of cavity frequency vs. time for NR-4 over a 500 day period. The ordinate scale of the graph is the cavity register bit setting required for the maser to be tuned. Each dot represents a tuning event. We assumed the cavity Q to be constant. The line Q was periodically measured and found to be constant for a given operating point. Between days 200 and 500 the $\frac{\Delta f}{\epsilon}$/cavity bit $= 1.166 \times 10^{-16}$. The output frequency aging rate due to cavity pulling for this maser was thus determined to be -1.35×10^{-14}/day at a hydrogen flux pressure control setting of 450 and a hydrogen line Q of 1.64×10^9. The frequency offset change near day 50 was probably due to mechanical shock since work was done on the maser during that period. Between 10-22-81 and 1-1-82 the masers output frequency was monitored continuously against 3 other masers and no sudden shifts in output frequency between NR-4 and the reference masers was found. Furthermore, Figure 15 data suggests that the cavity shifted more than expected during that period by about 3000 bits. Actual output frequency measurements however indicated that less of a frequency change took place. A possible explanation is that the atomic operating frequency increased by 3.5×10^{-13} during that period. A Zeeman frequency measurement showed no significant change.

Figure 16 is a plot of cavity frequency vs. time for SAO-14 covering an 800 day period. The ordinate scale of the graph is the cavity tuning varactor diode bias voltage setting required for the maser to be tuned. $D = \text{Drift per day and was calculated for consecutive time segments assuming a line Q of } 1.84 \times 10^9 \text{ and corrected for diode nonlinearity. The value of D is inversely proportional to operating point line Q. The large shifts shown on days 100, 150, 375 are due to experimental work that was performed with the cavity RF probe output coax cable. Unlike the NR-4 maser the cavity frequency of SAO-14 changed at a fairly high rate when the maser was new but...
this aging or settling rate diminished steadily to about 5×10^{-15}/day in terms of output frequency near the end of the test.

5. Frequency Stability - Allan Variance

Figures 17 and 18 are two typical Allan Variance plots. These cover a total uninterrupted time period of approximately 72 days. All other Allan Variance test runs were of shorter duration. The dashed line with a fixed slope starting at the bottom of the graph represents the computer estimated drift between the maser pair. The measured output drift (see previous section) for the 3 masers involved during the same time period are:

- **DSN-2** -1.2×10^{-14}/Day @ Line $Q = 6.7 \times 10^8$, P.O. = -88.2 DBM
- **NR-4** -8.6×10^{-15}/Day @ Line $Q = 1.7 \times 10^9$, P.O. = -101.0 DBM
- **SAO-14** $+6.5 \times 10^{-15}$/Day @ Line $Q = 1.65 \times 10^9$, P.O. = -97.5 DBM

These masers reach a minimum noise level at about a 2000 second sampling period (τ). Systematic effects dominate at a τ of about 300,000 seconds. It appears that if a maser is used as a clock only, continuous flux gate tuning could be appropriate. The data shown in Figures 17 and 18 is for the pair sigma. Figures 19, 20, 21 show the Allan Variance for each maser of the set SAO-14, NR-4 and DSN-2. This data was obtained from pair data that resulted in comparing all of the above hydrogen masers with each other. "Three Corner Hat" analysis basically involves solving the three simultaneous equations given by the pair data for each maser. All the pair data must be measured at the same time to give satisfactory results and the number of samples should be large at each value of tau. The spreading of the calculated values at the higher taus is to be expected since the number of samples is lower and a well convergent value has not been reached.

6. Power Spectral Density of Phase

The masers were measured in pairs and the data for each individual maser was derived from the pair data. One maser in each pair was adjusted so that its output signal was in quadrature with respect to the other. These signals were mixed and analyzed with a fast fourier transform spectrum analyzer. Measurements were taken at the 5 and 100 MHz outputs. The noise as a function of offset from the carrier is plotted in Figures 22 and 23. Comparison of four masers with each other yields six sets of data, each maser appears as one of the pair in three of those sets. The best noise characteristic curve was selected from the three and arbitrarily assigned to the maser. This method is justified in that the standard technique of solving simultaneous equations yields calculation errors which grow enormously with the measurement errors and with the disparity in absolute noise level of the various sources. Although this method has its own intrinsic problems, it is considered to be reasonably conservative for this application.
7. Tuning Repeatability

In simplified terms, a maser is considered to be tuned when the cavity frequency is set equal to the atomic operating frequency. When the cavity frequency shifts it "pulls" the atomic line frequency to produce a maser output frequency that can be described by the following equation:

\[f_o - f_A = (f_c - f_A) \frac{Q_1}{Q_c} \]

where:

- \(f_o \) is the maser output frequency
- \(f_A \) is the atomic operating frequency
- \(Q_1 \) and \(Q_c \) are the line Q and cavity Q of that particular maser

The tuning method which we employed consisted of measuring the change in output frequency that occurred when the masers line Q \((Q_1)\) was changed from its normal value to an arbitrarily higher value. No change in output frequency indicates that the cavity frequency is properly set.

It can be shown that \(f_e = |k \Delta f_{HL}| \)

where \(f_e \) is the output frequency offset due to cavity mistuning. \(\Delta f_{HL} \) is the change in output frequency due to change in line Q, and

\[k = \frac{r}{r-1} \]

where

\[r = \frac{Q_{HIGH}}{Q_{LOW}} \]

For a given maser, \(k \) can be easily determined and generally remains constant. It can be seen that the resolution of \(\Delta f_{HL} \) and the value of \(k \) determine the precision to which a maser can be tuned.

The following values of \(k \) were obtainable for the masers involved in this test.

- NR-4 \(k = 12 \)
- DSN 2 \(k = 3.0 \)
- SAO-14 \(k = 5.5 \)
- DSN 3 \(k = 4.8 \)

With a measurement resolution of \(\pm 5 \times 10^{-15} \) the worst case frequency offset error due to cavity mistuning of the NR4 - SA014 maser pair is estimated to be \(\pm 5 \times 10^{-15} (12 + 5.5) = 8.75 \times 10^{-14} \).
During a 48 day test period the masers were manually tuned four times while the frequency was continually monitored. Figure 24 is a plot of the frequency difference between NR-4 and SAO-14. The data was derived from daily phase measurements and no corrections or offset changes were made. After the masers were initially tuned they drifted apart at a rate which was determined earlier. (Refer to paragraph 4e) (Output frequency vs. Time). The masers were tuned 3 more times during the 48 day period as indicated by arrows at the top of the chart. The data shows that the measured tuning repeatability is better than predicted for this pair. One can see the clean time residuals and the characteristic parabolas for the pair of masers in Figure 25.

8. Absolute Calibration Against NBS

In order to continually track long term stability, we calibrated each maser with reference to NBS. Each hydrogen maser's output frequency can be arbitrarily set by means of the receiver synthesizer, cavity frequency and cavity magnetic field bias. For calibration purposes each maser cavity was tuned as precisely as possible. The typical output frequency uncertainty is $+3 \times 10^{-14}$ due to cavity mistuning. The magnetic field bias was specified and the corresponding Zeeman frequency measured. Each maser receiver synthesizer was then set to a value that produced an output frequency equivalent to the national standard. The process involved maintaining a Cesium frequency standard ensemble as the local reference against which the masers were measured. The ensemble offset from NBS was determined by making several clock trips to NBS with a portable Cesium standard. At the test conclusion the "standard" synthesizer setting was thus determined for each maser. The particular synthesizer settings derived for the two test masers, given tuned cavities are:

<table>
<thead>
<tr>
<th>Maser</th>
<th>Synthesizer Setting</th>
<th>Zeeman Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>NR-4</td>
<td>5751.689467 Hz</td>
<td>400 Hz</td>
</tr>
<tr>
<td>SAO-14</td>
<td>405751.68900 Hz</td>
<td>700 Hz</td>
</tr>
</tbody>
</table>

It should be noted however that when a maser physics unit is opened up and a new storage bulb or teflon coating is installed the calibration becomes void. Furthermore, there is evidence the maser output frequency changes without a corresponding change in cavity frequency or Zeeman frequency. Additionally we have found that when a maser is opened up for vacuum element replacement the maser's output frequency may or may not be affected due to some unknown mechanisms. A maser calibration, however useful over the short term, may be of limited value for long term purposes. The calibration uncertainty of this experiment is estimated to be $+1 \times 10^{-13}$.

366
9. Correlation of Measured Parameters

In order to gain additional insight into the dependence of maser performance on environmental parameters, the auto and cross correlation matrices were computed for all possible combinations of data sets. This data was collected during the uninterrupted 72 day Allan Variance test. The most significant finding was a strong correlation between output frequency and dew point for two of the four masers (NR-4 and DSN-2) as shown in Figure 26.

Table 2 shows the four test masers dew point coefficient and the delay after change of dew point. From this table it can be determined that only DSN-2 and NR-4 had a significant response to dew point.

The cause of this correlation between humidity and output frequency has not been resolved at this time.

10. Reliability and Repairability

All problems and malfunctions were carefully logged during the test period. Most discrepancies were found during the initial verification tests. It seemed appropriate to categorize and separate the problems into two groups in order to gain some realistic insight into the reliability of these masers.

Table 3 summarizes the findings regarding maser reliability. It is expected that with the knowledge gained by this evaluation substantial testing will be performed before masers are released to the field and problems such as in Group I will have been corrected at the manufacturers facility. It is obvious that vacuum pump failures constituted the most serious problem affecting time out of service. Other than that, the masers promise to be quite reliable.

CONCLUSIONS

The extensive series of tests which were run as part of this program yield the most definitive set of data to date on performance and operability of the Hydrogen maser frequency standard. Based on the data, the experimenters conclude that the tested masers indicate that the state of the technology provides frequency stability of about \(1 \times 10^{-15}\) over 1000 to 2000 seconds under conditions of an extremely well controlled environment. As a frequency standard, the Hydrogen masers are a factor of 100 better than the best Cesium standards available for short term stability. In terms of long term stability, the tests indicate that the masers age at the rate on the order of \(10^{-14}\) per day and are retunable to better than \(10^{-13}\).
Environmental factors can affect a maser output frequency by as much as a part in 10^{14}. This suggests that to obtain the ultimate performance available, the masers must be kept in an environment 10 times more stable than that of a normal office or laboratory. Additional work is needed to characterize and explain and then to correct the, as yet, mysterious dependence of frequency upon humidity.

Finally, the Hydrogen masers appear to be limited in reliability by their vacuum systems. The vacion pumps proved to be a continuing problem. Nevertheless, when subjected to a very protected environment, the masers were surprisingly reliable, showing a "down-time" of less than 2.5%.

ACKNOWLEDGEMENTS

The authors wish to acknowledge the contribution of several individuals to this report. Roland Taylor and Donald Bodkin of JPL were involved in the testing of the masers and the operation of the entire test facility. JPL's Charles Greenhall, Roger Meyer, Earl Endsley, Philip Clements and Phuong Tu supported the effort with analysis, special tests and data processing.

REFERENCES

Table 1. Tests Performed

1. VERIFICATION OF INPUTS, OUTPUTS, PROPER FUNCTIONING OF CONTROLS
2. I.F. METER CALIBRATION
3. PRESSURE CONTROL SETTING DEPENDENT PARAMETERS
 BASELINE FOR RELATIONSHIP OF LINE-Q, POWER OUTPUT, PRESSURE
4. ENVIRONMENTAL TESTS:
 a. OUTPUT FREQUENCY VS. AC/DC INPUT VOLTAGE
 b. OUTPUT FREQUENCY VS. AMBIENT MAGNETIC FIELD
 c. OUTPUT FREQUENCY VS. AMBIENT TEMPERATURE
 d. OUTPUT FREQUENCY VS. AMBIENT BAROMETRIC PRESSURE
 e. OUTPUT FREQUENCY VS. TIME
5. FREQUENCY STABILITY - ALLAN VARIANCE $1s < \tau < 1 \times 10^6 s$
6. POWER SPECTRAL DENSITY OF PHASE
7. TUNING REPEATABILITY
8. ABSOLUTE CALIBRATION AGAINST NBS
9. CORRELATION OF MEASURED PARAMETERS
10. RELIABILITY AND REPAIRABILITY ASSESSMENT
Figure 1. NR-4 Output Power Calibration
Figure 2. SAO-14 Output Power Calibration
Figure 3. NR-4 Pressure Dependent Parameters
Figure 4. SAO-14 Pressure Dependent Parameters
Figure 5. SAO-16 Line Q vs Output Power
Figure 6. NR-4 Line Q vs Output Power

NOTE: VALUES FOR THIS PLOT WERE TAKEN FROM PRESSURE DEPENDENT PARAMETER GRAPHS
Figure 7. NR-4 Output Frequency Shift vs DC Input Voltage
Figure 8. SA0-14 Magnetic Field Test - 1st Series
<table>
<thead>
<tr>
<th>MAGNETIC FIELD</th>
<th>HYDROGEN PRESSURE CONTROL SET TO 325, LOW FLUX</th>
<th>HYDROGEN PRESSURE CONTROL SET TO 525, NORMAL FLUX</th>
<th>HYDROGEN PRESSURE CONTROL SET TO 600, HIGH FLUX</th>
</tr>
</thead>
<tbody>
<tr>
<td>200 mG PEAK TO PEAK</td>
<td>5.88×10^{-14}</td>
<td>8.01×10^{-14}</td>
<td>7.71×10^{-14}</td>
</tr>
<tr>
<td>600 mG PEAK TO PEAK</td>
<td>5.71×10^{-14}</td>
<td>5.53×10^{-14}</td>
<td>5.96×10^{-14}</td>
</tr>
<tr>
<td>1000 mG PEAK TO PEAK</td>
<td>4.49×10^{-14}</td>
<td>5.06×10^{-14}</td>
<td>4.77×10^{-14}</td>
</tr>
</tbody>
</table>

NOTES:
1. ALL $\Delta f/f$ VALUES HAVE AN UNCERTAINTY FACTOR OF $\pm 5 \times 10^{-15}$
2. AMBIENT TEMPERATURE = 23°C
3. ZEEMAN FREQUENCY = 400 Hz
4. THE UNCERTAINTY OF ΔH IS ESTIMATED TO BE $\pm 5\%$
5. ALL MEASUREMENTS AVERAGE OF 5 STEPS

Figure 9. NR-4 Frequency Shift vs. Magnetic Field

<table>
<thead>
<tr>
<th>MAGNETIC FIELD</th>
<th>HYDROGEN PRESSURE CONTROL SET TO 360, LOW FLUX</th>
<th>HYDROGEN PRESSURE CONTROL SET TO 500, NORMAL FLUX</th>
</tr>
</thead>
<tbody>
<tr>
<td>200 mG PEAK TO PEAK</td>
<td>1.87×10^{-13}</td>
<td>2.75×10^{-13}</td>
</tr>
<tr>
<td>600 mG PEAK TO PEAK</td>
<td>1.40×10^{-13}</td>
<td>2.17×10^{-13}</td>
</tr>
<tr>
<td>1000 mG PEAK TO PEAK</td>
<td>1.23×10^{-13}</td>
<td>1.88×10^{-13}</td>
</tr>
</tbody>
</table>

NOTES:
1. ALL $\Delta f/f$ VALUES HAVE AN UNCERTAINTY FACTOR OF $\pm 5 \times 10^{-15}$
2. AMBIENT TEMPERATURE = 24°C
3. ZEEMAN FREQUENCY = 700 Hz
4. THE UNCERTAINTY OF ΔH IS ESTIMATED TO BE $\pm 5\%$
5. ALL MEASUREMENTS AVERAGE OF 5 STEPS

Figure 10. SAO-14 Frequency Shift vs. Magnetic Field
Figure 11. NR-4 Temperature Test
Figure 12. SAO-14 Temperature Test
Figure 13. NR-4 Barometric Pressure Test
CHAMBER PRESSURE
±0.5" H₂O

CHAMBER DEW POINT
TEMP. ±1°C

CHAMBER TEMP.
±0.1°C

SAO-14 TANK "C"
TEMP.
±0.5 m°C

DSN2-SA014
Δf/f ±5 X 10⁻¹⁵
DRIFT REMOVED
2.9 X 10⁻¹⁴/DAY

SA014-NR3
Δf/f ±5 X 10⁻¹⁵
DRIFT REMOVED
-2.1 X 10⁻¹⁴/DAY

NOTE: UP ↑ = INCREASE IN FREQ. FOR FIRST MASER OF INDICATED PAIR. DSN-3 NOT AVAILABLE DUE TO VACIOM ELEMENT CHANGE NR-4 IS BEING TESTED FOR POWER SUPPLY EFFECTS DURING THIS TIME

Figure 14. SAO-14 Barometric Pressure Test

382
\[
\frac{\Delta f}{f} / \text{CAV. BIT} = 1.166 \times 10^{-16}
\]
AT PRESSURE SETTING = 450

\[
D = 1.35 \times 10^{-14} / \text{day}
\]

Figure 15. NR-4 Cavity Tuning

\[
\frac{\Delta f}{f} / \text{CAV. BIT} = 1.166 \times 10^{-16}
\]
AT PRESSURE SETTING = 450

\[
D = 1.35 \times 10^{-14} / \text{day}
\]

Figure 16. SAO-14 Cavity Tuning

383
Figure 17. Allan Variance with Computed Drift Removed Between DSN-2 and NR-4

Figure 18. Allan Variance with Computed Drift Removed Between DSN-2 and SAO-14
Figure 19. SAO-14 Three Corner Hat Analysis

Figure 20. NR-4 Three Corner Hat Analysis
Figure 21. DSN-2 Three Corner Hat Analysis
Figure 22. 100 MHz Phase Noise
Figure 23. 5 MHz Phase Noise
Figure 24. Tuning Repeatability of NR-4 and SAO-14

Figure 25. Time Residuals Between NR-4 and SAO-14
Figure 26. Dew Point vs. NR-4/DSN-3 Cross-Correlation

Table 2. Coefficients: Masers vs. Dew Point

<table>
<thead>
<tr>
<th>FREQUENCY STANDARD PAIR</th>
<th>R<sub>PEAK</sub></th>
<th>DELAY (DAYS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NR-4/DSN-3</td>
<td>0.895</td>
<td>1.5</td>
</tr>
<tr>
<td>SAO-14/DSN-3</td>
<td>-0.729</td>
<td>0</td>
</tr>
<tr>
<td>NR-4/SAO-14</td>
<td>0.911</td>
<td>1.0</td>
</tr>
<tr>
<td>DSN-2/DSN-3</td>
<td>0.878</td>
<td>2.5</td>
</tr>
<tr>
<td>DSN-2/SAO-14</td>
<td>0.861</td>
<td>2.0</td>
</tr>
<tr>
<td>DSN-2/NR-4</td>
<td>0.789</td>
<td>3.5</td>
</tr>
</tbody>
</table>

COEFFICIENTS: MASERS VS. DEW POINT
<table>
<thead>
<tr>
<th>Group</th>
<th>Reliable</th>
<th>Unreliable</th>
<th>Percentage</th>
<th>Total Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Problem associated with original construction and inspection</td>
<td>2</td>
<td>5.0%</td>
<td>2.0%</td>
</tr>
<tr>
<td>2</td>
<td>Problems due to design errors or inherent with new design</td>
<td>5</td>
<td>5.0%</td>
<td>31.0%</td>
</tr>
<tr>
<td>3</td>
<td>Some of those problems were fixed at JPL by modifications</td>
<td>0</td>
<td>0.0%</td>
<td>6.0%</td>
</tr>
<tr>
<td>4</td>
<td>Component failures random or recurring; workmanship</td>
<td>1</td>
<td>6.0%</td>
<td>6.0%</td>
</tr>
<tr>
<td>5</td>
<td>Vacuum pump failure</td>
<td>2</td>
<td>13.0%</td>
<td>13.0%</td>
</tr>
<tr>
<td>6</td>
<td>Adjustments required as a result of repair work after master</td>
<td>2</td>
<td>13.0%</td>
<td>13.0%</td>
</tr>
<tr>
<td></td>
<td>HAS stabilized or after master has been moved</td>
<td>2</td>
<td>13.0%</td>
<td>13.0%</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>5</td>
<td>32.0%</td>
<td>32.0%</td>
</tr>
</tbody>
</table>

Table 3. Reliability
QUESTIONS AND ANSWERS

DR. WINKLER:

I have a suggestion concerning that hump, that mysterious hump beyond 400,000 - 500,000 seconds. We have seen in several of our data a weekly spectrum line, and it's typical for human activity. And there is even multiples of that because when we start a week, on Monday or Tuesday, you pick up sometimes again on Thursday or Friday. There are powerful equations which go with a weekly rate. And I would suggest to take a look at that influence.

MR. KIRK:

Yes. I think that's a very good comment. -- That's the thing to look for.