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INTERFACING NETWORK SIMULATIONS WITH EMPIRICAL DATA 
 

EXECUTIVE SUMMARY 
 
 Social network analysis (SNA) is the mathematical methodology of quantifying 
connections between individuals and groups. It has become an important analytic tool for 
analyzing terrorist networks, friendly command and control structures, arms trade, biological 
warfare, and the spread of diseases, among other applications. This analysis provides a wealth of 
information about how individuals in a network interact with each other. Much of the power of 
SNA is derived from our ability to make prescriptions and predictions about network behavior. 
There are advanced simulation packages readily available to conduct this analysis, but it is 
particularly difficult to validate these simulation models. It is desirable to model the actor 
behavior from the simulation in a statistical context and estimate relevant parameters from 
empirical data. In this way, simulations could be grounded in robust analysis of real world data. 
 

We have developed and surveyed a number of statistical frameworks including the Link 
Probability Model (LPM), the Exponential Random Graph Model (ERGM), and the Actor 
Oriented Model (AOM). Each of these models has parameters that can be empirically obtained 
from social network data to advise accurate simulations. To facilitate our analysis, we created 
statistical tests and empirical frameworks that contribute to future researchers’ abilities to 
conduct comparison studies. 
 
Procedure 
 

This project utilized data collected from the IkeNet (McCulloh et al, 2008) and ELICIT 
(Lospinoso et al, 2009) experiments conducted at the United States Military Academy, as well as 
many popular data sets from the SNA literature. We construct a simple, baseline statistical model 
called the LPM as well as a robust statistical test to determine how well simulated network data 
fits empirically observed data. We compare the LPM to the ERGM using various data sets. We 
then utilize an AOM specification to empirically estimate rate functions that can be used to 
advise proper model specification within multi-agent simulation, then provide future directions 
for studying the interface of AOM and constructuralist-based simulation packages like Construct. 
 
 
Findings 
 

This report finds that while LPMs perform better than ERGMs in many of the data sets 
we encountered across multiple domains, the AOM has the potential to outperform both. Future 
work will be needed to test the efficacy of AOM in providing robust estimates of behavioral 
parameters for use in accurate multi agent simulations. We also reinforce the literature’s finding 
that the AOM is able to determine statistically significant sociological phenomena within a 
particular dataset, as well as bridge the gap between empirically estimated parameters from a 
social network model into a workable simulation package. 
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INTERFACING NETWORK SIMULATIONS WITH EMPIRICAL DATA  
 

INTRODUCTION 
 
 
 Current applications of Social Network Analysis (SNA) can be partitioned into two 
broad, non-exclusive groups: those that provide descriptions of the social network under study 
and those that provide prescriptions or predictions. This report explains how descriptions of the 
social network can advise predictions on it. Typically, SNA models are constructed based upon 
some theory, and sometimes their parameters are fit to empirical data. Often, however, the 
descriptive statistics from this estimation serve as the only prescription and prediction power 
from the analysis. We advocate an extension of this analysis into the realm of social network 
simulation to harness the full power of the empirical data available. 
 
 We survey the most popular SNA empirical models to determine which models are most 
effective at describing different kinds of data. We then survey popular simulation methods and 
underlying theories to determine how the SNA empirical models can be used to advise analysts 
on how to craft the simulations. Along the way, we create a suite of statistical tools which future 
researchers can use to determine the best analysis workflow for their particular applications. 
 
 
A Background of Social Network Modeling 
 

SNA examines relationships between social entities (e.g. people, groups, tasks, beliefs, 
knowledge, etc.).  These entities are modeled with nodes or vertices and their connections or 
relationships are modeled with edges.  Not all nodes are connected, and some nodes may have 
multiple connections.  This mathematical model is applicable in content areas such as 
communications, information flow, and group or organizational affiliation (Tichy, 1979; Wasserman, 
1994).  SNA thus relies heavily on graph theory to make predictions about network structure. 
 
 Nodes are defined in terms of a set of  verticies, . The nodes are related 
to each other with a set of edges , where is a relationship between node  and .  A 
social network is often shown as an adjacency matrix, where the rows and columns correspond to the 
nodes and each cell aij can take on any numerical value corresponding to the edge eij. In an 
unweighted network, cells are Boolean and are represented as 0/1: the presence or absence of an edge 
or relationship between nodes i and j. Networks where relationships between nodes are always 
mutual are called undirected networks, and their adjacency matrices will always be symmetric. 
Directed networks, on the other hand, can model both mutual and directional relationships.  A value 
of 1 in cell aij represents a directed relation from node i to node j. In application, the diagonal of the 
adjacency matrix is rarely populated with anything but zeros, since interactions from an entity to 
itself are not generally interesting in a social network. 
 
 The potential complexity of interactions within even a small network, while discrete, grows 
exponentially with the number of entities. For this reason, algorithmic approaches to exploring state-
spaces within constrained networks become computationally challenging. In a directed network, the 
number of possible relationships among nodes can be found by the following expression, where n 
represents the number of nodes in the network, as in . 
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The number of possible configurations (states) of a network with a specified number of nodes (n) and 
edges (ε) can be thought of as the number of unique combinations of ε nodes within the network: 
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It follows that the total number of possible network configurations with n nodes can be represented 
by the following: 
 

 
 
For example, a network of 30 nodes over a dichotomous and directed relation has 7.87 x 10261 unique 
states. 
 
 To understand the probability of network structures occurring, the degree of the nodes is 
often investigated (Albert, 2002; McCulloh et. al., 2007; Borgotti et. al., 2006).  The degree of a 
node, ki, is a simple network measure counting the number of edges going into/coming out of a 
particular node. It is often a powerful and accurate at determination of who holds the power and 
influence within a network (Newman, 2007; Casciaro et. al., 1999). If we accept the notion that a 
random network is one in which nodes have an equal and unchanging probability to have a 
relationship with all other nodes in the network, random networks have a well behaved underlying 
distribution of degree measures.  Both the degree of a node and the number of edges in a network 
both will follow a binomial distribution. As the network gets arbitrarily large, the distribution 
converges to a Poisson distribution. 
 
 There are many alternative views on what constitutes a random network; nevertheless, 
empirical work has shown that social networks do not construct themselves in the image of a 
Binomial random graph (Watts, 1998; Barabasi, 2003).  Travers (1969) and Milgram (1967) studied 
social connections in the United States and discovered surprisingly short path lengths, where many 
strangers were connected by mutual acquaintances.  This was termed a small-world network.  A 
network is a small world network if its average path length is much smaller than the number of nodes 
in the network.  This phenomenon in real-world networks is popularly known as “six degrees of 
separation” (Guare, 1990).  Watts and Strogatz (1998) proposed the clustering coefficient as a graph 
level measure to indicate whether a graph is a small-world network. The clustering coefficient for a 
directed graph is defined as, 
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where Ni the neighborhood for a vertex vi and is defined as its immediately connected neighbors, 
 

{ } .: EevN ijji ∈=  
 

Intuitively, this clustering coefficient tells us how dense a nodes’ neighborhood is. 
The degree ki of a vertex is the number of vertices, |Ni| in it’s neighborhood |Ni|.  Albert and Barabasi 
(2002) review current methods of constructing random graphs throughout the field of Network 
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Science and compare the degree distribution, clustering coefficient, and average path length of 
multiple real-world networks with various types of random networks.  They find that real-world 
networks have a higher average clustering coefficient and a shorter average path length than 
randomly generated, binomial networks with the same number of nodes and edges.  Furthermore, 
they show that several networks have degree distributions that follow a power-law distribution, 
which means that very few nodes have a large degree, and many nodes have a small degree. 
 
 All of these models observe some phenomena in nature and attempt to construct some 
explanation for the underlying process producing the observed state. Unfortunately, it is difficult to 
reverse-engineer processes and validate them in this way. This paper sets out to survey some of these 
models (and construct a new one) and connects them with simulation packages readily available to 
the research community. In doing so, we bridge the gap between two disparate sections of social 
network analysis. 
 
 
The Way Ahead 
 

This paper proceeds by first creating a simple SNA model, the Link Probability Model, in the 
next chapter. The following chapter compares the LPM against popular competing models. After 
these SNA models are compared, we analyze how to use these models to properly parameterize 
Construct (a simulation package), and then test its performance. In the last chapter, we introduce an 
advanced topic in social network modeling that entails computationally intensive statistical methods 
and comment on future extensions. 
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INTERFACING NETWORK SIMULATIONS WITH EMPIRICAL DATA 
 

THE LINK PROBABILITY MODEL (LPM) 
 

 Barabasi  (2002) proposed the scale-free graph which creates a condition on the random 
graph that the degree distribution must follow a power law distribution.  These networks were shown 
to resemble some real-world networks.  While scale-free networks may appear to be similar to real-
world networks in terms of structure, they are not a sufficient framework to truly understand the 
stochastic nature of networks. A new framework for random networks is proposed, based upon 
empirical data collected on real-world networks.  This new approach produces networks that have 
equivalent properties to the scale-free networks; however, it is constructed in such a manner as to 
describe the close relationships between some nodes and distant relationships between others.  This 
framework holds the promise of a new line of research to explore the stochastic behavior of 
networks. 
 
The Link Probability Model posits that dynamic networks are constructed in the following way: 
considering each dyadic tie, the modeler assigns a distribution of time between communications. 
Integrating over this distribution according to the time between observed networks yields adjacency 
matrices. This generation process defines the Link Probability Model. Various methods can be used 
to estimate the dyadic distributions, including method of moments and maximum likelihood. 
Alternately, researchers can use empirical data to bootstrap dyadic distributions or simply take 
averages of mean time between communications. The following sections present the LPM in more 
formal detail. 
 
 
Problem Formulation 
 

Individuals in a social network are not connected to other individuals with uniform random 
probability.  The probability structure is more complex.  Intuitively, there are some people whom a 
person will communicate with or be connected more closely than others.  In a study of email 
communication conducted at the U.S. Military Academy (McCulloh et. al., 2007), one subject 
emailed his wife more than ten times per day on average, while other people that he worked with 
received an email from him once or twice per month.  For this reason, real-world networks tend to 
have clusters or cliques of nodes that are more closely related than others (Newman, 2003; Carley, 
1996; Topper, 1999).  This can be simulated by varying the probability of communication between 
certain nodes. 
 
 Consider a group consisting of 15 individuals, organized into three subgroups.  Individuals 
within each subgroup work closely together and communicate more frequently than they do with 
people in the larger group.  Each day individuals may communicate with others in the group, but 
most likely not everyone.  If we suppose that an individual will communicate with someone in their 
subgroup with probability 0.8 and communicate with someone outside their subgroup with 
probability 0.2, we have a link probability model (LPM) shown in Figure 1. 
 

Using this LPM, Monte Carlo simulation was used to generate 5000 instances of the network.  
At a 95% significance level, the confidence interval around the average clustering coefficient was 
0.463 ± 0.0014 compared with 0.329 ± 0.0024 in a random graph of uniform probability.  The graph 
generated with the LPM has a clustering coefficient that is comparable to a scale-free graph with the 
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same number of nodes and edges.  It can be conjectured that the clustering coefficient will become 
greater as the within group edge probability increases.  Furthermore, as the probability of certain key 
nodes being connected to others increases, the degree distribution will more closely follow a power 
law distribution.  The newly proposed random network, therefore, achieves equivalent performance 
as the scale-free network in modeling real-world networks, yet preserves the flexibility to model 
dyadic relationships between nodes. 

 
 
 

 

  A B C D E F G H I J K L M N O 
A   0.8 0.8 0.8 0.8 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 
B 0.8   0.8 0.8 0.8 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 
C 0.8 0.8   0.8 0.8 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 
D 0.8 0.8 0.8   0.8 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 
E 0.8 0.8 0.8 0.8   0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 
F 0.2 0.2 0.2 0.2 0.2   0.8 0.8 0.8 0.8 0.2 0.2 0.2 0.2 0.2 
G 0.2 0.2 0.2 0.2 0.2 0.8   0.8 0.8 0.8 0.2 0.2 0.2 0.2 0.2 
H 0.2 0.2 0.2 0.2 0.2 0.8 0.8   0.8 0.8 0.2 0.2 0.2 0.2 0.2 
I 0.2 0.2 0.2 0.2 0.2 0.8 0.8 0.8   0.8 0.2 0.2 0.2 0.2 0.2 
J 0.2 0.2 0.2 0.2 0.2 0.8 0.8 0.8 0.8   0.2 0.2 0.2 0.2 0.2 
K 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2   0.8 0.8 0.8 0.8 
L 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.8   0.8 0.8 0.8 
M 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.8 0.8   0.8 0.8 
N 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.8 0.8 0.8   0.8 
O 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.8 0.8 0.8 0.8   
Figure 1. Network Probability Matrix. 

 
 The edge probabilities can be derived from empirical data in several ways.  Given network 
data collected over multiple time periods on a group of subjects, the edge probabilities can be 
estimated by the proportion of edge occurrences, eij, for each cell in the adjacency matrix, aij.  In the 
case of communication networks, statistical distributions can be fit to the time between messages for 
each potential edge in the network.  For a specified period of time, t, the edge probability p for each 
set of entities i and j can be found. Let xij be the time between messages in a communication network.  
The probability density function for any x can then be defined as fij ( x | θij ), where θij  is the set of 
parameters for the distribution.  Then, the probability, p, of an edge occurring within some time 
period t is the probability that x < t, which can be expressed as,  
 

∫=
t

ijij dxxfp
0

)|( θ
 

 
In practice, the function fij ( x | θij ) must be estimated using techniques such as maximum likelihood 
estimation from empirical data collected on the group being studied. It may be desirable to construct 
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a network based on a restriction such as, “two emails within a time period demonstrate a relationship, 
but one does not.” In this case, it is necessary to compose a function of random variables. If ),|2( ijij th θ  
represents the probability density function of time between two sets of two emails and )|( ijij xf θ  
represents the probability density function of time between one set of two emails, then the following 
is true under certain assumptions: 
 

2

0
)|()|2( ⎟

⎠
⎞⎜

⎝
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t

ijijijij dxxfh θθ
 

 
It is possible to generalize this idea; if ),|( txh ijij θ  is the probability that x or more communications 
occur within time t, then the following is true: 

xt

ijijijij dyyftxh ⎟
⎠
⎞⎜

⎝
⎛= ∫0 )|(),|( θθ

 
 

This newly proposed framework for viewing the probability space of a social network preserves the 
same flexibility for modeling dyadic relationships, however, it provides researchers with a means to 
understand the probability space of the network and thus devise more robust and appropriate 
statistical tests for social network analysis.   
 
 
Example Problem Solution 
 

Researchers at the U.S. Military Academy monitored the e-mail traffic of 24 mid-grade 
(senior captains and junior majors) Army officers for 24 weeks as they were in a one year graduate 
program at Columbia University. Email within the group was considered, while email to outside 
parties was thrown out. The group had been organized with a formal leadership structure among the 
24 officers. They all lived on the West Point Military Installation, and they had regular social events 
for the officers and their families.  The degree distribution followed a power law distribution like the 
social networks analyzed by Barabasi and Albert (2002), and Newman (2003).  The time between 
emails for each possible pair of nodes was calculated.  There were only 65 directed pairs of nodes 
that had greater than 30 messages over the course of 24 weeks.  Statistical distributions were fit to the 
time between email for the 65 pairs of nodes.  All of them followed a lognormal distribution.  Figure 
2 shows the empirical distribution of one directed pair and four distributions fit to the data: 
exponential, lognormal, pareto, and zipf.   
 
One could conjecture that the parameters of the lognormal distributions may be dependent upon 
various social factors, such as formal position in the network, friendship, common interest, etc.  
Unlike traditional social network analysis, using the LPM, an analyst can use the edge probabilities 
as dependent variables to study the causes of relationships, communication frequency, and ultimately 
network structure. 
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Figure 2.  Distributions Fit to Time Between E-mails in Army Officer Study. 
 
Discussion 
 

A new approach to modeling a random network has been proposed that resembles real-world 
networks, preserves dyadic relationships, and can be estimated from empirical data.  While the 
approach is surprisingly simple, it opens the door for many new analysis opportunities in social 
network analysis.  The cell entries in the LPM can be treated as dependent variables, while various 
properties describing the dyadic relationships between nodal pairs can be used as independent 
variables.  This will reduce variance in the model and increase the coefficient of determination, 
thereby explaining the complex behavior of a social network much better than existing methods. 
 
 Other research building from this new approach to modeling a random network can include 
building empirical distributions of social network measures.  This newly proposed framework allows 
analysts to randomly generate instances of social networks under investigation.  Parameters of 
distributions for social network measures can then be estimated using Monte Carlo simulation. 
 
 Consideration of the probability space of entity level communications is imperative for many 
studies of social networks. Many considerations for designing social experiments rely on conventions 
within the field. When constructing interaction matrices, experimenters must choose many 
parameters which may change the conclusion of the study. The experimenters of the U.S. Military 
Academy e-mail study, had to choose how many emails between two entities demonstrate a 
relationship to create an unweighted, directional network. To study the dynamics of the network, the 
experimenters further needed to determine regular intervals to sample, which allowed for a temporal 
analysis. By instead fitting distributions to the empirical data, experimenters could use statistical 
techniques to manipulate random variables and sidestep the selection of the potentially influential 
aforementioned parameters. 



8 

 
INTERFACING NETWORK SIMULATIONS WITH EMPIRICAL DATA 

 
EMPIRICAL VALIDATION OF THE LPM 

 
Presently, many structure-based frameworks are used in the network science community 

for the simulation of networks. These frameworks are based on the presence of triads, dyads, 
cliques and other network structural components. However, these frameworks do not always 
consider all of the factors that contribute to the dyadic relationship between agents. In a network, 
an agent may not be influenced by the occurrence of a triad between two other agents or that 
certain agents in the network have dyadic ties. The agent is mainly concerned with his own 
dyadic relationships—leading to an underlying dynamic equilibrium in the network.  
 
 This dynamic equilibrium is based on an underlying edge probability structure that 
contains a probability that each agent will communicate with every other agent in the network. 
The underlying probability structure of a network can remain independent of observations at any 
instance in time and be constant in the network under certain assumptions about its longitudinal 
nature and outside factors. A single observation of a tie does not necessarily designate a 
relationship between two agents, since the communication could have been made spuriously. On 
the other hand, a single observation of the lack of a tie does not designate the absence of a 
relationship—agents are not continuously communicating with every agent they have a 
relationship with at every instance in time. While a snapshot of the network at an instance in time 
does not indicate the dyadic relationships between agents, this snapshot is based on the 
underlying network probability that each agent will communicate with every other agent. 
 

A new framework is proposed for the simulation of networks that based off of the 
underlying probability structure of the dynamic equilibrium. This framework is the link 
probability model (LPM) proposed by McCulloh, Lospinoso, and Carley (2007). The LPM 
estimates the edge probabilities for each dyadic pairs in the network. Probability estimation can 
vary from a proportion of communications in a series of observations or be estimated from more 
complex distributions depending on the amount and type of data present. This framework and be 
used to simulate a network regardless of its topology: random, small-world, scale free, cellular, 
etc. These LPM models require that a network is in some dynamic equilibrium, and represents 
the long term likelihoods that a particular dyad is observed in some state.  

 
The edge probability structure of the underlying dynamic equilibrium remains constant in 

the network while the network is at a stable state. However, the underlying probabilities may 
change as shocks to the network take place. These probabilities may then stabilize as the network 
returns to it dynamic equilibrium. Using Monte Carlo simulation over an LPM will yield the 
underlying distributions of network measures (assuming that the network is in dynamic 
equilibrium). These underlying distributions can be used in change detection and allow us to 
statically predict shocks to the network and determine when significant changes occur, as in 
McCulloh (2009).  
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Background 

 
Social network analysis is a theoretical framework that examines the relationships 

between social entities (e.g. people, groups, organizations, beliefs, knowledge, etc.). These 
objects are known as nodes and their connections are referred to as edges. Not all nodes are 
connected; however, some nodes are connected with multiple relationships. This network 
framework is applicable in a plethora of content areas such as communications, information 
flow, and group or organizational affiliation (Titchy and Tushman, 1979). Social network 
analysis relies heavily on graph theory to make predictions about network structure.  

 
In 1959 mathematicians Paul Erdős and Alfréd Rénia made revolutionary discoveries in 

the evolution of random graphs. In their eight papers Erdős and Rénia evaluate the properties of 
random graphs with n vertices and m edges. For a random graph G containing no edges, at each 

time step a randomly chosen edge among the  possible edges is added to . This graph 

contains  edges and each edge of the  possible edges are equiprobable. Therefore, once 

an edge is chosen from the  equiprobable edges the next edge is chosen among the remaining 

 edges and this process is continued so that if k edges are fixed, all remaining  
edges have equal probabilities of being chosen (Erdős & Alfréd Rénia, 1960). A general model 
used to generate random graphs is as follows (Chung & Graham, 1998):  

 
For a given p, 0 ≤ p ≤ 1, each potential edge of G is chosen with probability p, 
independent of other edges. Such a random graph is denoted by Gn,p where each 
edge is determined by flipping a coin, which has probability p of coming up 
heads. 
 

In this model of random graphs each edge has an equal probability of occurring or not occurring 
within the graph. This random graph model also assumes that all nodes in the graph are present 
at the beginning and the number of nodes in the network is fixed and remains the same 
throughout the network’s life. Additionally, all nodes in this model are considered equal and are 
undistinguishable from each other (Barabási & Albert, 1999).  

 
Utilizing Erdos’ theory of random graphs as well as the class of uniform distributions 

associated with these graphs, Holland and Leinheart (1971) developed a variety of statistical tests 
for the analysis of social networks. Using a uniform distribution these tests spread the total 
probability mass equally over all possible outcomes, therefore giving an equal probability to the 
existence of an edge between any two nodes in the network. These statistical tests were used to 
develop a reference frame or constant benchmark to which observed data could be compared to 
determine how “structured a particular network was, or how far the network deviated from the 
benchmark (Wasserman and Faust, 1994).”  

 
In 1969, Mark Granovetter proposed the strength of weak ties. In Granovetter’s social 

world our close friends are often friends with each other as well, leading to a society of small, 
fully connected circle of friends who are all connected by strong ties. These small circles of 
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friends are connected through weak ties of acquaintances. In turn, these acquaintances have 
strong connections within their own circle of friends. The weak ties connecting circles of friends 
play an imperative role in numerous social activities from finding a job to spreading the latest 
fad. Close friends who have strong connections are often exposed to the same information, 
therefore, weak ties are activated to bridge out of our circle of friends and into the outside world 
(Granovetter, 1973).  
 

Building off of Granovetter’s model Duncan Watts and Steven Strogatz (1998) developed 
the clustering coefficient, dividing the number of links of a node’s first order connections by the 
number of links possible between these first order connections. This clustering coefficient 
illustrates the interconnectivity of a circle of friends, where a value close to 1 demonstrates all 
first order connections of a node are connected with each other. Conversely a value close to 0 
shows that a nodes first order connections are only connected through that node. 

 
The Watts-Strogatz model of small world networks is the first to reconcile clustering with 

the characteristics of random graphs. According to the Watts-Strogatz model each node is 
directly connected to each one of its neighbors resulting in a high clustering coefficient. By 
clustering alone, this model has a high average path length connecting two random nodes. 
However, by adding only a few random links between nodes of different clusters the average 
separation between nodes drastically decreases. This model while containing random links 
between nodes keeps the clustering coefficient relatively unchanged (Watts & Newman, 1999). 
While the Watts-Strogatz model originally did not add extra links to the graph but randomly 
rewired some of the links to distant nodes the addition of random links was proposed by Watts 
and M. Newman. 

 
According to Albert-László Barabási, the random graph theory of Erdős and Rénia was 

rarely found in the real world. Barabási has found that many real world networks have some 
nodes that are connected to many nodes and others that are connected to few nodes. His 
empirical tests showed that the distribution of the number of connections in many networks all 
followed a power-law distribution. These networks lack the characteristic scale in node 
connectivity present in random graphs, and therefore, are scale-free (Barabási, 2003). As a result 
of the number of connections following a power distribution, hubs are created among nodes in 
the network. A hub is a highly connected node that contains most of the links in the network and 
creates short paths between any two nodes in the network.   

 
Barabási’s model of scale-free networks is constructed around preferential attachment. 

For each time step a new node is added to the network. This illustrates the principal that 
networks are assembled one node at a time (Barabási & Albert, 1999). Assuming that each new 
node connects to the existing nodes of the network with two links, the probability that the new 
node will choose a given node is proportional to the number of links the chosen node has. 
Therefore, a node with more links has a higher probability of being connected to. This creates a 
“rich get richer” scenario where nodes with many links continue to grow by collecting new links 
while newer nodes with lower degrees do not collect as many links (Barabási & Albert, 1999). 

 
Based on a scale-free network model where nodes make connections based completely on 

preferential attachment the probability that a new node will connect to a node with  links is 
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given by  (Barabási, 2003). This causes the first nodes in the network to develop into hub 
nodes due to having the longest time to collect links. However it is not always the case that the 
first nodes in a network develop into the biggest hubs.  

 
To account for newer nodes overtaking older nodes as hubs, Barabási constructed the 

fitness model. Fitness is a nodes ability to collect links relative to every other node in the 
network and is based on competition in complex systems (Barabási, & Bianconi, 2001). In this 
new model a node’s attractiveness is not determined completely by its number of links, but 
preferential attachment is driven by the product of the number of links a node has and its fitness. 
In this model the probability a new node will connect to a node with k links a fitness of η  is 

 (Barabási, & Bianconi, 2001). Nodes in this model acquire links following the power law 
distribution of the scale-free model, however, the dynamic exponent —which determines how 
vast a node acquires new links—is different for each node. This is proportional to a node’s 
fitness, therefore, a node that is twice as fit as another node will obtain nodes twice as fast 
because its dynamic exponent is twice as large. This “fit-get-rich” model allows nodes to become 
hubs based on their attractiveness regardless of when they enter the network (Barabási, & 
Bianconi, 2001).  

 
Contrary to the scale-free network model, Barabási, developed the “winner take all 

model,” which strongly portrays monopolies. The “winner-take-all-model” consists of a single 
hub and many tiny nodes. This network develops a star topology and nodes do not acquire links 
following a power law distribution. McCulloh and Lospinoso (2007) proposed a new framework 
for random communication networks over time, based on empirical data collected on real world 
networks. This new framework estimates distributions for the time between communication 
messages, then based on a given time interval the probability of an edge occurring in the network 
is calculated for every ordered pair of nodes. These probabilities can be constructed through 
multiple techniques. To derive the probabilities from empirical data collected over several time 
periods, a proportion of edge occurrences can be used to estimate probabilities for each cell in 
the adjacency matrix. 

 
These probabilities are displayed in a network probability matrix where each cell is the 

probability that node i communicates with node j. This frame work is capable of generating 
networks that are similar to scale free networks. Thus, this model can be used to construct any 
network topology: Erdős-Rénia random, Watts-Strogatz small world, Albert-Barabási scale-free, 
star, cellular, ect. The McCulloh-Lospinoso model is estimated from empirical data and can be 
used to simulate realistic observations of relationships in specific organizations. 
 
 
Data 

 
This research evaluates the density of two real world networks to find the underlying 

distribution of network density. The first data set was collected from a war fighting simulation in 
FT Leavenworth, KS in April 2007 by Craig Schreiber and Lieutenant Colonel John Graham. 
There were 99 participants in the experiment that were monitored over the course of four days 
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while data was being collected. A set of 68 participants served as staff members in the 
headquarters of the brigade conducting the exercise. The data displays the interactions of agents 
in a network which was collected by monitoring communications throughout the simulation. 
  

The second data set is from a war fighting simulation in FT Leavenworth, KS in 2005, 
also collected by Craig Schreiber and Lieutenant Colonel John Graham. This data set contains 
156 agents that were monitored over the course of nine iterations of the simulation. This data 
exhibits the communication agents in the network that was collected by monitoring 
communications throughout the simulation. For the duration of this chapter, the Ft. Leavenworth 
2007 Data will be referred to as Network 1 and the Ft. Leavenworth 2005 data sets will be 
referred to as Network 2.  
 
 
Method 

 
This research explores the distribution of the density measure in two simulated networks 

using the network probability matrix. To simulate the network, it is necessary for a link 
probability model, (LPM) to be created. Once the datasets for Network 1 were trimmed of the 
scripted agents, they were symmetrized across the main diagonal in the Organizational Risk 
Analyzer (ORA) to account for the lack of directionality of communication in the data. 
Symmetrizing the data also corrects for the informant error of agents not reporting other agents 
they have communicated with. Next, the datasets from Ft. Levenworth 2007 were dichotomized 
to remove the weighting set by the participants. Once the data is dichotomized a one represents 
communication between two agents and a zero represents the lack of communication between 
two agents. To construct the LPM all eight data sets were compiled into a single data set 
consisting of the total number of discrete time periods that each agent communicated with each 
other agent. This matrix was then divided by the number of discrete time periods to determine 
the underlying edge probabilities for the network in dynamic equilibrium.  

 
The Network 2 data sets were collected as unweighted data so they did not have to be 

dichotomized. It was also unnecessary to trim these data sets. The nine data sets from this 
network were symmetrized across the main diagonal in ORA to correct for informant of agents 
not reporting other agents they have communicated with. To construct the LPM all nine data sets 
were compiled into a single data set consisting of the total number of discrete time periods that 
each agent communicated with each other agent. This matrix was then divided by the number of 
discrete time periods to determine the underlying edge probabilities for the network in dynamic 
equilibrium.  

 
The LPMs were then used as the edge probabilities for Monte Carlo simulations of these 

two networks. In these simulations a random number was generated for each edge. If the random 
number is less than the edge probability then the edge is added to the graph. This algorithm was 
used to create 100,000 instances of the network.  When 100,000 instances of the network were 
completed the average density was taken from each simulation to create a dataset of 100,000 
network densities for each network. 
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To analyze the reliability and consistency of our simulations hamming distances were 
utilized as a metric for the differences between two binary adjacency matrices. Using the LPM, 
60,000 instances of each network were simulated. The average hamming distance from each 
empirical data set to every other empirical time step. Next, each simulated network is differenced 
in the same manner against each empirical time step.  These average hamming distances were 
then analyzed using a paired t-test. The results of this test indicate whether the LPM predicts an 
instance of the empirical network with more or less error than the error introduced by the 
dynamic equilibriums temporal fluctuations.   

 
The normal distribution was fit to the data of each network using Maximum Likelihood 

Estimation. An Anderson-Darling goodness of fit test and a comparison of the estimated 
cumulative distribution function to the data’s empirical distribution function indicated a very 
good fit for the data. In addition, since the density is a linear function of the average node degree, 
the central limit theorem would suggest that the density is normally distributed for each network. 

 
Using the paired t-test, it is illustrated that the networks simulated using the LPM have a smaller 
average hamming distance to the empirical data sets than each empirical data set is to each other. 
This is evidence that the simulated networks give a more reliable and consistent approximation 
of the underlying distribution. The results of the paired t-test for both networks are shown below 
in Table 1 and  

Table 2 respectively. In each table column one is the average hamming distance from 
each empirical data set to every other empirical data set and column three is the average 
hamming distance from 60,000 networks simulated with the LPM to each of the empirical data 
sets.  
 
Table 1. Paired t-test of Average Hamming Distances for Network 1 Data. 

M 8  N 60000    

e_mean e_stdev  s_mean s_stdev  t-val p 

409.2857 38.5604  358.0939 12.77466  3.754923 0.00 

365.8571 18.2978  320.0974 12.7394  7.073195 0.00 

365.8571 29.04266  320.1638 12.79331  4.449958 0.00 

377.8571 38.24669  330.6744 12.77289  3.489244 0.00 

375.2857 36.10039  328.3765 12.79551  3.675254 0.00 

349.8571 38.15944  306.0783 12.7845  3.244918 0.00 

373.8571 48.45076  327.0728 12.82622  2.731135 0.01 

362.4286 55.63529  317.1509 12.77754  2.301849 0.02 
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The p-value of each test is approximately zero indicating that there is a statistically 
significant difference between the empirical hamming distances and the simulated hamming 

distances. Additionally, since 0>− simulatedemperical μμ , it is shown that the simulated networks 
have, on average, less Hamming distance from each of the empirical data sets than the empirical 
data sets have from each other.  
 

Table 2. Paired t-test of Average Hamming Distances for Network 2 Data 

M 8  N 60000    

e_mean e_stdev  s_mean s_stdev  t-val p 

1445.000 84.774  1284.338 23.747  3.467 0.001 

1394.750 67.487  1239.647 23.703  3.765 0.000 

1296.125 85.436  1151.946 23.671  3.287 0.001 

1315.875 153.533  1169.665 23.718  2.421 0.015 

1191.250 112.324  1058.990 23.667  2.732 0.006 

1204.875 207.944  1071.116 23.623  1.912 0.056 

1167.375 190.431  1037.713 23.695  1.980 0.048 

1159.625 204.465  1030.815 23.732  1.888 0.059 

1170.125 195.266  1040.142 23.618  1.953 0.051 

 
This test shows that if you select one of the empirical adjacency matrix there is more 

error in predicting it from the remaining empirical data sets then from predicting it with the 
LPM. Once the reliability and consistency of the simulations created using the LPM were 
confirmed, the distribution of the density could be determined. Since density is a linear function 
of a sample average of a network statistic and the sample sized is greater than 30 for each 
network the central limit theorem can be used to determine that the underlying distribution of 
network density is the normal distribution, with μ=0.00396148 and σ=0.0984374 for Network 1 
and μ=0.0476886 and σ=0.000972361 for Network 2. This is also shown in Figure 2 and Figure 
3. 
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Figure 2. Stepwise Plot of Density Data for Network 1 and CDF of the Normal Distribution 
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Figure 3. Stepwise Plot of Density Data for Network 2 and CDF of the Normal Distribution 
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Each graph shows the stepwise plot of the 100,000 densities overlaid with the CDF of the 
normal distribution. The sum of squared error of this model for network 1 is 9.60609 and the 
sum of squared error of this model for Network 2 is 1.41659. While these terms have no absolute 
interpretation,  we can confirm upon visual inspection of Figures 2 and 3 that the data is closely 
fit by a normal distribution. 
  

A histogram of the densities for Network 1 and Network 2 are shown in the figure below 
in Figure 4:  
 
Histogram of Density for Network 

1  
 

Histogram of Density for Network 

2  
 

Figure 4. Histograms of Density 

 It is shown in Figure 3 that the densities of Network 1 and Network 2 both fit a normal 
curve. This further reinforces that the densities for both Network 1 and Normal 2 follow a 
normal distribution. Additional Normality tests can be seen below in Figure 5, where the box-
plots indicate normal dispersion of data about the quartiles, and the qq-normal plots near-
linearity indicates normality: 
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Box Plot of Densities for Network 

1  

 

Box Plot of Densities for Network 

2  
 

Normal Q-Q Plot of Densities for Network 

1  
 

Normal Q-Q Plot of Densities for Network 

2  
 

Figure 5. Additional Tests for Normality 

This research validates the use of the LPM for simulating networks based on empirical 
data. The LPM provides a reliable and consistent network simulation that is a strong framework 
for analysis. This research can be extended in at least three aspects: assessing the underlying 
distribution for agent level statistical measures, assessing the underlying distribution for other 
network level statistical measures, and using these distributions to statistically predict changes 
and shocks to a network. 
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INTERFACING NETWORK SIMULATIONS WITH EMPIRICAL DATA 
 

SIMULATING SOCIAL NETWORKS WITH CONSTRUCT 
 
Recently, a great deal of literature has been focused on methods for simulating network 

structure.  Simulation offers a number of advantages to the researcher. First, we can use 
simulation to emulate the behavior of individuals and predict behavior over time. For example, 
when analyzing data over time (longitudinal data), real world data at time 1 can be used to 
initialize the simulation program.  The simulation can then be used to predict data at time 2. 
Second, to the extent that such predictions are accurate, we can use the simulation to do 
hypothetical "what if" analyses. For example, we can use the simulation program to examine 
alternate hypothetical societies to see what differences in such societies might be necessary to get 
a different outcome than that perceived in the real data. 

 
The value of such an exercise, is not that it proves why the group or society changed as it 

did, but that such an exercise provides a way of reasoning about the situation, and enables the 
researcher to create more informed hypotheses that can then be empirically tested. In sociology, 
as we move to dynamic models with feedback we will find that they capture more of the social 
situation, but that it is incredibly difficult for the researcher to think through, without mistakes, 
the implications of such models. Simulation becomes a tool for increasing the specificity of 
theory, thinking through the theoretical implications, and generating testable predictions. 

 
In this chapter, we provide an overview of several competing methods of network 

simulation.  Differences and similarities are identified.  The link probability model (LPM) is 
briefly illustrated and we identify why it is in many cases favorable to the exponential random 
graph (ERG) model. We then move on to summarize Construct and its roots in constructural 
sociological theory. We discover that the (LPM) provides a mathematical bridge between 
empirically observed data and the multi-agent simulation, Construct, which is based on 
constructuralist theory.  Construct, in turn, introduces additional relational dependence into the 
LPM correcting for its naïve assumption of independence.  Finally, we depict how this 
sociological theory translates into the LPM, how Construct leverages the LPM, and relate the 
results of empirical studies conducted by others on the effectiveness of Construct vice other 
alternatives. 

 
 

Exponential Random Graph Models 
 
ERG models are used in social network analysis as statistical models that enable an 

analyst to conduct inference on dependent relational data (Goodreau, 2007; Robins, et. al., 2007).  
The ERG model is therefore less restrictive than earlier models for social networks that assumed 
dyadic independence (Holland and Leinhardt, 1981).  In many social network applications the 
relationship between two individuals depends on relationships between the individual and others 
in the network, cognitive limits on the number of relationships that can be maintained, similarity 
between individuals, and more.  The ERG model framework for relaxing the dyadic 
independence assumption is thus essential for accurate inference in many data sets.   
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Estimating ERG model terms and parameters can be computationally challenging in large 
networks (Snijders, 2002; Pattison and Robins, 2002).  Markov Chain Monte Carlo estimation of 
ERG models has been used to fit these models to data (Goodreau, 2007; Robins, et. al., 2007; 
Handcock, 2003, 2002; Snijders, 2002; Pattison and Robins, 2002).  The Markov dependence in 
these models leads to problems of degeneracy, which is discussed in detail by Handcock 
(Handcock, 2003, 2002).  Essentially, model degeneracy occurs when the observed data is 
almost impossible under the specified model.  This often occurs when explanatory terms are 
highly correlated and there is insufficient data to construct an appropriate model.  Several 
advances in ERG models have been proposed to include curved exponential family models 
(Hunter and Handcock, 2006) and neighborhood models (Robins, et. al., 2005).  It is not clear 
that these advances have completely removed issues of model degeneracy, however. 
 
 
 Link Probability Model 

 
The LPM (McCulloh & Lospinoso, 2007) has been proposed as an alternative model to 

the ERG model.  The LPM framework for viewing the probability space of a social network 
avoids issues of model degeneracy, while preserving flexibility for modeling dyadic 
relationships. It provides researchers with an improved means to understand the probability 
space of the network, under certain conditions. The LPM is a square matrix where the rows and 
columns correspond to the nodes in a social network. The entries are the link probabilities of the 
directed link from the row node to the column node. This is not to be confused with an adjacency 
matrix, where the entries are either zero or some number representing the strength of a 
relationship between nodes. The link probability is a number between 0 and 1, and determines 
the likelihood of a link being present in an observed adjacency matrix. 

 
The link probabilities can be derived from empirical data in several ways. Given network 

data collected over multiple time periods on a group of subjects, the link probabilities can be 
estimated by the proportion of link occurrences, e(i,j), for each cell in the adjacency matrix, 
a(i,j). In the case of communication networks, statistical distributions can be fit to the time 
between messages for each potential link in the network. For a specified period of time, t, the 
link probability p for each set of entities i and j can be found by integrating over the probability 
density function from 0 to t. 

 
Relational dependence in link probabilities are accounted for in the LPM by the historic 

presence of links.  Relational dependence in links can occur for many reasons.  One example is if 
a boss sends an email to two employees telling them to work on a project, it will affect the 
probability of communication between the two employees.  The LPM does not modify the link 
probability based on these perceived factors that may adjust the probability of two nodes having 
a relationship.  The LPM accounts for the relational dependence, by assuming that it will be 
inferred by the historic presence or absence of links between nodes.  If a boss often gives a task 
to two employees, then the presence of a link between the employees is likely to be more 
common when observing past networks.  This does not account for all of the relational 
dependence in the network.  To introduce a realistic degree of dependence, the LPM would need 
to be modified at each time step based on social theory established in the literature. 
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Construct for Multi-Agent Simulations 

 
Construct1 is a multi-agent simulation grounded in contructuralist theory (Carley, 1990; 

Carley, 1995).  The LPM provides the stochastic engine for the multi-agent simulation.  At each 
time step the link probabilities are determined by the nodes’ perceived homophily, socio-
demographics, and proximity.  These social factors re-introduce the additional relational 
dependence missing in the raw LPM. 

 
Construct is a dynamic-network multi-agent simulation model that can be used to 

examine the evolution of social, knowledge and activity networks in response to external 
interventions and the normal course of human interaction (Carley, 1990; Carley 1991). Network 
evolution and the diffusion of information and beliefs through social networks can be examined 
using Construct (Carley, 1995; Hirshman & Carley, 2007b, Hirshman, Martin & Carley, 2008). 
Construct captures group dynamic dynamics under diverse cultural and technological 
configurations (Schreiber & Carley, 2004). Consequently, organizational change (Carley & Hill, 
2001), socio-cognitive inconsistencies (Carley & Krackhardt, 1996), the impact of 
communication technologies (Carley, 1995; Carley 2002) can be tested with Construct. To use 
Construct the researcher specifies both the agents replete with information processing 
capabilities (Hirshman, Carley & Kowalchuk, 2007a) and the networks in which they are 
embedded (Hirshman, Carley & Kowalchuk, 2007b). 
 
 
Constructuralism 

 
Before we explore the ability for network simulation to represent reality, we must first 

lay the foundational theory behind constructuralism as it applies to the multi-agent simulation 
Construct.  Advances in both cognitive science and network theory have engendered the belief 
that it should be possible to develop analytical models of the relationships between individuals 
that would enable quantitative predictions of changes in interaction and that take into account 
both the self and the society, the individual and the group, the cognitive and the social. These 
advances have renewed interest originally seen in social comparison theory (Festinger, 1954), 
cognitive dissonance theory (Festinger, 1957), and balance theory (Heider, 1958), that it is 
possible to build a mathematics of group change as a function of individual change. It also posits 
that there is a gap between cognitive and individual perspectives; changes in relationships 
between individuals result from independent dyadic encounters. Social and structural perspective 
changes alter relationships between individuals. Currently a great deal of research is directed at 
bridging this gap. On the individual side the linking of symbolic interactionism and role theory 
can be viewed as a move to incorporate social or group factors into an otherwise predominantly 
cognitive. 

 
Similarly, affect control theory is a move to incorporate the social, in terms of task 

constraints and social knowledge, into a cognitive and affective model of the individual's 
evaluation of; and hence determination of future action (Heise 1971, 1979, 1987; Smith-Lovin 

                                                 
1 The Construct system itself is freely downloadable from the CASOS website, http://www.casos.cs.cmu.edu/projects/construct 
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1987). The focus on the change in the individual or his or her relationships to an actual or a 
generalized other, treats the group or social world as present, but relatively fixed. This implicitly 
assumes that social or group behavior is somehow an aggregate of the results of independent 
encounters between pairs of individual. This last assumption is not exclusive to those who 
propose more cognitively rich models of behavior. 

 
For example, we also see it in the work on status and dominance where hierarchies are 

viewed to result from independent dyadic encounters (Berger, Conner, and Fisek 1974; Rosa and 
Mazur 1979; Lamb 1986). On the up side, evidence is being amassed that group behavior cannot 
be  accounted for by aggregating independent dyadic encounters (Chase 1974, 1980; Ridgeway 
and Diekema 1989) but is rather an emergent property of the simultaneous actions of all group 
members (Bales 1950; Homans 1950; Chase 1974, 1980; Fararo and Skvoretz, 1986). The 
mechanism by which such group behavior emerges remains elusive. As a step toward locating 
this mechanism, research in the structural and network traditions has been moving toward 
providing explanations, and hence predictions, of individual cognitive change in terms of the 
individual's social position. 

 
This can be seen in Burt's model of action (1982) where perceived similarity and hence 

norms, attitudes, likelihood of adopting innovations, and so on is a function of social position.  
This is further supported by Krackardt's notion (1985, 1986, 1987) that the individual's social 
cognition (which he defines as the individual's perception of who interacts with whom) is a 
function of social position. These works reveal a more cognitive actor than that revealed by 
classic structuralist whose behavior is nonetheless socially situated. Yet, like the more cognitive 
individual models, these social models of individual change, still focus on the change in the 
individual while maintaining a relatively fixed social world. Thus, both the individual and the 
social perspectives treat the social world as fundamentally stable. Consequently, neither 
perspective provides a mechanism by which such individual changes can produce social change. 
Neither approach is sufficient to explain, let alone quantitatively predict, changes in the 
interaction patterns for all members of the society at once. Rather, the explanations of social 
change are highly contextual relying on situation specific factors, forces, and constraints such as 
goals, coercion, bureaucratization, change in group size, and membership rituals. 

 
Every group has a population consisting of some number of individuals. In every group, 

there is a set of information or facts that is potentially learnable by the members of the group. 
This set of information contains each piece of information that is known by at least one group 
member. The number of such facts will be denoted by K. The individual, for any piece of 
information, such as k, either knows that fact or does not. This is denoted by F (t) = 1 (where t 
denotes time) if the fact is known by individual at time period t and 0 otherwise. 

 
Every society has a culture, which can be thought of as the distribution of information 

across the population. At a particular point in time, say time period t, an individual i has a certain 
probability to interact with another other member of the society, j. This is exactly where the LPM 
comes into consideration. Every society has a social structure, which can be thought of as the 
distribution of interaction probabilities across the population.  The initial make-up of these 
probabilities and the transition of these probabilities at different time points are thus determined 
by several factors. 



22 

Construct and Constructuralism 
 
The first assumption of the Construct model posits that interaction leads to shared 

knowledge. It is generally demonstrable that individuals acquire information (and hence will 
come to share knowledge) during interactions. To represent this process, a variety of simplifying 
assumptions are made. All pieces of information are entirely unstructured and undifferentiated. 
The individual may know conflicting information such as the sky is blue and the sky is green. 
Consequently, the overlap in what two individuals' know is just the sum of the pieces of 
information that they both know. When two individuals interact, each communicates one fact to 
the other. Individuals always learn the piece of information that is communicated to them. 
Consequently, if individual i knows that the sky is blue and individual j knows that the sky is 
green and individual j communicates to individual i that the sky is green, the overlap in their 
knowledge increases. Hence they have more shared knowledge. All facts known by the 
individual are equally likely to be communicated. 

 
According to constructuralism, both the individual cognitive world and the socio-cultural 

world are continuously constructed and reconstructed as individuals concurrently go through a 
cycle of action, adaptation, and motivation. During this process not only does the socio-cultural 
environment change, but social structure and culture co-evolve in synchrony. Carley (1991a) 
defined the following primary assumptions in describing constructuralism: individuals are 
continuously engaged in acquiring and communicating information, what individuals know 
influences their choices of interaction partners, and an individual's behavior is a function of his 
or her current knowledge. In addition to these primary assumptions there were a series of implicit 
assumptions that upon explication serve to clarify and expand the primary assumptions.  
Following is an expanded list of assumptions, numbered to clarify their relation to the primary 
assumptions: 

 
1a. Individuals, when interacting with other individuals, can communicate information. 
1b. Individuals, when interacting with other individuals, can acquire information. 
1c. Individuals can learn the newly acquired information, thus augmenting their store of 

knowledge. 
2a.  Individuals select interaction partners on the basis of relative similarity and 

availability. 
2b. Individuals engage in interaction concurrently, thus an individual's first choice of 

interaction partner may not be available. 
3a. Individuals have both an information processing capability and knowledge which 

jointly determine the individual's behavior. 
3b. Individuals have the same information processing capabilities. 
3c. Individuals differ in knowledge as each individual's knowledge depends on the 

individual's particular socio-cultural-historical background. 
3d. Individuals can be divided into types or classes on the basis of extant knowledge 

differences. 
 
These assumptions lead to a simulation template, which features a dynamic LPM as the 

stochastic engine. We briefly present Construct in this fashion, and go on to show that it 
performs well in simulated empirically obtained networks. 
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Data 

 
The LPM and ERG models are both used to model the Sampson (1969) Monk data and 

the Newcomb (1961) Fraternity data, two classical datasets within the sociology literature. 
Sampson recorded social network data on the strength of “liking” between monks in a monastery 
at three different points in time. Between surveys, four of the monks were actually expelled from 
the monastery. The social network of these individuals was therefore changed over time. 
Newcomb provided 17 college transfer students with fraternity style housing in exchange for 
their participation in a study on friendship formation.  Every week they were required to rated on 
a scale of 1 to 16 their preference for others in the house.  Since ERG models require binary data, 
we use the dichotomous version of the Newcomb data proposed by Krackhardt (1998), which 
records a directed link between node i and node j if node i rated node j as one of their top 8 
closest relationships in the network.  There are 15 time periods in the Newcomb data. 
 
 
 Comparing the Models 

 
The ERG model and LPM are investigated for their strengths and weakness in modeling 

longitudinal data in McCulloh (2008). We re-present the results here. For the Sampson (1969) 
monk data, an ERG model fit by Hunter, et. al. (2008) is used. An ERG model is also fit to the 
Newcomb (1961) fraternity data. An LPM is also fit to both the Sampson and Newcomb data 
sets. Monte Carlo simulation is used to generate instances of the Sampson Monk social network 
and the Newcomb Fraternity social network under the ERG model and the LPM.  

 
A distance measure is required to compare the similarity between the dichotomous networks 
generated using the ERG model, the LPM, and the empirical data. Hamming distance (1950) is a 
logical choice, since it evaluates a distance between dichotomous networks. If the data were 
weighted networks and the models generated weighted networks as well, then a Euclidean 
distance would be appropriate. The quadratic assignment procedure (QAP) (Krackhardt, 1987) 
could be used to compare the correlation between networks; however, the correlation coefficient 
does not change linearly with network distance. The average Hamming distances from each 
empirical data set to every other empirical data set and from each simulated network to each 
empirical data set were calculated. These average Hamming distances were then compared using 
a 2-sample t-test. The results of this test indicate whether the LPM or the ERG model, models 
the empirical networks with more or less error.  

Table 3 shows the distance between the Sampson Monk data to both the ERG and LPM.   
Table 4 shows the distance between the Newcomb Fraternity data to both the ERG and 

LPM.  It can be seen in both tables 3 and 4 that the p-values are significant at the 0.05 level.  
This means that there is a significant difference between how well the ERG and LPM model 
empirical data.  The positive values for the test statistic indicate that the LPM’s average 
Hamming distance is less than the average Hamming distance of the empirical data. We can 
conclude from this test that the LPM does a significantly better job of modeling empirical data 
than the ERG. 
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Table 3. ERG and LPM Distance to Empirical Data for the Sampson Monk Data 

Time 
period 

Mean 
Hamming 
Distance for 
ERG model 

ERG 
Standard 
Deviation 

Mean 
Hamming 
Distance for 
LPM 

LPM 
Standard 
Deviation 

T‐Test 
Statistic 

P‐value 

1  98.7  5.697 27.67 3.5922 39.43  0.0006

2  99.1  6.2263 24.99 3.5935 37.64  0.0007

3  103.7  6.2902 24.66 3.5945 39.74  0.0006

 
 
Table 4. ERG and LPM Distance to Empirical Data for the Newcomb Fraternity Data 
 
Time 
Period 

Mean 
Hamming 
Distance  
for ERGM 

ERG 
Standard 
Deviation  

Mean 
Hamming 
Distance  
for LPM 

LPM 
Standard 
Deviation 

 
t-test 

 
p-value 

1 139.7 8.3938 91.9 5.1913 18.0147 0.0353 
2 138.9 8.1847 75.1 5.2128 24.6573 0.0258 
3 137.3 8.2872 48.3 5.2226 33.9732 0.0187 
4 135.5 9.3363 49.7 5.2340 29.0460 0.0219 
5 134.1 8.9870 50.1 5.2319 29.5558 0.0215 
6 136.3 8.5251 45.5 5.2440 33.6983 0.0189 
7 133.9 9.0609 47.3 5.2397 30.2202 0.0211 
8 134.1 7.2946 51.9 5.2591 35.6377 0.0179 
10 133.7 5.1865 64.2 5.2223 42.3990 0.0000 
11 132.7 6.0562 53.4 5.2074 41.4119 0.0006 
12 136.3 8.4466 51.1 5.2147 31.8930 0.0200 
13 134.9 9.0117 46.6 5.2311 30.9989 0.0205 
14 133.9 5.4457 46.1 5.2230 50.9574 0.0000 
15 133.1 5.7242 47.2 5.2378 47.4518 0.0004 
 

A similar test was done to compare the Hamming distance between the empirical data at 
each time point, with the empirical data at all other time points.  The LPM was found to have no 
more error than that present between different time points in the empirical data.  This provides 
evidence to validate the LPM as an effective method for simulating data. 

 
The LPM has additional advantages.  The LPM avoids the issues of model degeneracy 

inherent in the ERG model.  The probability of link occurrence is based on the historic presence 
of links and does not use a Markov assumption or over specify a statistical model. For these 
reasons, the LPM provides an alternative method for modeling and conducting longitudinal 
social network analysis.  For our purpose in this chapter, the LPM’s ability to replicate empirical 



25 

data makes it a reasonable stochastic engine for the Construct multi-agent simulation model.  
The multi-agent simulation simply adds additional relational dependence into a model that 
already performs well to make it more realistic and capable of evolution over time. 
Applications 

 
The theoretical underpinnings of constructuralism as manifested in Construct lead us to a 

multi-agent simulation which utilizes a dynamic LPM as a stochastic engine for the development 
of knowledge diffusion and relationship building. What does this simulation provide the user? 

 
The simulation provides an accurate, realistic simulation of social dynamics.  We 

envision several ways in which this will be important to the military in particular and the wider 
academic audience in general. Construct can be used as a valuable decision support tool for 
military commanders.  The social dynamics of terrorist organizations, local culture, or friendly 
military forces can all be modeled with the simulation.  A commander can war-game potential 
courses of action, and evaluate alternatives using Construct.  It can be very difficult to reason 
through the many potential interactions, factors, and competing theories.  This simulation 
provides a framework that is grounded in social theory, and validated against empirical evidence, 
that can be used to evaluate potential courses of action.   

 
For example, a commander might consider detaining one or more suspected terrorists.  

By modeling the course of action in Construct, he can observe the impacts of removing the 
individual, on the organization’s performance, situational awareness, and overall effectiveness.  
Given limited resources, the commander could even use the simulation to optimize the 
individuals to remove from the social group.  The simulation provides the military analyst the 
ability to predict the future social dynamics of an organization.  This is a powerful combat 
multiplier for today’s non-kinetic asymmetric war fighter. 

 
The Army could also use Construct to evaluate the organizational structure of newly 

formed doctrinal units, such as the Future Combat System (FCS) operational units.  The 
simulation can evaluate which personnel communicate more or less frequently.  This can help 
inform efficient organization of soldiers from staff organizations to vehicle crews. Focused 
research on social groups can follow better experimental design, and yield greater knowledge, if 
an array of research questions is first evaluated in simulation.  Social dynamics are complex and 
it can be difficult to correctly reason through different scenarios.  Simulation can provide insight 
that may shape the research questions to be more effective. 

 
Finally, the normal behavior of an organization can be simulated many times.  From the 

simulations, statistical distributions can be fit to various measures of group behavior.  These 
statistical distributions can be used to evaluate statistical hypotheses or to detect statistically 
significant differences between observations of the group and normal behavior.  This statistical 
framework, therefore, increases the relevant findings one can discover in socially dynamic 
organizations. 

 
We have presented two models for describing the behavior of social networks: the ERG 

model and the LPM.  Both models were fit to two well-known data sets in the literature, the 
Sampson Monk data, and the Newcomb Fraternity data.  The LPM modeled the data with a 
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statistically significant better fit than the ERG model.  The benefit of the LPM was further 
demonstrated by finding that the difference between the LPM fit and the empirical data, was no 
larger than the average difference between any two samples of the empirical data. 

 
The key limitation of the LPM is that it does not account for all of the relational 

dependence that is known to exist in socially connected groups.  The multi-agent simulation 
Construct conveniently overcomes this limitation.  Construct essentially uses the LPM as its 
stochastic engine.  The link probabilities at each time step are affected by constructuralist theory 
established in the literature.  Factors such as perceived homophily, shared knowledge, proximity, 
and socio-demographic variables all affect the link probabilities at each time period.  These 
factors introduce relational dependence into the LPM.  The relative weighting that these factors 
have can be adjusted by the user.  This creates a flexible simulation tool, grounded in empirical 
evidence and sociological theory. 

 
While Construct may be a powerful simulation tool, the current user interface limits its’ 

capability.  The Organizational Risk Analyzer (ORA) is a software package maintained by the 
Center for Computational Analysis of Social and Organizational Systems (CASOS) at Carnegie 
Mellon University.  ORA has an interface for near-term impact, which allows the user to isolate 
certain agents in a socially networked group and evaluate the impact of the isolations through 
simulation using Construct.  Other than this interface, simulation runs must be conducted using 
an xml script.  Future research will hopefully provide funding to better develop the user interface 
for the simulation.  An improved user interface might make Construct available to a division 
ORSA to better evaluate various courses of action.  This improved ability to war-game various 
scenarios may enhance the effectiveness of those military units. 
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INTERFACING NETWORK SIMULATIONS WITH EMPIRICAL DATA  

 
ACTOR ORIENTED SOCIAL NETWORK SPECIFICATION AND ESTIMATION 

 
Multi-agent simulation is rapidly emerging as a popular tool for understanding complex 

social and organizational structures. Historically, these models have been either very simple, or 
have contained few agents due to issues of computational complexity. As the power of 
computers continues to increase rapidly, more complex multi-agent simulation models are 
needed. Social network analysis has become equally popular for understanding social and 
organizational structures. This chapter applies methods in longitudinal social network analysis to 
multi-agent simulation. 

 
Human organizations and social groups are composed of individuals. The individuals can 

be related in a number of different ways: friendship, trust, ethnicity, shared ideology, shared 
goals, and more. Some of these relationships are important in understanding the behavior and 
actions of the organization or social group. Other relationships are unimportant. Furthermore, 
some relationships affect others, creating very complex dynamic behavior. Multi-agent 
simulation is used to model individual agents that can act, interact, and learn. The agents exist in 
an environment where their interaction is constrained by their position in various social networks 
defined by the aforementioned relationships among others. Group behavior emerges as a result of 
the complex interaction between agents.  

 
Understanding network structure is very important for modeling social groups and 

organizations in a realistic manner. For example, Valente (2007) was interested in modeling the 
diffusion of contraceptive innovations in the Cameroon. He found that real-world adoption rates 
did not follow simulation models when the network relationships were ignored. An individual’s 
decision to adopt an innovation is highly dependent on the decisions of adjacent individuals in a 
social network. Assumptions of random mixing of individuals, therefore, generate inaccurate 
adoption rates since trust and friendship networks are important factors. When the simulation 
accurately models the underlying social networks of people in the Cameroon, more accurate 
diffusion models are obtained. For a more thorough review of the diffusion of innovations, see 
Valente (2007). 

 
Understanding social networks is not only important for modeling diffusion processes. 

Social networks are important for modeling any social group or organization involving humans. 
Multi-agent simulation modelers should be familiar with important theories in social network 
analysis that govern relationships between individual agents. Incorporating some of these 
theories into simulation models will contribute to more realistic models. 

 
It is also important to be able to identify what social theories are applicable to certain problems 
and situations. Relationships that may be important in one context may be unimportant in 
another. Social network analysts are able to statistically test for the significance of various social 
theories in longitudinal network data. Equipped with significant theories governing network 
formation in empirical data, the multi-agent simulation modeler can include these factors in their 
simulation, thereby creating more realistic agent interactions.  
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This chapter will present a novel approach to multi-agent simulation and demonstrate it 
on a real-world network data set. Longitudinal network data is collected in a natural experiment 
focused on studying shared situational awareness and communication. An actor-oriented model 
(Snijders, 2007) is fit to the data to determine significant social theories contributing to network 
dynamics. These theories can then be incorporated in a multi-agent simulation model to create 
more accurate organizational behavior. 

 
The chapter is organized as follows. First, we describe a theory of network dynamics 

used in social network analysis. Next, we describe the concept of network utility. In Section 4 we 
describe network data collected from a natural experiment conducted at the U.S. Military 
Academy. Section 5 describes a longitudinal analysis of that data, with the results presented in 
Section 6. In Section 7, we highlight implications for multi-agent simulation modelers and 
provide directions for future work.  
 
 
Network Dynamics 

 
Network dynamics is a term used in social network analysis to describe the behavior of 

networks over time (Doreian & Stokman, 1997). Social network analysts have been conducting 
research in this area for quite some time (Sampson, 1969; Romney 1989, Sanil et. al. 1995; 
Snijders, 1990; Frank 1991). There are four behaviors that can occur in a network over time: 
Stability, Evolution, Random Change, and Mutation (McCulloh & Lospinoso 2007; Johnson et. 
al., 2003). 

 
Network Stability occurs when the underlying relationships that connect agents in a 

network remain the same over time. The observed data may contain error. Some relationships 
may not be observed, while some observed connections may be inadvertent and no relationship 
exists. Consider email communication: an agent may communicate with some friends every day, 
others sporadically, and they may even accidentally email someone they do not know by hitting 
the wrong name in a distribution list or replying to all in an email. While the observed networks 
may fluctuate from day to day, the underlying relationships remain unchanged. They have 
reached a dynamic equilibrium for at least the short term. 

 
Network Evolution occurs when agent interaction over time changes the underlying 

relationships. Furthermore, evolution assumes that there is some underlying stochastic process 
that causes change over time. There are two leading approaches for modeling network evolution. 
One general class of approach is to use Markov chains (Wasserman, 1977, 1978, 1980). Under 
this approach, the network transitions from one network state to the next over time. The future 
state of the network is conditioned only on the current time step and not previous time steps. 
Research has focussed on the structure of the transition matrix that governs the evolution of the 
networks.  

 
An alternate approach for modeling network evolution is multi-agent simulation (Dorean 

1983; Carley 1991, 1999). Under this approach, agent based models are created in which agents 
interact according to some established social theory. Interactions allow the agents to change in 
some important way that may affect future interaction.  
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Random Change in a network occurs when the future behavior of the network is 

independent of the current state (McCulloh 2009). In other words, the agent interaction is 
affected by something external to the network. For example, an Army platoon may evolve as 
individual agents interact and communicate. When that same Army platoon comes under attack 
by the enemy, there is something fundamentally different about their relationships. There is not 
anything inherent in the individual agent interactions that could have predicted the change in 
network behavior as a result of the enemy attack.  

 
It is also possible that a random change could initiate network evolution. We call this 

type of behavior a Mutation. In our Army example, it is possible that under the stress of enemy 
combat an individual agent displays remarkable courage or cowardice. This individual behavior 
may improve or remove the status of an agent. Other agents in the network may respond 
differently to agent based on their actions during the random change.  

 
One possible explanation of network dynamics is agent-driven optimization. Agents in a 

network attempt to optimize their utility subject to various costs and constraints. Under this 
concept, stability can be viewed as an equilibrium surrounding some local optima. Evolution can 
be viewed as the network converging on some new dynamic equilibrium. Random change is still 
exogenous to the network and changes the state of agents in the network. If this change results in 
some other local optima, then the network reaches some new stability states. Otherwise, the 
network experiences mutation as the network converges to a new equilibrium. This concept of 
agent-driven optimization is further explored in this chapter as an approach for modeling 
complex adaptive social systems. 
 
 
Network Utility 

 
The concept of actor-driven models for network evolution was proposed by Snijders 

(1996). Several applications of this model have been presented. Snijders’ concept of actor-driven 
models views a network from the perspective of individual agents. Each agent can control the set 
of outgoing links to other agents in the network. His seminal assumption is that actors perform 
myopic stochastic optimization in continuous time. These changes are Markovian and depend on 
network structure, attributes, and observed covariates. 

 
Social network analysts use Snijders’ actor-driven model to determine what pre-defined 

social factors are important in describing the evolution of empirical social network data. Snijders 
(2002) defines 11 basic potential objective functions that have some sociological meaning: 
 

1. The density effect is defined by the number of links an agent has to other agents in the 
network.  

2. The reciprocity effect is defined by the number of links to other agents that are 
reciprocated, in that when an agent links to a target agent, that target also links back to the 
original agent.  

3. The transitivity effect is defined by the number of transitive patterns among an agent’s 
connections. A transitive pattern occurs when two of an agent’s connections are connected 
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themselves. This is also known as a transitive triplet. Transitivity follows the logic that two 
agents are more likely to know each other if they have a common friend.  

4. The balance effect is defined by the similarity of outgoing links between an agent’s 
connections. This theory is driven by the idea that there are positive and negative links and 
an agent is uncomfortable having both relations simultaneously. In other words the enemy 
of my friend should be my enemy and the friend of my friend should be my friend. If I am 
friends with my enemy’s friend, I will feel uncomfortable. This effect is highly correlated 
with the density effect and transitivity effect. If both are included in a model a correction 
for the correlation between effects should be included.  

5. The number of geodesic distances of two effect is defined by the number of other agents 
that an agent is indirectly connected to through an intermediary agent.  

6. The popularity effect is defined as the number of links an agent has coming from other 
agents in the network.  

7. The activity effect is defined as the number of other agents that can be reached by an agent 
in two steps.  

8. The main link effect is a covariate effect for links in the network. The other objective 
functions might be weighted by certain relationships. For example, a link to an agent of 
high prestige or rank might be more valuable than a link to an agent with equivalent status. 

9. The related popularity effect is a covariate effect for agents in the network. This is defined 
for an agent, i, as the sum of the popularity effect of all other agents connected to agent i. 

10. The related activity effect is a covariate effect for agents in the network. This is defined for 
an agent, i, as the sum of the activity effect of all other agents connected to agent i. 

11. The related dissimilarity effect is a covariate effect for agents in the network. This is 
defined as the sum of the differences in some important attribute between an agent and its’ 
direct connections. 

 
Agents in a network can also experience constraints as well as have objectives. Agents 

can be constrained in the number of links that they can maintain to other agents in the network. 
This constraint models cognitive limitations on individuals. A person is not capable of 
maintaining meaningful relationships with hundreds of people. Other constraints may be 
imposed on the agents in the network. Snijders does not consider constraints in his model to 
simplify computation. When estimating the effects, the density effect often has a negative 
coefficient. This is interpreted as an observed constraint on node degree. See Snijders (2002) for 
a more thorough explanation. Our aim is to present considerations in multi-agent simulation 
based on social network analysis and not to generate a comprehensive model. 

 
Under a network utility model, an agent will change its outgoing links in such a way as to 

increase its overall utility, which is equivalent to optimizing its objective function (utility). It is 
important to note that the list of objective functions are suggestions and are non-exhaustive. 
When tested against empirical data, only a subset of the objective functions may be found to be 
significant. Undoubtedly, an analyst could consider other important social factors. Therefore, 
when using these objective functions in a multi-agent simulation, the modeler should use some 
intuition in determining important effects. Ideally, a modeler could record empirical data, use 
Snijders’ actor-driven approach to determine significant objective function effects as his 
approach was intended, and then use those effects in a multi-agent simulation to make inference 
on the future behavior of the network. 
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It is important to point out differences between network utility and classic game theory. 
Common applications of game theory intend to focus on trading scarce resources. The network 
utility approach does not consider the transfer of resources, rather agents attempt to optimize 
their position in their social network. This approach may not be common in multi-agent 
simulation, but it is supported in the social sciences. 

 
 

Data 
 
Parity Communications in collaboration with the Higgins Trust Framework and the 

SocialPhysics project constructed the ELICIT software package. Installed on client computers, 
the software serves as the platform for studying organizational efficiency and effectiveness. The 
four phase experiment entails an introduction, practice round, a one hour exercise, and a wrap 
up. During both the practice round and the actual exercise, thirty four subjects are randomly 
assigned to one of two organizations: a typical hierarchically arrayed organization (C2) and a 
control-free, self-organizing organization (E). These two organizations operate independently for 
the duration of the exercises. See Lospinoso (2007) for more information on the experiment and 
basic descriptive statistics of the data. 

 
The goal of the organization is to identify a terrorist attack based on bits of information 

distributed around the organization. After ten minutes of the one hour experiment, all of the 
correct information has been issued to the organization. Among the correct bits of information, 
or factoids, are also distributed false factoids. Each agent receives four factoids, and they must 
collaborate within the organization to come up with the correct arrangement of who, what, 
where, and when of the terrorist attack. The C2 group is comprised of a squad leader, four team 
leaders, and twelve team members. Communications among these agents are restricted to the 
following graph in Figure 6: 

 

Squad Leader
 

Team Leader
 

Team Leader
 

Team Leader
 

Team Leader
 

Team Member
 (x4)

Team Member
 (x4)

Team Member
 (x4)

Team Member
 (x4)

 
Figure 6. C2 Communications Hierarchy 

Each team is dedicated to identifying one key element of the terrorist attack: who, what, where, 
and when. 
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The E group is comprised of seventeen agents with full communication capability across 
the organization. There are no defined teams, but the goal remains the same: positively identify 
the terrorist attack. All agents have the ability to post their information on their organization’s 
website. Within the E group, this website is global to the organization. The C2 group has 
separate websites for each echelon (four teams and one squad site). The hierarchy in Figure 1 
describes where each agent can post information. Agents can also share information with other 
individual agents. Once an agent believes that it knows any number of correct factoids, it can 
report its belief through the “identify” function to its immediate superior in the C2 group or to 
the entire network in the E group. 

 
Data was collected on two iterations of ELICIT experiments conducted at West Point. 

During one iteration, the cadets were allowed to communicate within an edge-network 
configuration. In the other, the cadets were required to adhere to a strict hierarchy. Other than 
these systemic restrictions, the two iterations were run identically for an actual test run of two 
hours. 

 
The participants in this experiment were all cadets at the U.S. Military Academy between 

the ages of 17 and 23. The experiment was approved for ethics and safety by the West Point 
Institutional Review Board. All participants received a briefing on the experiment, consented to 
participate, and had the option to leave the experiment at any time without any adverse impacts. 
The investigators conducting the experiment were not in the participants’ military chain of 
command, so no undue influence was exerted in this experiment. 
 
 
Method 

 
We use the social network software package SIENA (Snijders et. al., 2007) which 

implements an actor-oriented network model to analyze data from two iterations of the ELICIT 
experiment. Adjacency matrices were constructed to reflect the structure of communication 
networks over time. These are unweighted (dichotomous), directed, and non-reflexive square 
matrices. We must define time intervals in which to discretize or bin the data. Following the 
guidelines set out by Steglich and Snijders (2007), we chose five bins. Each edge eijt was 
assigned a positive value (of one) if one of two conditions was met: cadet i sent cadet j 
information during time bin t, or cadet i posted information on a team website sometime between 
the start of the experiment and time t which cadet j retrieved during time t. 

 
Next, we defined covariates. This step is crucial and warrants special attention when 

conducting an actor-oriented model specification under the SIENA framework. Covariates are 
empirically derived values which are infused directly into four main objective functions (effects 
8-11) and provide compelling parameter estimates which can potentially gain critical insight into 
important aspects of sociological systems. In the case of the ELICIT data, we identify two main 
link effect covariates corresponding to leadership and location. The leadership-link effect is 
modeled with dependence-style network. The leadership network consists of time-invariant 
relationships of who was in charge of whom. Note that the leadership network was completely 
empty for the edge-organization case, because there were no formally defined leadership roles. 
The statistically significant parameter estimates of the leadership-link effect indicate that formal 
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leadership roles may play a significant part in driving agent behavior. With low--or even 
negative--parameter estimates, agents in the network are averse to forming links with formal 
leaders. The location-link effect models geographical proximity. Within the ELICIT framework, 
geographic distance may play a significant role within the hierarchical network, since 
geographical locations coincide with team placements. It would seem to also be an important 
covariate for the agents in the edge network, since agents within the same geographical region 
post to the same website and are most likely to gain information from this site. The statistically 
significant parameter estimates of the location-link effect indicate a strong affinity or aversion 
across both the edge and hierarchical networks on the basis of team cohesion (whether enforced 
or not). 

 
In addition to main link effect covariates defined on relationships between agents, we 

also defined a covariate for the information an agent possesses. As time progresses in the 
experiment, agents gain bits of information. Once an agent believes that the information is true, 
they will privately publish their belief to the ELICIT server, where the belief can be recorded by 
the experiment administrators. This is a time varying effect. We use the related popularity effect 
(number 9) to model this effect. Statistically significant parameter estimates of the information 
effect indicate that agents with more information attract more communication from other agents 
in the network. 

 
We also modeled the density effect, the reciprocity effect, and the transitivity effect 

(effects 1-3), because they are commonly used in the literature. We elected to omit other 
objective functions to prevent over specification of the model. See Steglich and Snijders (2006) 
for a more comprehensive review.  
 
 
Results 

 
To estimate the parameters of both the edge and hierarchical treatments simultaneously, 

we compiled both adjacency matrices and covariates into large matrices with structural holes 
where appropriate. We conducted estimation procedures within SIENA using default parameters 
and 1000 iterations of the three-stage Metropolis-Hastings Markov Chain Monte Carlso. Table 5 
and Table 6 display the parameter estimates of the E and C2 networks respectively. 
 
Table 5. Parameter Estimates for Edge Network 

Measure Parameter Estimate (p-val) 
Density Effect -.3693 (.028) 
Transitivity Effect .2054 (.031) 
Reciprocity Effect .1502 (.070) 
Location-link Effect .0513 (.471) 
Leadership-link Effect -- 
Information Effect .2146 (.009) 
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Table 6. Parameter Estimates for Hierarchical Network 

Measure Parameter Estimate (p-val) 
Density Effect -.9976 (.035) 
Transitivity Effect .2007 (.044) 
Reciprocity Effect .0640 (.36) 
Location-link Effect .2632 (.017) 
Leadership-link Effect .1507 (.023) 
Information Effect -.1647 (.019) 
 

We estimate six important objective functions to determine what sort of utility profiles 
are recurrent in each of the networks. After separating out the effects of each of the networks 
using individual covariate dummy variables, we find that the density effect measure is negative 
and statistically significant, which corresponds with our intuition that there is some sort of 
underlying cost to adding edges. Within the edge network, this effect is significantly diminished, 
which may indicate that agents in the edge network either have more cognitive capacity to form 
ties or that they are empowered by a lack of formal hierarchical structure. We find that the 
magnitude of this estimate (nearly -1) compared to the relative size of the other objective 
functions indicates that there are strong limitations to the cognitive capacity of the agents within 
the hierarchical network. 

 
Transitivity effect has a strong and statistically significant, positive parameter estimate. 

Agents in both of these networks tend to close triads, which would confirm our intuition in the 
hierarchical network, where team members might be expected to close triads within their teams.2 
The estimates are rather stable across the edge/hierarchical treatment, and it would appear that 
there is little difference between the two utility profiles. 

 
Reciprocity effect has little effect within the hierarchical network, but it has a significant 

effect on the edge network. Reciprocity tells us how likely one node is to return information to 
the entity who sent them information. This supports our intuition that in an edge network, 
relationships are created on the basis of information necessity and all agents must cross-load 
information. Within the hierarchical network, team-leaders can ask for information and receive 
information without ever having to inform their teams what is going on; so the edges are not 
reciprocated (which is why we fail to have statistically significant results under the hierarchical 
network). 

 
Location-link effect has a statistically significant effect on the parameters for the 

hierarchical network. This may be a result of location and team membership being highly 
correlated. When two agents in the hierarchical network are within a team, their team leader 
tasks them with determining one of the factoids, so it is natural that collaboration here should 
become important. Within the edge network, there is no statistically significant estimate for 
location. What this indicates is that within the edge network, covariates of initial team 

                                                 
2 Closing triads refers to the act of forming a relationship with a friend of a friend. 
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membership mean little and agents quickly breakout of their location to connect with the other 
locations and help contribute to their knowledge base. 

 
Leadership-link effect was estimated for the hierarchical network and had a strong, 

positive estimate. This indicates that the leadership role could explain a large portion of variation 
in the communication patterns of the hierarchy. It both supports our intuition and supports the 
notion that leadership within the hierarchy was effective at promoting information sharing up 
and down the chain. 

 
Information effect parameter estimates differed considerably between the edge and 

hierarchical treatments. Within the hierarchical network, there was actually a strong, negative 
correlation between people who had assembled information into some sort of conclusion and 
others. This means that there is information hoarding going on in the hierarchical network; the 
leadership is hoarding the information. Within the edge network, people who have assembled 
information seem to attract many edges. We cannot establish causality directly from this estimate 
(i.e. it could be that the entity has information because he is highly interconnected, or that he is 
interconnected because he has information), but it is certain that information sharing within the 
network is a largely significant behavioral engine. 

 
There are some striking differences about the behavior of these two networks. First, 

information sharing and collaboration occurs much more within the edge network, while 
leadership seems to drive much of the behavior in the hierarchical network. Agents in the edge 
network tended develop sharing relationships much more than in the hierarchical network as 
evidenced by the high reciprocity and triad closure in the edge network. Finally, it appears that 
edge network agents had fewer constraints on collaboration en masse as indicated by the 
magnitude of their density effect estimates. 

 
 

Discussion 
 
Defense agencies of the future will increasingly rely on an understanding of complex 

systems. From understanding the asymmetric nature (non-hierarchical) of armed adversaries to 
engineering net-centric systems that maximize efficiency and effectiveness, researchers have and 
will continue to benefit from empirical studies of complex systems--whether social, physical, or 
biological. For a thorough review on this active area of research, the reader is referred to Alberts 
(2002). 

 
We utilized an actor-oriented specification of a complex social system as opposed to an 

aggregated, holistic assessment of the system, and as a result we were able to dig into the 
underlying behavioral mechanics of the network and truly understand what is driving the 
autonomous, intelligent behavior of the cadets in the study. We now understand that soldiers 
within net-centric edge networks do collaborate across geographic and formal boundaries as 
expected, but more importantly--their behavior is driven by the need to accumulate knowledge 
and settle into comfortable social patterns (like triad consensus, reciprocity, etc.). 
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Beyond contributing to sociological literature and the defense industry's understanding of 
net-centric operations and systems, this chapter has introduced actor-oriented models in social 
network analysis which identify statistically significant utility seeking behavior within empirical 
data. The study of complex, adaptive systems can benefit from this empirical framework by 
permitting the investigator a deep look into the underlying mechanics that drive network 
structure. Enabled with these tools, there is a considerable array of future directions that 
investigators can pursue to enrich our understanding of complex systems. 

 
Parameter estimates from an actor-oriented specification as outlined in this chapter can be 

used to drive a multi-agent simulation. Moreover, the approach laid out in this chapter allows a 
modeler to use empirical data to determine factors driving agent interaction within a simulation. 
Building simulation based on statistically significant findings within empirical data is an 
important aspect of model verification.  

 
This approach requires that multi-agent simulation frameworks are capable of modeling 

significant utility seeking behavior. It is important to note that functions driving agent behavior 
may differ among differing applications. In the ELICIT example, different objective functions 
were significant for the edge and hierarchical networks, even given highly homogeneous sets of 
agents. This implies that there is no one model that fits all applications. 
An example of a flexible multi-agent simulation is Construct,  which is the multi-agent 
simulation presented earlier. In the context of Actor Oriented Models, Construct models agent 
interaction by assigning probabilities of link formation between agents at each time step. The 
probability of link formation is determined by a weighted function of homophily, socio-
demographics, and proximity. Throughout the simulation, agents interact, share knowledge, and 
change in various attributes as a result of interaction with other agents. Within the framework 
laid out in this chapter, homophily is equivalent to transitivity, reciprocity, balance, and the 
information effect. Socio-demographics are equivalent to the number of geodesics of two effect, 
the popularity effect and the activity effect as well as some covariate effects. The proximity is 
equivalent to a main-link effect. Other effects can be incorporated into the Construct model as 
well. While a detailed explanation of Construct is beyond the scope of this chapter, we point out 
that it is an example of a multi-agent simulation framework that can be used to simulate 
empirically observed network data. The statistically significant parameter estimates of the actor-
oriented model can be used to provide weights to the functions that determine the probability of 
link formation between agents. In this manner, the predictive power of the multi-agent 
simulation is enhanced due to its similarity to empirical data. Future work should explore the 
ramifications of resolving utility profiles into probability profiles. 

 
An empirically grounded multi-agent simulation also contributes to better understanding 

network dynamics. This chapter serves to unify competing approaches to modeling network 
evolution. Future work may explore opportunities to introduce random change into the simulated 
networks. Realistic simulation of networks allows investigators to explore network dynamics by 
introducing various forms of evolutionary and random change at known points in time and 
observing their behavior. This is necessary for exploring networks over time. 
 

The approach presented in this chapter is still limited in several ways. The list of 
objective function effects outlined in Section 3 is not exhaustive. There are likely other important 
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utility seeking functions governing agent interaction. Some effects are highly correlated and 
including too many effects may lead to over specified or degenerate models. Future work may 
investigate additional objective functions for actor-oriented models. 

 
Multi-agent system researchers should be motivated to apply an actor-oriented approach 

to empirical network data. The determination of statistically significant utility seeking behavior 
in networks offers us a deep, complexity-preserving insight into the underlying behavior of 
social systems. Whether the information is used at face value to draw inference on sociological, 
physical, and biological phenomena, or utilized as an intermediary to simulation analysis, 
empirical analysis of the utility seeking behavior characterizing complex networks around us 
promises to deepen our understanding of them. 
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INTERFACING NETWORK SIMULATIONS WITH EMPIRICAL DATA 

 
CONCLUSION 

 This paper has presented various models of social networks as longitudinally observed 
phenomena including the Link Probability Model, the Actor Oriented Model, and the 
Exponential Random Graph Model. Along the way, statistical methods were developed to 
differentiate among network models to determine accuracy of the models. After some analysis 
against empirical data from both classical literature and studies conducted at the US Military 
Academy, it was determined that the LPM introduces results with less difference from empirical 
data than the ERGM in these circumstances. We further conducted experimental studies using 
the ELICIT framework to test the effectiveness of the Actor Oriented Model at identifying 
statistically significant social theories present in the data. Finally, we found that both the LPM 
and the AOM fit into the social theory framework of constructuralism, which is implemented in 
the simulation package Construct. 
 
 
Limitations 
 
 There are limitations on each of the modeling techniques employed. The LPM assumes 
dyadic independence, which is clearly not true in some circumstances of network evolution. If 
the network under study is in a dynamic equilibrium, however, we have found that the LPM 
performs well at estimating the likelihood of interactions. ERGM and AOM also have limitations 
in that they assume a memoryless property inherent in all Markov graph models. As we have 
explored in the simulation chapter, there are also some very specific assumptions made with 
constructuralist theory: 
 

1a. Individuals, when interacting with other individuals, can communicate information. 
1b. Individuals, when interacting with other individuals, can acquire information. 
1c. Individuals can learn the newly acquired information thus augmenting their store of 

knowledge. 
2a.  Individuals select interaction partners on the basis of relative similarity and 

availability. 
2b. Individuals engage in interaction concurrently thus an individual's first choice of 

interaction partner may not be available. 
3a. Individuals have both an information processing capability and knowledge which 

jointly determine the individual's behavior. 
3b. Individuals have the same information processing capabilities. 
3c. Individuals differ in knowledge as each individual's knowledge depends on the 

individual's particular socio-cultural-historical background. 
3d. Individuals can be divided into types or classes on the basis of extant knowledge 

differences. 
 
When these assumptions do not hold, there will likely be error in the results obtained from 
utilizing these methods.  Unfortunately, little is known on the nature of these biases. 
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Contributions 
 
 Contributions of this paper include preliminary analysis of the effectiveness of the 
ERGM, AOM, and LPM at modeling longitudinal networks, a statistical test to compare the 
effectiveness between these models and empirical data, and an interface for taking model 
parameters to teach a simulation how to represent the real world data. Much of this literature 
until now has existed in mutually exclusive areas of SNA. This paper serves to unify these areas 
and provide a framework and tools to bridge between them. 
 
Future Work 
 
 There are many opportunities for future work. AOM must be compared against LPM and 
ERGM with empirical datasets. There is much work to be done in implementing an actual 
interface into Construct that could take empirical data and apply the SNA models with their 
estimation techniques directly into a simulation. In this way, researchers could obtain a body of 
data and seamlessly create accurate simulations of that data by specifying the appropriate multi-
agent simulation model. 
 
 SNA is a rapidly expanding research area, and collaboration between social theory 
practitioners, statisticians, and modelers can capitalize on this expansion. This paper has 
illustrated how this collaboration can occur by spanning all three areas. As richer empirical data, 
more accurate models, and better estimation techniques become available, synthesizing them into 
unified suites of tools promises to deepen our understanding of networks and provide researchers 
with valuable and powerful insight into the social systems around us. 
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