

NAVAL

POSTGRADUATE
SCHOOL

MONTEREY, CALIFORNIA

THESIS

Approved for public release; distribution is unlimited

DIGITAL AUTHENTICATION FOR OFFICIAL BULK
EMAIL

by

Andrew A. Slack

March 2009

 Thesis Advisor: Simson L. Garfinkel
 Second Reader: Geoffrey Xie

THIS PAGE INTENTIONALLY LEFT BLANK

 i

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per
response, including the time for reviewing instruction, searching existing data sources, gathering
and maintaining the data needed, and completing and reviewing the collection of information. Send
comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington headquarters Services, Directorate
for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA
22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188)
Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
March 2009

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE Digital Authentication for
Official Bulk Email
6. AUTHOR(S) LT Andrew A. Slack, USN

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND
ADDRESS(ES)

N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and
do not reflect the official policy or position of the Department of Defense or the U.S.
Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)
 Official bulk email is an efficient tool for disseminating information to a wide
audience. Its inherent efficiency, captive audience, and trust provide a dangerous
attack vector for adversaries utilizing fraudulent email.
 Digital authentication can provide a layer of defense to official bulk email that,
combined with other defensive countermeasures, will greatly reduce its vulnerabilities.
The Department of Defense mandates that official emails, which contain hyperlinks,
attachments, or instructions to recipients, must contain a digital signature,
authenticating the source of the email, and ensuring the integrity of its contents.
This policy, though used at some military installations, is not being applied to
official bulk email at others due to administrative roadblocks in obtaining role-based
certificates, and implementing an authentication policy with legacy email systems.
 This thesis identified administrative roadblocks in deploying digital
authentication solutions within the Department of Defense, explored different
technology options of a digital authentication solution for official bulk email,
created a proof of concept solution using a Python proxy server and S/MIME, and looked
at the most popular mail user agents to see how they interpret S/MIME digital
signatures. Applying digital authentication to official bulk email will close a
potentially critical vulnerability in the defense of DoD networks.

15. NUMBER OF
PAGES

77

14. SUBJECT TERMS Digital Authentication, S/MIME, Official bulk
email, phishing

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UU
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited

DIGITAL AUTHENTICATION FOR OFFICAL BULK EMAIL

Andrew A. Slack
Lieutenant, United States Navy

B.S., United States Naval Academy, 2002

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
March 2009

Author: Andrew A. Slack

Approved by: Simson L. Garfinkel
Thesis Advisor

Geoffrey Xie
Second Reader

Peter Denning
Chair, Department of Computer Science

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

Official bulk email is an efficient tool for

disseminating information to a wide audience. Its inherent

efficiency, captive audience, and trust provide a dangerous

attack vector for adversaries utilizing fraudulent email.

Digital authentication can provide a layer of defense

to official bulk email that, combined with other defensive

countermeasures, will greatly reduce its vulnerabilities.

The Department of Defense mandates that official emails,

which contain hyperlinks, attachments, or instructions to

recipients, must contain a digital signature, authenticating

the source of the email, and ensuring the integrity of its

contents. This policy, though used at some military

installations, is not being applied to official bulk email

at others due to administrative roadblocks in obtaining

role-based certificates, and implementing an authentication

policy with legacy email systems.

This thesis identified administrative roadblocks in

deploying digital authentication solutions within the

Department of Defense, explored different technology options

of a digital authentication solution for official bulk

email, created a proof of concept solution using a Python

proxy server and S/MIME, and looked at the most popular mail

user agents to see how they interpret S/MIME digital

signatures. Applying digital authentication to official

bulk email will close a potentially critical vulnerability

in the defense of DoD networks.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION ..1
A. OFFICIAL BULK EMAIL1
B. PHISHING ...1
C. CRYPTOGRAPHIC AUTHENTICATION AS DEFENSE2
D. PURPOSE OF STUDY3

II. BACKGROUND AND RELATED WORK5
A. THE THREAT – OFFICIAL BULK EMAIL AND PHISHING5
B. SOCIETAL ASPECTS OF PHISHING ATTACKS6
C. MITIGATING PHISHING BY TRAINING7
D. THE WEST POINT EXPERIMENT9
E. DOD TARGETED PHISHING10
F. EMAIL HISTORY (SMTP, SECURITY)11
G. SECURE DIGITAL MESSAGING12
H. USABILITY OF SIGNED EMAIL13
I. THE IMPORTANCE OF SIGNED EMAIL15
J. PEM ...16
K. PGP ...16
L. S/MIME ..17
M. DKIM ..18
N. ONGOING DEPLOYMENT ISSUES19

III. DIGITAL AUTHENTICATION AND THE DEPARTMENT OF DEFENSE ...23
A. POLICY ..23
B. DOD CAC CERTIFICATES25

IV. NPS EMAIL ARCHITECTURE29
A. SIGNING OPTIONS29

1. Message Generation30
2. After Generation30
3. Upon Receipt31

V. SIGNING MESSAGES WITH S/MIME33
A. S/MIME ..33
B. IMPLEMENTING S/MIME34

1. ColdSpark Solutions35
2. PGP Universal35
3. Python Scripted Server36
4. Obtaining Test Certificates36

VI. MAIL USER AGENTS AND S/MIME39
A. S/MIME SIGNED BY COMMON ACCESS CARD VS THAWTE FREE

EMAIL ...39
1. Microsoft Outlook39
2. Apple Mail43

 viii

3. Microsoft Outlook Web Access44
4. Entourage45
5. Thunderbird46
6. Google Mail (Gmail)48
7. Yahoo! Mail49

B. DOMAINKEY AND DKIM50
1. Gmail ..50
2. Yahoo!51
3. Outlook, Thunderbird, Apple Mail, Entourage,

Webmail52

VII. CONCLUSION ...53

LIST OF REFERENCES ..55

APPENDIX ..59
A. PYTHON CODE - SIGNING PROXY SERVER59
B. PYTHON CODE – OPENSSL60

INITIAL DISTRIBUTION LIST63

 ix

LIST OF FIGURES

Figure 1. Fraudulent Email Example (From 4)................6
Figure 2. DoD CAC Certificate.............................26
Figure 3. DOD Email Certificate (RFC 822 Name)............26
Figure 4. Apple Mail Digital Signature Error..............27
Figure 5. Microsoft Outlook Preview Screen................39
Figure 6. Microsoft Outlook Digital Signature Indicator...39
Figure 7. Microsoft Outlook Digital Signature Details.....40
Figure 8. Microsoft Outlook S/MIME Details................40
Figure 9. Microsoft Outlook Certificate Warning...........41
Figure 10. Microsoft Outlook Warning Properties............42
Figure 11. Microsoft Outlook Warning Details...............42
Figure 12. Apple Mail Signed Mail Preview..................43
Figure 13. Apple Mail Signed Mail Indicator................43
Figure 14. Microsoft Outlook Web Access Preview Screen.....44
Figure 15. Microsoft Outlook Web Access Signature Warning..44
Figure 16. Microsoft Entourage Preview Panel...............45
Figure 17. Microsoft Entourage Digital Signature

Verification....................................45
Figure 18. Microsoft Entourage Security Details............46
Figure 19. Mozilla Thunderbird Trusted Signature...........47
Figure 20. Mozilla Thunderbird Signature Details...........47
Figure 21. Thunderbird Unverified Signature................47
Figure 22. Thunderbird Unverified Signature Details........48
Figure 23. Google Mail Preview.............................48
Figure 24. Google Mail Signed Message......................48
Figure 25. Firefox Plugin S/MIME Verification Error........49
Figure 26. Yahoo! Mail Preview.............................49
Figure 27. Yahoo! Mail Signed Message View.................49
Figure 28. Google Mail DKIM/DomainKey Signature............51
Figure 29. Google Mail DomainKey Signature.................51
Figure 30. Yahoo! Mail DomainKey Signed Icon...............51

 x

THIS PAGE INTENTIONALLY LEFT BLANK

 xi

ACKNOWLEDGMENTS

I would like to thank my friends who helped me through

life while working on my thesis: Paul Farrell and our time

spent at Trailside, Deane Smith, John Kajmowicz, Todd

Glidden, Jessy Cowan-Sharp, and Pete Corrao for his

leadership and guidance.

I would also like to thank the members of the NPS

Information Technology and Communication Services (ITACS)

for their help in making me understand the NPS

infrastructure, letting me see the certificate acquisition

process first hand, and reviewing the thesis.

My Mother, Christa, my Father, Jim, and my Brother,

Jimmy, were always supportive and kept me focused on

graduating. They were always there to lend an ear or a bit

of advice.

Finally, I would like to thank my thesis second reader

and advisor. Professor Geoffrey Xie allowed me to switch

thesis topics after I had started, and provided support as I

researched and learned about digital authentication and

official bulk email. Without Professor Simson Garfinkel as

my thesis advisor, I would have never finished my thesis on

time. His vast experience, infallible work ethic, and

compassion for his thesis students did not go unnoticed by

my friends, my family or myself. Thank you Dr. Garfinkel.

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

 1

I. INTRODUCTION

A. OFFICIAL BULK EMAIL

Official bulk email is a common way for administrative

managers to get information out to the workforce. It allows

the sender to push a single button to get announcements,

tasking, or other administrative direction to everyone

within their domain or sub-domain.

Most of us are accustomed to receiving official bulk

email, and we typically accept its contents as valid without

checking integrity of the message or the authenticity of the

sender. This inherent trust of official email provides a

dangerous attack vector to people who want to steal

information, pass misinformation, or install malicious

software. This type of attack, where email is used to

convince people to convey personal information, is called

Phishing [1].

B. PHISHING

Phishing attacks against specific institutions, such as

Department of Defense (DoD) commands, are becoming more

common. The attacks are also becoming more sophisticated,

spoofing actual official email sources with specifically

crafted content for the target recipients. The results of

these attacks range from compromised user accounts to the

compromise of personal information and services. As

individuals and organizations improve their attack

techniques, more and more accounts and critical information

will be compromised [2].

 2

Currently our main defense against these crafted emails

is filtering. Firewalls and spam blockers do a good job in

keeping out known vectors of attack such as blacklisted

domains or executable file attachments, yet they are only

effective against attacks that can be identified. This is

an AI problem, as the phishing defense must make a decision

to allow or deny access to the network for each email it

sees based on the email’s content. Attackers understand

this, and can eventually defeat any defense that relies on

content-based filtering.

C. CRYPTOGRAPHIC AUTHENTICATION AS DEFENSE

Cryptographic authentication can severely limit the

success rate of spoofed email, since it is computationally

infeasible to defeat modern signature algorithms. By using

cryptographic authentication in conjunction with current

defenses, like filtering, spoofed emails may be prevented

from entering the network altogether. In the future, anti-

spam software may automatically verify digital signatures on

incoming email messages, removing the burden from the user.

The Department of Defense has already deployed software that

will verify digital signatures on the desktop, and has even

created policy that requires a digital signature for emails

that contain specific types of data [3]. Yet this policy is

not widely enforced and many users don’t understand the need

for digital authentication, or how to use it properly.

Furthermore, many administrative roadblocks exist that delay

the deployment of digital authentication technology.

 3

D. PURPOSE OF STUDY

This thesis analyzes the problems associated with

deploying a digital authentication solution to auto-

generated email, researched different commercial solutions,

and present a proof-of-concept script that can sign auto-

generated emails through the use of a proxy server. It

reviews common Mail User Agents (MUAs), shows how they

display S/MIME signed messages, and characterizes a bug in

how Apple Mail verifies S/MIME signatures specifically with

Department of Defense Common Access Cards (CAC).

We focused on automated email versus interactive email

for a number of reasons:

1. Common Access Cards (CAC) that have been deployed

by DoD will apply a personal digital signature to

interactive email, but cannot be used with

automatically generated email or with role-based

certificates.

2. Automated emails usually have no reply-

requirement, bypassing the usability problem

associated with requiring a digital signature for

replies.

3. Finally, because automated emails prime users to

accept unsigned fraudulent commands, and

currently, no one else is attempting to apply a

digital signature to them.

 4

THIS PAGE INTENTIONALLY LEFT BLANK

 5

II. BACKGROUND AND RELATED WORK

A. THE THREAT – OFFICIAL BULK EMAIL AND PHISHING

Official bulk email provides a means to disseminate

official information to an entire organization with ease.

These emails can be fairly common, and are mostly

automatically generated. Because of their frequency and

official nature, auto-generated bulk email evoke an inherent

trust response with their recipients. Attackers can easily

exploit both the selected distribution of official bulk

email and their perceived integrity.

This use of fraudulent email is called “phishing,” a

term coined in the early days of computer hacking. These

fraudulent email attacks have become more technical, more

personal, and more successful each year. Criminals have

devised ways to increase the success rate of their attacks,

including targeting specific users with a specific

relationship, such as customers of a bank or commerce-relate

website. These fraudulent emails look like official

communication from the target bank, but will usually contain

a malicious attachment, or a link to a website that will try

to collect personal information from the victim (see Figure

1) [2].

 6

Figure 1. Fraudulent Email Example (From 4)

B. SOCIETAL ASPECTS OF PHISHING ATTACKS

Phishing attacks also have indirect consequences as

well. Societal aspects, such as trust, support, and

reliable communication, are victims of phishing attacks in

addition to direct monetary loss [5]. Even if a phishing

email is unsuccessful, the ensuing trust in whatever company

or organization that attack mimicked is degraded. For

example, a phishing attack using an address that looks like

the Red Cross may make actual Red Cross emails requesting

aid for the current crisis less effective. This will have a

negative impact on legitimate organizations’ ability to

raise funds through email campaigns [5]. A similar outcome

occurs with banks that are imitated by phishing scam

 7

artists. Users will be more afraid to follow links enclosed

with legitimate bank emails. Banks will have to either

follow safer email practices, such as using digital

cryptographic authentication, or fall back on alternate

methods of communication which may be more expensive or

wasteful (e.g., phone calls and paper mail).

One company, PayPal, is attempting to initiate a

fundamental change in how email providers handle their mail.

PayPal’s general council states that their company is one of

the highest targeted e-commerce companies currently in

business by phishing attacks. PayPal sends a significant

amount of mail to its customers, and criminals have targeted

PayPal and those customers by sending spoofed messages that

appear to come from PayPal but direct customer to fake

websites. As a result, in 2007 PayPal asked all major email

service providers, such as Google and Yahoo!, to block any

email that claims to comes from the PayPal.com domain, but

do not contain PayPal’s digital signature [6].

PayPal was already combating phishing attacks against

their customers by limiting the amount of money per

transaction and compensating users who where victims of

phishing attacks. By attaching a digital signature to their

official mail, they are helping both email service providers

identify fraudulent mail, and adding another layer of

protection for their customers.

C. MITIGATING PHISHING BY TRAINING

One of the weakest links in computer security is the

user. Nevertheless, training of users has traditionally been

a lower priority among security professionals than

 8

preparation, avoidance, intervention, and treatment [7].

Because of this, the effects of user training are mixed.

When users are confronted with traditional context-free

phishing attacks, training has shown to significantly reduce

the number of users who fall victim. Yet when trained users

are presented with sophisticated context-specific attacks

(spear-phishing), training seems to have reduced impact.

Training also increases the likelihood that legitimate

emails will be labeled as attacks. This, researchers state,

is because users, despite training, cannot recognize what

phishing is, how to identify phishing attacks, if they

understand what it is, or have an inherent trust that

attacks shouldn’t come from recognized sources. This is a

troubling conclusion for organizations that send bulk email,

as it implies that training may make bulk email less

effective and that even with training, these organizations

will remain susceptible to targeted phishing attack.

Training is a base requirement to mitigate and prevent

phishing attacks, but as these attacks become more context-

sensitive, training will become less effective by itself.

Users need both training and extra tools to either assist in

training or to assist in identifying phishing attacks.

Because spear-phishing uses phrases, terminology, and

target a select group of people, automated systems have a

harder time identifying and filtering out these attacks.

Context specific emails will get through most generic

filters, because they are intended for a smaller audience,

and have specific details relating to current or recent

projects. If automated systems had a high enough threshold

to weed out these context-specific attacks, then there is a

 9

high probability that the filters would prevent the delivery

of legitimate mail as well.

Context-specific fraudulent emails are increasing every

year in both number of attacks and sophistication because

they are successful. By targeting specific users, the

criminal can bypass most automated security systems and

increase the chances of a successful attack. The more

convincing their fake emails look, the more untrained users

are likely to fall victim. Even users who were given basic

training to identify fraudulent email still fell victim to

the more sophisticated and authentic looking ones.

D. THE WEST POINT EXPERIMENT

In 2004, researcher Aaron J. Ferguson conducted a

phishing experiment at West Point Military Academy [8]. He

sent out a specially constructed email with an embedded

hyperlink to a group of 512 randomly selected cadets. This

target group consisted of an even number of freshmen,

sophomores, juniors, and seniors. Ferguson selected West

Point because it is a DoD facility, has a Computer Emergency

Response Team (CERT), and was the only service academy at

the time to be certified by the National Security Agency

(NSA) as a Center of Academic Excellence in Information

Assurance Education (CAEIAE). A final important factor was

the fact that each freshman class underwent four hours of

information assurance training, where they discuss various

security practices related to electronic communication,

including phishing.

 10

Ferguson’s phishing email was crafted to exploit the

military mentality of the cadets, yet have obvious errors

that should have caused suspicion among the recipients. The

email was sent from a Colonel, a high-ranking officer, and

asked the students to follow an included hyperlink, but the

Colonel was not in West Point’s global address book. The

Colonel also listed his office on the 7th floor of a well-

known building on campus. The cadets should also have known

there was no 7th floor of this building. The experiment

resulted in 80% of the cadets of different rank clicking on

the hyperlink and 90% of the newly trained freshman falling

victim. Ferguson showed that even a select group of

individuals with specialized training and within an

organization that has a greater need of cyber security can

still fall victim to specially crafted spear-phishing

attacks.

E. DOD TARGETED PHISHING

Phishing campaigns have expanded from ISP users and

banks to governmental organizations like the Department of

Defense. These more sophisticated attacks, with emails that

look identical to official mail, are the most threatening to

the security of Government networks and DoD members [2].

The United States remains the largest host of phishing

websites in the world [9]. This is not an indication of

malfeasance on the part of its citizenry, but a result of

bandwidth, target populace, and privacy laws. The US has

both more aggregate bandwidth than any other country in the

world and the largest number of unmanaged home computers –

each a potential launching pad for attack. America is also

the world financial leader, so the same users who do their

 11

banking online are the primary targets of financially

focused phishing attacks. Finally, the US has strict laws

protecting the personal rights of its citizens, which help

the phishing criminals since authorities must pass through

multiple legal obstacles to seize and analyze computers used

in phishing attacks.

Phishing attacks within the DoD are not necessarily

attempting to gain financial information. They may be

targeted at government members to gain intelligence or

account information [2]. From these compromised accounts,

further exploitation of DoD network may be possible. In a

training presentation, released by JTF-GNO in late 2006, the

DoD identified the sophistication of adversaries and their

techniques [10]. They call these focused attacks via email

“spear-phishing.” Many of these malicious emails identify

the intended victim by name, contain attachments relevant to

ongoing exercises, and use jargon associated with the false

intent of the email. This leads investigators to believe

that some attackers already have extensive knowledge of

their targets, and know precisely what further information

they want.

F. EMAIL HISTORY (SMTP, SECURITY)

Early email systems could only transmit text messages.

As a result, the first email standards only specified how to

construct the message headers (From, To, Date, and Subject)

[11]. These standards were silent on the topic of security.

For example, RFC-821 defines the SMTP protocol, but does not

even mention the words “security,” “authentication,” or

“encryption” [11].

 12

Email was originally based on a protocol that does not

inherently authenticate people, or provide for secure

communications. The sender was identified by the From:

address, but not authenticated. Although it was recognized

that the From: address could easily be forged, the designers

did not have the cryptographic tools available to allow

authentication in a distributed environment. Besides, at

the time email was primarily used as a way for researchers

from different institutions to communicate – there was no

credible threat requiring email to be protected. This lack

of baseline security slowed the progress of secure SMTP as a

standard and enabled criminals to use email as a primary

attack tool.

As attacks and spam became more prevalent, a new RFC

was created, RFC-2821, that now recognized these security

concerns, and suggested “end-to-end” methods are the only

real security solution [12]. Unfortunately the RFC goes on

to state, “This specification does not further address the

authentication issues associated with SMTP….” In 2008, the

SMTP RFC was updated again in RFC-5321, but no further

security extensions were proposed, only an expanded

discussion of security vulnerabilities [13].

G. SECURE DIGITAL MESSAGING

People have realized the importance of secure digital

messaging since the email user base began to grow from the

small group of researchers to the wider public. Encryption

schemes have been in use for conventional messaging

throughout history, but there was always the problem of

transporting the keys or the secret way to decrypt messages

securely. This need drove the development of public key

 13

cryptography. Algorithms such as Diffie-Hellman and RSA

were developed specifically for the purpose of securing

electronic mail - both by adding privacy (encryption) and by

providing authentication of the sender.

H. USABILITY OF SIGNED EMAIL

Many researchers have blamed the lack of secure email

deployment not on the competition or technical shortcomings

of the various proposals, but on fundamental usability

problems resulting either from poorly designed software,

overly complex protocols, or a mismatch between the security

requirements of PKI and the real-world needs of

organizations.

It has been shown that despite the strength of the

cryptography or the global acceptance of a protocol, if a

user has trouble sending a secure message, the goal of email

security has failed [14]. Whitten famously conducted a

study of 12 subjects, who were given the task to create

public/private key pairs, then send an encrypted and signed

email with PGP 5.0; only a third were successful. Whitten’s

experiment showed that even with training, many people have

difficulty using security software that requires significant

user participation. Usability is one of the major

roadblocks to the adoption of digital signature software,

and is why the technology is so slow to reach mainstream

adoption.

While some researchers feel that it is important to

teach normal users exactly how digital cryptographic

algorithms work, others argue that regular users do not need

such in-depth knowledge [15]. A basic understanding of what

 14

digital encryption and authentication provide is enough

to make the technology useful.

As the number of users on the Internet grew, so did the

problem of spam and phishing. This increasing threat

eclipsed the usability problems associated with key pair

generation and encryption for an immediate need of simple

mail authentication with signatures. Some researchers argue

that solving the problem of encryption must wait until the

phishing and spam threat are mitigated. But digital

authentication protocols are at a state where most users can

receive digitally signed messages because most email

programs already have cryptologic technologies built in

[16]. Nevertheless, despite the widespread deployment of

this technology, very few emails are sent digitally signed.

Again, usability in conjunction with the users’ perceived

indifference toward secure messaging is suggested as the

reason [16].

Another roadblock for the adoption of secure email

(specifically S/MIME) is the required use of authenticated

certificates. It is a burdensome task to obtain a

certificate from a reputable certificate authority (CA), and

the use of self-signed certificates pops up an alert on many

mail user agents [16].

Despite this pop up, Garfinkel's 2005 study of the

usability of signed email found that mail signatures, rather

than email encryption, could effectively help users

withstand a laboratory phishing attack; subjects were

protected from the attack even when using self-signed

certificates when provided with software that implemented

the Key Continuity Model [17].

 15

Digital signature technologies are deployed on most

user email clients today, and do not require recipients to

obtain their own certificate to verify signed messages.

Though usability of these programs is still a large obstacle

to overcome, institutions are primed and ready to implement

signing rules to a wide spectrum of their email, and can

bypass much of the usability issue by incrementally

employing the authentication protocols to certain types of

email, like automated messages.

I. THE IMPORTANCE OF SIGNED EMAIL

Other work has found that even when information workers

appreciate the importance of encrypting their mail, they

generally do not understand the advantage to signing their

mail. Gaw, Felten and Fernandez-Kelly conducted a series of

interviews at ActivistCorp, a non-violent, direct action

organization: "Although we had not explored the topic in

depth, digital signatures seemed relatively unimportant to

the employees we interviewed" [18]. The employees they

interviewed at ActivistCorp stated that they had reason to

maintain the secrecy and integrity of their messages. Most

users knew how to encrypt, and assurances encryption

provides, but few understood the use or importance of

digital signatures, and would only sign their message if it

was encrypted [18].

Fritsche and Rodgers evaluated a range of cryptographic

technologies for deployment at Lehigh University. They

considered a range of technologies in including hardware

encryption, secure messaging, and network security. They

made a comprehensive list of recommendations but only

mentioned email signatures at the end of the article. They

 16

focused on solutions that require extensive work or a

significant change to the way the school communicates, and

did not discuss the protocols for simple email

authentication [19].

J. PEM

Work on the Privacy Enhanced Mail (PEM) standard began

in the mid 1980’s. PEM provided end-to-end security for

email based on public key cryptography. The PEM design was

finalized in 1993 [20]. PEM provides for both message

sealing and signing. It seals the message by encrypting

message contents with a symmetric encryption algorithm, and

then encrypts the session key with the recipient’s public

key. PEM signs the message by creating a digital hash of

the message, and encrypting that hash with the sender’s

private key. PEM was designed when there was no common

repository of authentic public keys, so it used a chain of

certificate authorities to verify the authenticity of the

individual public keys, based around the trust of a single

root server [20]. This centralized root server became

problematic as people discovered the costs and legal

ramifications of a trusted hierarchical structure.

K. PGP

Pretty Good Privacy is a program first developed and

released by Phil Zimmermann in 1991 [21]. PGP did not use a

centralized trusted root server for a chain of trust;

Instead, PGP enabled users to trust whomever they wished.

The idea was that untrustworthy certificates (and the

organizations or people who sign them) would fall to the

wayside as more trustworthy organizations rose to the top,

 17

creating a “web of trust.” An early example of a community

reputation model - PGP was not easily applied to current

email programs since it required a lot of configuring and

user knowledge. Though usability was significantly improved

in 1997 when PGP was commercialized, PGP was never widely

used outside a select group of cryptography advocates and

human right activists.

L. S/MIME

Development work on the Secure Multipurpose Internet

Mail Extensions (S/MIME) began soon after PEM was

standardized. Users and developers were discovering the

problems associated with the hierarchical chain of trust

ending in a single root server, so S/MIME relaxed this

policy. Its developers envisioned a network of trusted

certificate authorities, any of whom could provide the trust

for individual certificates. Even more convenient, the

software makers implementing S/MIME could include these pre-

determined and trusted CA public keys with their software

distribution.

In 1996, Microsoft Corporation announced it would be

including S/MIME in their mail service products (Outlook,

Exchange client, and Internet Mail). This sparked

Microsoft’s competitor, Netscape, to also include S/MIME

support in its products. Early support for S/MIME from

these industry giants pushed the secure messaging protocol

into the homes of millions of users (most without realizing

they had the functionality). Today, most commercial email

mail user agents (MUAs) support S/MIME. This wide-spread

support is one of the greatest advantages for S/MIME.

 18

S/MIME is not used by a majority of individuals though.

Many webmail systems do not support S/MIME, although there

is support for S/MIME signatures in Outlook Web Access, and

some support for Gmail with a browser plugin. S/MIME also

suffers from the same problems that trouble public key

infrastructure. There are also some ambiguities in the RFC

describing certificate format, which may lead to

incompatible S/MIME implementations. Users must also first

obtain a personal certificate before they can digitally sign

or encrypt email. This process is intimidating and can be

confusing to people who do not fully understand the method

of acquiring a valid personal certificate. Finally, S/MIME

authenticated messages contain a multipart section with a

.p7s file extension for the digital signature. Since all

mail user agents do not implement S/MIME, individuals may

get confused when this signature is displayed as an

attachment.

M. DKIM

DKIM is yet another attempt to create an end-to-end

authentication scheme for digital mail. Its goal is to

overcome the problems with S/MIME. DKIM was started as

DomainKeys, a system developed by Mark Delany at Yahoo! .

Yahoo! and Google deployed DomainKeys in 2004 on a trial

basis to mutually verify mail leaving and entering their

respective domains. At the same time, Cisco Systems was

developing its own email authentication option, called

Internet Identified Mail (IIM). Cisco and Yahoo! began

working on a new standard that combined both DomainKeys and

IIM; This resulted in a formal IETF proposed internet

standard in RFC 4871 as DomainKeys Identified Mail (DKIM).

 19

DKIM signs mail at the domain level. That is, a

message originating from a user (e.g. user@nps.edu) is

signed by the domain (nps.edu) and not with the user’s

personal certificate. Whereas S/MIME adds an attachment to

a message, DKIM adds new fields in the message header; these

fields are simply ignored by mail servers that do not

support the DKIM standard. This advantage allows DKIM to be

deployed incrementally since it has no impact on users whose

software does not support the standard, unlike S/MIME or

OpenPGP, where program implementations typically highlight

errors rather than ignoring them.

Keys are not assured through certificates (and the

signing certificate authority), but by the domain owners

themselves. This enables a much more streamlined method of

generating a public/private key pair, but also removes a

level of trust that is inherent with certificate

authorities.

Finally, DKIM relies on DNS. The public key for the

domain is stored on the domain’s name server, enabling

anyone to obtain its public key to verify a signature. This

form of key distribution relies on the authenticity and

availability of DNS, which itself isn’t secure or without

error, but has proven itself to be reasonably reliable over

the years. DNSSEC is also being deployed, which will

prevent spoofing DNS replies.

N. ONGOING DEPLOYMENT ISSUES

Some researchers have suggested that the difficulties

in deploying signed email on the Internet today are a result

 20

of the poor match between the S/MIME and PGP protocols and

the real-world needs of large-scale organizations.

Goodman, Cormack and Heckerman argue that S/MIME and

PGP have not been adopted because of the burdens that the

protocols place on the end user and suggest that DKIM will

be more successful because it relies on identity at the

domain level [22]. They state that user-level

authentication is confusing to some users, and require an

extra attachment of some form in the email to work properly,

where DKIM and SenderID sit at the domain level, relieving

the burden on the user [22]. By using domain level

authentication, public keys are stored on the domain’s DNS

server, and the authentication process takes place between

servers. The entire process is completely transparent to

the user.

Boosting this argument is the fact that major web mail

companies like Google and Yahoo! are using this technology

today. Yet spammers were also early adopters of domain-

verified mail. When SenderID started out, spammers were the

ones who were verifying that their spam email came from

their spam websites! Domain-level verification works well

to prevent an important domain from being spoofed (like

PayPal.com), but it doesn’t make any guarantees about the

nature of the verified mail.

There remain ambiguities and discrepancies with more

mainstream protocols like S/MIME. RFC 3850 describes how

end-user certificates should be created, to include where

email addresses should be place and how verification should

check. The problem is the use of the word “should” rather

than “must.” Because of the suggestive nature of the RFC,

 21

different entities create end user certificates differently,

and mail user agents verify them differently. This thesis

discovered an example of that problem when the Apple Mail

user agent would invariably fail to verify DoD certificates.

That issue is discussed in more detail later, but serves as

an example of how the S/MIME protocol can be interpreted

differently, leading to incompatibility among certificate

authorities and verification software.

 22

THIS PAGE INTENTIONALLY LEFT BLANK

 23

III. DIGITAL AUTHENTICATION AND THE DEPARTMENT OF
DEFENSE

The Department of Defense understands the importance of

high integrity secure messaging. The Joint Task Force –

Global Network Operations (JTF-GNO) is a subset of the DoD

whose mission statement was developed to ensure, among other

tasks, “assured information protection and assured

information delivery” [23]. Policies derived emulating from

JTF-GNO drive the actions and policy of the rest of the DoD

warfighting branches.

A. POLICY

Because of the increased threat to DoD networks by

spear phishing, message authenticity and security has become

a major component of JTF-GNO’s concept of operations. In

September of 2008, the Navy issued a restatement of digital

signature policy based on JTF-GNO Communication Tasking

Orders (CTOs) and prior DoD PKI policy [24]. NAVADMIN

248/08, “Implementation of Navy Electronic Mail (Email)

Digital Signature Policy,” contains policy for “all

unclassified email sent from a Department of Defense (DOD)-

owned, operated, or controlled system or account…[for] all

emails requiring data integrity, message authenticity,

and/or nonrepudiation…” [24]. The Policy states the

requirement to apply a digital signature to any email that:

 Directs, tasks, or passes direction or tasking.

 Requests or responds to requests for resources.

 24

 Promulgates organization, position, or information
external to the organization (division,
department, or command).

 Discusses any operational matter.

 Discusses contract information, financial, or
funding matter.

 Discusses personnel management matters.

 The need exists to ensure that the email
originator is the actual author.

 The need exists to ensure that the email has not
been tampered with in transit.

 Is sent from a DoD-owned system or account which
contain an embedded hyperlink (e.g., active link
to a web page, web portal, etc.)…

 Is sent from a DoD-owned system or account that
contains an attachment (any type of attached
file).

The policy also states, “Pure text references (non-

active internet links) to web addresses, uniform resource

locators (URL), or email addresses do not require a digital

signature” [24].

This policy applies both to email from individuals and

from email from group accounts, such as automated bulk

email.

To help accomplish this requirement, the Navy has

issued both Common Access Cards (CAC) and CAC readers to all

commands [3][24][25].

 25

B. DOD CAC CERTIFICATES

While working on this thesis, we discovered an

inconsistency between the way the Department of Defense

creates personal certificates for Common Access Cards and

the way that certificates from other sources (such as Thawte

and Verisign) are formatted. This inconsistency, combined

with an implementation error present in some mail user

agents, prevents CAC-signed mail from being properly

validated in some cases.

Mail User Agents may verify S/MIME signatures

incorrectly. For example, Microsoft products (Outlook,

Entourage, etc.) will verify an email address in the “RFC

822 Name” field. This is only place in DoD certificates

where email addresses reside.

Other MUAs, including Apple Mail version 3.5 (930.3),

will check for an email address appended to the end of the

Common Name field. This was a non-standard usage adopted by

venders in the early days of S/MIME.

Verisign and Thawte put the email address in both the

RFC 822 Name field and append it to the CN field, and

Subject Alt Name of x.509 v3 certificates field as follows:

Certificate:
Data:
Version: 3 (0x2)
Serial Number: 7d:7e:6d:8e:8c:07:97:f5:f9:58:d0:46:54:c2:ff:94
Signature Algorithm: sha1WithRSAEncryption
Issuer: C=ZA, O=Thawte Consulting (Pty) Ltd.,
CN=Thawte Personal Freemail Issuing CA
Validity

Not Before: Dec 8 07:52:47 2007 GMT
Not After : Dec 7 07:52:47 2008 GMT

Subject: CN=Thawte Freemail Member/emailAddress=slgarfin@nps.edu
X509v3 extensions:

X509v3 Subject Alternative Name: email:slgarfin@nps.edu
X509v3 Basic Constraints: critical
CA:FALSE

 26

But the Department of Defense will only put email

addresses in the RFC 822 Name field (Subject Alternative

Name) as follows:

Figure 2. DoD CAC Certificate

Figure 3. DOD Email Certificate (RFC 822 Name)

 27

This difference will produce the following results in

Apple Mail:

Figure 4. Apple Mail Digital Signature Error

Because the DoD does not put the sender’s email address

in the certificate “Common Name” field, and Apple Mail

didn’t check for an email address in the “RFC 822 Name”

field, the MUA alerted the email recipient that the

signature cannot be verified.

The Apple Mail MUA was verifying S/MIME signatures

differently than Microsoft products. A bug report was

submitted to Apple. Apple appears to have fixed this bug in

OS X 10.5.6 as a result of our bug report. It was an

important security concern for the DoD since valid

 28

signatures will be flagged in Apple Mail, undermining the

purpose of the digital authentication.

This example is an illustration of how different

vendors implement S/MIME. Were S/MIME in wide use today,

these problems would have been long ago identified and

corrected. It also shows the Department of Defense can work

with vendors to have such problems resolved.

Inconsistencies with S/MIME implementation, especially

within the Department of Defense, can cause a verification

failure. Because all DoD certificates fail to verify in

Apple Mail, users of this MUA may begin to ignore all the

warnings associated with digital authentication, diminishing

the benefits that S/MIME can offer.

 29

IV. NPS EMAIL ARCHITECTURE

The Naval Postgraduate School provides robust email

capability to all NPS students, faculty, and associates

(contractors, etc.). The system utilizes Barracuda SPAM

filters, and Microsoft Exchange 2003 email servers. This

chapter evaluates the NPS email system as a case study for

how an organization could deploy digital signatures for

automatically generated bulk email.

Automated mail at NPS gets generated in a number of

ways. One way is from Bulkmail@nps.edu. This mail is

created by an authorized user and sent from a program

running on an internal server. Other automated mail is

generated by SQL@nps.edu, the role-based user for the NPS

academic management system. This system regularly sends out

reminders to instructors about required actions within the

course management system, and can send email to students

based on the classes for which they are registered. Mail

that is generated internally is sent directly to the

exchange cluster, without being processed by the barracuda

filters.

NPS hosts email for students, faculty, and associates.

DoD regulations prohibit forwarding email outside of NPS.

A. SIGNING OPTIONS

There are several places where NPS could sign

automatically generated messages:

a. Message generation

b. After generation

c. Upon receipt

 30

1. Message Generation

The first solution, implement digital authentication at

message generation, is the most straightforward solution,

but requires modifying legacy code. Also, our target

automated systems also are two separate entities, so

different scripts have to be modified to accomplish the same

task.

This is the most sensible way to sign official bulk

email. The required certificates would be located at the

message generation servers, matching the security of the

scripts to that of the certificates. It is also the most

secure way, since the messages are sent from the server

already signed and do not require a proxy server to apply

any further processing. Signing official bulk email at

message generation is the proposed method for NPS.

2. After Generation

The second alternative, implementing a proxy server

after message generation, seems to be the easiest logically,

but is far less secure than signing at message generation.

This approach allows the emails to be generated at different

systems, and signed at a single point. Applying a digital

signature to a completed message is a relatively simple

task, as long as the signer possesses valid certificates and

corresponding private keys for the specific senders

(BulkMail@nps.edu and SQLMgr@nps.edu). Each automated email

generator we are targeting could be set to send unsigned

messages to the signer; the signer would then forward it to

the mail delivery agent. Essentially we would have a

signing proxy server here that would effectively intercept

 31

all mail from these two sources, apply a digital signature,

and then send it to the users.

As previously stated, this ease of this method comes

with serious vulnerabilities. The use of a proxy server

adds another vector of attack for adversaries, and increases

the complexity of both the system and the necessary

security. To avoid this, the proxy must be configured to

accept email only from the designated sources. The sole

advantage of this append is that it does not affect

production scripts other than changing the mail relay.

We created such a proxy server proof-of-concept in this

fashion. It is not the most secure way to accomplish the

goal of authenticated official bulk email, and should only

be considered if signing at message generation is

impossible.

3. Upon Receipt

The final alternative of signing mail when received is

highly illogical as it describes a process of getting the

message first then applying an authentication signature.

This defeats the purpose since the user has already received

the message!

 32

THIS PAGE INTENTIONALLY LEFT BLANK

 33

V. SIGNING MESSAGES WITH S/MIME

There are three standards-based approaches for signing

mail today: S/MIME, PGP, and DomainKeys/DKIM. This chapter

reviews S/MIME and discusses our results in signing S/MIME

messages.

A. S/MIME

Multipurpose Internet Mail Extensions (MIME) is a

communications standard that provides a common protocol for

all email messages. This allows different operating systems

with different mail programs to interpret email correctly.

Secure MIME (S/MIME) is an extension to MIME that allows for

digital signing and encryption.

S/MIME works through asymmetrical key algorithms (like

RSA). A user must first obtain a certificate with a

public/private key pair. It should also be signed from a

trusted certificate authority, though users may create

personal certificates and sign them with self-generated

keys. S/MIME therefore authenticates the individual who

signs the message, given trust in the individual or

authority that signed the individual’s certificate.

To create a digital signature in S/MIME, the user’s

email message is first encoded in MIME format. A digital

hash is then created from the email. This hash is then

encrypted with the sender’s private key. Next, the mail

program creates a new multipart MIME message, with the old

message as the first part and the S/MIME signature

consisting of the signed hash and the sender’s certificate

as the second part. This is the message that gets sent

 34

across the Internet. On the recipient’s side, the public

key is extracted from the sender’s certificate and used to

decrypt the signature. The recipient then hashes the

original message, and compares the result to the decrypted

hash. If the two match, the receiver is assured that the

message was not modified in transit and that the owner of

the certificate sent it.

There are two usability problems with S/MIME. First,

since S/MIME expands the original message by including the

digital signature and attaching the sender’s certificate, it

requires a MUA with S/MIME support to verify the message

correctly. Programs that do not implement S/MIME typically

show the original message with an attachment; this file with

.p7s attachment may confuse users who do not understand what

it is. Second, many S/MIME agents will warn the user if a

signature does not match, cannot be verified, or any other

number of errors possibly associated with S/MIME.

One of the largest advantages to S/MIME is its industry

acceptance. Most of the mainstream MUA’a implement the

S/MIME standard, and can process these signed or encrypted

messages.

B. IMPLEMENTING S/MIME

For this thesis, we decided to use a proxy SMTP server

that would receive automatically generated emails from two

different sources, apply a digital signature based on the

source, then forward that message to a production server for

delivery. We looked at three solutions for this proxy

server: a product meant for extremely large enterprises, one

that was designed for smaller institutions, and finally a

 35

proxy server written in the Python language using a

well-known library called Twisted.

1. ColdSpark Solutions

We reviewed the ColdSpark mail processing system. This

company typically caters to Fortune 500 businesses, which

need the ability to process millions of emails at one time;

solutions start at $250,000.

2. PGP Universal

We tested the PGP Universal Server by OpenPGP. This

product was more in line with the requirements and budget of

our organization. We obtained from PGP an evaluation

license for the PGP Universal server. PGP Universal Gateway

Email Server is a product that performs a lot of functions,

it acts as a router, is a stand-alone email server (complete

with functionality and administrative rules regarding user

mailboxes), and has a wide variety of options to implement

rules based on different aspects of received or generated

email. This product has a list price of $3,120. We

configured the server running on a laptop with its own

static IP and DNS entry on the NPS network, behind the

firewall. We were able, with some difficulty, to import

test certificates for both “BulkMail@nps.edu” and

“SQLMgr@nps.edu.” These were both self-generated and signed

certificates.

 36

3. Python Scripted Server

Our third way of implementing a signing-proxy was to

develop our own. We used a well-used set of libraries

written in Python called Twisted to flesh out our SMTP

server. Using the programming language Python allows us a

very lightweight and easy to program application that is

operating system independent. The Twisted framework is a

networking engine, supporting numerous protocols, including

SMTP [26]. The sample python script appears in Appendix A.

4. Obtaining Test Certificates

We obtained test certificates by going through a

process instituted by the Defense Information Systems Agency

(DISA). This process mimicked the actual process of

obtaining email certificates within the Department of

Defense, but all information we entered was fake test data

(by instruction). The test certificates enabled us to

digitally sign test messages through the use of OpenSSL via

a python script.

Once the SMTP proxy server was running, it awaits an

incoming message. When it receives an email, it will copy

the headers so it can forward the signed message to the

appropriate production SMTP server. The signing proxy then

calls a function to sign the message. This function uses

the OpenSSL command to create the signature. The OpenSSL

command then returns the message + signature to the signing

proxy. From there, the proxy forwards the signed message to

a production SMTP server.

 37

This proof of concept was a fairly trivial example, but

it has serious security flaws that must be addressed before

it is considered as a viable solution. A first

vulnerability is the connection between the generating

script and the proxy server. We created the test message

via command line, but in a production system, we would use

existing scripts and automation. The message is unsigned

from this source to the proxy server, allowing an attacker

the exact same attack vector that we are trying to solve.

The adversary can spoof the bulk email “From” address, and

send whatever phishing message to the proxy server. Without

any verification, the server will sign the fraudulent email

and forward it to the intended recipients. The recipients

will see a valid digital signature and fall victim to the

attack.

Another vulnerability of the proxy server is the

storage of the certificates. The server needs to use the

private keys for each address it is authorized to sign.

Therefore the security of these keys is the same level as

the security of the server itself. An adversary could

compromise the server, obtain the certificates, and then

apply a digital signature to any fraudulent email he/she

wishes, undermining the value of digital authentication.

A third vulnerability with our test proxy is the

openness that we allowed. The test proxy will accept any

message with any From and To address. If this were to go

into production, then an adversary has no roadblocks to

spoofing any message they want. Clearly, additional access

controls are required before this system is deployed.

 38

THIS PAGE INTENTIONALLY LEFT BLANK

 39

VI. MAIL USER AGENTS AND S/MIME

This chapter consists of screenshots of different Mail

User Agents (MUA) and what they show when there is a valid

digital signature present in a message. There will be

screenshots that show S/MIME and DomainKey/DKIM signatures.

A. S/MIME SIGNED BY COMMON ACCESS CARD VS THAWTE FREE
EMAIL

This section shows what some different MUAs display

when they look at a message digitally signed with S/MIME.

It highlights a difference in how the DoD uses the fields

within the personal certificate compared to an online

signing authority (Thawte), and how this becomes an issue.

1. Microsoft Outlook

Figure 5. Microsoft Outlook Preview Screen

Figure 6. Microsoft Outlook Digital Signature Indicator

 40

Microsoft Outlook contains an icon for a signed message

from the preview screen, and a similar icon when the actual

message is viewed. These indicate a valid signature, as

shown in Figures 5 and 6.

Figure 7. Microsoft Outlook Digital Signature Details

By clicking on the icon, it will bring up a more

detailed window, indicating that the signature is both valid

and trusted.

Figure 8. Microsoft Outlook S/MIME Details

 41

Outlook can display more details about the signature,

including who the signer is, and the identity of the

certificate authority.

If we replace the DoD certificate with one that hasn’t

been checked against a revocation list, we highlight some

security concerns within Outlook:

Figure 9. Microsoft Outlook Certificate Warning

 42

Figure 10. Microsoft Outlook Warning Properties

Figure 11. Microsoft Outlook Warning Details

Using a certificate from a free Internet certificate

authority, such as Thawte, Microsoft Outlook accepts the

 43

signature, and indicates that it is valid and trusted. Yet

when details are shown, there is a yellow warning sign

because Outlook cannot check the Certificate Revocation List

for this certificate. Exploring the warning brings further

details, but they are obfuscated within a poor layout of the

window (Figure 11).

2. Apple Mail

This section will show what an accepted signature looks

like in Apple Mail. In this case, I have manually accepted

the certificate to show a valid signature. Without the

trusting the DoD-issued certificate, Apple Mail will raise a

flag, which is shown later in the chapter.

Figure 12. Apple Mail Signed Mail Preview

Figure 13. Apple Mail Signed Mail Indicator

 44

Apple Mail is the MUA included with OS X. It does not

show any indication of a signed message in the email preview

list (Figure 12), but does show a security line within the

actual message (Figure 13).

3. Microsoft Outlook Web Access

Microsoft Outlook Web Access is an HTTP based mail

client. It shows a signature icon for mail that contains a

digital signature. Inside the message though, it

notifiesthe user that the message signature is not valid

(Figure 15). Also, it doesn’t show an attachment icon, but

you can see the “<<smime.p7s>>” signature attachment below

the message.

Figure 14. Microsoft Outlook Web Access Preview Screen

Figure 15. Microsoft Outlook Web Access Signature
Warning

 45

4. Entourage

Entourage is the mail transfer agent for Mac OS X

included in the Microsoft Office suite. Here, it clearly

shows an icon indicating a signed message in both the email

list and preview panel. (Note that Entourage uses the wrong

icon for a digital signature).

Figure 16. Microsoft Entourage Preview Panel

Figure 17. Microsoft Entourage Digital Signature
Verification

 46

By clicking on “view details,” Entourage shows a list

of assurances from the digital signature. It is interesting

that is has a green check next to the line that states that

“Revocation information for this certificate has not been

determined” (Figure 18).

Figure 18. Microsoft Entourage Security Details

5. Thunderbird

Thunderbird is Mozilla’s open source Mail User Agent.

It does not inherently trust the DoD certificate authority,

so we can see the difference between a trusted and untrusted

signature.

 47

Figure 19. Mozilla Thunderbird Trusted Signature

Figure 20. Mozilla Thunderbird Signature Details

A valid signature will show an icon in the message

itself (Figure 19). Clicking on the icon will bring up a

summary of the signature (Figure 20).

Figure 21. Thunderbird Unverified Signature

An invalid signature (or one that Thunderbird hasn’t

validated) is shown with a broken symbol (Figure 21).

Clicking on the details shows a window that identifies the

problem (Figure 22).

 48

Figure 22. Thunderbird Unverified Signature Details

6. Google Mail (Gmail)

Most web-based browsers do not support S/MIME.

Google’s Gmail is no exception. Here we can see the signed

message, but it has no icon or any indication that the

message has a valid signature. It does (as all MUA’s that

do not support S/MIME) show the .p7s attachment.

Figure 23. Google Mail Preview

Figure 24. Google Mail Signed Message

 49

The Firefox browser (by Mozilla) does have an available

“S/MIME” plug-in for Gmail, but it only allows a user to

decrypt, encrypt, or sign a message; not verify a signature

(Figure 25).

Figure 25. Firefox Plugin S/MIME Verification Error

7. Yahoo! Mail

Yahoo! Mail is another web-based mail user agent. It

also does not support S/MIME, and shows the signature as an

attachment. There is no S/MIME plug-in for Yahoo! Mail.

Figure 26. Yahoo! Mail Preview

Figure 27. Yahoo! Mail Signed Message View

 50

B. DOMAINKEY AND DKIM

Google’s Gmail signs each of its messages with a DKIM

signature to ensure that the message did indeed come from an

“@gmail.com” address. Interestingly, Gmail also places a

DomainKey signature in the header as well. Since both of

these methods only affect optional header fields, MUA’s that

do not support DKIM or DomainKey simply ignore the

signature, and treat the message as unsigned.

This is the full header that Google applies to the

messages from Gmail. It includes both a DKIM and DomainKey

signature.

From Andrew Slack Thu Jan 15 09:30:16 2009
Return-Path: <andrewslack02@gmail.com>
Authentication-Results: mta190.mail.re2.yahoo.com from=gmail.com; domainkeys=pass (ok)
Received: from 209.85.218.20 (EHLO mail-bw0-f20.google.com) (209.85.218.20)
 by mta190.mail.re2.yahoo.com with SMTP; Thu, 15 Jan 2009 09:30:20 -0800
Received: by bwz13 with SMTP id 13so3348904bwz.17
 for <andrewslack02@yahoo.com>; Thu, 15 Jan 2009 09:30:16 -0800 (PST)
DKIM-Signature: v=1; a=rsa-sha256; c=relaxed/relaxed;
 d=gmail.com; s=gamma;
 h=domainkey-signature:received:received:message-id:date:from:to
 :subject:mime-version:content-type;
 bh=2qAR7pOiOFip6KP3V4yvG/6L2fL8KfsYRJYcq6lyHzw=;
 b=BUZ7kYDoYkBTDg/ttADhjHa+ZghljieU/OFz43rlaJY21kUHJyL0oPdQ4kELe9rrDb
 NFlGm/o0iAJsOPoLwU2jyZSkT4yjadKhzhDo+h+YmdPMH0Za9AJIEeAXR5uOctZY52R4
 yfHYbxnhOwBygd1KNu7LsKRqbRQE7+ahcK0hg=
DomainKey-Signature: a=rsa-sha1; c=nofws;
 d=gmail.com; s=gamma;
 h=message-id:date:from:to:subject:mime-version:content-type;
 b=aN85NCqaLZ/6DO7oDzSpNyZjP4GVnatNPdmHss27uD7rcENDE5TN/nkRQALw89vEUp
 FmQDBEvPCUavGoNS4psZyn/bFd5zuWGYMryw59Rzkq/cDtigWqdK+78qRxI2YNNynyF0
 EfuRZQCQ0I4iKssoe5KiFmByioDNH2ZGsrd+A=
Received: by 10.223.114.68 with SMTP id d4mr1911859faq.86.1232040616283;
 Thu, 15 Jan 2009 09:30:16 -0800 (PST)
Received: by 10.223.110.202 with HTTP; Thu, 15 Jan 2009 09:30:16 -0800 (PST)
Message-ID: <3ad02d360901150930s3d5f3982ie6e79ed90b436fef@mail.gmail.com>
Date: Thu, 15 Jan 2009 09:30:16 -0800
From: "Andrew Slack" <andrewslack02@gmail.com>
To: "Andrew (LT) Slack" <aaslack@nps.edu>,
 "Andrew Slack" <andrewslack02@yahoo.com>,
 "Andrew Slack" <andrewslack02@gmail.com>
Subject: This is a DKIM (Gmail) signed email
MIME-Version: 1.0
Content-Type: multipart/alternative;
 boundary="----=_Part_15066_23093755.1232040616277"
Content-Length: 531

1. Gmail

Gmail does not show that a message contains a DKIM or

Domainkey signature, but if you expand the header, you can

see the “signed-by” field.

 51

Figure 28. Google Mail DKIM/DomainKey Signature

Figure 29. Google Mail DomainKey Signature

2. Yahoo!

Yahoo! will show an icon within the message, indicating

that it contains a DomainKey signature.

Figure 30. Yahoo! Mail DomainKey Signed Icon

Yahoo! ignores the DKIM signature, but verifies the

DomainKey one.

 52

3. Outlook, Thunderbird, Apple Mail, Entourage,
Webmail

These MUA’s do not support DomainKeys or DKIM at this

time. Even though the header of the message contains the

DKIM or DomainKey signature, the MUA’s treat the message as

if there is no signature present. This is one of the

advantages of incrementally deploying DKIM and similar

domain-level authentication technologies: Mail services that

do not have the DKIM software installed will not display an

error, or an unknown attachment; it will just treat the

message as unsigned.

 53

VII. CONCLUSION

Phishing, and more importantly Spear Phishing, attacks

against DoD institutions will continue to grow in magnitude

and sophistication as adversaries increase their

understanding of both the intended target and the potential

advantages of compromised information. These attacks are

intended to defeat normal spam firewalls, masquerade as

legitimate email within an organization, and target the

human as a weak point in network security.

Official bulk email has the inherent attributes of

authenticity and integrity, without the presence of a

digital signature. The combination of spear phishing

attacks with official bulk email creates an extremely

dangerous vector of attack into Department of Defense

networks. Attackers, who have already defeated the

automated network defenses, now have added trust to their

fraudulent email stolen from the spoofed automated bulk

email address.

Digital signatures will help mitigate this

vulnerability, and will assist in training individuals to

recognize fraudulent emails despite the sophistication of

the attack. We have shown that it is relatively simple to

employ an S/MIME proxy server, with test certificates, into

an operational enclave email system to apply a digital

signature to auto generated email. This digital

authentication solution will only be possible if

organizations can move past the administrative roadblocks

such as legacy email architecture, the fear of altering a

 54

working system, and obtaining role-based certificates

despite enabling policy already in place.

Department of Defense policy states the requirement for

digital signatures on any email that meets certain criteria;

criteria that is almost always contained in official bulk

email. By not implementing a digital signature solution to

automated official bulk email (whether it is an automated

proxy server, or manual application), DoD enclaves are

violating official policy.

The need for digital authentication on official bulk

email is clear, the requirement for digital authentication

on official bulk email is mandatory, and the automated

solution is present.

 55

LIST OF REFERENCES

[1] E. Allman, “E-mail authentication: what, why, how?”
ACM Queue. Vol. 4, No. 9 (November 2006), pp. 30-34,
DOI= http://doi.acm.org/10.1145/1180176.1180191, last
accessed March 2009.

[2] P. Hallam-Baker, dotCrime Manifesto: How to Stop
Internet Crime. Pearson Education, Inc. 2008.

[3] Department of Defense Instruction 8520.2, “Public Key
Infrastructure (PKI) And Public Key (PK) Enabling.”

[4] Privacy Rights Clearinghouse Phishing Alert
http://www.privacyrights.org/ar/phishing.htm, last
accessed March 2009.

[5] J. W. Ragucci, S. A. Robila, "Societal Aspects of
Phishing," Technology and Society, 2006. ISTAS 2006,
IEEE International Symposium on, pp. 1-5, 8-10 June
2006, URL:
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=43
75893&isnumber=4375875, last accessed March 2009

[6] J. Kirk, “PayPal asks ISPs to block unsigned email,”
IDG News Service, 27 March 2007.

[7] S. A. Robila and J. W. Ragucci, “Don't be a phish:
steps in user education,” in Proceedings of the 11th
Annual SIGCSE Conference on innovation and Technology
in Computer Science Education (Bologna, Italy, June 26
- 28, 2006), ITICSE '06. ACM, New York, NY, pp.237-
241. DOI= http://doi.acm.org/10.1145/1140124.1140187,
last accessed March 2009.

[8] A.J. Ferguson, “Fostering E-mail Security Awareness:
The West Point Carronade,” Educause Quarterly. Vol.
28, No. 1. 2005, pp. 54-57.

[9] Anti-Phishing Working Group, “Phishing Activities
Trends Report Q1/2008,“
http://www.antiphishing.org/reports/apwg_report_Q1_200
8.pdf, last accessed March 2009.

[10] B. Brewin, “DoD Battles Spear Phishing,” Federal
Computer Weekly, http://archive.cert.uni-
stuttgart.de/isn/2006/12/msg00114.html, last accessed
March 2009.

 56

[11] J. B. Postel, “RFC 821: Simple Mail Transfer
Protocol,” Information Sciences Institute, University
of Southern California. August 1982,
http://www.ietf.org/rfc/rfc0821.txt, last accessed
March 2009.

[12] J. Klensin, “RFC 2821: Simple Mail Transfer Protocol,”
The Internet Society, 2001.
http://www.ietf.org/rfc/rfc2821.txt, last accessed
March 2009.

[13] J. Klensin, “RFC 5321: Simple Mail Transfer Protocol.”
Network Working Group. October 2008, http://www.rfc-
editor.org/rfc/rfc5321.txt, last accessed March 2009.

[14] Alma Whitten and J. D. Tygar, "Why Johnny Can't
Encrypt: A Usability Evaluation of PGP 5.0," in
Proceedings of the 8th USENIX Security Symposium,
August 1999.
http://portal.acm.org/citation.cfm?id=1251435, last
accessed March 2009.

[15] L. F. Cranor and S. L. Garfinkel, Security and
Usability: Designing Secure Systems That People Can
Use. O’Reilly Media Inc. 2005. p. 247.

[16] S. L. Garfinkel, D. Margrave, J. I. Schiller, E.
Nordlander, and R. C. Miller, “How to make secure
email easier to use” in Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems
(Portland, Oregon, USA, April 02 - 07, 2005). CHI '05.
ACM, New York, NY, pp. 701-710.

[17] S. L. Garfinkel and R. C. Miller, “Johnny 2: a user
test of key continuity management with S/MIME and
Outlook Express,” in Proceedings of the 2005 Symposium
on Usable Privacy and Security (Pittsburgh,
Pennsylvania, July 06 - 08, 2005). SOUPS '05, vol. 93.
ACM, New York, NY, pp. 13-24, DOI=
http://doi.acm.org/10.1145/1073001.1073003, last
accessed March 2009.

[18] S. Gaw, E.W. Felten, and P. Fernandez-Kelly, “Secrecy,
flagging, and paranoia: adoption criteria in encrypted
email,” in Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems (Montréal, Québec,
Canada, April 22 - 27, 2006).

 57

[19] G. D. Fritsche and S. K. Rodgers, “Encryption
technologies: testing and identifying campus needs,”
in Proceedings of the 35th Annual ACM SIGUCCS
Conference on User Services (Orlando, Florida, USA,
October 07 - 10, 2007). SIGUCCS '07. ACM, New York,
NY, pp.109-112. DOI=
http://doi.acm.org/10.1145/1294046.1294071, last
accessed March 2009.

[20] J. Linn, “RFC 1421: Privacy Enhancement for Internet
Electronic Mail: Part I: Message Encryption and
Authentication Procedures,” Network Working Group,
February 1993, http://tools.ietf.org/rfc/rfc1421.txt,
last accessed March 2009.

[21] Philip R. Zimmermann, “Why I Wrote PGP”. Part of the
Original 1991 PGP User's Guide (updated in 1999),
http://www.philzimmermann.com/EN/essays/WhyIWrotePGP.h
tml, last accessed March 2009.

[22] J. Goodman, G. V. Cormack, and D. Heckerman, “Spam and
the ongoing battle for the inbox,” Commun. ACM. Vol.
50, No. 2 (February. 2007), pp. 24-33, DOI=
http://doi.acm.org/10.1145/1216016.1216017, last
accessed March 2009.

[23] JTF-GNO Fact Sheet,
http://www.stratcom.mil/factsheets/gno/, last accessed
March 2009.

[24] Department of Defense NAVADMIN 248/08 “Implementation
of Navy Electronic Mail (Email) Digital Signature
Policy.”

[25] Department of the Navy CIO Message DTG 202041Z AUG 07,
“Department of the Navy Security Guidance For Personal
Electronic Devices (PED).”

[26] Twisted Matrix Labs,
http://twistedmatrix.com/trac/wiki/TwistedProject,
last accessed March 2009.

 58

THIS PAGE INTENTIONALLY LEFT BLANK

 59

APPENDIX

A. PYTHON CODE - SIGNING PROXY SERVER

Original Copyright (c) 2001-2004 Twisted Matrix Laboratories.
http://twistedmatrix.com/projects/mail/documentation/examples/
See LICENSE for details.

You can run this module directly with:
twistd -ny emailserver.tac

"""
A signing email proxy.
"""

myname = "Signing Mail Proxy v0.0.1"
myproxy = "virginia.nps.edu"
pemfile = "BulkMail.pem"

from zope.interface import implements
from twisted.internet import defer
from twisted.mail import smtp
import smime

http://python.net/crew/mwh/apidocs/twisted.mail.smtp.IMessageDelivery.html
class ConsoleMessageDelivery:
 implements(smtp.IMessageDelivery)

 def __init__(self):
 self.toaddrs = []

 def receivedHeader(self, helo, origin, recipients):
 self.helo = helo
 return "Received: "+myname

 def validateTo(self, user):
 # Right now, accept all messages. Eventually we want to only accept To addresses
 # that the destination will accept.
 self.toaddrs.append(user) # make a copy
 return lambda: ConsoleMessage(self)

 def validateFrom(self, helo, origin):
 # All addresses are accepted
 self.fromaddr = origin
 return origin

class ConsoleMessage:
 implements(smtp.IMessage)

 def __init__(self,delivery):
 self.lines = []
 self.delivery = delivery

 def lineReceived(self, line):
 self.lines.append(line)

 def connectionLost(self):
 # There was an error, throw away the stored lines
 self.lines = None

 def eomReceived(self):

 60

 import email
 msg = "\r\n".join(self.lines))
 msg = smime.sign(msg,pemfile)

 # Send out the message using smtplib
 import smtplib
 server = smtplib.SMTP(myproxy)
 server.sendmail(self.delivery.fromaddr,self.delivery.toaddrs,msg)
 server.quit()
 return defer.succeed(None)

class ConsoleSMTPFactory(smtp.SMTPFactory):
 def __init__(self, *a, **kw):
 smtp.SMTPFactory.__init__(self, *a, **kw)
 self.delivery = ConsoleMessageDelivery()

 def buildProtocol(self, addr):
 p = smtp.SMTPFactory.buildProtocol(self, addr)
 p.delivery = self.delivery
 return p

def main():
 from twisted.application import internet
 from twisted.application import service

 a = service.Application("Console SMTP Server")
 internet.TCPServer(2500, ConsoleSMTPFactory()).setServiceParent(a)

 return a

application = main()

B. PYTHON CODE – OPENSSL

#!/usr/bin/python

sign a mail message using openssl

def sign(msg,keyfile):
 """Sign the RFC822 message using openssl.
 MSG should be a string.
 Returns a string.
 """
 from subprocess import Popen,PIPE

 # Get the specific headers we care about to carry through
 msg822 = email.message_from_string(msg)
 headers = ""
 for field in ['To','From','Subject','Message-Id','x-mailer']:
 val = msg822.get(field)
 if val: headers = headers + field + ": " + val + "\r\n"

 # Sign the message

 proc = Popen(['openssl','smime','-sign','-signer',keyfile,'-inkey',keyfile],
 stdin=PIPE,stdout=PIPE,stderr=PIPE)

 (signed_message,stderr) = proc.communicate(msg)

 # Add back those headers
 signed_message = headers + signed_message

 if stderr:
 raise ValueError,stderr

 61

 if proc.returncode:
 raise ValueError,"OpenSSL returned %d" % proc.returncode
 return signed_message

if __name__=="__main__":
 import sys,email
 msg = sys.stdin.read()
 signed_message = sign(msg,sys.argv[1])
 if len(sys.argv)>1:
 import smtplib
 server = smtplib.SMTP("mx1.balanced.spunky.mail.dreamhost.com",25)
 #server.set_debuglevel(1)
 server.sendmail("BulkMail@nps.edu",["test_recipient@nps.edu"],signed_message)
 server.quit()

 62

THIS PAGE INTENTIONALLY LEFT BLANK

 63

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

