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ABSTRACT

In this paper we construct a relationship between the Allan variance parame-
ters (hp, hy, hg, h_1 and h_p) and a Kalman Fiiter model that would be used to
estimate and predict clock phase, frequency and frequency drift. To start
with we review the meaning of those Allan Variance parameters and how they are
arrived at for a given frequency source. Although a subset of these parame-
ters is arrived at by measuring phase as a function of time rather than as a
spectral density, they all represent phase noise spectral density coef-
ficients, though not necessarily that of a rational spectral density.

The phase noise spectral density is then transformed into a time domain
covariance model which can then be used to derive the Kalman Filter model
parameters. Simulation results of that covariance model are presented and
compared to clock uncertainties predicted by Allan variance parameters. A two
state Kalman Filter model is then derived and the significance of each state

is explained.
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INTRODUCTION

The NAVSTAR Global Positioning System (GPS) has brought about a challenge --
the challenge of modeling clocks for estimation processes. The system is very
reliant on clocks, since its navigation accuracy is directly related to clock

performance and the ability to estimate and predict time.

The estimation processes are usually in the form of Kalman Filters, or vari-
ations thereof such as Square Root Information Filters. These filters range
from the large Ephemeris Determination Filter in the Control Segment, to
Navigation Filters in the User Equipment, to Positioning Filters for station-
ary positioning or for merely solving for time and frequency in a Time Trans-
fer system. In all of these applications, clock states and thus clock models
exist. Not all of the models are necessarily proper.

[t is the purpose of this paper to shed some light on how to model clocks for
Kalman Filters. The presentation of clock statistics as Allan Variances has
frustrated systems engineers for some time now because they don't know how to
interpret them or how they can be used to predict system performance. The
probiem is even compounded because flicker noise is not a rational process.

In the past, Dr James Barnes (1,2) and Dave Allan (1) had shed some light on
the clock modeling problem, although some of it was well in the past
(1966)(1). For some young modern day engineers, this work is hidden in old
IEEE proceedings and NBS Technical Notes. Here, we are going to resurrect
some of that work and form it into Kalman Filter models, but not without
problems because of the flicker noise phenomenon,

Review of the Allan Variance Parameters

The Allan Variance parameters of an oscillator or atomic frequency standard
are based on measurements of phase differences between that osciilator or
atomic standard and a reference standard (which may be a low phase noise
crystal oscillator for short term - high frequency measurements). These
measurements dre processed in two ways -- spectral analysis for higher
frequency phase noise and time domain analysis for the relatively low
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frequency variations. The single sided phase noise spectral density is
converted to a single-sided spectral density of fractional frequency

fluctuation of the form (3)

Y 2 .
S,(F) = hpfS 4 hyf + by b /F b o/FS 5y <f <fy 1)

where f1 and f, define the measurement system noise bandwidth, and where the
h, coefficients represent the following processes:

hp - white phase noise

hy - flicker phase noise

hg - white frequency noise

h_1 - flicker frequency noise

h_» - random walk frequency noise

Normally the spectral density of equation 1 is obtained from a combination of
the measured single-sided phase noise spectral density in radians/squared/Hz

by
SAF) = —5 5, (F) 2)

for a nominal frequency fy, and from the square root of the Allan two-sample
variances, oy(r), which are computed as (3)

2 (9k+1 ~ yk)2
0, 2(x) = 3)
M-1
- ST R CREEN 4)
* ZM-1) kel k+1 7 Yk
where < > is the expected value operator and
_ 1 ptk""f ¢’(tk+ ':) - D(tk)
Ve = oo, vt = 3 >)
K 0

where ¢(ty) are the measurements of the phase differences mentioned earlier,
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When plotted, oy(t), as shown in Figure 1, has the form (3)

h
oyz () = —g r_l &)
2,y
o () = (21"2)!1_1 7)
2
oyz(r) = ig%)-‘ h_ ot 8)

for white, flicker and random frequency noises, respectively. In this paper
we will only consider those three processes in the time domain for the Kalman
Filter model. However, the white and flicker phase noises will be considered
later in the model of the Kalman Filter measurement noise.

As can be seen, the h, parameters can be obtained from two sources -- the
single-side band (SSB) phase noise plot of a specification of an oscillator or
frequency standard and its stability specification, which is given in terms of
the Allan two-sample standard deviation. The SSB phase noise spectrum is
usually given in dBc/Hz, or

- 2 3 4
5,(f) = 2010gf | + 10Tog[h, + hy/f + ho/fS + h_/f7 + h ,/f ] 9)

Also of interest 1in later discussions is the spectral density of time
fluctuation x(t) in seconds, where

x(t) = o(t)/2nf 10)
so that
S (F) = ——, S, (f)
(2nf,)" ¢
1 2 3 4
= ZE;;§ [hy + hy/f + ho/f5 + b /F5 b /7] 11)

in seconds squared per Hz.
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Transformation to a Statistical Covariance Mode]l

Here, the work of Barnes and Allan (1) is expanded a bit to develop a co-
variance model that at Teast provides an "uncertainty" model one might use in
a Kalman Filter.* An "uncertainty" model is defined here as one that has the
variance propagation characteristics of a process, although the time auto-
correlation properties may be wanting. This is not unusual in modeling for a
Kalman Filter where Tlarge size state models are not feasible or when the
process is not truly a definable stochastic process. For example, if we were
to model position and velocity of a navigator in 6 states, where any acceler-
ation excursions are considered an uncertainty in the change in position and
velocity, that uncertainty is certainly not a "white noise" process by any

means.

Barnes and Allan only addressed the statistical model of flicker frequency
noise. However, the models for white and random walk frequency noise are
straightforward. Just in brief, they derived a convolution integral that
related the phase fluctuation due to flicker freguency noise to white noise,

where

t
z(t) = [ h{t-u)n(u)du 12)
0
where h(t) is an impulse response of a transfer function and n(t) is a white
noise process. The secret is in the derivation of that impulse response,
which they did for the flicker noise. To provide a more general derivation of
that impulse response, let us back up a bit.

A theoretical definition of a white noise spectral density is a constant, such
as the hg in equation 1. If it is possible, another spectral density can be
related to a white noise spectral density as

*For a tutorial on Kalman Filter Models, refer to Reference 4 by R. G. Brown,
which is the previously presented paper in this meeting.
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. a2
S, () = [H(jw) %S, (w)

13)

i

- N2
[H(Jw) |
where we define the white noise density to be unity. Let us do that for the
hp, h_1 and h_p processes defined in equations 1 and 11, converting first to
fractional frequency squared/radians/second and seconds squared/radians/-

second, and then to a two sided spectral density S‘. Then,
S.y (w) = hO/Z (white frequency noise) 14)
0
SIy (w) = ﬂh_l/w (flicker freguency noise) 15)
-1
2 2 .
S.y (w) = 2n h_5/w (random walk frequency noise) 16)

and correspondingly, and respectively

S, (w) - h0/2m2 17)
0
S, (w) = wh /u 18)
'xwl -1
1,y _ .2 4
S,XMZ (w) = 27 h_z/m 19)

These can all be factored into the Fourier Transform of the impuise response

h(t), where respectively,

Hyo(jw) = /hol2 20)
Hy gjm) = /wh_l//t]:u(.: 21)
H,(3) - foxth o/ 5 22)
Hxéjw) = /ho72/w 23)
A (3u) = fiby 7)Y 24)
He () = 2nth 7 (3w)° 25)
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Converting these to La Place Transforms (s=jw) and using tables from Reference

5, we have the respective impulse responses

hy (t) = /ho/z §(t)
0

h, (t) =/AJt;t>0

Y_l -

h, (t) =« /2h_1(t) ; t >0

Y_Z -

hy (t) = /72 1(t) 5t >0
0

hy (t)=2Mh t;t2>0

X—]. -~

hX (t) = = /2h Zt st >0
-2 -

26)
27)

28)
29)

30)
31)

Where s(t) is the Dirac delta function and 1(t) is the unit response function.

We can now derive the autocorrelation, variance and
functions of these processes from the following:

The autocorrelation function is

t t+r
IO IO h(t-u)h(t+r-v) E[n(u)n(v)]dvdu

t

R(t,t)

t
[ hu)h(u+c)du 53 > 0
0

13

Using the property that
Efn(u)n(v)] = s(u-v)
and that

t+T
{ f(v)s(u-v)dv = f(u)
0
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provided that O<u<t+t, which it is if we restrict t to be greater than zero.

The variance of a process is then

oz(t) = R(t,0)

t ”
= T hé(u)du 36)
0
Similarly, the cross-correlation function between two processes is
t
ny(t,r) = Jo hx(u)hy(u+r)du ;120 37)

provided that they are driven by the same white noise process. (Otherwise

Ryy(t,<) is zero.)

For each process then

h

R (t,r) = m% 5(<)
Yo
38)
R, (t,t) is undefined
Y1
_ 52 ..
Ry_z(t,T) = 2n hwzt y T 0 39)
hO
Rxo(t!"—-) = ""—é t s T _>_ 0 40)
L2 % 2t+7+2 t2+tr .
R, (t,t) = h  {(2t+1) Vttc - 5 In 11 a1)
X1 -1 ? ;
o 52, (1,3 1.2
RX-E(t,T) = 27 h_2(3 o+ 5 to1) 42)

Ry (t,t) does not exist because its impulse response (equation 27) is
inF%nite at t=0. However, if one bounds the flicker noise spectral density to
a frequency region of fy < f < fp, such as suggested in Reference 2, a
stationary process is defined and an autocorrelation function can be defined

a4s the inverse Fourier Transfer of the spectral density as
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AT du

Ry (1) = h—l f "
-1 Znf, 2n 2n
fh L n (anht] *(2HF1T)
=hging+h,y 1 (-1) n(znyT 43)
1 n=1
which is a well defined function of r.
Then, the variances can be derived as
2
o = hnf 44)
Yg 0 hO
f
2 h
g =h ,In — 45)
Y_q -1 F]
2 .2
Oy_g (t) = 2n h—Zt 46)
h
5l (1) =gt 47)
0
B 2
-1
2 _2 2 3
Gx_z (t) - 3 it h_zt 49)

Here, o, ° is defined for a limited bandwidth f_ and o, ° s derived
from eq&%tion 36. Cross correlations between fre&bency aﬁé time of like

processes are then

0 .

nyo(t,r) =5 1= 0 50)
=0; >0
{2
R (t,r) = 2h A%+tr - h  rin[-2ttr ¥ 2ttr) 51)
Xy _q -1 -1 T
_ 2 2. ot .

ny_z(t,r) =7 hdz(t +2t1) 52)

or, for zero correlation time (cross-covariances).




.9
nyo" 2 53)
ny~1 - 2h 4t 54)
2 2
ny_z = mh 5t 55)

Equations 44 through 49 and 53 through 55 could be used to define a covariance
matrix at any time t describing the combined uncertainty in instantaneous time

and fractional frequency. That is

h h .
0 2 22 3 0 2, 2
”§t+2h_lt + §ﬂ h—Zt §+2h_1tth th
Covix(t),y(t)] = 56)
h f
0 2 2 h , 2
—§+2h_1t+ﬂ h-2t hofhgh_l]n?;+2ﬁ h-Zt
o 4

However, discrete Kalman filters do not estimate instantaneous frequency, but
an average fractional frequency over a Kalman filter time interval at. Let

that average fractional freguency be

— t+at) - x(t
y(t) = X +AA% x(t) 57)

Then, using equations 40 through 42 with « = at, but first simplifying
equation 41 to a steady state value (large t/.) of

? .
R, (tyr) = 2h_y(t5+tc) 58)

and equations 47 through 49, a new covariance can be computed, where

"y 2 2 2. .3 2. 2 |
o —t + 2h t7 3 rTh ,t 2h t o+ oTh,t
COVix(t),y(t)] = N " 59)
c e . 0 2 2.
2h_jt + mhot sp " ehot 3 oAt
+ 272 _2t
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all of which is a well-balanced function of t, except the 2,2 term that has
terms as a function of At that basically describe the Allan standard deviation
(within 1n2).

Transformation to a 2-state Kalman Filter Covariance Model

It should be noted that both x and y are nonstationary random processes that
grow with time. If we wish to obtain a measure of this growth over a at
interval, we simply let t = At in equation 59 and obtain

h
0 2.2 2 3 2 2
§—At+2h_1At +§n h_2At 2h_1At+w h_zAt
Cov[x(at), y(at)] = 60)
oh . at+nlh atl "o on 820
S8 R 26t =173 N2
We now propose the following 2-state Kalman filter model. Let the state

variables be defined as

x (i.e., time as before)

b

X1
61)
xp = "Noisy" average frequency

The precise meaning of xp will be made apparent presently. Now, following the
usual notation of Kalman filter theory [4], we let the transition matrix for

a At interval be
1 at
¢ = [o 1 I 62)
and we let the Q matrix be
Q = Covx(at),y(at)] 63)

as given by equation 60.
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We also postulate that we will step the estimate of the state vector and its

error covariance ahead via the usual projection equations.
- A
L (t+at) = oX(t) 64)

P (t+at) ! 65)

it
X
vl
—_
—+
~
£
4+
Pan

We will now have a proper Kalman filter model except for the measurement
equation. This portion of the model depends on the situation at hand, so we
will omit further discussion of this here. (For examplie, the clock model
might be imbedded in a larger state model as in the GPS application [6].)

We now need to explore more carefully the connection petween our postulated
state model and the x and y statistics as dictated by equation 60. First, by
choosing our Q matrix as exactly that of equation 60, we are assured of having
the proper growth of uncertainty in our time and average frequency estimates
in the at interval. This is necessary in order to generate appropriate filter
gains with each step of the estimation process. However, we cannot have xp in
our state model represent true average frequency, dand at the same moment
require the 1,1 term of the Q matrix to be nonzero. This is not compatible
with the defining equation for average frequency. That is, equation 57 states

x(t+at) = x(t)+at-y 66)
Whereas, our state model says
xl(t+at) = xl(t)+At-x(t)+wk 67)

We have defined x; to be x, and thus xp must differ from y by the additive
discrete white noise term wk/At. We are comforted, though, with the fact that
the average xp in the state model is equal to the usual average frequency.

It should be noted that the Kalman fiiter model proposed here is entirely
self-consistent in terms of state-space theory. The transition matrix 1is
legitimate in that 1t reduces to the identity matrix for at=0; and Q is
positive-definite for all at as it must be to be a legitimate covariance
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matrix. The only inconsistency lies in the state model's connection to the
X,y processes are described by equation 59. In view of the remarks about
flicker noise in the companion paper in these Proceedings [4], we should not
expect to be able to make this connection exact. No finite-order state model
will fit flicker noise perfectly! Thus, something has to give. We intention-
ally kept the identity of time exact in our model, i.e., xj=x. We then
circumvented inconsistency in the state model by letting x» be a noisy version
of y. The filter's estimate of xp is still a valid estimate of frequency,

though, because the mean of x, is Y.

An Example

Standard deviation plots of the time state x(t) of typical crystal oscillators
are plotted in Figures 2 and 3, whose Allan variance characteristics are
represented in Fiqure 4. Also shown in Figure 4 are plots of the standard
deviation of time /5IIT?T divided by t for comparison to the two-sample
standard deviation. It has been suggested in the past that a procedure to
estimate the standard deviation of time is to simply multiply the two-sample
standard deviation by the elapsed time. These plots either verify that
estimate or verify the validity of the derivation provided earlier.

Kalman Filter Measurement Noise

Suppose one uses a phase lack Tloop to track the phase difference between an
oscillator and a reference frequency source as shown in Figure 5. The
variance of the tracking error 8¢ 1in radians due to phase noise of the

oscillator is given as

2 - Th 2
I = JO S¢(f) . |1 - HPLL[jan}l df 68)
where
4
. 2 f
Il - H (Jwa)l = — 69)
PLL f4 L f 4

N
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of a phase lock loop with corner frequency fy and damping ratio of /2/2, and
S¢(f) is the phase noise spectral density represented in equation 9. u§¢

represents that part of the measurement error introduced into the Kalman
Filter. It is usually affected mostly by the hp, hy and hg terms of S,(f),

depending upon the loop bandwidth.

In a laboratory environment, the measurement error whose variance is depicted
in equation 69 may be the only measurement error of significance. However, in
such systems as GPS, it is usually dominated by thermal noise and other system

effects.
SUMMARY AND} CONCLUSIONS

Because of flicker noise, good models of clocks for Kalman Filters can be
elusive., In this paper we derived a two state model of clock characteristics
that can be used in a Kalman Filter. [t represents the characteristics of a
clock described in terms of Allan varidance parameters. We believe the models
presented within this paper are a vast improvement over those used in most
applications of the NAVSTAR GPS system, and that they could also be used in
many other applications of time and frequency where real-time estimates and

predictions of time and frequency are required.
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QUESTIONS AND ANSWERS

VICTOR REINHARDT, HUGHES AIRCRAFT CO.: I have a comment on f sub
h and £ sub 1. They are not really arbitrary, but real physical
parameters that have to be set by the experiment. Just as with
the white noise process, you have to set the bandwith before you
can define the amount of noise that's going to enter the system.
The white noise process 1is another process that requires the
definition of the high frequency limit, and flicker noise, a low
frequency limit. I think that's real effect, because the Allan
variance goes to infinity. So, those are real things that you
have to define, they are not arbitrary. I do think that you can
leave those parameters as things to be defined by the person
using the model.

MR. BROWN: There was something that you said that 1 didn't
understand. What is it that goes to infinity? The second
difference 1s stationary, that is the reason that 1t 1s used.

MR. REINHARDT: I am talking about the effect of having a dead
time in the Allan variance, when the dead time between samples
goes to infinity. The variance does go to infinity then. Or, if
you have N samples, the process goes to infinity as log N.

What this means is that there is definitely a low frequency
cut~off parameter which has to be considered in your measurement
process, which may not necessarily be asscclated with tau.

MR. ALLAN: I think that one can make a general statement about
this whole argument. The Kalman filter concept is strongly model
dependent, and no model 1s perfect. The fact that, in the case of
flicker noise, we may need to approximate the state matrix with a
few terms doesn't bother me at all, because the model 1is
approximate anyway.

Whether you are talking about white noise or other noise,
it's approximate at every leg of the trip, and you have to
approxXximate for flicker noise or anything else. You have a finite
measuring system bandwidth in the real wcrld. You have low
frequency and a high frequency cut-off, so these are only
approximations to the ideal. I think that everything fits
together rather well.

MR. BROWN: I certainly agree with that. In this particular model
that Al and I have come up with, we were working especially hard
to come up with a two state model, and there have to be serious
approximations in that.

I do plan to have a student working on this through the
winter doing some simulations to see which of the two state
models, or which of these options will work out to be the best.
Of course, we are not absolutely limited to a two state model. We
thought that it would be nice, with all the other approximations
that go into the thing, to just keep it a two state model.
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