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Abstract 

Optical devices interrogated with a laser in the appropriate band can exhibit strong, 

deterministic reflections of the incident beam.  This characteristic could be exploited for 

optical target detection and identification.  The distribution of reflected power is strongly 

dependent on the geometry of the interrogation scenario, atmospheric conditions, and the 

cross section of the target optical device.  Previous work on laser interrogation systems in 

this area has focused on analytic models or testing.  To the best of my knowledge, I am 

presenting for the first time an approach to predict reflected power for a variety of 

interrogation configurations, targets, and propagation conditions using numeric 

simulation based on wave optics.  Numeric simulation has a cost advantage over 

laboratory and field experiments and avoids the limiting complexity of analytic models.  

Moreover, results demonstrate that reflected power can be predicted within error with an 

appropriately characterized.  Simulations were prepared in MATLAB and run for 

interrogation scenarios using a simple retro-reflector (corner cube) and a surrogate 

complex optical system (lens-mirror) target.  Laboratory and field experiments were 

conducted for simulation validation in the absence and presence of atmospheric 

turbulence with a focus on bistatic receiver configurations.  Two interrogation 

wavelengths, 1064nm and 4636nm, were used.  Targets used in this experiment were 

modeled in simulation by measuring or estimating their deviation from a perfectly flat 

reflector and applying the corresponding Zernike mode phase aberrations to the simulated 

pupil.  Strengths and limitations of the simulation environment are addressed.   
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WAVE OPTICS SIMULATION OF OPTICALLY AUGMENTED 

RETROREFLECTIONS FOR MONONSTATIC/BISTATIC DETECTION 
 

I.  Introduction 

A. Background 

Electro optical (EO) devices have become pervasive on today’s battlefield.  

Presence of an optical device typically means observation by friend or foe.  It is therefore 

of great tactical interest to be able to detect, identify, and defeat if necessary, optical 

devices present on the battlefield.  The common approach to this problem is to use lasers 

in the passband of the optical device of interest and measure the reflection with photonic 

detectors.  The nomenclature for such a system would be a laser interrogation system.  

When optical devices are interrogated with a laser in the appropriate band, they can 

exhibit strong, deterministic reflections of the incident beam; a phenomenon known as 

optically augmented (OA) reflection.  OA reflections tend to be retroreflections in that 

they return to the receiver on the same path as the source.  The factor that describes how 

well an optical device exhibits OA is the optical cross section (OCS).  Substantial 

challenges exist in developing a laser interrogation system which returns enough data to 

provide detection and identification of optical systems.  The optical devices a laser 

interrogation system is interested in detecting are being operated at ranges from 500m to 

3km, and the extent of the optics is small in relation to that distance, thereby limiting the 

incident flux that can be practically applied.  In addition, because the laser interrogation 

system would need to be used in a tactical environment, atmospheric turbulence will be 

present to degrade the observable reflection from its diffraction limited form.  Lastly, it is 
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unknown if substantial information exists from the reflection to determine target type.  It 

is because of these challenges that research in this area is of importance to the design and 

implementation of an optical laser interrogation system.  Previous research in evaluating 

optical devices through laser interrogation has focused on laboratory and field 

experimentation, as well as prediction using analytic predictive models with a heavy 

emphasis on monostatic or on-axis returns.  There is a desire to find an approach to 

predictive modeling that accounts for characteristics of complex targets and effects of 

atmospheric conditions, as well as information about the entire reflected power 

distribution in the receiver plane.   ` 

B. Problem Statement 

The intent of this research is to show that numeric wave optics can be used to 

develop a simulation which provides reflected power distributions from retroreflecting 

targets in the presence of atmospheric turbulence.  The focus will be on characterizing the 

bistatic or off-axis distribution since on-axis results are well known and can be predicted 

analytically.  The impact of bistatic measurements as well as atmospheric turbulence on 

the OCS of a target will be discussed.      

C. Methodology 

This research will use a two-tiered approach to address the problem as stated 

above.  The first tier will be writing a simulation and conducting experiments for two 

target types and two interrogation wavelengths.  The second tier will be a comparison of 

simulation results with both laboratory and field experiments.  The comparison will 

assess the ability of the simulation to predict the results of a laser interrogation scenario 
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under experimental conditions.  The targets used will be simple retroreflecting targets: a 

corner cube with a one-inch circular aperture and a one-inch circular lens focused to a 

one inch mirror.  The lens-reflector target will serve to model an OA target akin to a more 

complex EO system.  Two interrogation wavelengths will be used, one in the near 

infrared (NIR) at 1064nm and one in the mid-wave infrared (MWIR) at 4636nm.  It will 

be shown that the NIR is more susceptible to atmospheric turbulence while the MWIR is 

less affected and provides for a good comparison in field measurements.            

D. Preview 

Chapter 2 of this thesis provides a look at previous research in the area of OA and 

related fields, and discusses how the research of this thesis contributes to that limited 

body of research.   

Chapter 3 presents the technical background necessary for the execution and 

understanding of this research.  It includes the approach taken in writing the simulation 

and the setup of both laboratory and field experiments. 

Chapter 4 reports and discusses the results from experiments and demonstrates 

how well the simulation is able to predict those results.  It also provides information 

specific to implementation and execution of the simulation and experiments.   

Chapter 5 offers the conclusions drawn from this research and includes a 

discussion of future work which could contribute to or improve upon the research 

presented. 
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II. Literature Review 

A. Chapter Overview 

The purpose of this chapter is to present previous research and analysis of 

theoretic, simulated, and measured properties of optical retroreflection.  It should be 

noted that the laser interrogation system for OA reflections described here is a special 

case of laser radar, which is widely studied.  Specifically, there is not a large quantity of 

research published which is directly related to OA reflections.  There is a series of three 

works by Abel, Lemery, and Cole from AFIT directly related to OA reflection and laser 

interrogation which used much of the same equipment and techniques that are used in this 

research [1,2,3].  There are reports at various classification levels measuring OCS and 

returned power from optical devices, but they are rooted in analytic models or 

experiment.  There is one OA reflection work which demonstrates how bistatic 

measurements are an important consideration when interrogating an optical device.  It is 

common to use numeric electromagnetic propagations through turbulence to address a 

variety of problems in laser radar, medicine, optical communication, astronomy, and 

other image based sciences.  There was no research found in open literature in which the 

modeling techniques used in this research have ever been applied to the problem 

presented here.  Cole conducted a broad and deep look into the use of the laser range 

equation in literature for prediction of returned power in turbulence.  Cole’s dissertation 

contains excellent references beyond the scope of this work [3].      
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B. Relevant Research 

The approach to the problem presented in this research utilizes electromagnetic 

wave propagation theory, optical turbulence theory, and tools that are widely used in the 

fields of astronomy, directed energy, and optical communication.  The laser interrogation 

system investigated in this research is a special case of laser radar where optical 

retroreflecting targets are of interest.  The interrogation occurs under the influence of 

optical turbulence.  

There is an astounding body of research on the subject of characterization of and 

propagation through optical turbulence including many full text books [4,5].  Analytic 

treatments of propagation and diffraction from ideal apertures in optical turbulence have 

been addressed in these texts, as well as in open literature [6,7].  A very important topic 

to the detection problem while operating in turbulence, especially for horizontal 

interrogation paths where turbulence can dramatically perturb signals, is scintillation.  

Scintillation is the random fluctuations in received power for a given detecting scheme 

that is directly attributed to optical turbulence.  Scintillation has been observed 

experimentally and has been characterized analytically many times [8,9].  Only the 

Andrews and Phillips text considered OA, using a variety of limiting approximations to 

arrive at tractable analytic solutions [4].    

Another concept used in this research which is widely studied and utilized is the 

use of computers and numeric methods to solve propagation through turbulence using a 

thin phase screen [10].  The use of angular spectrum propagation, which is discussed 

further in Chapter 3, has been shown to be an effective way to compute propagation 

numerically [11].  There are at least two commercially available software packages which 
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provide users the tools to make propagation computations through turbulence: WaveTrain 

by MZA Associates Corporation and the MATLAB toolboxes Waveprop/AOTools by 

The Optical Sciences Company (tOSC); both were used in this research.  Both programs 

are designed to implement adaptive optics and beam control systems.  A study done by 

the Georgia Tech Research Institute (GTRI) utilized numeric methods and Waveprop to 

model laser radar experiments [12].  The purpose was to demonstrate laser radar as a 

means to measure atmospheric turbulence in the same way a commercial scintillometer 

does by measuring log-amplitude fluctuations in received power.  Although the 

simulations conducted by GTRI were similar in some respects to those conducted in this 

research, it was a fundamentally different problem in that no OA was involved and only 

fluctuations in received power were of interest.  It does, however, reinforce the validity of 

the methods used in this research.     

There is significantly less published work available on propagation problems 

dealing with OA, but there are several important sources.  An analytic treatment of 

retroreflection was accomplished by Lutomirski and Zhengfang for a corner cube 

retroreflector [13,14].  Both authors, with the addition of Holmes and Andrews and 

Phillips, explored the phenomenon of enhanced backscatter [15,4].  Enhanced backscatter 

is observed from retroreflecting targets in turbulence as an on-axis peak of returned 

power exceeding the vacuum prediction.  Enhanced backscatter occurs for a limited set of 

conditions related to aperture size and propagation distance, which are not met in any of 

the scenarios in this research.  Andrews explored the use of different turbulence power 

spectrums to derive analytic expressions describing the mutual coherence function (MCF) 

of retroreflections [16].  He demonstrated that usage of the modified spectrum (as 
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opposed to the Kolmogorov spectrum) reduces the beam spread caused by turbulence 

outer scale effects.  Outer scale effects cause low frequency aberrations such as tilt so the 

modified spectrum limits such low frequency aberrations.  Outer scale and inner scale 

were not computed for the experiments in this research; therefore, it would be impractical 

to use a spectrum other than Kolmogorov (which does not require knowing outer scale 

and inner scale).  Also, experimental results do not demonstrate a beam spread less than 

that predicted by Kolmogorov turbulence, a key finding of Andrews’ work, suggesting 

that Kolmogorov turbulence is adequate for this work.  Many of the analytic treatments 

of retroreflection, including those found in the Andrews and Phillips text, use Gaussian 

models of the retroreflector.  This approximation yields tractable analytic results but is 

not instructive when seeking solutions for real targets.  In addition, most of the analytic 

treatments are concerned with monostatic, or on-axis, detection.  The work in open 

literature related to bistatic, or off-axis, detection is even less prevalent.  Lading 

demonstrated lidar performance in turbulence for both monostatic and bistatic 

configurations, but not for a retroreflecting or OA target [17].  While his findings showed 

that bistatic channels are more sensitive to turbulence, his experiments were conducted in 

a lab with uncharacterized turbulence. 

A central topic to OA is that of OCS.  Researchers interested in tracking orbiting 

satellites from the ground have done research measuring OCS in turbulence or predicting 

returned power based on known OCS [18,19].  Riker used analytic calculations to predict 

returned power and to measure OCS of an orbiting satellite.  Lukesh used monte-carlo 

simulations to measure the probability of detection but it was not wave optics based.  

Neither work studied bistatic returns.   
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The first work specific to OA, in general, was done by Quest Research 

Corporation and Raytheon with OCS derivations and standards for measurement of OCS 

[20,21].  These documents are still used today by the Air Force Research Laboratory, 

Materials and Manufacturing Directorate, Hardened Materials Branch (AFRL/RXPJ) as 

standards for measurement of OCS.  Techniques similar to those of AFRL/RXPJ are also 

used by the White Sands Missile Test Range.  These documents do not provide OCS 

measurement data but do provide the theoretic equations necessary to compute OCS.  The 

Quest and Raytheon papers also introduce the concept of total OCS (TOCS) and 

differential OCS (DOCS).  The concept of OCS is explored in detail in Chapter 3.   

Despite theoretic derivations of OCS and standards for OCS measurement, when 

the OCS of real optics was measured, the theoretic OCS equations over-predicted the 

measured OCS [1].  Abel’s work confirmed the suspicion that the reduction in measured 

OCS was due to the aberrations present in real targets.  Abel used a wave optics approach 

to show the OCS reduction from aberrations, although he did not simulate an entire laser 

interrogation scenario and his results were for OCS in vacuum.  This research did show 

that wave optics could be a viable tool for OCS analysis.   

The laser range equation, which is introduced in detail in Chapter 3, is the most 

popular way to predict returned power from a laser reflection, assuming the target is 

uniformly illuminated and its cross section is known [22].  Lemery performed field 

experiments attempting to show the validity of the laser range equation to OA targets [2].  

Lemery measured the OCS of a corner cube and lens-reflector target.  Her work showed 

that the laser range equation worked well at long ranges although she did not show why.  
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She also showed that there was a large error in the received power measurement in the 

field.   

Lemery’s findings motivated the work of Cole to examine the applicability of the 

laser range equation for a wider variety of experimental conditions.  Cole derived an 

analytic correction factor for the laser range equation for an OA reflection under the 

conditions of monostatic detection [23,24,25,3].  Cole’s approach used ray matrix optics 

in conjunction with the statistical beam transformations due to turbulence as presented by 

Andrews and Phillips [4].  He showed agreement at several different wavelengths and 

different relative turbulence strengths for a corner cube and lens-reflector target.  The 

primary disadvantage to Cole’s approach is that it only described returned power for a 

monostatic system.  It is also unclear how applicable the correction terms would be to 

more complex optical systems.   

One paper that addresses OA reflections directly is by Chiu [26]. Chiu’s work 

looked at retroreflection from Germanium lens IR cameras with the purpose of finding 

the bistatic angle to detect military IR systems on the battlefield.  Chiu’s experiment 

makes the laser incident on the lens at various transverse locations, adjusts the focus of 

the lens/detector system, and also tilts the lens with respect to the optical axis.  By 

varying those parameters, the location of the received retroreflection focal spot is mapped 

out.  Chiu’s experiments showed how varying the focal length and angle of incidence on 

the lens can alter the power and observed position of the retroreflection.  He verified the 

expected result for which the highest reflected power occurs is a lens that is most closely 

focused at the reflecting plane.  In the field, it is unlikely that an optical device would be 

interrogated on boresight, so the results offer an argument for a bistatic detection scheme 



 

10 

when interrogating focusing optics.  Because Chiu’s experiment was performed in the 

laboratory, the laser source used to interrogate the optical device was very narrow and did 

not fill the optic.  Therefore, the results provide little information about the performance 

of a practical laser interrogation system which would make a source with such small 

extent impractical from both a scanning source and detection standpoint.  Also, Chiu did 

not examine the effects of turbulence present on the reflection.       

C. Summary 

While there is a large body of information dedicated to the study of propagation in 

turbulence, using wave optics to demonstrate monostatic and bistatic detection of OA 

targets is unique.  Most of the work in detecting retroreflecting targets in turbulence has 

focused on deriving analytic solutions with some experimental data collection.  Also, 

laser interrogation geometry focused on monostatic detection.  While numeric wave 

optics simulations have been used in other fields, the detection of OA reflections is not 

one of them.  It is with the findings of this literature review that the work presented in 

this thesis presents an original contribution to the characterization and detection of OA 

targets in turbulence.   
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III. Background and Methodology 

A. Chapter Overview 

The theory and background required to conduct the experiments will be presented 

as well as the approach and methodology for experiments and simulations.  There are 

essentially two different approaches to determine received power for a laser interrogation 

system, radiometry and wave optics.  Both methods will be used to derive expressions for 

returned power and show how, when used together, can yield solutions for monostatic 

and bistatic returns.  The concept of propagation through atmospheric turbulence will be 

introduced.  It will be shown how numeric simulation can be used to solve the equations 

of optical propagation for the laser interrogation system.  Lastly, to validate the 

simulation, the setup of field experiments will be presented.        

B. Background          

a. Radiometry and the Laser Range Equation 

The power received from a laser reflecting from a target can be calculated from 

the laser range equation given by [22] 

, (1) 

where P is power,  is the area of the receiver aperture,  is the solid angle the 

source laser beam transmits into assuming the target plane is uniformly illuminated, R is 

the range to the target,  is the optical cross section (OCS) of the target, and , , and 

 account for losses due to the atmosphere, transmitter, and receiver, respectively.  The 

conditions of the laser range equation’s applicability are revealed through its derivation.  
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The general laser interrogation scenario can be seen in Figure 1, where the transmitter 

and receiver are located in a plane some distance from a target.  Although this derivation 

has been done many times in literature [22], it is useful to recreate the derivation 

considering the most basic monostatic configuration where the transmitter and receiver 

optics are collocated and boresighted with the target so that the θ angles in Figure 1 are 

all zero.  All the targets in this research will be interrogated at boresight.  Using 

principles from radiometry, the laser range equation can be derived [27].  The derivative 

of laser power at the target plane with respect to target area gives the irradiance at the 

target as shown by 

, (2) 

where  is the area into which the source emits.  If the target plane is uniformly 

illuminated, Equation (2) can be rewritten as 

    (3) 

Since uniform illumination is assumed over the target aperture, can be rewritten in 

terms of the solid angle subtended by the area of the uniform field at the target plane.  

Equation (3) becomes 

 (4) 

The power reflected from the target is a function of the incident irradiance, the target 

area, and the reflectance of the target, and can be written as 

   (5) 
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where  is the reflectance of the target and is the reflected power.  Again, for the case 

of a uniformly illuminated target,  

. (6) 

To find the quantity of ultimate interest, received power ( , the irradiance at the 

receiver is integrated over the area of the receiver as shown by  

.  (7) 

Assuming uniform illumination of the receiver, Equation (7) can be written as 

. (8) 

It is recognized that for uniform illumination at the receiver plane, 

 

Figure 1. Basic geometry of a nonspecific laser interrogation or laser radar 
system 
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, (9) 

where  is the area into which the reflection emits.  Substituting Equation (4) into (6), 

(6) into (9), and (9) into (8) yields, 

. (10) 

Rewriting  in terms of the solid angle subtended by the uniform field at the receiver, 

as was done for , gives 

. (11) 

which allows for the introduction of the OCS term (σ) which will be the subject of an 

entire subsequent section.  For this derivation, OCS is defined as 

, (12) 

which completes the derivation of the laser range equation as presented in Equation (1).   

It is important to note that this derivation is only valid when the target and 

receiver planes are uniformly illuminated.  Because of the divergence angle of practical 

laser sources as well as those used in the experiments herein, uniform illumination of the 

target is a reasonable assumption under turbulence free conditions.  For the case where 

the receiver aperture is not uniformly illuminated, the derivation of the laser range 

equation changes and the OCS term becomes largely dependent on the target.  The OCS 

is the most important consideration when deriving the laser range equation for the bistatic 

detection of optical reflections. 



 

15 

b. Optical Cross Section (OCS) 

The optical cross section is a characteristic of an optical target which describes 

the intensity of the reflection per target irradiance.  The general form of optical cross 

section is given by (OCS Primer) as 

 , (13) 

where  is the OCS,  is the reflected intensity from the target in , and  is the 

irradiance of the target in .  A distinction between a total optical cross section 

(TOCS) and a differential optical cross section (DOCS) is made in the literature [20], 

[21], [24].  TOCS describes the calculated OCS when all reflected power is collected and 

DOCS describes the calculated OCS when some portion of the reflected power is 

captured.  The published derivations for TOCS and DOCS (specifically the peak DOCS) 

are typically for limiting cases and care must be taken when using the reported equations.  

Peak DOCS describes the scenario when the receiver is illuminated by the peak of the 

target reflection where the receiver is much smaller than the extent of the reflected power 

distribution, resulting in uniform illumination of the receiver aperture.  The equation 

presented by Arenberg to determine when TOCS or peak DOCS is applicable to a 

particular interrogation scenario is [21] 

  (14) 

where  is the separation between target and receiver and  and  are the receiver 

and target radii, respectively.  When , the TOCS derivation can be used.  When 

, the peak DOCS derivation can be used.  The target and receiver optics used in the 

experiments of this research were all one inch in diameter and the field experiment test 
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range was 782m.  This yields  values of 22.48 and 5.16 for the 4636nm and 1064nm 

interrogation wavelengths, respectively.  These values suggest that neither the TOCS or 

peak DOCS derivations will be applicable to this interrogation scenario and Equation 

(13) will be the preferred method to derive the OCS of the targets.   

 The derivation of OCS when diffraction effects are observed by the receiver is a 

valuable example for this work since diffraction will be a dominant effect for off-axis 

measurement.  The corner cube and lens-reflector targets used are essentially circular 

apertures, so it is instructive to consider Equation (13) for a boresighted circular aperture.  

For the experiments in vacuum conducted in this research, the target was always 

uniformly illuminated.  Therefore, the denominator becomes,  

. (14) 

The numerator term, , is not as straight forward.  Depending on the size of the target, 

size of the receiver, and the distance between the target and receiver, diffraction effects 

could cause the power distribution at the receiver plane to be non-uniform.  In such a 

scenario,  

.  (15) 

Assuming the receiver is sufficiently far from the target to be far-field, the power 

reflected from a circular aperture can be determined through the use of the Fraunhofer 

irradiance from a circular aperture.  The irradiance at a receiver aperture some distance, z, 

from a circular aperture of diameter  is [28] 
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, (16) 

where,  is the Bessel function of the first kind,  is a radial distance from the center 

of the receiver, and because the irradiance pattern is azimuthally symmetric, x is the 

distance from the origin of the receiver plane to the center of the receiver.  To find the 

power incident on the receiver, Equation (16) must be integrated over the area of the 

receiver.  Thus, the power at a circular receiver is given by 

, (17) 

where  is the diameter of the receiver aperture and upon simplification, 

.  (18) 

With the total power incident at the receiver known, plugging the solid angle subtended 

by the receiver into Equation (15) gives 

. (19) 

Therefore,  for a circular aperture is 

  (20) 

While the analytic mathematics to predict returned power for an unaberrated circular 

aperture is solvable, the expression is complicated and becomes progressively less 

tractable for more complicated scenarios including aberrated apertures and atmospheric 

turbulence.  Converting continuous mathematical expressions to discrete expressions 
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solved by a computer is one way to overcome the difficult of solving analytic 

expressions.  Wave optics expressions solved numerically, which compute EM fields 

after propagation, are able to account for more complicated scenarios and avoid solving 

for the OCS explicitly; although, OCS can be determined.  For that reason, wave optics 

and numeric methods is the proposed method to solve for returned power in this research.     

c. Optical Propagation in Vacuum 

The approach to determining received power in this work was to use wave optics 

representations of the electric field.  The radiometric and wave optics approaches offer 

the same solutions, but the underlying theory is somewhat different.  The mathematical 

description of optical wave propagation is based on the Huygens-Fresnel integral (the 

Rayleigh-Sommerfield integral is derived differently but has the same result).  The 

Huygens-Fresnel integral was developed by solving Maxwell’s equation with boundary 

conditions across a finite aperture.  It is generally hard to solve directly so 

approximations have been developed using series expansions.  Specifically, the 

propagation of an optical field through vacuum can be computed through use of the 

Fresnel approximation to the Huygens-Fresnel integral [28] 

, (21) 

where x and y are horizontal and vertical coordinates in the plane of observation, 

respectively,  and  are horizontal and vertical coordinates in the source plane, 

respectively,  is the optical wavelength, k is the wave number, and z is the distance from 

the source to the observation plane.  The Fresnel approximation is valid for all distances 

except those very close to the aperture [28]. 
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Another approach equivalent to the Fresnel propagation integral is known as 

angular spectrum propagation.  The angular spectrum propagation operates by 

decomposing a source field into a weighted sum of plane waves through Fourier 

decomposition and then sums the contribution and phase shifts of the plane waves after 

propagation to some observation point to obtain the propagated field.  The mathematical 

form for angular spectrum propagation is most easily represented in compact operator 

notation as presented by Gooodman[28].  A full description of the operator notation is too 

extensive too include here but  represents the electric field,  is a scaling factor,  is a 

quadradic phase factor, and  is a 2D-Fourier transform.  The angular spectrum 

propagation as derived by Schmidt as [29]  

      , (22) 

where  is the ratio of the source plane size to observation plane size.  The angular 

spectrum is popular for use in numeric simulations involving light propagation because of 

its flexibility in discrete computations.   

d. Atmospheric Turbulence 

 Equations (21) and (22) only describe light propagation in vacuum.  When an 

optical beam is propagated through an inhomogeneous medium such as the atmosphere, 

Equations (21) and (22) will not adequately predict the field at the observation plane.  

When propagating optical fields through the atmosphere, random fluctuations in the 

index of refraction cause the loss of spatial coherence and scintillation in the propagated 

field.  The degree to which the turbulence perturbs the transmitted beam is traditionally 

classified as belonging to weak, moderate, or strong regimes[4].  The distinction between 
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weak and strong turbulence is important because each regime has its own set of statistical 

theories.  Most notably, the statistics for weak turbulence are developed using Rytov 

theory and may not be applicable to other turbulence strengths.  The amount of turbulent 

fluctuations are described for optical applications by the index of refraction structure 

constant (  which typically takes on values between and 

 but can be less than or greater than those values in some scenarios.  The 

turbulence strength is defined by some strict definitions which are not only a function of 

 but also a function of the beam being transmitted.  Several measures of turbulence 

strength have been suggested in the literature.  Andrews and Phillips propose that the 

Rytov variance (  is used to characterize weak fluctuations for a Gaussian beam wave 

when 1and <1, where  is a function of the beam diameter at the target (W) 

and is given by .   When those conditions fail, the turbulence is classified as 

moderate to strong[4].  Parenti and Sasiela draw a slightly different distinction, where the 

weak turbulence is defined by the value of / D where  is the Fried parameter for a 

plane wave given by [8] 

 (23) 

and D is the transmitting aperture diameter.  When a Gaussian beam is being used, D can 

be converted to the Gaussian beam waist parameter ( ) by the relationship 

.  The weak regime is then defined when and strong when 

.  For example, in the experiments of this work, using the  criterion for a laser 

with a beam diameter of 6.1mm, a constant  of , wavelength of 

1064nm, and propagation distance of 782m,  0.419.  This value nearly meets the 
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criterion for weak turbulence despite propagating close to the ground where the strong 

regime might be expected.   

 Yet another description of weak and strong turbulence is the log-amplitude 

variance which is sometimes called the Rytov number.  In general, under conditions of 

weak turbulence, the probability density function (pdf) of the power measured at a 

receiver after a turbulent propagation is approximated by the log-normal pdf.  If the 

measured variance of the log-amplitude is less than 0.25, the turbulence the beam 

propagated through can be considered weak and Rytov theory applies.  The Rytov 

number can be calculated for a turbulent path in simulation.          

e. Modeling Atmospheric Turbulence 

Optical turbulence can be modeled by a series of thin phase screens calculated to 

agree with the turbulence statistics of the scenario [4].  These phase screens can be 

generated for numerical simulation using techniques outlined by Lukin [30].  The 

WaveProp toolbox in MATLAB automatically generates phase screens that obey 

fluctuation statistics in agreement with derived power spectra.  A variety of fluctuation 

spectra are available in Andrews and Phillips, Chapter 3, which are selected based on the 

parameters of the turbulent environment, notably inner and outer scale[4].  As light is 

numerically propagated over a specified propagation distance, it is multiplied by the 

random phase screens at various points in the propagation path (the number and location 

of the screens will be considered in the simulation section).  The field at the target plane 

should match turbulent field statistics.  The phase screens generated for this work will 

have spatial frequency content as described by the Kolmogorov power spectral density 

(PSD) given by [4] 
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  (24) 

where  is the path distance and  is the spatial wavenumber.  In general, the choice of 

PSD used to generate phase screens is driven by the propagation path being modeled.     

To use any of the derived PSDs, the assumption must be made that the 

atmospheric propagation path is homogeneous and isotropic.  The propagation path in 

this work is horizontal and is at a fixed height of 2.33m from the ground with no 

obstructions.  Experimental data was collected in cold weather when the ground was 

frozen so convection between the atmosphere and the ground was minimal.  Therefore, 

the assumption that the atmosphere is homogeneous and isotropic was made since 

ground/atmosphere convection would be the leading cause of losing homogeneity and 

isotropy.  The Kolmogorov PSD is the least sophisticated of the derived turbulence power 

spectra in that the equation assumes the turbulence experienced has an infinite outer scale 

and zero inner scale.  Other spectra bound the turbulence PSD by including inner and 

outer scale effects which are analogous to the size limits of the turbulent eddies.  Other 

PSDs saturate for spatial frequencies less than the spatial frequency corresponding to 

outer scale and attenuate rapidly for spatial frequencies greater than the spatial frequency 

corresponding to the inner scale.  Therefore, to use Kolmogorov statistics for the 

turbulence model in this simulation, the propagating beam must not be bigger than the 

outer scale or smaller than the inner scale.  The region where scale sizes are smaller than 

the outer-scale and larger than the inner scale, known as the inertial sub-range, is where 

Kolmogorov statistics agree with other more complicated PSDs.  Inner and outer scale 

sizes were not measured for the propagation path in this work so some assumptions were 

made about inner and outer scale size.  A common approximation for inner scale size is 
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that is it half the size of the path height from the ground [4].  For the experiments in this 

work with a propagation path height of 2.33m, the outer scale can be estimated at 1.17m.  

Since the target is only 1in, outer scale should not affect the source propagation in the 

region of interest.  In the case of the reflected distribution, the 4636nm distribution will 

be larger than the 1064nm distribution as predicted by the diffraction limited spot size.  

The diffraction limited spot size out to the second ring of the distribution (the limit of the 

measurements taken) for an ideal circular target at 4636nm case would be 0.639m, less 

than half the size of the predicted outer scale.  Inner scale near the ground is typically 

observed to be between 3mm and 10mm [31].  The smallest dimension of the beam in 

this work is at the source where the source diameter is 4.49mm and 6.10mm for the 

4636nm and 1064nm sources, respectively.  While these beam diameters are within the 

expected range of inner scale and could be slightly smaller than the actual inner scale, the 

divergence angle of the sources keeps the diameters less than 10mm for less than 1m of 

propagation.  Therefore, the assumption that most turbulence effects encountered will be 

unaffected by inner and outer scale sizes was made, justifying the use of the Kolmogorov 

spectra for the propagation path model in this work. 

It is useful to discuss the statistical nature of simulations through optical 

turbulence using random phase screens.  This laser interrogation system can be 

considered a double-passage problem where the source and reflected propagations 

encounter the same turbulent path [4].  One propagation of the source and reflection 

through a random draw of turbulent phase screens represents the reflected irradiance over 

a very short time scale.  The simulated reflected power distribution after one round trip 

through the turbulence can be considered a short-exposure image.  A short-exposure 
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image occurs when the integration time of the imager/detector is short enough that 

atmospheric effects are frozen in time and do not evolve [5].  When applying a single 

random draw of some phase screen set to the source propagation and reflection 

propagation in reverse order, the state of the phase aberrations in the atmospheric path 

have effectively been frozen for the period of exposure.  If the integration time of an 

imager/detector is long enough so that the freezing of atmospheric effects is not valid, the 

resulting power distribution is a long-exposure image.  Long-exposure images can be 

obtained by taking the average of many short-exposure images.  In other words, to 

generate a long-exposure reflected power distribution in simulation requires multiple 

round trips through different random realizations of turbulence.  The number of 

propagations through unique random draws is determined by the number of propagations 

it takes to achieve desired results and the available computation time. 

C. Simulation Methodology  

 The choice in software for the writing of the laser interrogation simulation was 

MATLAB and the MATLAB toolboxes WaveProp and AOTools provided by tOSC.  The 

choice of the WaveProp and AOTools software packages was made because of prior 

experience and the built-in functions to do EM propagation in the presence of 

atmospheric turbulence.  This allowed for much of the code to execute the complicated 

discrete mathematics inherent in the angular spectrum propagation and computation of 

turbulent phase screens to be pre-validated and implemented modularly.  For the 

purposes of discussion, the simulation can be dissected into three parts: source 

propagation, target reflection, and reflection propagation and detection. 
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a. Source Propagation 

 For a laser interrogation system, lasers of interest will have beams that are 

approximately Gaussian.  While the propagation of a Gaussian beam is well known and 

simple to execute mathematically, there were several difficulties in using the Gaussian 

beam profile in this simulation given the parameters of the laser beam sources that were 

modeled and the requirement to model turbulence.  To understand these limitations, two 

associated subjects must be explored which are critical to successful numeric simulation; 

the first is minimizing aliasing as a result of the discrete Fourier transform (DFT) 

inherent in propagation.  The second is providing adequate resolution over target and 

receiver apertures.   

It is understood from discrete transform theory that finite size of real signals and 

finite sampling frequency contribute to the loss of information and perturbation of the 

continuous signal [28,32].  The conventional way to deal with most real signals which are 

finite in size is to pad the signal with zeros [32].  In the case of the two-dimensional 

electric field that is the Gaussian beam, the real part (i.e., magnitude) of the electric field 

gets infinitesimally small at the edges.  Setting the field of view, or grid size, so that a 

sufficient amount of the nearly zero valued edges are present has a similar effect as zero 

padding.  While increasing the spatial extent of the grid to a size larger than the field of 

interest works well to minimize the wrap-around aliasing in the magnitude, it is does not 

work for the imaginary phase because of the quadratic phase present in Fresnel 

propagation.  The phase of the field describes how the field propagates and must also be 

protected from aliasing over the region of interest.  As seen in Equations (21) and (22), a 

quadratic phase is inherent in the propagation mathematics.  A quadratic phase term is 
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present in the Gaussian beam equation, as well [4].  The quadratic phase means that the 

phase grows or decreases unbounded in all directions on the grid.  Phase aliasing occurs 

when the phase changes faster than 2π between consecutive samples, resulting in the loss 

of phase information.  Therefore, scenarios where the derivative of the phase is large are 

scenarios strongly impacted by phase aliasing.  In general, a combination of the electric 

field divergence and the propagation distance will cause phases with large derivatives.  

At the heart of compensating for aliasing is the grid spacing.  The WaveProp 

documentation recommends that the number of samples in a grid be equal to or greater 

than the Fresnel scaling given by [33] 

 , (25) 

where  sets the number of samples along one side of the grid,  is the wavelength of the 

field,  is the propagation distance, and  and  are the grid sizes in the source and 

observation plane, respectively.  There is a rigorous method used to determine the grid 

sizes and spacings when using angular spectrum propagation that was developed by Coy 

and Schmidt [29].  Defining the source and observation plane apertures and satisfying the 

constraints given by 

1.    (26) 

2. , (27) 

where  and  are the source and receiver plane aperture diameters, respectively, 

and  and  are the source and receiver plane grid spacings, respectively, the grid 

spacings which avoid aliasing in magnitude can be determined.  For this work,  is the 

target with a one-inch diameter and  is the receiver plane where the entire reflected 
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distribution must be captured.  Also, for computational efficiency purposes, N should be 

chosen to be a power of two.  By declaring the values of , , and N, constraint 1 can 

be ignored and constraint 2 can be minimized with respect to  and  using a Lagrange 

multiplier method.  This allows for the smallest grid spacing (i.e., highest resolution) 

possible for a given N in both the source and receiver planes that satisfies the constraints 

of Equations (26) and (27).  Therefore, as long as N is chosen to exceed the value of N 

given in Equations (21) and (22), aliasing of the magnitude should be avoided in the 

region of interest.  However, the constraints described above do not consider phase 

aliasing which must be accounted for if warranted.  Also, the grid spacings derived by the 

constraints are valid for vacuum propagation, so larger grid spacings may be necessary to 

account for beam spread due to turbulence propagation.  An important practical point 

taken from Equations (26) and (27) is that an increase in spatial frequency in one plane 

means a decrease in the other.     

Given the sampling constraints presented and considering the divergence of the 

laser sources used in this work, modeling the actual Gaussian beam becomes impractical.  

As shown by constraint 2, the large size of   necessary to model the beam at the target 

would make N prohibitively large because of the computation time necessary to conduct 

the propagations.  For example, the 4636nm laser has a divergence of 3.42mrad so the 

1/e2 diameter of the beam at a target 784m away is 5.4m.  To put an adequate guard band 

on such a Gaussian beam would require a grid at least twice as large.  With  equal to 

10.8m and the target diameter equal to 25.4mm, to put one pixel across the target aperture 

would require 432 samples on a side.  In practice, one pixel will not be adequate, 

especially since further propagation must take place from the target.  Just to put three 
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pixels across the target would require 2160 pixels or N=212 pixels on a side to get to the 

nearest power of two.  To avoid the sampling problem with numerically propagating the 

Gaussian beam, an alternate approach was used which capitalizes on the divergence of 

the source.  Since the source is much larger in extent than the target, it can be assumed 

 

 

(a) 

 

(b) 

 

(c) 

Figure 2. Source irradiance at target distance of 782m.  (a) In vacuum.  Note 
spatial filtering at edges to minimize aliasing.  (b) After propagation through one 
random draw (10 phase screens) of turbulence,  = 1.4X10-13m-2/3.  (c) Average 
irradiance after 40 propagations through 40 random draws of turbulence. 

 

mrad

m
ra

d

 

 

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

W/m2
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

mrad

m
ra

d

 

 

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

W/m2

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

mrad

m
ra

d

 

 

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

W/m2

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4



 

29 

that in vacuum, the irradiance and the phase at the target is uniform.  For the sources 

employed in this work, this is a reasonable approximation since at 4636nm and 1064nm, 

the irradiances at the edge of the targets are 99.9910% and 99.957% of the peak 

irradiance at the target, respectively.  This approach eliminates the need to use a Gaussian 

source in simulation and a source that exhibits equivalent irradiance characteristics at the 

target with a smaller spatial extent can be substituted.  The choice of source in this work 

which met the criteria described was a paraxial portion of a spherical wave.  WaveProp 

has a function conjsource which simulates point source propagation for a defined 

observation- plane field.  To simulate the source, a patch of uniform irradiance was 

created, sized to achieve an acceptable number of samples across the target aperture, 

spatially filtered to reduce high frequency aliasing, and passed to the function conjsource.  

For demonstration, the 1064nm irradiance at the target plane after a 782m vacuum 

propagation is shown in Figure 2a. Using WaveProp, the source can be propagated 

through turbulence using the angular spectrum propagation and the random phase screen 

techniques as discussed.  The 1064nm irradiance at the target plane after a 782m 

turbulence propagation through one random draw of phase screens with 

 is shown in Figure 2(b). Figure 2(c) shows an average irradiance after 

40 propagations.  To validate the turbulence propagation to the target, the mutual 

correlation function (MCF) of the average turbulent field is computed by performing an 

autocorrelation of the field at the target plane.  Ideally, the simulated MCF should match 

the theoretic MCF for a paraxial spherical wave as given by Andrews and Phillips[4].  

Figure 3 shows a vertical slice of the simulated and theoretic two-dimensional MCF with 

good agreement.  



 

30 

 

b. Target Reflection                      

For the simulation to be successful, it must accurately model the effects of 

reflection from the targets to include power loss due to imperfect reflectivity and 

transmission of the optical coatings and the aberrations resulting from the imperfect 

manufacture of the optics.  Ideally, at boresight, both the corner cube and lens-reflector 

target would behave like a perfectly aligned, aberration-free flat mirror with respect to 

phase, and with a reflectivity of one with respect to amplitude.  It should be noted the 

targets flip the reflected field up/down and left/right due to their geometries.  The 

 

Figure 3. Normalized MCF of the source irradiance after turbulence 
propagation.  Agreement of simulated MCF with analytic expression for a 
spherical wave in turbulence validates the turbulence model in simulation. 
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reflectivity and transmission of the optics used as a function of wavelength are published 

by the manufacturer and were used in this work with their associated uncertainty 

assuming uniform reflectivity and transmission over the extent of the optics.  While the 

aberration tolerances are also published, the actual aberrations present on a particular 

optic are not known.  Interferometery is one method to measure the phase aberrations 

present on an optical device and was the approach taken here.  A practical way to model 

the phase aberrations of the targets is to apply the effects of the target as they differ from 

a perfectly aligned and flat reference.  Using a Zygo GPI ST interferometer and 

associated software, the corner cube and lens-reflector targets were compared to the flat 

reference of the interferometer.  The Zygo GPI software reports the phase aberrations in 

Zernike polynomials which can be used to map the phase aberrations over the target 

aperture [34].  Phase aberrations are computed in waves and can be scaled proportionally 

to the interrogation wavelength of interest. 

With an accurate representation of the phase aberrations present over the target, 

multiplying the phase of the aperture by the phase of the incident field will determine 

how the wavefront of the reflected field transforms during propagation.  In addition, the 

source field incident on the target must be set to zero at all points outside the target 

aperture so only power reflected from the target is propagated back to the receiver.  

Figure 4 shows the phase of the target aperture for the corner cube at both 4636nm and 

1064nm and the lens-reflector target at 4636nm and 1064nm, respectively.  It should be 

noted that the Zygo measurement technique failed for the lens-reflector targets for 

reasons that will be discussed in detail in Chapter 4.  Figure 4 (c) and (d) show the phase 

as measured by the Zygo but they were not used in simulation.      
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c. Reflection Propagation and Detection 

With the appropriate irradiance at the target aperture, attenuation due to imperfect 

reflectivity accounted for, and the phase aberrations over the target aperture applied to the 

incident field, the electric field can be propagated back to the receiver located in the same 

plane as the source.  In the presence of turbulence, it is physically accurate to return 

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 4. Aberrated phase of targets as measured by the Zygo interferometer (a) 
Corner cube at 4636nm (b) Corner cube at 1064nm (c) Lens-reflector at 4636nm 
(d) Lens-Reflector at 1064nm 
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through the same realization of random turbulent phase screens the source propagation 

experienced, but in reverse order.  This is a reasonable assumption since the speed of 

light is very fast compared to the time evolution of the turbulence [4].  For reflected field 

results with minimal aliasing, the sampling constraints that were discussed in the source 

propagation section must be applied to the reflection propagation.  Since the reflected 

power distribution is spatially larger than the target, the total grid size at the receiver 

plane must be large enough to accommodate the size of the reflected spot.  The radial 

extent of the reflected spot at the receiver plane can be approximated for input into the 

sampling constraints by the diffraction limited Airy disk equation for a circular 

diffracting aperture out to the fourth ring given by [35]       

,  (28)      

where  is the radius of the diffraction limited spot,  is the propagation distance,  is the 

wavelength, and is the diameter of the target aperture.  The fourth ring is chosen 

somewhat arbitrarily so that aliasing in the edges of the power distribution is minimized.  

Again, a grid spacing must be chosen small enough to allow for sufficient resolution 

across the receiver aperture.  With adequate grid spacings and grid sizes established, 

propagation back to the receiver can be executed.  The resulting electric field at the 

receiver plane represents the entire reflected power distribution.  The magnitude squared 

of the field provides the irradiance at each pixel.  Because the pixels are symmetric in 

size, the flux through each pixel can be computed by multiplying the irradiance by the 

area of the pixel (i.e. the pixel size squared).  Power will be measured by both laboratory 

and field measurements so simulated power will be an important quantity.  By specifying 
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the location of a circular pupil representative of the receiver aperture at some position in 

the receiver plane, the pixel values in the pupil can be summed yielding the total power 

collected by the receiver.   

D. Experimental Methodology 

a. Laboratory Measurements OA Reflections in Vacuum   

AFRL/RXPJ has designed and implemented an optical bench known as the System Level 

Characterization Test-bed (SLCT) to measure OCS of a wide variety of optical targets for 

a wide range of interrogation wavelengths.  The SLCT will be used in this work to verify 

the results of the vacuum simulation.  The SLCT has been used only to measure peak 

DOCS in accordance with the Quest Document [20].  As stated in the OCS section, the 

peak DOCS is only valid under a specific set of limiting conditions identified by 

Equation (14).  The SLCT has two sides with independent equipment, one for 

wavelengths below 2000nm (i.e. visible and NIR) and the other for wavelengths above 

2000nm (i.e. MWIRIR).  The general configuration and operation of both sides is the 

same.  

 

Figure 5 shows the setup of the MWIRIR side of the SLCT.  The essential parts are the 

laser source which is expanded through a pinhole aperture positioned at the focal point of 

an off-axis parabolic (OAP) mirror.  The source is collimated by the OAP and a target of 

interest is placed at the center of the collimated field.  The target reflection returns 

through the incident path, and prior to the pinhole, is reflected by a beam splitter into a 

focal plane array (FPA) detector.  Because the detector is positioned at the focal point of 
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the OAP, the detector is imaging the scaled Fraunhofer diffraction pattern, or Fourier 

transform of the field at the OAP aperture [28].  Vignetting of the reflected field by the 

OAP can be ignored for most practical targets because reflections at the OAP will rarely 

be larger in extent than the diameter of the OAP.  The SLCT sources used to interrogate 

the corner cube and lens-reflector targets were a Coherent/DEOS doubled CO2 MID-IR-2 

  
 
Figure 5. Setup of AFRL/RXPJ SLCT for the measurement of OCS.  This 
schematic is specifically for the MWIRIR side of the bench but the NIR side is 
nearly identical in configuration. 
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laser for the 4636nm source and a Crystalaser Nd:YAG laser for the 1064nm source.  

Both were operated continuous wave (CW) (quasi CW in the case of the MID-IR-2 

because of the fast 100kHz pulse rate) and attenuated to desired power.  Targets were 

boresighted by finding the orientation to the source which yielded the highest detector 

count.  FPA detectors were used to capture images of the focused reflections from each 

target for comparison with vacuum simulations.  The Cohu camera used on the NIR side 

of the SLCT was non-uniformity corrected, and both cameras were calibrated to convert 

photon count to watts.  All measurements were background-subtracted post processing.  

Appendix A has a complete listing of equipment used along with specifications. 

 The Quest document outlines calibration techniques for a measurement apparatus 

like the SLCT to compute the peak DOCS [20].  By using a target set of known OCS, a 

relationship between the known target cross section and reflected power from that target 

can be computed.  The SLCT calibration target is a circular optical flat mirror with 

circular apertures of varying size.  For the monostatic case, where the detector is small 

compared to the diffraction pattern, applying those constraints to the OCS derivations 

made above, the peak DOCS of a uniformly illuminated circular aperture at boresight is 

[21] 

, (29) 

where  is the reflectivity of the target,   is the area of the target, and is the 

wavelength of the uniform interrogation source.  A calibration curve is computed by 

plotting detector counts for a given aperture size vs. theoretical peak DOCS as 

determined in Equation (29).  A line is fit to the measured count data which produces a 
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peak OCS gain curve.  This curve determines the conversion between detector count and 

peak OCS.  Because a FPA detector is used, the entire focused reflection is captured with 

multiple pixels over the irradiance distribution.  This allows the pixel at the peak to be 

used as the receiver aperture.  This detection scheme meets the requirements for the peak 

DOCS to be computed with Equation (29) because the peak pixel is uniformly 

illuminated and the peak of the diffraction pattern is collected.  The calibration curve can 

then be used to predict the peak DOCS of an unknown target when the peak count of the 

reflection from a target with an unknown peak OCS is measured.  The error in the 

measurement is the fit error of the gain curve to the data. 

 For interrogation scenarios that do not meet the criteria for using peak DOCS, 

such as bistatic detection or when the receiver aperture is too large to be uniformly 

illuminated by the magnitude of the reflection’s peak, it may be more appropriate to use 

Equation (13) directly.  To do this on the SLCT, using the previously stated fact that the 

detector is imaging the scaled Fraunhofer diffraction pattern of the target reflection [28], 

the size of the measured focused spot can be scaled to the size of a corresponding far-

field distribution or vice versa.  The scaling factor between the focal plane and the far-

field is , where and  are the field sizes in the far-

field and focal plane, respectively,  is the far-field propagation distance, and  is the 

focal length of the focusing optic.  For example, the Cincinnati Electronics FPA camera 

used on the MWIR side of the SLCT has pixels that are 30µm X 30µm and the OAP 

which focuses the reflection has a focal length of 2128.37mm.  The equivalent size of one 

pixel at 2km (assuming 2km is a large enough propagation distance for the diffracting 

aperture and wavelength of interest) is approximately 28.2mm.  On the Visible/NIR side, 



 

38 

the Cohu 7712 FPA camera has pixels 7.4µm X 7.4µm in size and the OAP has a 

2033.78mm focal length.  Because the wavelengths in the visible/NIR are so much 

smaller, the central lobe of the focused reflections is on the order of 10 to 20 pixels 

square.  In order to increase the size of the focused spot on the detector for ease of 

measurement, a pair of anti-reflection coated, low aberration lenses are used in front of 

the Cohu camera to magnify the spot.  The magnification, while not know exactly, is 

approximately 3.1 times.  Therefore, the equivalent size of one pixel at 2km is 

approximately 4.08mm.  With the far-field pixel sizes known, the reflected power 

distribution can be scaled to the appropriate far-field size for comparison with far-field 

simulation.  With knowledge of a system-specific receiver size and range to target, the 

far-field scaling method allows for the calculation of the reflected solid angle.  The 

reflected solid angle into which the target emits combined with target size and irradiance 

values at the target and FPA allows for any monostatic or bistatic OCS to be calculated, 

not just a peak DOCS.  The danger in the practical application of the far-field scaling 

method is assuming that at long propagation distances a real detector would have 

adequate angular resolution to be able to observe a bistatic reflection with the measured 

OCS, or make a measurement at all.  For the bistatic power measurements described in 

the next section, the use of fast collection lenses ensured adequate angular resolution at 

the 782m range and bistatic angles of interest.   

 The SLCT, using the far-field scaling technique above, can be used to validate the 

vacuum simulation of the laser interrogation system.  The method of scaling the 

measured distribution to the far-field has advantages in simulation to modeling the 

focusing of the reflected field directly as the increased sampling constraints levied by the 
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focusing quadratic phase factor are avoided.  Simulating the propagation of the target 

reflection in vacuum to a desired far-field distance can be compared with images from the 

SLCT scaled to the same far-field distance.  One addition to the vacuum simulation must 

be made for comparisons of simulated reflections to those reflections measured on the 

SLCT.  It is important to note that the focused reflection pattern measured on the SLCT is 

the scaled Fourier transform of the reflection at the OAP aperture.   Because the OAP 

aperture is approximately 3m from the target, the propagation of 3m must be made prior 

to computing the far-field propagation.  This detail is more important for smaller 

apertures and shorter wavelengths since diffraction effects are more prominent over 

shorter propagation distances under those conditions.   

b. Field Measurements 

Field measurements were performed to validate the simulation in the presence of 

atmospheric turbulence in the same way the measurements made in the laboratory on the 

SLCT served to validate vacuum simulation results.  A laser interrogation system was set 

up on the Laser Identification (LID) Test Range at Wright-Patterson AFB.  In principle, 

the field experiments were similar to those conducted by Cole, with data collection 

focusing on the off-axis returns instead of on-axis returns [3].  A pulsed Coherent 

doubled CO2 MID-IR-2 laser was used as the 4636nm source and a continuous wave 

(CW) Crystalaser Nd:YAG laser as the 1064nm source.  The 4636nm laser was pulsed 

and the 1064nm laser was chopped at 1kHz.  The corner cube and lens-reflector targets 

corresponding to the appropriate interrogation wavelength were placed at 782m±2m from 
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the source and boresighted back to the source.  The range to the target was measured with 

a Newcon Optik LRM 1500 laser range finder.  The target was boresighted by adjusting  

the aspect angle of the target until the detector, in its closest position to the source beam, 

was showing peak voltage.  The photon detector used for the 4636nm interrogation was a 

liquid nitrogen-cooled Cincinnati Electronics InSb single-element detector.  The photon 

detector used for the 1064nm interrogation was an un-cooled Thor Labs InGaAs single 

element detector.  Both detectors were powered with their voltage signals routed first to a 

Sanford Research Systems preamplifier and then to a Sanford Research Systems lock-in 

amplifier.  Because of the small size of the detector elements, a one inch lens was used to 

focus collected radiation onto the detector.  Bistatic returns were being measured, so the 

 

(a) 

 

(b) 

Figure 6. Photo of experimental equipment at LID range. (a) Source optics and 
InGaAs detector set up on bistatic rail.  Cartoon of beam drawn in for 
visualization of source beam path. (b) InSb detector fixture on bistatic rail with 
collection optics. 
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detectors were mounted on an optical rail that would allow for measurable lateral 

movement of the detector relative to the source.  Figure 6(a) shows the output mirror and 

the InGaAs detector in position to its side. The starting position of the detector was set so 

the edge of the detector aperture was next to the source beam without obstructing the 

beam.  In the case of the 4636nm detector, a significant amount of the detector structure 

would have obscured several cm of collection area, so a one-inch mirror was used to 

collect the reflected power and redirect it to the collection lens.  Figure 6(b) shows the 

4636nm detector apparatus.  To characterize atmospheric turbulence conditions, a Scintec 

Boundary Layer Scintillometer (BLS) 900 measured the one-minute average  over the 

propagation path.  Appendix A has a complete listing of equipment information and 

specifications.  

To validate the turbulence interrogation scenario, several quantities needed to be 

collected experimentally.  Received detector voltage, corresponding source laser power, 

and time the measurement was taken were collected by hand.  Because received power is 

a function of , a time stamp for each data point was critical since  was being 

measured, recorded, and time stamped electronically.  A three-second time constant was 

used on the lock-in amplifier from which detector voltage was recorded.  The long time 

constant was necessary to keep measurement fluctuation under control so that data 

collection by hand was possible.  For the 4636nm interrogation, five data points were 

collected over one minute per detector position.  Due to the anticipated size of the 

reflected power distribution and finite time for data collection, detector position was 

changed in 2cm intervals.  Because measurements were taken by hand, the instability of 

the MWIR laser power constrained collection to five points in one minute.  For the 
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1064nm interrogation, 12 data points were collected over a one minute interval.  Since 

the reflected power distribution at 1064nm was anticipated to be smaller in extent than 

the reflected power distribution at 4636nm, detector position was changed in 1cm 

intervals. 

E. Summary 

The simulation and experiments performed in this research are all grounded in 

established theory.  Only the most important key points related to radiometry, wave 

optics, optical turbulence theory, and optical turbulence simulation were reproduced here.  

Wave optics simulations can be designed many different ways.  The approach presented 

here was intended to highlight some of the more unique points related to the design and 

execution of the simulation created for this work.  Results of the simulation and 

experiments conducted will be presented and analyzed in the next chapter.      
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IV. Analysis and Results 

A. Chapter Overview 

 The execution of the simulation and experiments discussed in Chapter 3 yielded a 

tremendous data set of simulation results, laboratory measurements, field measurements, 

and instrument calibration.  That data will be presented in two sets: vacuum simulation 

compared with laboratory measurements and turbulence simulation compared with field 

measurements.  An attempt will be made to account for any deviations from expected 

results.      

B. Comparison of Vacuum Simulation and Laboratory Measurements 

 The first target of interest was the corner cube.  The SLCT was used at 4636nm to 

image the corner cube reflection at focus.  To simulate the SLCT results, a uniform field 

was applied to the simulated target.  The field at the target is first free-space propagated 

3m to simulate the distance between the target and the OAP on the SLCT.  The field is 

then free space propagated 2km to the far-field.  The SLCT image can then be scaled to 

its size at 2km through techniques discussed in Chapter 3.  The measured and simulated 

distributions are all normalized to their peak value.  A direct comparison of the actual 

measured and received power values, as done for the turbulence measurements in the 

subsequent section, would have been ideal.  Failure to collect target irradiance values for 

the images taken on the SLCT made such a comparison impossible.  Figure 7(a) and 

Figure 7(b) show the scaled SLCT image and the simulated image respectively.  The 

images are normalized to their peak power in watts.  Figure 8 shows a horizontal slice 
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(a) 

 

(b) 

Figure 7. Peak normalized reflected power distributions of the corner cube target 
interrogated at 4636nm. (a) SLCT data. (b) Simulated data. 

 

Figure 8. Slice of reflected power distribution from corner cube target 
interrogated at 4636nm 
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 through the center of the SLCT image and the simulated image.  As the power 

distribution is observed off-axis, the simulated slice shows substantial diffraction effects.  

In the SLCT measurement, the noise floor of the FPA detector is 1.5 orders of magnitude 

below the peak while the first side lobe of the diffraction pattern is 1.9 orders of 

magnitude below the peak.  Therefore, nearly all off-axis diffraction effects cannot be 

observed.  Gaussian random noise was then added to the simulated curve with the same 

mean and variance as the measured background frames.  Addition of noise demonstrates 

good agreement between measured and simulated results even though the added noise is 

statistical and may not have the same statistics of the actual detector noise. The noise 

floor reported in the SLCT images was substantially higher than expected (~3 orders of 

magnitude expected) and was due extra background irradiance not accounted for by 

background subtraction.  In Chapter 3, it was stated that all images were background 

subtracted during post-processing of the images.  This means a series of images were 

taken to establish the detector counts with no target reflection present.  The reflection was 

then measured and the average background frame was subtracted from the reflected 

power distribution image.  This process should help to determine the actual pixel counts 

due to the reflection and improve the observed dynamic range of the detector.  However, 

the background frames taken did not remove the actual amount of background present in 

the images.  If these images were re-analyzed, the background frames could be scaled to 

a higher count so that features with smaller detector counts relative to the peak could be 

observed. It is hypothesized that the lapse in time between taking background images and 

capturing reflected power distribution images caused the discrepancy between the 

magnitude of the background images and the magnitude of the background observed in 
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the reflected power distribution images.  Ideally, background images should have been 

taken as close to the time as the image was taken as possible to minimize background 

drift which could occur for environmental conditions as well as fluctuation in detector 

temperature.  Dynamic range greater than three orders of magnitude could have been 

observed using a technique that takes several images with different integration times.  

Short integration times could be used to capture high count features while long 

integration times could be used to capture features with significantly smaller counts.  The 

images could then be combined, removing the saturated features from each image.       

 Figure 9 and Figure 10 show the same plots for the corner cube target illuminated 

at 1064nm.  Good agreement between measurement and simulation is observed with the 

addition of noise to the simulated results. The dynamic range of the 1064nm camera is 

notably better than that of the 4636nm camera due to better background subtraction as 

observed by the 2.5 orders of magnitude of dynamic range, although it could likely be 

improved by similar techniques as discussed for the 4636nm images.  The left side of the 

power distribution in Figure 10 shows a small stretch in the curve at -0.07mrad and slight 

compression of the curve at 0.07mrad.  This distortion is due not to target aberrations but 

to the beam splitter and camera alignment.  A beam splitter is used on the SLCT to 

redirect the reflection to the FPA camera so any deviation of the camera’s aspect angle 

from boresight with respect to the 45o aspect angle of the beam splitter could cause such a 

distortion.  The same effect is shown on the lens-reflector target distribution in Figure 14.  

Therefore, it is assumed that the beam splitter and camera alignment is responsible for the 

lateral stretch since the same aberration occurs in both targets at exactly the same point 

and is unaccounted for by any other measurement.   
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(a) 

 

(b) 

Figure 9. Peak normalized reflected power distributions of the corner cube target 
interrogated at 1064nm. (a) SLCT data. (b) Simulated data. 
 
 

 

Figure 10. Slice of reflected power distribution from corner cube target 
interrogated at 1064nm.  Note the stretch of the reflected power distribution by 
the beam splitter of the SLCT at angular positions less then -0.07mrad. 
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The assessment of the corner cube targets provides evidence that the use of the 

interferometer to model target aberrations is a viable method for a corner cube target.  It 

also shows that the vacuum simulation provides an accurate prediction of the free space 

reflection from the corner cube target.  It has been stated that the SLCT has only been 

used to measure peak DOCS.  There is definitely a large enough signal-to-noise ratio at 

the peak of the focused reflection to be unaffected by the detector noise.  If an OCS is to 

be measured for a scenario which requires the flux measurements off peak, a more 

careful background subtraction or techniques with variable integration times to increase 

the dynamic range of the detector should be applied.   

 The lens-reflector targets can be analyzed the same way as the corner cube target.  

Figure and Figure 12 show the scaled and normalized SLCT image, the vacuum 

simulation image, and the horizontal slice of the SLCT image, vacuum simulation, and 

vacuum simulation with noise at 4636nm.  Figure 13 and Figure 14 show the same plots 

for the 1064nm target.  While the 4636nm SLCT measurements and simulation match 

reasonably well, the agreement for the target at 1064nm is poor, even after the addition of 

noise.  This problem warrants an in depth look at the lens-reflector target and 

demonstrates that the interferometry method as applied does not provide meaningful 

results for the reflected phase from the lens-reflector targets.  

The Zygo interferometer method does not return reflected phasefront aberrations 

for the lens-reflector targets because of the chromatic properties of the lenses.  The Zygo 

interferometer uses a 632nm HeNe laser as its source [36] but lens-reflector targets 

utilized optics which were designed for 4636nm and 1064nm.  The targets were identical 

except for the lens used.  Both targets used the same Thor Labs PF10-03-P01 silver  
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(a) 

 

(b) 

Figure 11. Peak normalized reflected power distributions of the lens-reflector target 
using the interferometer aberrations interrogated at 4636nm. (a) SLCT data. (b) 
Simulated data.  Simulations and measurements agree reasonably well but the 
1064nm target suggests the methodology for determining the reflected phase was 
incorrect. 
 

 

Figure 12. Slice of reflected power distribution from lens-reflector target using the 
interferometer aberrations interrogated at 4636nm.  Simulations and measurements 
agree reasonably well but the 1064nm target suggests the methodology for 
determining the reflected phase was incorrect. 
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(a) 

 

                                 (b) 

Figure 13. Peak normalized reflected power distributions of the lens-reflector 
target interrogated at 1064nm. (a) SLCT data. (b) Simulated data.  The figures 
demonstrate the poor agreement of the simulation with measured data. 
 

 

Figure 14. Slice of reflected power distribution from lens-reflector target 
interrogated at 1064nm.  Note the poor agreement between simulations and 
measurements.   
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coated mirrors which are highly reflective at both wavelengths.  The 4636nm lens was a 

Thor Labs LA8100 Silicon lens.  Figure 15 is the transmission curve for uncoated silicon 

which shows that wavelengths shorter than 1µm are completely absorbed.  This means no 

source light from the Zygo can pass the lens, so the aberrations measured by the Zygo 

were completely due to surface reflections from the lens.  This is definitely not the target 

characteristic that was desired to be measured.  The 1064nm lens was a Thor Labs 

AC254-100-B made from LAKN22 and SFL6 glass [37].  This lens was coated for >99% 

transmission from 650nm to 1050nm and approximately 98% reflectivity at both 632nm 

and 1064nm.  In this case, the Zygo source can pass the lens, but there may be some 

small front surface reflection that could cause erroneous measured values.  The more 

important effect to consider is the location of the lens focus as a function of wavelength.  

The AC254-100-B lens is an achromatic doublet, meaning chromatic spherical 

aberrations have been decreased so the focal point occurs in the same location and 

maintains focused spot size for the 706.5nm, 855nm, and 1015nm design wavelengths.   

 

Figure 15. Transmission curve for uncoated Silicon [43]. 
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Figure 16 shows the shift in focal point from 100mm for a specified wavelength.  

Comparing the 632nm and 1064nm wavelengths with some interpolation suggests a focal 

point difference of approximately 100µm.  This corresponds to nearly 94 waves of 

defocus between the Zygo measurement at 632nm and the interrogation wavelength of 

1064nm.  A second important consideration must be made because an achromatic lens is 

used in this retro-reflecting target.  An achromatic lens corrects for spherical aberration 

on the way to the mirror in the target, so if the mirror were set precisely at focus, the 

target reflection would not be effected by any aberrations other then the physical 

aberrations due to the fabrication of the optics.  Since the mirror is not precisely at focus, 

the phase curvature of the field incident on the lens prior to exiting the target is different 

than the phase curvature expected for a field propagating from focus.  Additionally, 

achromatic lenses are sensitive to propagation direction and will introduce, rather than 

 

Figure 16. Curve of the focal point position change as a function of wavelength 
for the 1065nm target lens [37]. 
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correct, for spherical aberration when used in the incorrect orientation [37].  Again, this is 

a chromatic aberration so the spherical aberration measured with the Zygo will be 

different than the aberration realized at 1064nm.  All these effects combined create a 

condition for dubious results from the Zygo interferometer for the purposes of this 

experiment.  This is not to say that interferometry would not work to model a complex 

optical system with focusing elements.  If interferometry is to be used, there must be 

clever accounting for chromatic effects or the interferometer measurements must be made 

at the same wavelength with which the target will be interrogated.  

Modeling the reflected phase front from the lens-reflector target was still possible, 

despite the interferometry setback, using the simulation and making several important 

assumptions.  Using the simulation, with code incorporated to apply Zernike polynomial 

aberrations to a target, the aberration coefficients which produced the power distribution 

measured on the SLCT were used as the new target aberrations.  The new coefficients 

were found with trial and error and some knowledge of the target properties.  One such 

property was the idea that the reflected wavefront was most likely to be dominated by 

defocus and spherical aberration.  The Thor Labs optics used are of high quality and 

manufactured to high tolerance to minimize aberrations.  The geometry of the lens-

reflector target inherently introduces defocus and spherical aberration.  Placement of the 

mirror at any position other than focus is equivalent to adding a defocus phase aberration 

to the reflected phase-front.  The lens-reflector targets were assembled using the SLCT 

by mounting the lens and mirror independently on a rail and translating the mirror until 

the maximum amount of reflected power was observed on the SLCT camera.  The lens 

and mirror were then fixed into a mounting tube so the lens and mirror could stay at the 
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appropriate distance for the remainder of the experiments.  The precision with which the 

mirror was able to be placed at the focus of the 100mm lens for both targets was not high 

compared to the wavelengths being used.  Because of the longer wavelength, the 4636nm 

target allows a higher tolerance in placing the lens at focus than is allowed for the 

1064nm target [34].  The introduction of spherical aberration occurs for essentially the 

same reasons in the 4636nm and 1064nm targets.  The 4636nm lens is a plano-convex 

singlet.  Singlet lenses introduce spherical aberration because they cannot focus all rays 

to the exact same point [37].  This, coupled with the limited ability to place the mirror at 

precise focus and plano-convex lenses being sensitive to propagation direction introduces 

spherical aberration to the reflected field on the reflection path.  The achromatic doublet 

lens of the 1064nm target introduces spherical aberrations, as explained previously, 

because of the presence of defocus in the target and the lens’s sensitivity to propagation 

direction [37].  Therefore, the approach to find the correct reflection aberrations for the 

target will assume defocus and spherical aberrations dominate all others.  For both lens 

targets, adjusting the sampling suggested by Equations (25), (26), and (27) was necessary 

to prevent phase aliasing.  The increase in spatial frequency over the target was 

significant for both targets and contributed to a loss of resolution over the detector.  

Figure 17 shows the reflected phase that, when applied to simulation, produces the 

simulated power distribution in the far-field which most closely approximates the 

measured power distribution.  Note that the phase in radians is much larger for the case of 

the 1064nm target, meaning the 1064nm target is much more defocused than the 4636nm 

target.  Also, the spatial frequency of the mesh plot is much higher for the 1064nm target 

since the derivative of the phase is much larger.  It was certainly only coincidence that  
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the Zygo phase measurements of the 4636nm lens-reflector target were close to the actual 

aberrations.  Figure 18 and Figure 19 show the same data sets as before, this time for the 

4636nm lens-reflector target.  Also, Figure 19 shows the deviation of the target from a 

one-inch circular flat mirror as a reference.   

The new phase of the 1064nm lens-reflector target provided some unique 

challenges with respect to the aliasing and resolution constraints as discussed in Chapter 

3.  The derivative of the reflected phase from the 1064nm lens-reflector target is so large 

that the grid spacing required to avoid phase aliasing in the target plane is 90µm, so the 

total size of the grid with 512 samples per side is 4.6cm.  This grid size is less than twice 

the size of the target aperture at 2.54cm.  The source that is used in these simulations, as 

discussed in Chapter 3 and shown in Figure 2(a), must have a large enough extent so that 

the target aperture is uniformly illuminated in the vacuum simulation and the power at the 

 

(a) 

 

(b) 

Figure 17. Reflected phase from lens-reflector target estimated using the vacuum 
simulation to determine defocus and spherical aberration coefficients.  (a) 4636nm 
target (b) 1064nm target.  Phase shift effects observed outside of target diameter are 
due to phase unwrapping algorithm. 
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(a) 

 

(b) 

Figure 18. Peak normalized reflected power distributions of the lens-reflector 
target interrogated at 4636nm with phase aberrations estimated through 
simulation. (a) SLCT data. (b) Simulated data using receiver plane grid spacing 
as determined by the target plane grid spacing. 
 
 

 

Figure 19. Slice of reflected power distribution from 1in diameter lens-reflector 
target interrogated at 4636nm with phase aberrations estimated through 
simulation.  Agreement obtained that is even better than that shown with the 
Zygo determined phase. 
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target is as expected in the turbulence propagation.  Since the 4.6cm grid is not large 

enough for the source beam to meet both criteria, a larger target plane grid spacing is 

used for the source propagation.  In order to multiply the target phase by the source field, 

the source field must be down-sampled to the same grid spacing as the target phase.  This 

is done using bilinear interpolation from the interp2 function in MATLAB.  As a result of 

the small grid spacing at the target plane, a large grid spacing is required in the receiver 

plane, a requirement made evident by Equations (26) and (27).  The required grid spacing 

is on the order of the receiver aperture diameter.  One pixel is not enough resolution at 

the receiver to produce reliable results.  To resolve this resolution shortcoming, the field 

in the receiver plane is up-sampled using the interp2 function to a smaller grid spacing 

allowing for more pixels across the detector aperture.  This method succeeds in 

improving resolution over both target and receiver planes for both the vacuum simulation 

and the turbulence simulation.  Figure 20 shows the two-dimensional reflected power 

distribution from the 1064nm lens target in the far-field (2km) for both  SLCT 

measurements in (a) and simulated results with the simulation-determined phase 

aberration in (b).  Figure 20(b) shows the results of using the interpolation method as 

described above for the distribution in the receiver plane.  The agreement is markedly 

better.  The phase aberrations estimated through simulation were quite large and the 

number of samples over the target aperture had to be increased substantially to avoid 

phase aliasing.  The sampling constraints presented in Chapter 3 require that the grid 

spacing in the receiver plane be increased in concert with a reduction in the target plane 

grid spacing.  In order to get enough resolution over the reflected power distribution to 

compare to measured data, the grid size has to be set to a size that is too large to achieve 
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(a) 

 

(b) 

Figure 20. Peak normalized reflected power distributions of the lens-reflector 
target interrogated at 1064nm with phase aberrations estimated through 
simulation. (a) SLCT data. (b) Simulated data using interpolation to enhance 
resolution  

 

Figure 21. Slice of reflected power distribution from 1in diameter lens-reflector 
target interrogated at 1064nm with phase aberrations estimated through 
simulation.  Agreement is much higher than using the phase measured by the 
Zygo interferometer.  Agreement between simulation and measured values 
suffers at angular positions further off-axis because the beam splitter used on the 
SLCT artificially stretches the power distribution. 
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desired resolution.  The interpolation method as demonstrated definitely helps with 

resolution and was subsequently used as necessary in simulations.  Figure 21 shows a 

slice through the distribution.  This time, the agreement between measured and 

simulation is vastly improved.  Because of the large angular extent of this reflected power 

distribution compared to the other targets, the aberration caused by the beam splitter and 

camera misalignment at angles smaller then -0.07mrad is more pronounced. 

C. Turbulence Simulations 

 With field data collected by experiment as described in Chapter 3, turbulence 

simulations were run to compare simulated data to measured data.  The simulation was 

designed to accept input parameters from the experiment. Table 1 lists the input 

parameters determined by experiment that are loaded into the simulation.  This approach 

allowed for the simulation to make a direct watts-to-watts comparison with measured 

data.  Conversion factors for measured data were developed for the detector fixtures 

using the SLCT where known laser power and detector irradiance was related to detector 

voltage.  Target reflectivity was obtained through manufacturer specification.  

Atmospheric transmission was determined with the LEEDR software package developed 

by the AFIT Center for Directed Energy [39].  Figure 22 shows the flux collected by a 

one-inch aperture centered at some angular position from the monostatic position.  The 

three curves present are the vacuum simulation results, the field measured results, and the 

turbulence simulation results.  The turbulence curves, like the measurement curves, are a 

slice of the reflected power distribution.  They were generated in simulation by 

computing the average flux at the receiver after propagation through a path with 
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corresponding path averaged .  To elaborate, each field measurement has an associated 

path averaged  as reported by the scintillometer.  To find the power distribution 

corresponding to one measurement, a propagation was executed through 50 random 

draws of a turbulence path with the turbulence path  corresponding to the 

measurement.  Instead of averaging the 50 propagations together, an averaging scheme 

Table 1. Experiment parameters for input into simulation. 

Experiment Parameter Value (Units) Error 

Range 782m ±2m 
Target aperture  
diameter 

.0254m negligible 

Receiver aperture 
 diameter 

.0254m negligible 

Source laser power 
 

Measurement dependent 
Mean: 
893MWIR@1064nm 
770MWIR @4636nm 

±(6% of 
measurement+1.03MWIR) 

Source laser divergence 4.96mrad @1064nm 
3.42mrad @4636nm 

±0.1mrad 

Source laser spot size 6.10mm @1064nm 
4.49mm @4636nm 

±0.01mm 

Detector position Start at beam edge 
1cm increments 
@1064nm 
2cm increments 
@4636nm 

±0.5mm 

Cn
2 Measurement Dependent Measurement Dependent 

Detector voltage Measurement Dependent ±0.01mV 
Detector voltage to watts 
conversion factor 

6.11X10-5W/V @1064nm 
9.37X10-6W/V @4636nm 

±1.44X10-5 

±3.91X10-7 

Atmospheric transmission 96.9% @1064nm 
96.3% @4636nm 

negligible 

Corner cube reflectivity 
(net) 

88.47% @1064nm 
94.12% @4636nm 

± 2% of reflectivity 

Lens-reflector  reflectivity 
of optics (net) 

94.12% @1064nm 
95.08% @4636nm 

± 2% of reflectivity 
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more closely aligned with the field measurement process was adopted.  Measured values 

were taken with the lock-in amplifier reporting power with a 3sec time average so that 

the average measured power values as reported are an average of long-term power 

fluctuations.   Therefore, it is appropriate to collect a set of short-term simulations, take 

the average of small sets of short-term values yielding a set of long-term values, then 

average the long-term values together.  Because of computational time considerations, 50 

 

Figure 22. Bistatic power distribution from the corner cube target interrogated at 
4636nm.  Simulated propagations in turbulence and vacuum (Simulated and 
Vacuum on legend) are compared with field measurements (Measured on 
legend). 
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propagations were conducted for each detector position (more propagations are always 

better).  The power distributions from those 50 propagations were split up into sets of ten 

and averaged to obtain a set of ten long term values.  The ten long term values were then 

averaged to yield the mean power received and the standard deviation of the long term 

fluctuations were computed.  The received flux for the average distribution was 

calculated by centering a one-inch aperture at each pixel in a horizontal slice of the 

average reflected power distribution.  This process was repeated for each  value.  Once 

the off-axis flux was measured from each turbulent path, the values were averaged, 

yielding the average simulated distribution in turbulence curve, as shown.  The error bars 

shown on simulated power in turbulence values correspond to long term fluctuations 

within 2σ of the mean as computed in simulation so that 95% of the fluctuations fall 

within those bounds.  The average measured values from experiment are shown with 

error.  The error is the sum of the 2σ field measurement fluctuations and the measurement 

error as computed with errors given in Table 1. The simulation is considered validated by 

the experiment if the error bars of the simulated power distribution overlap with the error 

of the experimental measurement.  Figure 22 does not meet this criteria in some regions 

(most notably in the nulls and side lobes).  It is proposed that this deviation was directly 

related to the setup of the field experiment which resulted in an unaccounted loss of 

source coherence. 

In general, atmospheric turbulence causes a loss of spatial coherence to a 

propagating spatially coherent field (while it is not accurate to say the laser source is 

perfectly coherent, it is treated as one in simulation since the actual laser source 

coherence properties are unknown and are likely negligible compared to the effects of 
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turbulence propagation).  Goodman shows the effects of spatial coherence loss on a 

circular diffracting aperture where the peak is attenuated and power is redistributed off- 

axis resulting in a blurring of the fringes [40].  Figure 23 is a photograph of the 

source/receiver bench setup inside a heated trailer at the test range.  The area of interest is 

the trailer door where the source exits and the target reflection is detected.  Turbulence 

theory shows that  is proportional to the time average magnitude squared fluctuations 

in temperature between two points[4].  Since the trailer atmosphere was warmer than the 

 

Figure 23. Photograph of field experiment setup.  Note the door giving the source 
beam access to the range.  It is at this door where the warm air from the trailer 
and the cold air of the atmosphere outside mixed and caused a visible turbulence 
layer that was not measurable by the scintillometer receiver (also shown in the 
picture). 
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atmosphere outside the trailer, a turbulence boundary layer was set up directly in the 

turbulence path.  While temperature measurements were not taken on site during testing, 

historical WPAFB weather data can be accessed at www.weatherunderground.com.  

Field measurements were taken from November 19-21, 2008 where the ambient 

temperatures outside at measurement times ranged from 28o to 37o F.  The trailer was 

heated to approximately 65o F.  This was a substantial temperature gradient resulting in a 

thin strong turbulence layer immediately at the door.  It is well understood that strong 

turbulence layers have very small inner scales [4].  The small inner scale translates to the 

presence of aberrations of high spatial frequency in the turbulence layer.  Therefore, the 

source beam, which is much smaller in diameter than the received target reflection, 

would be susceptible to the door turbulence layer.  One attempt to capture the effects of 

the door turbulence on the experiment was to move the scintillometer receiver from 

outside to inside the trailer.  This was a futile attempt, however, because the 

scintillometer is not designed to capture short turbulence paths, especially when close to 

the aperture.  The scintillometer aperture is large enough that small scale turbulence 

effects over a short path close to the aperture do not significantly contribute to measured 

irradiance fluctuations and the computed .  Accounting for the turbulence layer at the 

door in simulation was accomplished through consideration of the physics and some trial 

and error.  The most successful modeling technique was to introduce a single random 

Kolmogorov phase screen with the Fried parameter (see Equation (23)) set to a value 

which achieved desired results.  The layer is very thin compared to the entire path 

distance and does not appear to contribute to scintillation of the transmitted or received 

signals in most cases so the single phase screen model is reasonable.  The placement of 
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the phase screen at the target was driven by necessity as it would have been more 

desirable to place the screen at the source where the  physical turbulence layer was 

located.  In simulation, the source beam (as discussed in Chapter 3) was modeled as a 

point source which is only several pixels in extent in the source plane.  Essentially, the 

source plane lacks the resolution to apply a phase screen and achieve physical effects and 

does not account for the divergence of the beam through the door turbulence layer.  

Placing the screen at the target allows for sufficient resolution over the target and 

effectively simulates the small scale wavefront aberrations from the door turbulence layer 

that have propagated with the source to the target plane.  The Fried parameter of the 

phase screen was chosen entirely by trial and error.  Since the 782m path average Fried 

parameter was hundreds of millimeters, it was certain that the value of the screen used 

must be smaller.  After multiple simulations, the Fried parameter chosen for the random 

Kolmogorov phase screen used was 0.07m and 0.04m for the 4636nm interrogations and 

the 1064nm interrogations, respectively.  The Fried parameters have different values for 

different wavelengths because the field measurements were taken on different days with 

different temperature differences.  Ideally, some characterization of the door turbulence 

layer would have been done to account for its effects, i.e. the   value of the layer, the 

volume of the layer, and the identification of the appropriate turbulence power spectrum.  

This would have been a non-trivial characterization beyond the scope of this work.  

Future experiments performed in similar conditions should attempt execution at ambient 

temperatures.   

Although the simulation solution to the door turbulence layer is not physically 

precise, it certainly demonstrates the effects of the turbulence layer and provides some 
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correction to the results.  Figure 24 shows the same bistatic simulated and field 

measurement curves as Figure 22 but with correction for the door turbulence layer with 

the single phase screen at the target method.  The door correction does increase the 

simulated power at the 0.25mrad null as was observed in the field measurements and 

expected by the loss of source coherence.  However, the door turbulence correction also 

takes the simulated power out of range of the measurement error for some other points 

 

Figure 24.  Bistatic power distribution from the corner cube target interrogated 
at 4636nm corrected for the turbulence layer at the source/receiver.  Simulated 
propagations in turbulence and vacuum (Simulated and Vacuum on legend) are 
compared with field measurements (Measured on legend). 
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that were previously estimated well.  This is due directly to having to guess at the door 

turbulence layer model, and illustrates the importance of complete characterization of the 

propagation path.  Never the less, the simulation does quite well at predicting the 

reflected power at most detector positions for the corner cube target interrogated at 

4636nm.    

Figure 25 shows the same simulation and field measurement comparison but for 

the corner cube target interrogated at 1064nm.  Shorter wavelengths are more susceptible 

 

Figure 25. Bistatic power distribution from the corner cube target interrogated at 
1064nm.  Simulated propagations in turbulence and vacuum (Simulated and 
Vacuum on legend) are compared with field measurements (Measured on 
legend). 
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to turbulence and target aberrations when compared to longer wavelengths.  This effect is 

definitely noted in the 1064nm interrogation when compared to the 4636 nm 

interrogation of the same target.  Figure 25 demonstrates how the turbulence eliminates 

nearly all of the vacuum propagation’s diffraction structure.  It does appear, however, that 

there is an anomalous field measurement at the 0.085mrad detector position since it  

does not correspond well with the total field measurement set or the simulations, but it 

does correspond to a large standard deviation in the mean as shown in Figure 25 .  The 

effects of the door turbulence layer are quite pronounced in Figure 25, manifesting in  

different observed slopes of the turbulence simulation and field measurement curve. 

Consistent with the anticipated effects of the door turbulence layer, measured values 

show more power redistributed from positions close to on-axis out to the side lobes of the 

pattern than is predicted by simulation using only the path average .  Figure 26 shows 

the results after application of the door turbulence correction phase screen.  While the  

correction is not perfect, the corrected turbulence simulation curve approaches the 

approximate angular slope of the field measurement curve and the simulation predicts 

return power within error.   

Figure 27, Figure 28, Figure 29, and Figure 30 show the same plots as shown for the 

corner cube target but for the lens-reflector targets with the estimated target reflection 

phase, not the Zygo measured phase.  The observations about the results made for 

previous targets are essentially the same.  The 4636nm lens-reflector target shows nearly 

all data points are predicted within error after correction although the two closest to the 

on axis position do not.  A final observation about the door turbulence is that there is  
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likely a scintillation component to the layer that was initially presumed to be small.  The 

door correction does appear to correct for the general shape or angular slope of the 

distribution, but (specifically in the case of the 1064nm targets) there appears to be a 

constant offset between power values predicted by simulation with door turbulence 

correction and the measured values.  Adding several phase screens at the receiver plane 

with some propagation distance between them t o simulate the volume of the propagation 

layer may have added the scintillation needed to scale the magnitude of the simulated 

distribution.  Again, guessing at the turbulence path correction makes it difficult to  

 

Figure 26. Bistatic power distribution from the corner cube target interrogated at 
1064nm corrected for the turbulence layer at the source/receiver.  Simulated 
propagations in turbulence and vacuum (Simulated and Vacuum on legend) are 
compared with field measurements (Measured on legend). 
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produce an exact match between simulated and measured received power, especially for 

shorter wavelengths where precise characterization of the propagation path is critical.  All 

results considered, the consistency of the trends between simulated and measured data 

and the ability of the simulation to predict many measured data points within error is 

encouraging.   

D. Summary 

 Laboratory experiments have shown the validity of using wave optics and phase 

aberrations to predict the reflected power distribution from an OA target.  The three  

 

Figure 27. Bistatic power distribution from the lens-reflector target interrogated 
at 4636nm.  Simulated propagations in turbulence and vacuum (Simulated and 
Vacuum on legend) are compared with field measurements (Measured on 
legend). 
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primary areas that could have improved results were improving the observed dynamic 

range of the FPA detector images, capturing target irradiance so the measured reflected 

power could be computed and compared with simulated power, and the ability to do 

chromatic interferometry or another more direct method of measuring the actual reflected 

phase aberrations from the lens-reflector targets.  After comparison of simulated and field 

measured data, it has been shown that a wave optics simulation that incorporates the 

correct experimental variables and path dynamics of an OA laser interrogation system 

could predict returned power within the accuracy of the measurement.  The critical 

variable that limited the conclusions that can be drawn from the data presented here is 

 

Figure 28. Bistatic power distribution from the lens-reflector target interrogated 
at 4636nm corrected for the turbulence layer at the source/receiver.  Simulated 
propagations in turbulence and vacuum (Simulated and Vacuum on legend) are 
compared with field measurements (Measured on legend). 
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propagation path characterization.  Although it was shown that a larger than expected loss 

of source coherence was definitely a result of the door turbulence layer, additional 

unaccounted for effects are clearly present in the field measured received power 

distributions when compared with door-corrected simulated measurements.  Never the 

less, the trends observed from attempting to correct for the incomplete characterization of 

turbulence are quite promising and the reflected power distributions for the targets 

interrogated at 4636nm demonstrate that power at most receiver positions can be 

accurately predicted.  

  

Figure 29.  Bistatic power distribution from the lens-reflector target interrogated 
at 1064nm.  Simulated propagations in turbulence and vacuum (Simulated and 
Vacuum on legend) are compared with field measurements (Measured on 
legend). 
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Figure 30.  Bistatic power distribution from the lens-reflector target interrogated at 1064nm 
corrected for the turbulence layer at the source/receiver.  Simulated propagations in 
turbulence and vacuum (Simulated and Vacuum on legend) are compared with field 
measurements (Measured on legend).  Having to guess at the turbulence level of the door 
makes it difficult to find an exact match of simulation with data, but the simulated 
distribution appears to over-predict power only by a constant offset. 
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V.  Conclusions and Recommendations 

A. Chapter Overview 

The research methodology and results as presented in this thesis constitute a proof 

of concept utilizing numeric wave optics simulations to predict returned power from OA 

targets.  The research has shown that there are important considerations that must be 

made when designing a simulation, to include source, target, receiver, and path 

characteristics and dynamics.  There are practical implications for the results presented 

but there is a significant amount of research and engineering necessary to develop and 

apply simulations to an OA characterization system.        

B. Conclusions of Research 

The results presented in this research have shown that numeric wave optics can be 

used to develop a simulation which provides reflected power distributions from 

retroreflecting targets in the presence of atmospheric turbulence.  Utilizing both field and 

laboratory experiments of reflected power distributions, a numeric wave optics 

simulation was designed which predicts within error those power distributions for a 

specified target, where the error is due to measurement uncertainty and random 

fluctuations due to atmospheric turbulence.  Despite non-ideal path characterization, the 

simulation was able to predict returned power for many bistatic receiver positions in the 

presence of turbulence for both a simple corner cube reflector and a more complex OA 

target with a focusing element at two different wavelengths; the simulation methods 

presented and applied are sound.   
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There are several important practical considerations for proper implementation of 

a wave optics simulation like the one presented.  One of the most constraining aspects of 

the simulation was minimizing aliasing in magnitude and phase while maintaining spatial 

frequencies high enough in the target and receiver plane for acceptable resolution.  The 

number of samples in a plane was constrained by computation time. With the exception 

of the corner cube target interrogated at 1064nm, all simulations were run with grids 

using 29 samples per side.  The longest target simulations involved 19 measurement 

positions with corresponding .  Each position received 50 independent propagations 

per position with ten phase screens over the path.  For 19 detector positions, that is a total 

of 950, 10-step propagations taking six hours or more to run to completion, running 

MATLAB on a standard desktop computer with a 3.6GHz processor and 2GByte RAM.  

Efficiency was not specifically considered while writing the code, but the computational 

load is high regardless due to all the Fourier transforms necessary.  Limited by the 

number of samples in the grid, the lens-reflector targets which had phase aberrations with 

large derivatives required a high spatial frequency.  The high spatial frequency at the 

target plane caused a less-than-ideal, but functional, spatial frequency in the receiver 

plane.  Interpolation to up-sample/down-sample to increase/decrease resolution in special 

cases proved to be a viable solution to resolution problems in tightly constrained 

scenarios.  For any laser interrogation scenario of interest, the size of the detector and 

receiver apertures, target phase aberrations, interrogation range, and the interrogation 

wavelength determine sampling and resolution constraints, should be carefully modeled 

or represented in simulation.    
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As is true with any model, the ability of the simulation to predict field results was 

strongly dependent on the input parameters.  Because of the relatively long time constant 

of 3 seconds used to take field measurements, power fluctuations due to turbulence were 

much less of a contributor to the error present in measured values (as shown in the 

Chapter 4 results) than the error introduced by measurement of input parameters.  It 

would have been interesting to observe measured power fluctuations on a time scale on 

the order of the laser pulse frequency.  This would have allowed for the collection of 

scintillation statistics in the field as a function of  which could have been matched to 

scintillation statistics in simulation.  Future experiments interested in such information 

should use electronic data collection to make a faster sampling rate practical. 

Although modeling targets for simulation was done adequately in this research to 

achieve desired results, an accurate and efficient method of direct measurement was not 

demonstrated.   Using reflected phase aberrations is clearly a viable solution.  

Interferometery is likely to be a good method for measuring the reflected phase for input 

into simulation but it has some practical limitations and is rather expensive.  It was shown 

that use of the Zygo interferometer is impractical for targets with focusing elements due 

to its single-wavelength interrogation.  A wavefront sensor integrated into the SLCT 

would be a reasonable solution which would work with the interrogation wavelength of 

choice.  If the reflected phasefront is expected to be dominated by only a few aberrations, 

like the lens-reflector targets used here, guessing at the aberration coefficients to achieve 

measured results may be good enough.  More complex optical systems would likely 

require a more robust solution, perhaps one which uses nonlinear optimization to find the 

correct coefficients.  The SLCT proved effective in providing far-field images of a 
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target’s reflected power, without which the vacuum simulation could not have been 

validated and the phase of the lens-reflector target reflection could not have been 

determined.   

In terms of target characterization, if the appropriate OCS is known for a target 

under a specific laser interrogation geometry, Equation (1) can be used to predict returned 

power in vacuum in the same way the wave optics simulation presented does.  In addition 

to computing the peak DOCS of targets, the SLCT images could be used to compute 

different DOCS and TOCS values of targets, both monostatic and bistatic, given the laser 

interrogation geometry.  In order to do this effectively, care must be taken when 

characterizing the cameras on the SLCT so that noise and dynamic range are adequate to 

make measurements of interest.  Image background subtraction, non-uniformity 

correction, and variable integration times could be used in concert to capture high fidelity 

images for OCS computation.  Accounting for the angular resolution of a bistatic detector 

is an important practical limitation when applying a bistatic OCS computed on the SLCT, 

as described in Chapter 3.     

As was demonstrated by the turbulence layer present at the door of the trailer, 

characterization of the propagation path in field measurements is very important to 

achieving accurate results.  To model more realistic systems, additional modeling of the 

propagation path and system dynamics will be necessary.  For example, a mobile 

fieldable system could introduce aero-optical turbulence effects and mechanical 

vibration.  Many of these effects are wavelength-dependent where shorter wavelengths 

will be more susceptible to variations in the propagation path.     
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C. Recommendations for Future Research 

The work presented in this thesis is primarily a proof of concept that numeric 

wave optics can be used to predict returned power from an OA target in the presence of 

turbulence.  The chief task of using a wave optics simulation to detect and identify 

practical OA targets remains.  Similar experiments and simulations as conducted here 

should be performed for some real OA targets/threats to identify challenges in simulating 

more complex optical systems.  All targets were interrogated at boresight, a condition 

that is not likely to be met in a practical scenario, so aspect angle of targets should be 

considered.  In addition, real OA targets are likely to have an OCS that is much smaller 

than the optical targets used in this research and real laser interrogation systems will be 

scanning systems minimizing the total irradiance incident on a target.  Probability of 

detection at various ranges, laser powers, scan rates, and aspect angles will have to be 

computed for some real targets.   

The idea of target identification from laser radar signatures is not new [40,41].  

Target identification algorithms typically rely on matching unique features of a target to a 

known signature.  With information on the retroreflected power distribution for a target 

of interest, perhaps enough unique features exist to make target identification possible.  

Results presented in this research clearly demonstrate that even relatively similar targets 

can have unique reflected power distributions.  The effects of turbulence, specifically the 

loss of source coherence, could be an important consideration in the target identification 

problem.  Shapiro showed that the reflectance of objects can change when illuminated by 

light at various levels of coherence [42].  
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The further research suggested certainly makes use of more field measurements to 

be matched with simulation results.  Field data collection is a lengthy process, and as 

mentioned in the previous section, is wrought with measurement error.  In order to 

efficiently perform field experiments, it would be very useful to have a specified design 

for a laser interrogation system which maximizes performance and minimizes errors.  

Also, digital data collection is critical to understanding scintillation statistics of received 

power and needs to be implemented if detection measurements are made for a scanning 

system.     

D. Concluding Remarks 

 The research presented in this thesis has presented a viable solution to predicting 

reflected power from an OA target while providing information about the way that power 

is distributed.  This is a valuable, albeit small, piece to solving the larger problem of 

target identification from a tactical system.  Hopefully, future researchers will continue to 

advance towards solving that larger problem with the aid of the research presented here. 
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Appendix A 

A. Laser Sources (same for laboratory and field measurements)  

a. 4636nm Laser Source: Coherent doubled CO2 MID-IR-2 laser, pulsed or quasi-

CW 

 

 

b. 1064nm Source: Crystalaser, Nd:YAG laser, CW (chopped for modulation) 

 

B. Cameras and Detectors 

a. NIR Camera on SLCT: Cohu 7712 (1M Pixel, 7.4µmX7.4µm resolution).  All 

images taken with the Cohu 7712 were background subtracted post-processing as 



 

81 

described in Chapter 4, Section B and non-uniformity corrected (NUC).  NUC 

was accomplished by taking measurements of a white light source in a diffuse 

sphere for 12 different irradiance levels, computing the average count per pixel at 

each irradiance level, and applying a gain to each pixel.     

 

 

b. MWIR Camera:  Custom L3 Comm/Cincinnati Electronics, 256X256 pixel 

camera, 30µmX30µm pixels, liquid nitrogen cooled 
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c. NIR Detector:  ThorLabs PDA400, switchable Gain, Amplified InGaAs 

Detector.  1mm single element detector.  Set to 10dB of gain 

  

 

d. NIR Detector Collection Lens:  ThorLabs LA1951-B, Plano-Convex, 

Diam=0.0254m, f=0.0254m 

 

AR coating reflectivity for Thor Labs lenses: 
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e. MWIR Detector:  Cincinnati Electronics SDD-32EO-S1, powered InSb 1mm 

single element detector, liquid nitrogen cooled. 

 

f. MWIR Detector Collection Lens:  ISP Optics ZC-PM-25-25, Zinc Selenide 

CVD Positive meniscus lens, Diam=0.0254m, f=0.0254m, Anti-reflection (AR) 

coated for 3µm-12µm   
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g. MWIR Detector Collection Mirror:  ThorLabs PF10-03-P01, Protected silver 

mirror, Diam=0.0254m 

 

C. Targets 

a. Corner Cube:  PLX Inc Omni Wave Hollow Reflector, used for both 1064nm 

and 4636nm interrogations, protected gold coated 
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b. Lens-Reflector Targets 

 

1 1064nm Target:   

(1) Lens: ThorLabs AC-254-100-B, Material: LAKN22-SFL6, Acromatic-

doublet, AR coated with B coating, Diam=0.0254m, focl=0.1m 

 

(2) Mirror: ThorLabs PF10-03-P01, Protected silver mirror, Diam=0.0254m 

2 1064nm Target:   

(1) Lens: Thor Labs LA8100, Silicon plano-convex, Diam=0.0254m, 

focl=0.1m 

Material Silicon 
Design Wavelength 4.0 μm 
Wavelength Range 1.2 - 8.0 μm 
Index of Refraction 3.425 at Design Wavelength 
Coating* BBAR 98% from 3 - 5 μm 
Centration ≤ 3 arcmin 
Clear Aperture >80% of Diameter 
Focal Length Tolerance ±1% 
Surface Quality 40/20 Scratch Dig 
Diameter 1" (25.4 mm) 
Diameter Tolerance +0.00 mm / -0.10 mm 
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(2) Mirror: ThorLabs PF10-03-P01, Protected silver mirror, Diam=0.0254m 

D. Other Equipment 

a. Lock-in-amplifier: Stanford Research Systems SR830 DSP lock-in 

 

Settings 4636nm and 
1064nm 

Time Constant 3sec @ 12dB 
Coupling AC 
Input Line+2X line filters 
Phase Positive edge 
Frequency 100kHz 
Noise mode Low 

  

b. Detector Preamplifier: Stanford Research Systems SR560 Low Noise 

preamplifier 
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Settings 4636nm  1064nm 

Gain 5 V/V 20 V/V 
Coupling AC AC 
Gain Mode Low Noise Low Noise 
Filter Cutoffs 6dB/octave @ 1kHz 6dB/octave @ 10Hz 

 

c. Radiometer: Laser Precision Corp RK-5710, used for measuring target irradiance 

and detector calibration in laboratory and field 
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d. Scintillometer:  BLS-900 
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Transmitter Specifications 

 

Receiver Specifications 

 

Processing unit specifications 
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e. Power Meter: Coherent FieldMaster GS with LM-10HTD detector head, 20sec 

integration time.  Used to determine laser source power in field.   
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f. Beam Camera: Spiricon, Inc. Pyrocam III.  Used to measure source beam spot 

size and divergence in field. 
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g. Zygo Interferometer 
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MetroPro Software used with Zernike application 
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E. Simulation  

a.  Software 

1 Matlab 7.4.0 R2007b 

2 WaveProp, Ver. 1.07, The Optical Sciences Company 

3 AOTools, Ver. 1.3, The Optical Sciences Company 

b. Hardware 

1 Dell Precision 670 

2 Intel Xenon 3.60GHz CPU 

3 2.00 GBytes RAM 
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