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1. Objective 

In this effort, we formulated a technique for automatically determining effective probability mass 
functions required by Dempster-Shafer (DS) automatic target detection (ATD) algorithms for 
multi-sensor data fusion. The initial step in this process comprises defining an ATD algorithm 
performance measure. The second step comprises formulating the automatic probability mass 
assignments. In short, our goal was to define the distribution of probability mass assigned to the 
DS “don’t know” hypothesis so as to improve the performance of the fused ATD algorithm 
relative to the results obtained using standard Bayesian approaches.      

2. Approach 

Since DS theory includes the Bayesian theory for statistically independent random variables as a 
special case, we have restricted our attention to independent random data generated using 
Bayesian-based techniques. This approach allowed us to generate the large number of data 
samples required to specify the desired probability mass functions. In addition, it enabled us to 
verify that the approach was suitable for a variety of underlying probability distributions. As 
noted in the literature (1), the number of unknown DS parameters increases rapidly with the 
number of measurement sensors and detection hypotheses. Hence, for this investigation, we 
restricted our attention to fusion of detection algorithm outputs from two sensors, thereby 
keeping the number of unknown parameters manageable. The techniques developed here, 
however, are readily extensible to a larger sensor suite and a larger number of target classes, if 
the increased computational requirements are tolerable.     

The DS mass function is similar to the Bayesian probability density function (pdf). It assigns a 
number to a measurement (which could include a detection algorithm output), expressing the 
likelihood that the measurement indicates a specific object, such as clutter or target. In fact, we 
calculated the mass DS mass functions from the histograms for data samples from the “target” 
and “clutter” hypotheses. Calculating the mass assigned to the “don’t know” hypothesis, 
however, is not so straightforward, and we spent a great deal of effort surmounting this problem.   

We began our development for this project by considering the DS joint probability mass function 
(pmf) for measurements from two independent sensors. The joint pmf is the DS analog of the 
Bayesian joint pdf, and it can be expressed in terms of the mass functions for the individual 
sensors using the DS combination rule: 
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where m12(X,Hi) denotes the joint pmf for sensor 1 and sensor 2; Hi denotes hypothesis i (either 
“target,” “clutter,” or “uncertain”); X denotes the vector of measurement statistics (features) 
from sensor 1 and sensor 2; and H0 U H1 denotes the region of feature space assigned probability 
mass corresponding to “uncertain” or “don’t know.”  K is a normalizing factor defined by 
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Our goal is to define a metric and a procedure that enable us to optimally assign probability mass 
to H0 U H1. One such approach used in the past measured the amount of uncertainty remaining 
after data fusion, declaring the pmf mass assignments to be good if this residual uncertainty is 
reduced (2), while another approach combined a maximum-likelihood parameter-estimation 
approach with DS belief functions (3). In what follows, we eschew the statistical quantities, such 
as plausibility and belief, which are often employed by practitioners of the DS theory (4). 
Instead, we present a novel approach that combines elements of DS-theory with classical 
detection-theoretic techniques commonly used within the automatic target recognition (ATR) 
community. That is, we modified the DS joint mass function to improve the performance of a 
test based on the classical likelihood-ratio test (LRT), and we quantified this performance via 
receiver operator characteristic (ROC) curves. It is this combination of the classical LRT, a ROC 
performance metric, and the DS probabilistic formulation that provides the novelty to our 
approach.  

In the past, researchers have used the area under the ROC curve to compare the performance of 
two competing algorithms (5). We followed a similar approach and defined a fitness measure 
that expresses performance in terms of the area under the ROC between two pre-determined 
probabilities of false alarm (Pfas), defined as r(i), where i denotes the iteration number. Hence, 
we optimized the DS parameters for specific operating points at the expense of potentially 
degrading performance at other, less desirable operating points.  
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We calculated the ratio-based test statistics according to   
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where m12(X, Hi) is the joint pmf described in equation 1, H1 denotes  the “target” hypothesis, 
and H0 denotes the “clutter” or “non-target” hypothesis. Our likelihood ratio test then becomes, 
simply  
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where k is a pre-determined threshold selected to fix a specific operational Pfa or probability of 
detection (Pd). Note that for the case of zero uncertainty m12(X, H0 U H1) = 0, and the likelihood 
ratio test reduces to the classical Bayesian likelihood ratio test.      

We recognize immediately from equations 4 and 1 that we can adjust constituent parameters 
contributing to m12(X, Hi) and alter the test statistic at selected operating Pfas. Values of mi(xi,Hj) 
for i=1,2 and j=0,1 are dictated by the underlying marginal pdfs, and we calculate them using 
standard histogram-based techniques. Values of mi(xi,H0 U H1), however, provide us with the 
degrees of freedom necessary to improve the performance of the likelihood ratio test. These 
probability “masses” comprise the parameters that we optimize via dynamic training algorithms.  

Many of the algorithms for determining optimal parameters rely upon recursive techniques based 
on gradient descent, and they typically attempt to minimize a differentiable cost function, such as 
mean-squared error. Since we use the area under the ROC curve as our fitness measure, our 
metric calculation is nonlinear and unsuitable for a recursive, gradient-based technique. As a 
result, we have identified and implemented an appropriate nonlinear optimization procedure that 
is referred to in the literature as the “particle swarm” algorithm (6). As its name suggests, the 
particle swarm algorithm mimics the dynamics of swarming insects. Its initial step involves the 
creation of N swarm members, each located at some point in the multi-dimensional parameter 
space. In our application, this multi-dimensional space consists of the DS mass functions for the 
“don’t know” hypothesis, mi(xi,H0 U H1), and examples of initial seeds for these weighting 
functions are shown in figure 1. We refer to the set of initial weighting functions as “basis 
functions,” because they generate the final DS mass function. The fitness function—in our case, 
a version of the area under the ROC curve—is evaluated at each swarm member’s location, and 
the maximum (global) fitness value together with its corresponding location are recorded. Each 
swarm member’s location is then modified according to equation 5:  
  

 sj(i+1)= sj(i)+ (g(i) – sj(i)), (5) 
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where sj(i) denotes the location of swarm member j within the parameter space at iteration i; g(i) 
denotes the “globally best” location found by all swarms up to time i; and 0 <  < 1 is a constant 
governing the step size from sj(i) in the direction of g(i). As the algorithm progresses, the 
members of the swarm wander through the parameter space in the direction of the ever-changing 
“globally best” location. Whenever a new maximum is found, both the new maximum and the 
new parameter value are recorded, and the corresponding swarm member is initiated to another 
randomly selected basis function. The algorithm terminates either after a fixed point in the 
parameter space has been found or a designated number of iterations have been completed. After 
the algorithm has converged, we are left with a final version of the mass function as illustrated  
in figure 2.    

 
Figure 1.  Example of members of a swarm at an initial 

iteration for m1(x1, H0 U H1).  The feature value is a 
normalized output from a notional ATD algorithm. 

 

Figure 2.  Example of final mass functions after the particle 
swarm algorithm has converged; here, i =1,2. 
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Both the number and initial disposition of swarm members play a critical role, since they 
determine how the search will proceed. We specify 300 randomly selected initial locations in the 
parameter space so as to bracket anticipated values of the unknown mass functions, and we 
specify a scalar value of  that produces a step size judged to be adequate but not too large (on 
the order of ||g(i) – sj(i)||/10). The 300 functions comprise different triangular waveforms similar 
to those depicted in figure 1, and we also vary the magnitude of mass functions from sensor 1 
relative to those from sensor 2. That is, we include three separate cases: one in which the mass 
values for sensor 1 are smaller than the corresponding mass values for sensor 2, a second in 
which the mass values are about the same size, and a third in which the mass values for sensor 1 
are larger than the corresponding mass values for sensor 2. Once again, this is done in an attempt 
to bracket the region of the parameter space containing the solution. The entire particle swarm 
procedure is outlined in the block diagram in figure 3.  

 

 

Figure 3.  Block diagram of a particle swarm.  
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To evaluate our proposed technique, we simulated multiple sensing scenarios, varying the 
means, standard deviations, and correlations of the two-dimensional Gaussian-distributed feature 
vectors representing measurements from two independent sensors. The 106 samples representing 
clutter measurements from one of the sensors were independent and identically distributed (iid), 
and they may or may not have been correlated with the 106 samples representing clutter 
measurements from the other sensor. The 105 samples representing target measurements from 
one of the sensors were iid and were independent of the clutter samples. For some of the 
scenarios they were, however, correlated with the 105 samples representing measurements from 
the second sensor. Clutter plots of simulated measurements for representative scenarios are 
shown in figure 4.  

 

          

Figure 4.  Scatter plots of sample scatter plots of sample clutter 
(red) and  target (blue) data. The values for sensor 1 and 
sensor 2 represent outputs of notional ATD algorithm.  
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We calculated the mass function for a particular sensor from the histogram of relevant data 
samples in figure 4, and examples of these mass functions are shown in figure 5. Notice that the 
amount of correlation varies slightly between the two data sets. We defined a region of support 
for basis functions, such as those shown in figure 1, by examining the sensor measurements for 
which target and clutter samples have similar mass values in the plots of figure 5. For our 
investigations, we assigned the non-zero mass for mi(xi, H0 U H1) (the uncertainty region) to 
sensor measurements with corresponding mass assignments in the interval [0.2,0.8]—a selection 
based on results of a brief parametric study conducted using one of the preliminary data sets. 
Note that we fixed the parameter k in equation 4 at 1.0 in order expedite the training process, but 
in the most general formulation it too would be determined by the training procedure.  

 

Figure 5.  Mass functions corresponding to data in figure 4. 
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3. Results 

We evaluated detection algorithm performance using data distributed as illustrated in figure 4. 
Our evaluation metric was the ROC curve, and we restricted our attention to the specific Pfa 
interval defined as part of the training procedure. Since our Pfas of interest were low, we used 
4 x 106 clutter samples to ensure that we have a significant number of samples available for 
estimating these probabilities. Results are included in figure 6, along with the underlying 
detection algorithm and data generation parameters. Figure 7 shows the resulting uncertainty 
functions together with the probability mass functions for sensor 1 and sensor 2. We do not 
include the analyses for uncorrelated data, since these results did not indicate a significant 
difference between the Bayesian and the DS approaches. For uncorrelated data, the particle 
swarm converged to uncertainty functions that were zero or nearly zero everywhere.  

 

            
   (a) Parameter set 1. 1=0.5, 2=0.13,                                      (b)  Parameter set 2. 1=0.5, 2=0.13,   
         12=0.15 for clutter12=0.2                                                     1=0.75, 2=0.42,  12=0.3 
         1=0.75, 2=0.42,  12=0.23 for target                                     clutter mean=[0.0, 0.38], target mean =  
         clutter mean=[0.0, 0.38], target mean = [1.25,2.62]                 [1.25,2.62] 

Figure 6.  ROC curves generated for two different sets of algorithm and data parameter values; the data sets 
were used to generate plots in figures 4 and 5, and all data follow normal distribution.  
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           (a) DS mass functions for sensor 1, Parameter set 1.               (b) DS mass functions for sensor 2, Parameter set 1.    
      

                                                       

           (c) DS mass functions for sensor 1, Parameter set 2.               (d) DS mass functions for sensor 2, Parameter set 2.     

Figure 7.  DS mass functions (including uncertainty function, in green) found by the particle swarm for 
parameter sets shown in figure 6.   

4. Conclusions 

The simulation results indicate that it is possible to enhance performance of the ratio-based 
detection algorithm over a designated Pfa interval; although this gain could result in decreased 
performance over a range of Pfas that are not of interest. The expected improvements in 
performance appear to be insignificant when the assumption of independence between the two 
sensors is satisfied, but this is not entirely surprising, since the classic LRT was derived under 
this assumption of independence. When correlation between the sensor measurements is 
introduced, however, the improvement obtained via DS can be significant. This improvement is 
due to the additional degrees of freedom available from the inclusion of the “don’t know” 
category (for individual sensors) into the calculation of the DS joint mass function. While data-
intensive, the DS method provides the possibility of enhancing detection algorithm performance 
at critical values of Pfa, and our procedure, combining concepts from DS and classical detection 
theory, exploits this additional flexibility. With an adequate amount of training data, the DS-
based approach could become an attractive option.  
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