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ABSTRACT 2. THE HMM AND MULTI-RESOLUTION HMM

(MRHMM) ON RAW DATA

We address the problem in signal classification application \we assume familiarity with hidden Markov models (HMMs).
such as automatic speech recognition (ASR) systems thaf good reference is an article by Rabiner [1] from which
employ the hidden Markov model (HMM), that it is neces-ve horrow notation. If we ignore the effects of overlapped
sary to settle fOI: a fixed a_naIyS|s window size and a_f'xedprocessing, the underlying assumption when a time-sesies i
feature set. This is despite the fact that complex signalgegmented for processing is that the data in two different
such as human speech typically contain a wide range of sigsagments are conditionally statistically independent(GS

nal types and durations. We apply the probability densitysiher words, the data in two segments are statistically-inde
function (PDF) projection theorem to generalize the hiddemengent conditioned on the system states in the two segments
Markov model (HMM) to utilize a different features and seg- heing known. The CSI property enables the efficient calcula-
ment length for each state. We demonstrate the algorithiis, of the joint PDF using the forward procedure. Let there
using speech analysis so that long-duration phonemes sugh 5 raw data time-series, denoted¥yconsisting of an in-

as vowels and short-duration phonemes such as plosives C@yer multiple ofT samples, wher& is the basic time quan-
utilize feature extraction tailored to the their own tim@&c  ization. The traditional approach, which we describe $jmp
as the HMM, is to divide the data into uniforinsample seg-
ments which are to be processed separatelyxt e¢present
the data in time-stepconsisting of data samplesHi(t — 1)T
throughtT. In the HMM, it is assumed that:

The Hidden Markov Model (HMM) [1] combined with 1, during anyT-sample segment, the data is governed by
spectral analysis using cepstral coefficients [2] on fixed-  one ofM possible states.
length analysis windows remains at the forefront of auto-2  any two samples, no matter how close together , that are

matic speech recognition (ASR) technology. One problem  contained in two different segments, are CSI.
with this architecture is the necessity of using a fixed anal-

ysis window size. This constraint is a problem because ifror the MRHMM, however, we assume that:
speech and other natural processes, the various phenomena . .
that are being tested (such as phonemes in speech) may occ rg:lj(ralré?h/?n)gg;sigggltztzzgment, the data is governed by
with differing time scale. The window size used on speech P - . - .
analysis is a compromise between phonemes with long timé- [OF €ach stats, there is an associated minimum time
scale such as vowels and phonemes with shorter time scales duration. Once the system transitions to gt must
such as plosives. The need for a fixed-size window arises '€Main in that state fonKsT samples, wheré&s is the
from the fundamental probabilistic approach that undsrlie  INteger minimum duration parameter for staf@ndn >

the method and depends on the comparison of likelihood.
functions formed on a common feature space. One could nog: TWO data samples andx; are assumed to be CSl and are

1. INTRODUCTION

directly compare two likelihood functions if they are define
on different feature spaces. Even if pains are taken to nlerma
ize the behavior of similar features obtained from diffgrin

size data windows, the fundamental basis for comparison is

suspect.

With the introduction of the class-specific feature theo-
rem [3], [4], [5], and later the probability density functio

(PDF) projection theorem (PPT) [6], the freedom now exists

to use a different feature set for each class, even for eatd st
in a HMM [7], and as we now show, different analysis win-

processed separately if (a) the system has made at least
one state transition between timeand j, or (b) the sys-

tem has been continually in the same stlb@it samples

i and | are in different lengtiKsT segments. Otherwise,
samplesg andx; are processed jointly.

4. To allow for the system being in a state for a number of

length-T segments not divisible b, we define a num-
ber ofslavestates, say stata§ s’, that are slaved to state
sin a way to be described, witks > Ky > Kg/.

LetQ=[s1,%...n] be a set of state values, wherel

dow lengths for each state. Thus, the topic of this paperistg <M, 1 <t < N. We callQ atrajectorybecause it defines
apply the PPT to the problem of using varying-size analysi®ne of the many paths through the state diagram or trellis.

windows within the framework of a HMM.

Let p(X|Q) be the likelihood function of the raw data given
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the trajectornyQ. Using the CSI property, we may write We can gather all the state PDF values into the marix=
N p(xt|q). Then, (2) may be computed by the well knofan-
) . ward procedurgl1] operating orR g and using parameters
HMM:  p(X|Q) —t|] p(xt|s)- (D) andA. To change the HMM into a MRHMM, we need two
B steps:
There are no restrictions 0@ except for those restrictions Step 1 Partial PDF values. For each valid trajectory
imposed by the initial state probabilities= {7, L<m<  Q and each stats, collect all terms inp(X|Q) associated
M}, and the state transition matrix (STM)= {A n 1<| <  with the wait state sequence for state partiteand re-
M, 1<m < M}. For the MRHMM, we can encode all the p|ace the terms by theartial PDF value Definep(x{|s) =

above restrictions imposed on state transitions by prgper| ks ) : : ;
structuringrrand A.. For each stats, we can define parti- Mi21 P(xi-1]di), whereg ... g, is the sequence of wait

i . X ; 1/Ks
tion of states, which we caliait states of sizeKs. Let A®  states in the state partition. Define p(x{<5|s) as the
be theexpanded RHMM STM and letn® be the expanded
set of prior state probabilities. We structuA® so that state
transitionsinto the states partition are only allowed into the
first wait state. From the first wait state, the state is force
to increment to the second, third, ... and finally to waitestat
Ks. From wait stateKs, the state is allowed to transition to P(x4|ds = 1) p(xs|ds = 2) p(x6|ds = 3),

the first wait state of any state partition. Note that altfoug 3

A®is dimensionM® x M€ whereM® = sM | K., there are Which we denote byp(xz|s = 1). We replace each of the

partial PDF value(the geometric mean of the PDF terms in
the sequence). In the above example, the first occurrence of
éhe wait state sequence 1,2,3 is the sequence of terms

0n|y MZ free parameters iAC. thr.ee PDF.fa(.:tOI’S by the partial PDF Val[LpéxfﬂS: 1)]1/3
At this point, the MRHMM can be seen as nothing moreThis substitutiordoes not change the value o(X|Q).
than a HMM with a specially structured and A. But the Note that we can accomplish this by changkhg. Asso-

more important difference, which we will explain below, is ciated with every possible occurrence of partitssequence
in the way thatp(X|Q) is calculated. For the moment, let is a diagonal line in matri q of lengthKs. The diagonal
us talk about our goal. We seek an algorithm to solve thétarts with the first wait state of partitieat any timet and

following four problems: ends with the last wait state of partitierat timet + Ks— 1.
1. Segmentation. Find the most likely trajectory through th E&ch such sequence is replaced with the geometric mean as
trellis subject to the restrictions described above. described. The resulting matrix is called the partial PDF ma

v PP i p
2. State probabilities. Determine thgosterioristate prob-  FiX Riq. Note that applying théorward procedureto R
abilitiesy.m = p(s = mX). This is a more complete de- gives precisely the same resultRg providedrand A re-

scription of the trajectories than knowing the single mostl€ct the rest_rictign_s to state transitions that were desed
likely trajectory. above Matrix R, if viewed as an image appears to have

- p 4,
: C . diagonal “streaks” of constant value.
3. ;;’,‘g:‘ tF;:zFrﬁ(-)rggl Jiglgitvglgetl)lgood function of all the data Step 2 Relax CSI assumption. Associated with each
streak is a datanalysis windOV\xth, which is a segment of
L(x) = z p(X|Q) p(Q), (2) data of lengtKsT samples ending at samplie+ Ks— 1)T.
Qc2 The product of each streak of partial PDF values is a PDF of
. . . . . the data analysis window assuming CSI segments. To relax
where2 is the set of all possible trajectories @) is  the CS| assumption within the streak, we replace the partial
thea priori probability of a given trajectory through the ppr yajyes with thes root of the analysis window PDF pro-
trellis. Note that (X) averagep(X|Q) over all trajec- q it Lef t the “full window” partial
tories through the trellis weighted by the probability of cessed as a unit. a.q_represen € Tultwindow™partia
the trajectory. Invalid trajectories have zero contribati  P'DF values created this way. The valuelgX) calculated
4. Re-estimation. We would like to estimate the model paby the forward procedure operating 3"14 changes, however,
rameters from the data. Parameters inclodd, and the it remains a valid joint PDF oK. We know this because all
parameter®s of the conditional state PDRxx¢|s,0s). ~ We have done is replace the the conditional PBEX|Q) as-
For the HMM, the above problems are solved byfitvvard ~ SUMing all the segments are mdependv'anj[ with anqther PDF
procedureand the associatedackward procedureand the that assumes statistical dependence within the wait state s
Baum-Welch algorithm [1]. For the MRHMM, we need to duénces associated with a given state.
adapt these algorithms, not only by structuring thand A, At this point we have a raw-data based MRHMM model
but by changing the way thai{ X|Q) is calculated. We will that we can compute efficiently using the forward procedure
explain by example. Let the first state partition be length 3perating orPtfq. To create a feature-based MRHMM model,
(K1 = 3) and let the partition for state= 1 consist of the we need only to apply the PPT.
wait stateqy=1,q=2, andg= 3. Let
3. CLASS-SPECIFIC MULTI-RESOLUTION
Q=1[4,6,7,1,2,3,4,56,7,10,11,12 5,6,7,1,2,3,10) CLASS.SPECIFIC (CS-MRHMM)

be a particular valid length-20 state trajectory. Being lidva .
trajectory, wait stateg — 1 throughq — 3 occuronly as part The standard feature-based HMM is the same as the raw-data

of the sequencg, 2,3. Here is the point at which the HMM ]Pased HMM with the raw data segmenisreplaced by the
and MRHMM differ. For the HMM, we have eature vector

P(X|Q) = p(x1|qr =4)--- p(x20/020=10).  (3) Z={z1,22...2n}, 2 = T (xt).



With this simple replacement, the forward procedure comThe amount of processing required can be mitigated, by re-

putes the feature-based likelihood function cursive processing. For example, the FFT or autocorrelatio
function (ACF) of a segment can be updated to reflect data
L(Z) = z p(Z|Q) P(Q), (4) that has been shifted out and data that has been shifted in
Qc2 [9]. Applying the MRHMM to real data warrants additional

details beyond what has been so far described.
For the CS-MRHMM, we need to use the PPT to transi-
tion to the feature domain. Let 4.1 Statesvs. Signal classes

Let signal clasgefer to a particular signal phenomenon ob-
served in the data. Letignal staterefer to an instance of a
L : signal class. In the simplest situation, signal class agidi

be the lengtrKT sampleanalysis windowwhich starts at state are synonymous. But, if a signal class is observed to

sample H(til)-r' _Itlncludes segments througkbct+K_1_. repeat, additional signal states may be used to represent th
The termp(x’|s) will be calculated using the PDF projec- ggitional occurrences. These in turn give rise to addition
tion theorem [6]. As we have written several pUb“Cat'O”Spartitions.

on the topic including the tutorial article [8], we descriibe
method only briefly. Lek be a general segment of raw time-
series data. Lets = T5(x) be a feature set calculated fram
specifically designed for state Let f(zs|s) be a PDF esti- We have already introduced the notion of slave partitions
mate of the feature set based on training data from state (Slave states). Up to now, this has only meant the necessity
The feature likelihood function iprojectedfrom the feature of adding additional states with low&r. To computel(X)
space to the raw data by pre-multiplying by the J-function asvith the forward procedure, there is nothing else that needs
follows: to be done. However, to train the parameters, we will need to
Pp(x|S) = I(x; Tm,Hos) P(zs|S). (5) discuss the process gangingstates.

Xt = a1 - Xerk-1T);

4.2 Slave Partitions

The functionpp(x|s) can be regarded as a function onlysof 4 3 Training the CS-MRHMM.

by substitutingls(x) for zs and can be shown to integrate to 1 ) o
overx (thus itis a PDF). The J-function is a unique function!n the standard Baum-Welch algorithm for re-estimation of
of x determined precisely from the feature transformaign HMM parameters [1], the state feature PDFs for statee

and the C|ass_dependent reference hypotms trained by maXimiZing |Og-|ikenh00d functions We|ghte¢ b
¥st. Since the standard HMM does not differentiate between
p(x|Hos) wait states, we would need to a separate PDF estimate for
J(x;Ts,Hos) = ———- (6) each wait state. However, for the CS-MRHMM, there are
P(zs/Hos) only PDF estimates associated with the initial wait states,

the first wait states of each partition. Logically, the CS-
MRHMM produces values oy that are constant in diag-
onal streaks in a partition. That ig4t = Y1441 If wait
stategg andq+ 1 are in the same partition. Thus, in the CS-
MRHMM, each analysis window can be traced to a given
constant-valued streak in thg: matrix. When training the
CS-MRHMM, the features from the associated analysis win-
dow are weighted by the corresponding valueygf in the
streak. Training becomes slightly more complicated, how-
ever, once we consider slave partitions and if the number of
%ignal states exceeds the number of signal classes. While
each partition is associated with a PDF estimate, we may
not want all partition PDF estimates to be independent. To
remedy this situation, we “gang together” all partitionatth
associate with a given signal class. To gang partitions, we
first create a compressed versionygf, denoted by, ,

4. PRACTICAL IMPLEMENTATION DETAILS which sumsyq: over all wait states associated with signal
Let us briefly review what we have done so far. We haveFl2ssm. Then we then weight an analysis window by the
described how to compute the likelihood function of the cs-Smallestvalue of ym in the set of time stepscontained in
MRHMM. To do this, we identify every time-shifted analy- the analysis window. This works very well in practice but is
sis window. For each statand fime step, we identify the & Cléar departure from the Baum-Welch algorithm and may
analysis window that starts at time steand is of lengtKeT produce an algorithm without guaranteed monotonicity.
samples. On this window, we extract the state-dependent fea o .
ture set, then use the PPT to compute the raw-data PDF @4 Efficient Implementation

the analysis window. We then take tig root of the PDF  The number of wait states in the expanded HMM problem
value and insert this value into the lendthdiagonal streak can be very large. The forward and backward procedures
in the matrithfq. Then, we apply the well-known forward have a complexity of the order of the square of the number
procedure using the expanded paramet#ftsA®. WhenKs  of states. Thus, an efficient implementation of the forward
is large, this requires a highly overlapped set of windowsand backward procedures and Baum-Welch algorithm may

Since J(x; Ts,Hos) is determineda priori without regard
to training data, it can be considered thetrainedpart of
Pp(x(s), while p(zs|s) is the trained part.

While it is true thatpp(x|s) is a PDF, it is only an esti-
mate ofp(x|s). The degree to whiclpp(x|s) is a good esti-
mate ofp(x|s) depends on (a) the accuracypiks|s) and (b)
the degree to whichs is asufficient statistidor the binary
hypothesis test betwearandHg s. In the rare case that is
in fact a sufficient statistic, the accuracy f(x|s) depends
only upon the accuracy of the low-dimensional PDF estimat
p(zs|s). The J-function takes many forms [6], one of which
can be used whexy are maximum likelihood (ML) estimates
of a set of parameters. In this cadéx; Ts,Hos) has a simple
form based on the Fisher’s information matrix [6].



be needed that takes advantage of the redundancies in theerlap depended on the length of the analysis window. To
expanded problem. We have obtained a time reduction factdrandle end effects, data was assumed to wrap around in time.
of 42 with a problem that had 7 signal classes and expanded Features were extracted from each analysis window by
to 274 wait states. The two algorithms were tested to produckrst taking the FFT, computing the magnitude squared, then

the same results within machine precision. computing the inverse-FFT to produce the autocorrelation
function (ACF). The Levinson algorithm was used to pro-
5. EXAMPLES duce the reflection coefficients of orderThe total power in
. window is also stored as tHe+ 1st feature. The J-function
5.1 Simulated Data [6] is obtained by use of the saddle-point approximatior.[10

To illustrate the concepts, we tested the concept of the CS=urther details of the implementation details of the AR mod-
MRHMM using simulated data. To independent identicallyels can be found in [8].

distributed (iid) Gaussian noise, we added a low frequency In Figure 2, we see the partial PDF matﬁ{gn for a typ-
(LF) pulse of autoregressive (AR) process of 128 samples iftal sample. Wait stateg= 1 throughg = 15 are associated
length with a peak frequency response of 0.4 radians per saiwith the “Noise” signal class. wait states= 16 through
ple, followed by a random-length gap of at least 256 sampleg) = 22 are associated with the “LF Pulse” signal class, and
followed by high frequency (HF) pulse of AR process of 64wait statesg = 23 throughg = 25 are associated with the

samples with a peak frequency response of 1.2 radians p&HF Pulse” signal class. The gamma probabilities are a by-
sample. An example of the signal and noise is shown in Fig-

ure 1. We implemented the HMM with three signal states,

partition 1
NOISE

partition

feguenty
Wit s-ates

partition 5

Figure 1: Example of spectrogram of synthetic data. The

data consists of three signal classes. Class 1 (noise)soccqafigure 2- Partial PDF matrinfm showing devisions between

first, then a low-frequency pulse of duration 128 samplesgq . ¢jasses (solid horizontal lines) and between waest
then noise, then a high-frequency pulse of duration 64 sal

ples rTf:iartitions (dotted lines). Higher probability is darker.

: . - ,product of the Baum Welch algorithm [1] and indicate the
each corresponding to a signal class : “noise”, “LF pulse”yg|ative probability of each wait state given the data. The
and "HF pulse”. We used nine partitions including six slavegamma probabilities corresponding to figure 2 are shown in
partitions. The elemental segment length Was: 32 sam-  Figure 3. This figure can be interpreted as the trajectory
ples. There were a total of 25 wait states. Parameters of thg,oygh figure 3 that pick up the highest probabilities while
nine partitions are listed in table 1. Autoregressive (LPChneeting the restrictions set by the state transition matrix

Partition | Signalclass| KT | K | P L8 A 8
1 Noise 256 | 8 | 4 L ll'i
2 | Nowe |1284 |2 | ""55 ll.'-... HH:"-.H"‘«H N,
3 Noise 64 (2|4 | IUTI AP L ERTREY POPIPTRIY NIVILICIRTIOY BIPSPRSL MIVIORL APEOSY. POORN
4 Noise 32|13 R, ".I ]
5 LFPulse | 128 | 4 | 4 L SR T SN
6 LFPulse | 64 | 2 | 4 T UF 7
7 LFPulse | 32 | 1| 3
8 HFPulse | 64 | 2 | 4
9 HFPulse | 32 | 1| 3

50
Time step

Table 1: Partition parameters for the illustrative example
K is the partition length in elemental segment§T is the
length of the partition in samples. ParameRas the autore-
gressive (AR) model order (same as LPC model order). Note that the wait states for “LF pulseq & 16 through

g = 19) are clearly seen where the pulse occurs. The same
features of model ordelP (see table 1) were extracted by is true of the “HF pulse” eventg(= 23 throughq = 24) .
overlapped window processing. A separate feature processti is possible to see various competing trajectories thhoug
was used for each combination KfandP. Features were the trellis. Note for example in time steps 43 through 56,
shared between partitions that had the s&rendP values. the noise gap between the two pulses, the HMM is in the
Analysis windows were shifted always by the elemental segroise signal class. In steps 43-50, it is in partition 1, {wai
ment length of 32 samples for each update, so the amount efatesq = 1 throughqg = 8). Then after exiting wait state

Figure 3: Wait state probabilities for illustrative exarapl



spectrogram

Frequency

50 100 150 200 250 300 350 400 450
Elemental Segment

Figure 4: Example of CS-MRHMM operating on the word “stooFProm top to bottom: compressed gamma probabilities
y,%,t, log signal power, and spectrogram. Short analysis windwmve been employed for the “T”, while longer processing has
been used for background noise and the sounds “S”, “00” afidThe three components of the “T” can be clearly identified.

g =4, it has located two possibilities to span the six time REFERENCES
steps remaining before HF pulse occurs. It can either go into i . _ .

3 (wait statesy = 13 throughq = 14), or it can choose the and selected applications in speech recognitiég-

The gamma probabilities can be collapsed to indicate just _ _ _ _ _
the signal classes, as shown in Figure 5. The class probabili[2] J. W. Picone, “Signal modeling techniques in speech
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specific feature theoremEEE Trans. Information
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[5] P. M. Baggenstoss, “Class—specific fe'atures in classi-
ties (figure 5) is an accurate indication of the true conténto  fication.,” IEEE Trans Signal Processingp. 3428—

Figure 5: Signal class probabilities calculated by summing [4]
figure 3 over the wait states of each class.

the data to a time resolution &f= 32 samples. 3432, December 1999.
[6] P. M. Baggenstoss, “The PDF projection theorem and
5.2 Speech Data the class-specific methodEEE Trans Signal Process-

ing, pp. 672—-685, March 2003.
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detailed description of the experiment. We identified seven r_|thm for hidden Markov models with multlp!e observa

) . tion spaces.,JEEE Trans. Speech and Audjap. 411—
signal classes and assigned valuds ahdP (LPC order) (1) 416. May 2001
Noiseused for both background and the “T” closuke= 12 » V&Y ' . . .
or 384 samplesP = 7, (2)“S” : K = 12 or 384 samples, [8] P. M. Baggenstoss, “The class-specific classifier:

P=7,(3)“T"Burst : K=4or128sample®® =5, (4)“T” Avoiding the curse of dimensionality (tutorial)IEEE
Aspiration : K = 8 or 256 samples? = 6, (5)“00” vowel Aerospace and Electronic Systems Magazine, special
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that the three components of the “T” can be clearly seen by
observingyg,; -



