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ABSTRACT

We address the problem in signal classification applications,
such as automatic speech recognition (ASR) systems that
employ the hidden Markov model (HMM), that it is neces-
sary to settle for a fixed analysis window size and a fixed
feature set. This is despite the fact that complex signals
such as human speech typically contain a wide range of sig-
nal types and durations. We apply the probability density
function (PDF) projection theorem to generalize the hidden
Markov model (HMM) to utilize a different features and seg-
ment length for each state. We demonstrate the algorithm
using speech analysis so that long-duration phonemes such
as vowels and short-duration phonemes such as plosives can
utilize feature extraction tailored to the their own time scale.

1. INTRODUCTION

The Hidden Markov Model (HMM) [1] combined with
spectral analysis using cepstral coefficients [2] on fixed-
length analysis windows remains at the forefront of auto-
matic speech recognition (ASR) technology. One problem
with this architecture is the necessity of using a fixed anal-
ysis window size. This constraint is a problem because in
speech and other natural processes, the various phenomena
that are being tested (such as phonemes in speech) may occur
with differing time scale. The window size used on speech
analysis is a compromise between phonemes with long time
scale such as vowels and phonemes with shorter time scales
such as plosives. The need for a fixed-size window arises
from the fundamental probabilistic approach that underlies
the method and depends on the comparison of likelihood
functions formed on a common feature space. One could not
directly compare two likelihood functions if they are defined
on different feature spaces. Even if pains are taken to normal-
ize the behavior of similar features obtained from differing-
size data windows, the fundamental basis for comparison is
suspect.

With the introduction of the class-specific feature theo-
rem [3], [4], [5], and later the probability density function
(PDF) projection theorem (PPT) [6], the freedom now exists
to use a different feature set for each class, even for each state
in a HMM [7], and as we now show, different analysis win-
dow lengths for each state. Thus, the topic of this paper is to
apply the PPT to the problem of using varying-size analysis
windows within the framework of a HMM.

2. THE HMM AND MULTI-RESOLUTION HMM
(MRHMM) ON RAW DATA

We assume familiarity with hidden Markov models (HMMs).
A good reference is an article by Rabiner [1] from which
we borrow notation. If we ignore the effects of overlapped
processing, the underlying assumption when a time-series is
segmented for processing is that the data in two different
segments are conditionally statistically independent (CSI). In
other words, the data in two segments are statistically inde-
pendent conditioned on the system states in the two segments
being known. The CSI property enables the efficient calcula-
tion of the joint PDF using the forward procedure. Let there
be a raw data time-series, denoted byX, consisting of an in-
teger multiple ofT samples, whereT is the basic time quan-
tization. The traditional approach, which we describe simply
as the HMM, is to divide the data into uniformT-sample seg-
ments which are to be processed separately. Letxt represent
the data in time-stept consisting of data samples 1+(t−1)T
throughtT. In the HMM, it is assumed that:

1. during anyT-sample segment, the data is governed by
one ofM possible states.

2. any two samples, no matter how close together , that are
contained in two different segments, are CSI.

For the MRHMM, however, we assume that:

1. during anyT-sample segment, the data is governed by
one ofM possible states.

2. for each states , there is an associated minimum time
duration. Once the system transitions to states, it must
remain in that state fornKsT samples, whereKs is the
integer minimum duration parameter for states, andn≥
1.

3. Two data samplesxi andx j are assumed to be CSI and are
processed separately if (a) the system has made at least
one state transition between timesi and j, or (b) the sys-
tem has been continually in the same states but samples
i and j are in different length-KsT segments. Otherwise,
samplesxi andx j are processed jointly.

4. To allow for the system being in a state for a number of
length-T segments not divisible byKs, we define a num-
ber ofslavestates, say statess′, s′′, that are slaved to state
s in a way to be described, withKs > Ks′ > Ks′′ .

Let Q = [s1,s2 . . .sN] be a set of state values, where 1≤
st ≤ M, 1≤ t ≤ N. We callQ a trajectorybecause it defines
one of the many paths through the state diagram or trellis.
Let p(X|Q) be the likelihood function of the raw data given
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the trajectoryQ. Using the CSI property, we may write

HMM : p(X|Q) =
N

∏
t=1

p(xt |st). (1)

There are no restrictions onQ except for those restrictions
imposed by the initial state probabilitiesπ = {πm, 1≤ m≤
M}, and the state transition matrix (STM)A = {Al ,m 1≤ l ≤
M, 1 ≤ m≤ M}. For the MRHMM, we can encode all the
above restrictions imposed on state transitions by properly
structuringπ andA. For each states, we can define aparti-
tion of states, which we callwait states, of sizeKs. Let Ae

be theexpandedMRHMM STM and letπe be the expanded
set of prior state probabilities. We structureA

e so that state
transitionsinto the states partition are only allowed into the
first wait state. From the first wait state, the state is forced
to increment to the second, third, ... and finally to wait state
Ks. From wait stateKs, the state is allowed to transition to
the first wait state of any state partition. Note that although
A

e is dimensionMe×Me whereMe = ∑M
m=1 Km, there are

only M2 free parameters inAe.
At this point, the MRHMM can be seen as nothing more

than a HMM with a specially structuredπ andA. But the
more important difference, which we will explain below, is
in the way thatp(X|Q) is calculated. For the moment, let
us talk about our goal. We seek an algorithm to solve the
following four problems:
1. Segmentation. Find the most likely trajectory through the

trellis subject to the restrictions described above.
2. State probabilities. Determine thea posterioristate prob-

abilitiesγt,m = p(st = m|X). This is a more complete de-
scription of the trajectories than knowing the single most
likely trajectory.

3. Joint PDF. The joint likelihood function of all the data
given the model is given by

L(x) = ∑
Q∈Q

p(X|Q) p(Q), (2)

whereQ is the set of all possible trajectories andP(Q) is
thea priori probability of a given trajectory through the
trellis. Note thatL(X) averagesp(X|Q) over all trajec-
tories through the trellis weighted by the probability of
the trajectory. Invalid trajectories have zero contribution.

4. Re-estimation. We would like to estimate the model pa-
rameters from the data. Parameters includeπ, A, and the
parametersθ s of the conditional state PDFsp(xt |s,θ s).

For the HMM, the above problems are solved by theforward
procedureand the associatedbackward procedureand the
Baum-Welch algorithm [1]. For the MRHMM, we need to
adapt these algorithms, not only by structuring theπ andA,
but by changing the way thatp(X|Q) is calculated. We will
explain by example. Let the first state partition be length 3
(K1 = 3) and let the partition for states = 1 consist of the
wait statesq = 1, q = 2, andq = 3. Let

Q = [4,6,7,1,2,3,4,5,6,7,10,11,12,5,6,7,1,2,3,10]

be a particular valid length-20 state trajectory. Being a valid
trajectory, wait statesq = 1 throughq = 3 occuronly as part
of the sequence1,2,3. Here is the point at which the HMM
and MRHMM differ. For the HMM, we have

p(X|Q) = p(x1|q1 = 4) · · · p(x20|q20 = 10). (3)

We can gather all the state PDF values into the matrixPt,q =
p(xt |q). Then, (2) may be computed by the well knownfor-
ward procedure[1] operating onPt,q and using parametersπ
andA. To change the HMM into a MRHMM, we need two
steps:

Step 1. Partial PDF values. For each valid trajectory
Q and each states, collect all terms inp(X|Q) associated
with the wait state sequence for state partitions and re-
place the terms by thepartial PDF value. Definep(xKs

t |s) =

∏Ks
i=1 p(xt+i−1|qi), whereq1 . . .qKs is the sequence of wait

states in the states partition. Define
[

p(xKs
t |s)

]1/Ks
as the

partial PDF value(the geometric mean of the PDF terms in
the sequence). In the above example, the first occurrence of
the wait state sequence 1,2,3 is the sequence of terms

p(x4|q4 = 1) p(x5|q5 = 2) p(x6|q6 = 3),

which we denote byp(x3
4|s = 1). We replace each of the

three PDF factors by the partial PDF value[p(x3
4|s= 1)]1/3.

This substitutiondoes not change the value ofp(X|Q).
Note that we can accomplish this by changingPt,q. Asso-

ciated with every possible occurrence of partitionssequence
is a diagonal line in matrixPt,q of lengthKs. The diagonal
starts with the first wait state of partitions at any timet and
ends with the last wait state of partitions at timet + Ks−1.
Each such sequence is replaced with the geometric mean as
described. The resulting matrix is called the partial PDF ma-
trix Pp

t,q. Note that applying theforward procedureto Pp
t,q

gives precisely the same result asPt,q providedπ andA re-
flect the restrictions to state transitions that were described
above. Matrix Pp

t,q if viewed as an image appears to have
diagonal “streaks” of constant value.

Step 2. Relax CSI assumption. Associated with each
streak is a dataanalysis windowxKs

t , which is a segment of
data of lengthKsT samples ending at sample(t + Ks−1)T.
The product of each streak of partial PDF values is a PDF of
the data analysis window assuming CSI segments. To relax
the CSI assumption within the streak, we replace the partial
PDF values with theKs root of the analysis window PDF pro-
cessed as a unit. LetPf

t,q represent the “full window” partial
PDF values created this way. The value ofL(X) calculated
by the forward procedure operating onPf

t,q changes, however,
it remains a valid joint PDF ofX. We know this because all
we have done is replace the the conditional PDFsP(X|Q) as-
suming all the segments are independent with another PDF
that assumes statistical dependence within the wait state se-
quences associated with a given state.

At this point we have a raw-data based MRHMM model
that we can compute efficiently using the forward procedure
operating onPf

t,q. To create a feature-based MRHMM model,
we need only to apply the PPT.

3. CLASS-SPECIFIC MULTI-RESOLUTION
CLASS-SPECIFIC (CS-MRHMM)

The standard feature-based HMM is the same as the raw-data
based HMM with the raw data segmentsxt replaced by the
feature vector

Z = {z1,z2 . . .zN}, zt = T(xt ).



With this simple replacement, the forward procedure com-
putes the feature-based likelihood function

L(Z) = ∑
Q∈Q

p(Z|Q) P(Q), (4)

For the CS-MRHMM, we need to use the PPT to transi-
tion to the feature domain. Let

x
K
t = [x1+(t−1)T . . .x(t+K−1)T ],

be the lengthKT sampleanalysis windowwhich starts at
sample 1+(t−1)T. It includes segmentsxt throughxt+K−1.
The termp(xK

t |s) will be calculated using the PDF projec-
tion theorem [6]. As we have written several publications
on the topic including the tutorial article [8], we describethe
method only briefly. Letx be a general segment of raw time-
series data. Letzs = Ts(x) be a feature set calculated fromx
specifically designed for states. Let p̂(zs|s) be a PDF esti-
mate of the feature setzs based on training data from states.
The feature likelihood function isprojectedfrom the feature
space to the raw data by pre-multiplying by the J-function as
follows:

p̂p(x|s) = J(x;Tm,H0,s) p̂(zs|s). (5)

The function ˆpp(x|s) can be regarded as a function only ofx

by substitutingTs(x) for zs and can be shown to integrate to 1
overx (thus it is a PDF). The J-function is a unique function
of x determined precisely from the feature transformationTs
and the class-dependent reference hypothesisH0,s:

J(x;Ts,H0,s) =
p(x|H0,s)

p(zs|H0,s)
. (6)

Since J(x;Ts,H0,s) is determineda priori without regard
to training data, it can be considered theuntrainedpart of
p̂p(x|s), while p̂(zs|s) is the trained part.

While it is true that ˆpp(x|s) is a PDF, it is only an esti-
mate ofp(x|s). The degree to which ˆpp(x|s) is a good esti-
mate ofp(x|s) depends on (a) the accuracy of ˆp(zs|s) and (b)
the degree to whichzs is a sufficient statisticfor the binary
hypothesis test betweens andH0,s. In the rare case thatzs is
in fact a sufficient statistic, the accuracy of ˆpp(x|s) depends
only upon the accuracy of the low-dimensional PDF estimate
p̂(zs|s). The J-function takes many forms [6], one of which
can be used whenzs are maximum likelihood (ML) estimates
of a set of parameters. In this case,J(x;Ts,H0,s) has a simple
form based on the Fisher’s information matrix [6].

4. PRACTICAL IMPLEMENTATION DETAILS

Let us briefly review what we have done so far. We have
described how to compute the likelihood function of the CS-
MRHMM. To do this, we identify every time-shifted analy-
sis window. For each states and time stept, we identify the
analysis window that starts at time stept and is of lengthKsT
samples. On this window, we extract the state-dependent fea-
ture set, then use the PPT to compute the raw-data PDF of
the analysis window. We then take theKs root of the PDF
value and insert this value into the lengthKs diagonal streak
in the matrixPf

t,q. Then, we apply the well-known forward
procedure using the expanded parametersπe, A

e. WhenKs
is large, this requires a highly overlapped set of windows.

The amount of processing required can be mitigated, by re-
cursive processing. For example, the FFT or autocorrelation
function (ACF) of a segment can be updated to reflect data
that has been shifted out and data that has been shifted in
[9]. Applying the MRHMM to real data warrants additional
details beyond what has been so far described.

4.1 States vs. Signal classes

Let signal classrefer to a particular signal phenomenon ob-
served in the data. Letsignal staterefer to an instance of a
signal class. In the simplest situation, signal class and signal
state are synonymous. But, if a signal class is observed to
repeat, additional signal states may be used to represent the
additional occurrences. These in turn give rise to additional
partitions.

4.2 Slave Partitions

We have already introduced the notion of slave partitions
(slave states). Up to now, this has only meant the necessity
of adding additional states with lowerK. To computeL(X)
with the forward procedure, there is nothing else that needs
to be done. However, to train the parameters, we will need to
discuss the process ofgangingstates.

4.3 Training the CS-MRHMM.

In the standard Baum-Welch algorithm for re-estimation of
HMM parameters [1], the state feature PDFs for states are
trained by maximizing log-likelihood functions weighted by
γs,t . Since the standard HMM does not differentiate between
wait states, we would need to a separate PDF estimate for
each wait state. However, for the CS-MRHMM, there are
only PDF estimates associated with the initial wait states,
the first wait states of each partition. Logically, the CS-
MRHMM produces values ofγq,t that are constant in diag-
onal streaks in a partition. That is,γq,t = γq+1,t+1 if wait
statesq andq+1 are in the same partition. Thus, in the CS-
MRHMM, each analysis window can be traced to a given
constant-valued streak in theγq,t matrix. When training the
CS-MRHMM, the features from the associated analysis win-
dow are weighted by the corresponding value ofγq,t in the
streak. Training becomes slightly more complicated, how-
ever, once we consider slave partitions and if the number of
signal states exceeds the number of signal classes. While
each partition is associated with a PDF estimate, we may
not want all partition PDF estimates to be independent. To
remedy this situation, we “gang together” all partitions that
associate with a given signal class. To gang partitions, we
first create a compressed version ofγq,t , denoted byγc

m,t ,
which sumsγq,t over all wait states associated with signal
classm. Then we then weight an analysis window by the
smallestvalue ofγm,t in the set of time stepst contained in
the analysis window. This works very well in practice but is
a clear departure from the Baum-Welch algorithm and may
produce an algorithm without guaranteed monotonicity.

4.4 Efficient Implementation

The number of wait states in the expanded HMM problem
can be very large. The forward and backward procedures
have a complexity of the order of the square of the number
of states. Thus, an efficient implementation of the forward
and backward procedures and Baum-Welch algorithm may



be needed that takes advantage of the redundancies in the
expanded problem. We have obtained a time reduction factor
of 42 with a problem that had 7 signal classes and expanded
to 274 wait states. The two algorithms were tested to produce
the same results within machine precision.

5. EXAMPLES

5.1 Simulated Data

To illustrate the concepts, we tested the concept of the CS-
MRHMM using simulated data. To independent identically
distributed (iid) Gaussian noise, we added a low frequency
(LF) pulse of autoregressive (AR) process of 128 samples in
length with a peak frequency response of 0.4 radians per sam-
ple, followed by a random-length gap of at least 256 samples,
followed by high frequency (HF) pulse of AR process of 64
samples with a peak frequency response of 1.2 radians per
sample. An example of the signal and noise is shown in Fig-
ure 1. We implemented the HMM with three signal states,
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Figure 1: Example of spectrogram of synthetic data. The
data consists of three signal classes. Class 1 (noise) occurs
first, then a low-frequency pulse of duration 128 samples,
then noise, then a high-frequency pulse of duration 64 sam-
ples.

each corresponding to a signal class : “noise”, “LF pulse”,
and “HF pulse”. We used nine partitions including six slave
partitions. The elemental segment length wasT = 32 sam-
ples. There were a total of 25 wait states. Parameters of the
nine partitions are listed in table 1. Autoregressive (LPC)

Partition Signal class KT K P
1 Noise 256 8 4
2 Noise 128 4 4
3 Noise 64 2 4
4 Noise 32 1 3
5 LF Pulse 128 4 4
6 LF Pulse 64 2 4
7 LF Pulse 32 1 3
8 HF Pulse 64 2 4
9 HF Pulse 32 1 3

Table 1: Partition parameters for the illustrative example.
K is the partition length in elemental segments.KT is the
length of the partition in samples. ParameterP is the autore-
gressive (AR) model order (same as LPC model order).

features of model orderP (see table 1) were extracted by
overlapped window processing. A separate feature processor
was used for each combination ofK andP. Features were
shared between partitions that had the sameK andP values.
Analysis windows were shifted always by the elemental seg-
ment length of 32 samples for each update, so the amount of

overlap depended on the length of the analysis window. To
handle end effects, data was assumed to wrap around in time.

Features were extracted from each analysis window by
first taking the FFT, computing the magnitude squared, then
computing the inverse-FFT to produce the autocorrelation
function (ACF). The Levinson algorithm was used to pro-
duce the reflection coefficients of orderP. The total power in
window is also stored as theP+ 1st feature. The J-function
[6] is obtained by use of the saddle-point approximation [10].
Further details of the implementation details of the AR mod-
els can be found in [8].

In Figure 2, we see the partial PDF matrixPf
i,m for a typ-

ical sample. Wait statesq = 1 throughq = 15 are associated
with the “Noise” signal class. wait statesq = 16 through
q = 22 are associated with the “LF Pulse” signal class, and
wait statesq = 23 throughq = 25 are associated with the
“HF Pulse” signal class. The gamma probabilities are a by-

Figure 2: Partial PDF matrixPf
i,m showing devisions between

signal classes (solid horizontal lines) and between wait state
partitions (dotted lines). Higher probability is darker.

product of the Baum Welch algorithm [1] and indicate the
relative probability of each wait state given the data. The
gamma probabilities corresponding to figure 2 are shown in
Figure 3. This figure can be interpreted as the trajectory
through figure 3 that pick up the highest probabilities while
meeting the restrictions set by the state transition matrix.

Figure 3: Wait state probabilities for illustrative example.

Note that the wait states for “LF pulse” (q = 16 through
q = 19) are clearly seen where the pulse occurs. The same
is true of the “HF pulse” event (q = 23 throughq = 24) .
It is possible to see various competing trajectories through
the trellis. Note for example in time steps 43 through 56,
the noise gap between the two pulses, the HMM is in the
noise signal class. In steps 43-50, it is in partition 1, (wait
statesq = 1 throughq = 8). Then after exiting wait state



Figure 4: Example of CS-MRHMM operating on the word “stool”.From top to bottom: compressed gamma probabilities
γc
m,t , log signal power, and spectrogram. Short analysis windowshave been employed for the “T”, while longer processing has

been used for background noise and the sounds “S”, “oo” and “L”. The three components of the “T” can be clearly identified.

q = 4, it has located two possibilities to span the six time
steps remaining before HF pulse occurs. It can either go into
partition 2 (wait statesq = 9 throughq = 12) then partition
3 (wait statesq = 13 throughq = 14), or it can choose the
reverse, partition 3 then partition 2.

The gamma probabilities can be collapsed to indicate just
the signal classes, as shown in Figure 5. The class probabili-

Primar
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0.5
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Figure 5: Signal class probabilities calculated by summing
figure 3 over the wait states of each class.

ties (figure 5) is an accurate indication of the true content of
the data to a time resolution ofT = 32 samples.

5.2 Speech Data

We used the CS-HMM to analyze the spoken word “stool”
at 16 kHz sample rate. Space restrictions do not permit a
detailed description of the experiment. We identified seven
signal classes and assigned values ofK andP (LPC order) (1)
Noiseused for both background and the “T” closure:K = 12
or 384 samples,P = 7, (2) “S” : K = 12 or 384 samples,
P= 7, (3)“T” Burst : K = 4 or 128 samples,P= 5, (4)“T”
Aspiration : K = 8 or 256 samples,P = 6, (5) “oo” vowel
part 1: K = 24 or 768 samples,P = 8, (6) “oo” vowel part
2: K = 24 or 768 samples,P = 8, (7) “L” : K = 24 or 768
samples,P = 8. After adding slave partitions, we had a total
of 36 partitions and a total of 258 wait states. The expanded
STM was 258 by 258. Using efficient programming, neither
the partial probability matrix nor the expanded STM actually
need to be created. Figure 4 shows the result of analysis
of one example with the CS-MRHMM. Important to note is
that the three components of the “T” can be clearly seen by
observingγc

m,t .
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