Award Number: W81XWH-06-1-0092

TITLE: Synthesis of Taxol-Like Prostate Cancer Chemotherapeutic Agents

PRINCIPAL INVESTIGATOR: Hyunil Jo

CONTRACTING ORGANIZATION: University of Pennsylvania
Philadelphia, PA 19104

REPORT DATE: November 2007

TYPE OF REPORT: Annual Summary

PREPARED FOR: U.S. Army Medical Research and Materiel Command
Fort Detrick, Maryland 21702-5012

DISTRIBUTION STATEMENT: Approved for Public Release;
Distribution Unlimited

The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy or decision unless so designated by other documentation.

1. REPORT DATE (DD-MM-YYYY)
01-11-2007

2. REPORT TYPE
Annual Summary

3. DATES COVERED (From - To)
30 OCT 2006 - 29 OCT 2007

4. TITLE AND SUBTITLE
Synthesis of Taxol-Like Prostate Cancer Chemotherapeutic Agents

5a. CONTRACT NUMBER

5b. GRANT NUMBER
W81XWH-06-1-0092

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)
Hyunil Jo

6a. E-Mail:
hyunil@sas.upenn.edu

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of Pennsylvania
Philadelphia, PA 19104

8. PERFORMING ORGANIZATION REPORT NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
U.S. Army Medical Research and Materiel Command
Fort Detrick, Maryland 21702-5012

10. SPONSOR/MONITOR'S ACRONYM(S)
USAMRMC

11. SPONSOR/MONITOR'S REPORT NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for Public Release; Distribution Unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
During the study of C-O cleavage reaction toward the synthesis of Eleutherobin analogues, we have discovered a novel functionalization of α,β-epoxy ketone. This reaction seems to be very useful in preparation of vinyl functionalized allylic alcohol. Modification of hydrazine reactant is now being under investigation. On the other hand, coupling of two key fragments for the intramolecular Diels-Alder reaction failed under conventional reaction condition and the suitable reaction condition is now being studied.

15. SUBJECT TERMS
Eleutherobin, tandem Diels-Alder

16. SECURITY CLASSIFICATION OF:

<table>
<thead>
<tr>
<th>a. REPORT</th>
<th>b. ABSTRACT</th>
<th>c. THIS PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
<td>U</td>
<td>U</td>
</tr>
</tbody>
</table>

17. LIMITATION OF ABSTRACT
UU

18. NUMBER OF PAGES
7

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area code)

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. 239.18
Table of Contents

Cover.. 1

SF 298... 2

Table of Contents.. 3

Introduction.. 4

Body... 4

Key Research Accomplishments... 6

Reportable Outcomes.. 6

Conclusions... 6

References... 7

Appendices... 7
1. Introduction

The development of an efficient synthetic route to Eleutherobin and its analogues has been recognized as a daunting task for synthetic communities. Its scarce availability in nature and potent toxicity against cancer has attracted our attention and led us to study the synthesis of Eleutherobin utilizing a tandem Diels-Alder reaction and Grob-fragmentation strategy. During the second year of the grant, we studied the problematic C-O bond cleavage reaction using hydrazine and discovered a novel chemical transformation, which could be a powerful source of highly functionalized allylic alcohols.

2. Body

Previously, we have successfully prepared the advanced intermediate 1, which could become a substrate for the Grob fragmentation after C-O bond cleavage. Unfortunately, cleavage of the C-O bond failed as it was extremely resistant to the SmI₂ reduction condition. Treatment of 1 to Zn-AcOH condition also failed to produce the desired Grob substrate 2. This issue may be related with the orbital alignment of the ketyl radical anion as depicted in Scheme 1 or an initial electron transfer process.1) Thus, successful implementation of SmI₂ reduction to triol 4 was only achieved when diol 3 was subjected to the same reaction condition.2) However, further attempts to transform triol 4 to the Grob fragmentation substrate 5 were unsuccessful due to facile retro-aldol reaction. We then turned our attention to other C-O bond cleavage reactions. We believed that a Wharton rearrangement could provide a possible solution.

Scheme 1. Failure to preparation of Grob fragmentation substrate 2

As shown in Scheme 2, the Wharton rearrangement can transform α, β-epoxy ketone 6 to allylic alcohol 9.

Scheme 2. Wharton Rearrangement
In our study, simple application of the Wharton rearrangement would only lead to the formation of diene alcohol that is not suitable for our purpose to retain the original carbonyl functionality. However, according to the reaction mechanism proposed by G. Stork et al, the intermediate of the Wharton rearrangement could be vinyl radical species from the release of nitrogen gas in vinyl diazene. We envisioned that this intermediate could be functionalized at the vinylic position if a suitable radical trapping agent is added. The resulting product would be a vinyl functionalized allylic alcohol which could be converted into carbonyl group again. Thus, we set to test our hypothesis with epoxy ketone which can be readily prepared from verbenone.

\[
\begin{align*}
\text{MeOH/DCM(1:8)} & \xrightarrow{\text{PhSSPh (1.1eq)}} \text{SPh} + \text{OH} \\
\text{NH}_2\text{NH}_2 (2eq) & \text{AcOH(cat)} \\
65\% \\
\text{MeOH/CCl}_4(1:4) & \xrightarrow{\text{NH}_2\text{NH}_2 (2eq)}} \text{Cl} + \text{OH} \\
\text{AcOH(cat)} & \\
68\% \\
\text{EtOH/DCM(5:1)} & \xrightarrow{\text{Me}_3\text{SnSnMe}_3 (1eq)}} \text{SnMe}_3 + \text{OH} \\
\text{NH}_2\text{NH}_2 (2eq) & \text{AcOH(cat)} \\
50\% \\
\text{MeOH/THF(1:2)} & \xrightarrow{\text{NH}_2\text{NH}_2 (2eq)}} \text{OH} \\
\text{AcOH(cat)} & \\
60\% \\
\end{align*}
\]

Scheme 3. Wharton functionalization of epoxy ketone 10

After much experimentation on the reaction condition, our hypothesis proved to be true. Vinyl sulfide, vinyl halide and vinyl tin species could be prepared in a single pot operation in a good to moderate yield. More importantly, vinyl halide and vinyl tin species could be utilized in Palladium mediated C-C bond forming reactions, which further reinforces the importance and versatility of this transformation. Furthermore, formation of the 1,4 diene indicates the direct C-C bond formation could be possible. Thus, this novel Wharton functionalization is extremely versatile as it provides a direct method to prepare vinyl functionalized allylic alcohols in a facile manner. However, one limitation is the formation of the normal Wharton reaction product. This issue led us to investigate the source of the hydrogen atom. We ran the reaction in the CD$_3$OD without the trapping agent as shown in **Scheme 4.** Surprisingly, deuteriated allylic alcohol was not the predominant product which suggests hydrazine itself could be the main source of the hydrogen atom.

\[
\begin{align*}
\text{MeOH/DCM(1:8)} & \xrightarrow{\text{PhSSPh (1.1eq)}} \text{SPh} + \text{OH} \\
\text{NH}_2\text{NH}_2 (2eq) & \text{AcOH(cat)} \\
65\% \\
\end{align*}
\]

Scheme 4. Quenching study of Wharton reaction
Thus, it is conceivable that use of monosubstituted hydrazine would prevent the formation of the normal Wharton product. Currently, we are investigating the use of a monosilylated hydrazine. 5) If successfully implemented, this method would become very influential in the synthetic community due to its versatility and simplicity.

On the other hand, we also prepared the two key fragments for the intramolecular Diels-Alder approach as proposed in the previous annual report.

![Scheme 5. Attempted preparation of Diels-Alder reaction substrate 19 or 22](image)

As shown in Scheme 5, conventional condition utilizing \(n\)-BuLi as a base was not successful in the preparation of the desired Diels-Alder substrate 19 as only starting materials were recovered. This suggested that the generation of alkynyl anion failed. Likewise, addition of alkyne 20 into aldehyde 21 was also unsuccessful. The only product obtained was \(n\)-BuLi addition to aldehyde 21. Thus, deprotonation conditions of terminal alkyne 17 or 20 are now being studied.

3. Key Research Accomplishment

- Discovery of a Wharton functionalization
- Determination of the role of hydrazine as the main hydrogen atom source in the Wharton reaction

4. Reportable outcomes

Poster presentation
“Synthetic studies on the Taxol-like cancer chemotherapeutic agent”
Innovative Minds in Prostate Cancer Today (IMPaCT) meeting, Atlanta, GA, Sep 2007

Manuscript on Wharton functionalization in preparation

5. Conclusion

During the second year of this grant, we have discovered a novel and powerful chemical transformation in studying the C-O bond cleavage reaction. This reaction would lead to a number of synthetically useful
intermediates and give further insight on the traditional Wharton reaction. Attempted assembly of the two key fragments for the intramolecular Diels-Alder reaction revealed that more extensive studies would be needed for the deprotonation reaction condition.

“So What?”

As a result of the work done over the past year, a highly useful novel transformation was discovered in the course of study on the C-O cleavage reaction. This Wharton functionalization could be very powerful tool in the synthetic community if combined with organometal catalyzed C-C bond forming reactions.

6. References

7. Appendices

N/A