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ABSTRACT 

 
Sensors commonly mounted on small unmanned ground vehicles (UGVs) include visible light and thermal cameras, 
scanning LIDAR, and ranging sonar.  Sensor data from these sensors is vital to emerging autonomous robotic behaviors.  
However, sensor data from any given sensor can become noisy or erroneous under a range of conditions, reducing the 
reliability of autonomous operations.  We seek to increase this reliability through data fusion.  Data fusion includes 
characterizing the strengths and weaknesses of each sensor modality and combining their data in a way such that the 
result of the data fusion provides more accurate data than any single sensor.  We describe data fusion efforts applied to 
two autonomous behaviors:  leader-follower and human presence detection.  The behaviors are implemented and tested 
in a variety of realistic conditions.   
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1. BACKGROUND 

1.1 Technology Transfer Project 
 
The  JGRE Technology Transfer Project (TechTXFR) managed by Space and Naval Warfare Systems Center, San Diego 
(SSC San Diego) seeks to enhance the functionality (ability to perform more tasks) and autonomy (with less human 
intervention) of teleoperated systems1.  The objective is to expedite advancement of the technologies needed to produce 
an autonomous robot that can robustly perform in battlefield situations.  Instead of developing new capabilities from 
scratch, the approach is to assess the technology readiness levels (TRLs) of component technologies (i.e., mapping, 
object recognition, motion-detection-on-the-move) developed under a variety of past and ongoing R&D efforts (such as 
the DARPA Tactical Mobile Robot program).  The most mature algorithms are integrated and optimized into cohesive 
behavior architectures and then ported to various platforms used by the warfighter for further evaluation in operational 
environments. 

 
Contributing sources of component technologies include the Idaho National Laboratory (INL), NASA’s Jet Propulsion 
Laboratory, Carnegie-Mellon University (CMU), Stanford Research Institute International (SRI), University of 
Michigan, Brigham Young University, University of California San Diego, and University of Texas Austin, as well as 
other SSC San Diego projects (e.g., Man Portable Robotic System2 and the ROBART series3).  Starting in FY-03, the 
approach was to harvest existing indoor navigation technologies developed by various players and assess their different 
approaches to dead reckoning, obstacle detection/avoidance, mapping, localization, and path planning.  The details of 
these focus areas will not be discussed in this paper but can be found in previous project publications4.  The best features 
of the more promising solutions have now been integrated into an optimal system, giving an operator the ability to send 
an autonomous platform into an unknown indoor area and accurately map the surroundings.  An augmented virtuality 
representation of the environment is derived, fusing real-time sensor information with the evolving map.  In FY-05, the 
focus was expanded to include autonomous outdoor navigation, as well as additional sensor payloads for mission-
specific applications such as intruder detection.  As sensor technologies and autonomous behavior methods continue to 
be tested and evaluated in near-operational environments, the need for sensor fusion becomes readily apparent to provide 
a more robust solution to the warfighter. 
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1.2 Intelligence Kernel 
 
All component technologies described here are integrated under an expanded version4 of a robot architecture called the 
Intelligence Kernel, originally developed by INL6.  To ensure cross-platform compatibility, the architecture is 
independent of the robot geometry and sensor suite, facilitating easy porting to any platform the warfighter uses.  
Moreover, the Intelligence Kernel allows the robot to recognize what sensors are available at any given time and adjust 
its behavior accordingly.  The Intelligence Kernel facilitates the development of data fusion algorithms by abstracting 
and publishing all sensor data and derived data, called perceptions, in an easy-to-use manner.  
 

2. HARDWARE DESCRIPTION 
 
Two sensors were used in the experimentation described in this paper.  Both sensors are off-the-shelf and are common to 
man-portable robots.  However, because sensor set-up and use can vary greatly, a brief description on the hardware setup 
is provided. 
 

2.1 Thermal Imager 
 

The thermal camera used is the FLIR Systems ThermoVision A10.  This imager was selected because its small size is 
appropriate for man-portable robots.  The A10 is also well-suited for human presence detection in several other aspects.  
It uses a microbolometer detector, allowing it to measure absolute temperatures in a scene.   This allows for easier 
segmentation of humans in the presence of objects hotter than the human.  The A10 has a spectral response of 7.5 to 13.5 
microns, which matches the peak wavelength light emitted by humans7.     
 
The set up of a thermal camera for automated segmentation and detection is extremely important, though not always 
described in the literature of those who have performed automated detection and tracking with thermal imagery.  Most 
off-the-shelf thermal cameras are designed so that the imagery output by their default settings closely resembles an 
image produced by a visible-light camera.    This is not unexpected; most applications of thermal cameras involve 
direction interpretation of the imagery by humans who need the imagery in the most readily accessible form possible.  
Examples of such applications include thermal rifle-scopes and night-vision goggles for helicopter pilots.  However, the 
signal processing to render thermal data so easily accessible to humans can greatly alter the raw data from the thermal 
detector and complicate subsequent image processing.   The signal processing, called Smart Scene on the ThermoVision 
A10, introduces two unwanted effects.  It tends to increase the intensity values of colder, background objects of the 
scene to make them more visible than they would otherwise be by scaling both cold and hot pixels in the scene so that 
they are both maximally visible in the resulting imagery.   This has the effect of often reducing the contrast between hot 
and cold objects, making segmentation more difficult. 
 
Another effect is that this contrast adjustment is dynamically adjusted in real-time depending on the thermal composition 
of the environment.  The sudden introduction of an extremely hot object may result in the brightness values of the 
existing environment being suddenly scaled down so that the new object does not saturate the image.  This effect can 
make segmentation difficult by forcing the image processing algorithm to alter thresholds in real-time to “keep up.” 
 
These default signal processing steps are turned off in our application so that the thermal energy emitted by human skin 
results in approximately the same intensity value in the resulting imagery regardless of the surrounding environment.    
Examples of thermal imagery with and without Smart Scene are shown Figure 1.  The image on the left “enhances” the 
visibility of the doorways and also shows some solar loading of a door in the lower left corner of the images with 
brightness levels that approach that of the human skin.  The image on right shows the same scene with fixed intensity 
levels and no contrast enhancement.  Notice that the image on the right is almost self-segmenting, greatly simplifying 
subsequent image processing steps and reducing possible false alarms. 
 



 

 

 
Figure 1:   Thermal Imagery from the ThermoVision A10 with and without onboard contrast enhancement processing. 

2.2 LIDAR 
 
The LIDAR used is a standard SICK LMS 220 LIDAR with a 180-degree field-of-view approximately 90m range, with 
~10mm resolution and ~15mm systematic error.   The SICK LIDAR is a standard component of many robots.  

 
3. HUMAN PRESENCE DETECTION 

 
Human presence detection is an important application in military and first-responder robotics.  Many applications benefit 
from the ability to detect and locate human presence, including explosive-ordnance disposal, building exploration, and 
tactical applications.   The TechTXFR project has prioritized human presence detection as one of the primary 
capabilities that could improve the capability of small robots.  Prior work on human presence by SSC San Diego and 
INL demonstrated initial successes in limited environments but required the robot to construct a map of the surrounding 
environment before humans could be effectively detected8. 
 
In indoor security applications, motion-detection is often used as a surrogate for human presence detection.  However, in 
robotics, this is not feasible since the robots themselves are moving, making many motion-detection algorithms difficult 
to implement,  and in most robotic applications, there is a potential for many non-human objects in the environment to 
be moving as well.   Typical sensors used for human presence detection include Doppler radar and thermal cameras 7, 8.  
However, these are subject to false alarms and multipart problems in some environments.    New technologies, such as 
the microwave radiomater10 are promising but have not yet reached a maturity level suitable for deployment.  
 
We focus on fusing data from a LIDAR, a thermal camera, and a color camera.   We have found these sensors to be 
complementary in that they too have non-overlapping strengths and weakness, such that the combination of sensors 
makes a much stronger human presence device than any single sensor.   These sensors are also useful because they 
commonly exist on many robots, allowing the addition of this human-detection system without the addition of 
expensive, specialized equipment.  Table 1 below rates each sensor in a number of important measurements used in 
human presence detection.   The last row in the table shows the capability of a theoretical “perfect” data fusion that 
could perfectly fuse the best aspects of each sensor.   Of course we do not claim to have developed such a perfect 
algorithm, but present the table to highlight the potential of data fusion.   Perfect fusion is difficult in this application 
because we are using heterogeneous sensors, imagers and laser, which provide fundamentally different data types.  We 
describe a two-stage fusion process, called the anomaly verification process, which concentrates on using the strengths 
of each sensor.     
  
 
 
 
 



 

 

 
 Human 

Signature 
Recognition 

Depth 
Measurement 

Range of 
Detection 

Size 
Measurement 

Motion 
Detection 

Field-of-view 

FLIR Excellent Weak Variable Excellent Poor Poor 
LIDAR Weak Excellent Excellent Weak Excellent Excellent (2D) 
Color Imagery Mediocre Weak Mediocre Excellent Poor Poor 
Perfect 
Fusion 

Excellent Excellent Excellent Excellent Excellent Excellent 

Table 1.  Comparison of the strengths and weaknesses of sensors used. 

3.1 Anomaly Detection 
 
The first stage of human-presence detection is anomaly detection.  An anomaly, in our application, is defined as one of 
two things: an entity not expected according to a priori map, or an object moving relative to the robot.  In the latter case, 
the relative motion may also occur while the robot itself is moving.  Anomaly detection is preformed by the LIDAR.  
The LIDAR is ideal for anomaly detection because of its range, accuracy, and large field of view.    We use a common 
off-the- shelf  2D lidar, but 360-degree lasers and 3D flash LADARS will soon be available for testing  Anomalies are 
tracked and recorded, along with information about their position, size, and velocity.   Two methods of anomaly 
detection are described.  One method requires the construction of an occupancy map and the other requires no a priori 
information. 

3.2 Anomaly Detection with a Map 
 
This implementation relies on a simultaneous localization and mapping (SLAM) algorithm, developed by Kurt 
Konolige9 at Stanford Research Institute International (SRI) and optimized under the Technology Transfer Project, to 
characterize the environment and to maintain accurate localization of the robot as it navigates. SSC San Diego’s partners 
under the Technology Transfer project, INL, leveraged SRI’s LADAR based SLAM technology to develop a change-
detection-on the-move capability, called the INL Real Time Occupancy Change Analyzer (ROCA) 10. This capability 
uses part of the occupancy grid from the SLAM algorithm to detect changes in the environment based on the robot’s 
surrounding map grid.   The changes are visible in Figure 3 as blue cubes in front of the robot.  The location of the 
change is then sent as a vector to a supporting thermal imager for further assessment of human signature presence.  In 
this implementation, though, the change detection only works if re-visiting an already mapped area.  This is because the 
detection is done by finding differences between the current ladar scans and the known occupancy grid.  

3.3 Anomaly Detection without a Map 
 
This implementation takes advantage of a LADAR-based real-time environment feature extraction perception, data 
association, and tracking tools built into the Intelligence Kernel. The feature extraction capability uses LADAR scans to 
help find and define large changes in the environment as the robot drives through. The data association tool takes 
advantage of these changes to associate each new observation with the older ones.  The data association method used is a 
variation on the K-nearest neighbor algorithm.  Information about each change in the environment, e.g., location and 
size, are mapped into a multi-dimensional feature space.   Incoming change detections are assigned to regions of this 
space relating to their proximity according to a distance measure and their class label.  The distance measure used is the 
Mahalanobis distance.  The Mahalanobis distance is preferable to Euclidean distance because features often vary greatly 
in measurement and systematic noise and should not be treated equally in a distance calculation.    Other methods of data 
association and tracking, such as particle-filtering, will be explored in future work. 
 
The tracked locations and location variances of moving objects, along the known position and velocity of the robot, are 
used to distinguish immobile objects from objects moving relative to the robot.  Using the current location of the change 
in a world, as opposed to robot-centric coordinate system, we find the location in terms of the camera’s orientation, 
which allows for moving the camera in that direction for verification of human presence.   The detection is real-time, 



 

 

requiring no prior knowledge of the area, and once the robot has explored and mapped an area, the robot automatically 
switches from this technique to ROCA and vice-versa.   This method works well, but has a somewhat higher false alarm 
rate than the ROCA method.   As of this writing, not enough data has yet been collected to characterize system 
performance.  
 

3.4 Verification 
 
Once an anomaly has been detected and localized, the next step is verifying human presence detection from a thermal 
camera.  This is done by segmenting regions of temperature consistent with human presence from imagery.  We 
followed the approach developed by Conaire which employs image histograms to select regions with temperatures likely 
to be produced by humans from the background11.  This method performs reliably in most environments.  Sample 
segmentation images are shown in Figure 2.  The figure on the left is a segmented image showing extractions of regions 
consistent with human skin temperature.  The image on the right shows segment centroid calculation for the largest 
connected-component of the segmented image.  This component is usually the head of a person, which usually has the 
largest area of exposed skin and, therefore, the largest thermal emission. 
 

 
Figure 2:  A segmented image (left) and centroid calculation (right). 

 
Once the regions are located, their centroids and sizes are calculated, along with some shape descriptors, such as aspect 
ratio and degree of convexity.  The shape descriptors are used to reject shape unlikely to have been produced by humans, 
such as perfect squares, etc.  Finally, thresholds for temperature and size were used to eliminate noise and extraneous 
warm objects.  These thresholds were calculated using a minimum squared-error optimization technique based on 
several hours of collected thermal imagery from a variety of indoor and outdoor scenes, temperatures, and weather 
conditions. 
 
Figure 3 shows images of the leader-follower algorithm in action.   The right image shows the robot following the leader 
outside from a building.  The left image shows the perspective from the INL 3D Interface10. 
 



 

 

 
Figure 2.  The leader-follower behavior in action.  In the left image, the blue block in front of the robot is generated by the presence of 
an obstacle.  The thermal signature from the FLIR verifies human presence. 

3.5 Results for the Verification Stage 
 
The algorithm was tested with approximately with 13,000 images from 2 hours of recorded imagery encompassing three 
scenarios: 1) indoor lab environment, 2) outdoor cold environment, 3) outdoor warm environment with significant solar 
loading of surfaces, and 4) indoor with non-human warm objects.    The images were hand-classified into ground truth 
sets for images containing human presence and images without humans for purposes of generating detection metrics.  
All humans were within 25m of the thermal imager.  The detection rates and false alarm rates are shown in Table 2.   
 

 Indoor Outdoor – cold Outdoor –warm 
Detection Rate 96% 92% 77% 

False Alarm Rate 1% 3% 15% 

Table 2:  Detection and False Alarm Rates for human presence detection 

As expected, warm exterior environments presented problems due to some surfaces being heated to temperatures 
comparable to human skin.    However, these results are limited to the verification stage.  These false alarm rates could 
be reduced considerably by only considering anomalies detected in the first stage of the fusion algorithm.   Ad-hoc 
testing indicates lower false alarm rates in all environments for the fusion system.  However testing is still underway and 
not reportable at the time of writing. 
 

3.6 Color-Thermal Fusion 
 
Still another form of fusion we are exploring for human-presence detection is more conventional fusion of color and 
thermal imagery.  This technique has been used by Fujimasa11 and others in medical imagery, and several others in 
human detection and tracking11, 12.   We employ similar fusion in verification of human presence.  A common cue in 
color imagery used to detected humans is skin hue.  The hue of human skin tone is relatively invariant to lighting 
conditions as well as the ethnicity of humans13.   This invariance has made skin hue a useful tool in face detection 
algorithms14 and should also make a useful tool to aid in detecting human presence.  However, because other objects 
with skin hue may exist in the environment, the false alarm rate of skin hue makes it too unreliable as a standalone 
presence sensor.  However, if we register thermal imagery with color imagery, we can fuse their results and produce a 
detector that outperforms either of the individual detectors.   Our fusion algorithm occurs at the pixel level and is based 
on the general fusion model described by Conaire11 that calculates a probability of skin presence by a weighted 
combination of the fit to component models (skin hue model and thermal model).    The weighting factor is important 
because it allows the verification system to prefer one model over the other depending on the range of the object, the 
application, and the environment.  For example, thermal imagery may be unreliable in extremely hot, outdoor 
environments, while color imagery does not work well in very low light.    
 



 

 

Sample images showing the image overlay technique are shown in Figure 4.  The image on the left shows a thermal 
image overlaid directly on a color image.  The imperfect mounting of our color camera results in the skewed overlay of 
the images.  Regions which are likely to correspond to human skin or human thermal signature are highlighted in the 
fused image on the right.   While initial results suggest that this method will both improve the detection rate and reduce 
the false-alarm rate of human presence detection, publishable results are not available at the time of writing. 
 

   
Figure 3:  Thermal-Color fusion 

 
 
 

 
4. LEADER-FOLLOWER BEHAVIOR 

 
A useful behavior for small robot operations is the leader-follower behavior.  This is a mode of operation where a robot 
follows a person in a manner similar to a well-trained dog.   This behavior prevents the need for operators to have to 
manually tele-operate or carry the robot while moving from place to place.   Most implementations of this behavior 
employ GPS, as in the Jet Propulsion Laboratory’s or SSC San Diego’s leader-follower systems18, 19.   GPS works well 
outdoors but will not work indoors or in other GPS-denied areas.   Vision-based methods can work well in some 
situations but do not provide accurate range (without stereo) and require clear visibility and good lighting to work 
properly.   This application should also be distinguished from the large volume of research in large-vehicle convoying, 
which is a related, but fundamentally different task from small robot leader-follower. We demonstrate a system that 
fuses perceptions from three independent sensors: LIDAR, a thermal camera, and a monocular color camera.  Each 
sensor tracks the leader independently and can be used alone with some success in the leader-follower behavior.  
However each also has specific weaknesses.  Their output is intelligently fused so that when one sensor fails or provides 
noisy or weak data, the system will rely more heavily on the other sensors.   

 

4.1 Algorithm Description 
 
When following a target using the ladar, we mainly rely on two simultaneous algorithms. The first algorithm searches 
the field of view for the closest object.  The size of the field of view and the center angle are adjusted depending on the 
previous distance from the robot to the target, the size of the target, and the predicted next position of the target.  
Adjusting the size keeps the algorithm from finding the edges of stationary objects as the target passes near them.   The 
second algorithm uses laser edge perception to match the closest edges in the current laser scan to the predicted target 
location based on the previously calculated velocity vector of the target.  The idea behind this algorithm is to keep the 
overall perception from being confused when a target follows along a wall or other object because even though the 
closest distance to the robot in the field of view may be the wall, the edges of the target still stand out (Figure 5). 



 

 

 
Figure 5:  The left image shows ladar based tracking looks for the minimum range and the edges of the target.  The right image shows 
ladar-based and vision-based calculated angles to target when a person moves back and forth in front of the robot.  Notice that the 
ladar data is much noisier due to the fact that it tracks whichever leg of the person is closest to the robot as they walk. 
 
When following a target using the vision data, we rely on the pan angle of the camera and the location of the target in the 
camera image to calculate our heading error.   The vision algorithm used is identical to that of section 2 of this paper, 
and detects, locates, and tracks the human leader.  Calculating the range error with data from a monocular camera is 
slightly more difficult.   The first method assumes our target is a certain height and, therefore, we can calculate our range 
based on the vertical offset of the camera on the robot, the tilt of the camera, and the vertical location of the target in the 
camera image.  Alternatively, we can extrapolate a line along the camera’s pan axis and then find the range sensor 
readings which are closest to that line.  The first method has the advantage that the robot can know to go around 
obstacles if they get in the way instead of assuming that the closest range reading must be coming from the target. 

4.2 Fusing the Outputs 
 
The fusion method that we implemented involves the use of a fuzzy logic arbiter which takes the range and bearing to 
the target from the ladar and vision-based following algorithms, as well as the confidence in the measurement of each 
parameter (Figure 6).  Calculating the confidence for each method is a critical part of the implementation as it helps the 
arbiter decide which algorithm to trust predominantly at any given moment.  However, cases still arise whereby each 
algorithm believes it is correctly tracking the target but the algorithms disagree.  In these cases, the Fuzzy Associative 
Memory (FAM) rules are designed to make up for weaknesses in each algorithm.  For instance, one of the weaknesses of 
the ladar based tracking algorithm is that it occasionally decides that the edges of stationary objects are the desired 
target.  In these cases, the robot will stop and face this object as the real target continues to move away.  The FAM rules, 
in this case, say that if the LADAR-based perception is targeting an object that is “Very Close” and has a Zero angle to 
target, but the vision algorithms are targeting at a “Large” or “Very Large” angle to target, then the output yaw speed 
should reflect the desired yaw direction of the vision algorithms.  
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Figure 6: Diagram showing how the ladar and vision target range, angle, and confidence are fused using a fuzzy logic arbiter and then 
passed to the fuzzy logic obstacle-avoidance to determine the velocity vector that is sent to the drive control system. 
 

4.3 Experimental Results 
 
Overall, the ladar based method alone works very well and provides for a reasonably robust and aggressive behavior.  
However, when the target travels through small areas, such as doorways, or if the target follows the contours of walls or 
stationary objects, the ladar-based method can become confused.  On the contrary, the vision-based methods work very 
robustly as the target passes through doorways and along walls, so fusing the data can produce a more robust behavior. 
The color-based vision tracking works decently, but does not transition well between indoor and outdoor environments.  
Finally, the FLIR-based vision tracking is robust and fusing it with the ladar data has created a very useful algorithm.  
The only drawback to the FLIR method is that it occasionally confuses the human target when there are several around. 
 
 

6. CONCLUSION AND FUTURE WORK 
 
As robotic behaviors become more complex, sensors will become increasingly important.  Data fusion has been proven 
to increase the reliability of a system beyond that possible by multiple, independent sensors.  While some data fusion 
tools, such as Kalman filters, have long been used, some applications and heterogeneous sensor types require 
unconventional methods of fusion.  We’ve described the use of a fuzzy logic system and a 2-stage anomaly-verification 
method to increase the reliability of two useful behaviors for small robots.  These methods require no special calibration 
steps or hardware not already commonly used on autonomous mobile robots.   
 
Future work includes developing performance metrics for these behaviors and providing a detailed characterization of 
their performance in real-world environments.  We also seek to develop a generalized motion-detection-on-the-move 
system for detecting and localizing moving objects while the robot itself is moving.    Such an algorithm would be useful 
in many robot behaviors, such as pedestrian avoidance and target tracking.   
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