Award Number: W81XWH-04-1-0087

TITLE: PIM1: a molecular target to modulate cellular resistance to therapy in prostate cancer

PRINCIPAL INVESTIGATOR: Michael Lilly, M.D.

CONTRACTING ORGANIZATION: Loma Linda University
Loma Linda, CA 92354

REPORT DATE: October 2008

TYPE OF REPORT: Annual

PREPARED FOR: U.S. Army Medical Research and Materiel Command
Fort Detrick, Maryland 21702-5012

DISTRIBUTION STATEMENT: (Check one)

 x Approved for public release; distribution unlimited

 □ Distribution limited to U.S. Government agencies only;
 report contains proprietary information

The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy or decision unless so designated by other documentation.
PIM-1: a molecular target to modulate cellular Resistance to therapy in prostate cancer

Ihe contract supports studies to define the role of the PIM1 kinase in acquired resistance to chemotherapy by prostate cancer cells. Data to date for specific aim #1 define a signaling pathway induced by docetaxel, involving sequential steps of STAT3 phosphorylation, expression of PIM1, and activation of NFkB signaling. Blockade of this pathway prevents drug-induced upregulation of NFkB activity, and sensitizes cells to docetaxel. Other studies (specific aim #2) focus on identifying a mechanism through which PIM1 activates NFkB. We have unambiguously identified S937 as the major PIM1 phosphorylation site on the NFkB1/p105 precursor protein, through use of LCM/MS/MS analysis. We have now shown that phosphorylation at S937 potentiates NFkB transcriptional activity. Additional data (specific aim #3) have been published to describe a small molecule inhibitor of PIM1. This molecule can sensitize prostate cancer cells to the cytotoxic effects of docetaxel in an additive or synergistic manner. Pharmacophore analysis has identified future modifications of the inhibitor.
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>4</td>
</tr>
<tr>
<td>Body</td>
<td>4-6</td>
</tr>
<tr>
<td>Key Research Accomplishments</td>
<td>6</td>
</tr>
<tr>
<td>Reportable Outcomes</td>
<td>7</td>
</tr>
<tr>
<td>Conclusions</td>
<td>7</td>
</tr>
<tr>
<td>References</td>
<td>7</td>
</tr>
<tr>
<td>Appendices</td>
<td>8-50</td>
</tr>
</tbody>
</table>
INTRODUCTION

Studies under this funded activity are focused on characterizing the role of the PIM1 gene in acquired resistance to chemotherapy drugs, by prostate cancer cells. The proposal included three specific aims: 1) to define a novel signal transduction pathway activated by docetaxel, 2) to characterize the mechanism through which PIM1 activates and regulates NFkB signaling, and 3) to explore genetic and pharmacologic means of inhibiting PIM1 activity or expression to enhance the sensitivity of prostate cancer cells to docetaxel and other chemotherapy drugs.

During the 03 year (October 1, 2007 through 9/30/2008) progress has been moderate, with continuing disruptions due the move of Dr. Lilly’s laboratory from Loma Linda University to the University of California, Irvine. A new laboratory staff person was hired to work on this project, but had to be terminated in early August, 2008. We have not yet succeeded in replacing this employee. A third manuscript has now been published (Journal of Biological Chemistry), substantially completing specific aim #1, and partially completing specific aim #2. Several new prototype PIM1 inhibitors have been acquired from industrial and academic sources, and are being tested for synthergism with docetaxel and other chemotherapy drugs.

BODY

We will outline our progress through reference to the specific aims described above. The first specific aim (specific aim #1) was to outline a signal transduction pathway activated by docetaxel and involving upregulation of PIM1 expression. This pathway has been substantially defined. Using RWPE2 prostate cells, we noted that docetaxel treatment rapidly leads to an increase in expression of the PIM1 serine/threonine kinase. Expression becomes apparent at 3hrs after drug addition, peaks at 9-12hrs, and returns to baseline by 24hrs (Fig. 1). This increase in expression is accompanied by an increase in pim-1 mRNA, as shown by real time-PCR analysis (Fig. 2). Thus the effects of docetaxel are primarily transcriptional or post-transcriptional.

We next wanted to define mechanisms through which pim-1 could be transcriptionally upregulated. Transcription of pim-1 is known to be activated by STAT transcription factors and by NFkB transcription factors. We examined the time course of STAT3 activation after docetaxel treatment (Fig. 1), and noted that it paralleled the course of pim-1 expression. We therefore suspected that docetaxel increased pim-1 expression in a STAT3-dependent manner. This was directly demonstrated by use of decoy oligonucleotides (Fig. 2). Double-stranded DNA oligonucleotides matching a known STAT3 binding site blocked the drug-induced upregulation of pim-1 expression, while a decoy based on a mutated (non-binding) STAT3 site did not. These data therefore establish a linear relationship among the following events: docetaxel treatment → STAT3 activation → pim-1 expression.
We hypothesized that NFkB transcriptional activation would be a downstream event in this signal transduction pathway, because many chemotherapy drugs and other stressors are known to activate NFkB. We engineered RWPE2 cells to constitutively express a NFkB-dependent promoter/luciferase plasmid, and found that docetaxel treatment increased NFkB transcriptional activity. We then transiently infected these cells with a pim-1-encoding retrovirus. Pim-1 expression also consistently increased NFkB transcriptional activity. To determine if the drug-induced increase in NFkB activity occurred in a pim-1-dependent manner, we then infected the reporter cell line with a retrovirus encoding a dominant-negative form of pim-1, pimNT81. The dominant negative pim-1 cDNA completely blocked the drug-induced upregulation of NFkB activity, demonstrating that pim-1 expression is a necessary upstream step in the drug-induced activation of NFkB (Fig. 3). In aggregate these studies establish a signal transduction pathway triggered by docetaxel treatment of RWPE2 prostate cancer cells.

To determine if this pathway modified drug toxicity, we examined the effects of enforced expression of wild-type or NT81 pim-1 cDNAs of docetaxel cell kill (Fig. 4). Docetaxel produced dose-dependent cell kill in RWPE1, 2 cells. Enforced expression of wild-type pim-1 cDNA markedly reduced cell death. In contrast, expression of the dominant negative NT81 cDNA enhanced cell death after docetaxel treatment. These data demonstrate that pim-1 expression can modulate drug-induced cell death, and demonstrate that the survival pathway described above is a legitimate target for pharmacologic intervention. These data have been published in the Journal of Biological Chemistry (1; see reprint in appendix).

The goal of specific aim #2 was to define pathways through which the PIM1 kinase could activate NFkB transcriptional activity. We had hypothesized that PIM1 would phosphorylate the NFkB1/p105 precursor protein on serine-937, leading to proteolytic cleavage of the protein with release of active p50 protein as well as other sequestered NFkB components and the TPL2 kinase. In the previous reporting period we demonstrated that PIM1 can phosphorylate the p105 NFkB1 precursor on serine 937, a novel phosphorylation site. In addition we prepared a polyclonal antibody specific for this phosphorylation site. During the early part of this reporting period a number of studies were undertaken to characterize
the expression of phosphoNFkB1/p105(S937), using our phosphospecific antibody. An initial study used mutant (S937D) p105 cDNAs to mimic the effect of phosphorylation. These "phosphomimic" proteins enhanced NFkB transcriptional activity whereas the corresponding S937A mutant inhibits activity, compared to the wild type NFkB1 protein (Fig.5). In this experiment, HeLa cells were transfected with a luciferase reporter gene under the control of a synthetic consensus NFkB binding site, plus WT or mutant p105 cDNAs. Bars indicate the firefly luciferase activity of the transfectants, normalized to that of a Renilla luciferase transfection control plasmid. These data indicate that if PIM1 phosphorylates S937 in vivo, it likely would enhance overall NFkB transcriptional activity.

The third specific aim (specific aim #3) proposed to use small molecule inhibitors of the PIM1 kinase as molecular probes to determine their effect on docetaxel sensitivity. A report describing one such molecule, the flavonol quercetagetin, was published as the cover article in the January, 2007 issue of Molecular Cancer Therapeutics (2; see appendix A). We have demonstrated that quercetagetin in a moderately potent (IC\textsubscript{50} = 340nM, specific, and cell-permeable inhibitor of PIM1 activity in prostate cancer cells. Key data include the demonstration that quercetagetin in competitive with ATP. A crystal structure of PIM1 in complex with quercetagetin, or with three other flavonoids, has been determined. We have also shown that quercetagetin is able to inhibit the activity of the PIM1 kinase in prostate cancer cells at an IC\textsubscript{50} of about 5.5\mu M. Interestingly the activity of the AKT kinase is not inhibited at all under these conditions. A companion article, presenting a pharmacophore analysis of flavonoid inhibitors of PIM1, has also been published recently (3; see appendix B). We have recently obtained, and begun characterizing, novel small molecule inhibitors of PIM1 from Exelixis Corporation, and from Dr. Andrew Kraft (Hollings Cancer Center). These molecules show additive, or at some concentrations synergistic, cell growth inhibition in that PIM1 kinase acts to inhibit cell death caused by the cytotoxic drug docetaxel, and that blocking the activity of PIM can potentiate cell kill and overcome cytotoxic drug resistance.

KEY RESEARCH ACCOMPLISHMENTS THROUGH September 30, 2008

- Definition of a novel survival pathway activated by docetaxel treatment, and involving sequential activation or expression of STAT3, PIM1, and NFkB components. These studies have now been published in the *Journal of Biological Chemistry*.
- Identification of serine-937 as the major phosphorylation site for PIM1 on the p105/NFkB1 precursor protein
• Identification of quercetagetin as a moderately potent and specific, cell-permeable PIM1 kinase inhibitor
• Demonstration that XL-1075 and XL-1154 can show additive or synergistic cell kill in prostate cancer cells treated with docetaxel
• Abstract presented at the annual AACR meeting, Washington DC, April, 2006
• Paper describing the activity of quercetagetin as a PIM1 kinase inhibitor, published in January, 2007 issue of Molecular Cancer Therapeutics (cover article)
• Paper describing pharmacophore analysis of flavonoid inhibitors of PIM1, published in March, 2007 issue of Bioorganic and Medicinal Chemistry

REPORTABLE OUTCOMES
Manuscripts Published

CONCLUSIONS
Our data demonstrate that PIM1 is a critical component of a survival/stress pathway activated by docetaxel treatment of prostate cancer cells. This pathway leads to activation of NFkB-dependent transcription, possibly by phosphorylation of p105/NFKB1 by PIM1 at serine-937. Targeting PIM1 kinase activity with quercetagetin, or other PIM1 kinase inhibitors, leads to additive or synergistic cell kill following docetaxel treatment.

REFERENCES

APPENDIX

Research data are presented throughout the body of this report.

The appendix contains four items:

A. Manuscript: Holder, et al., "Characterization ... kinase." MCT
B. Manuscript: Holder, et al., "Comparative ... kinase." BMC
C. Manuscript: Zemskova, et al., "The PIM ... cells." JBC
D. Curriculum vitae for Michael Lilly, MD

Characterization of a potent and selective small-molecule inhibitor of the PIM1 kinase

Sheldon Holder,1,2,3 Marina Zemskova,3 Chao Zhang,4 Maryam TabriziZad,4 Ryan Bremer,4 Jonathan W. Neidigh,2 and Michael B. Lilly1,2,3

1Center for Molecular Biology and Gene Therapy, Department of Biochemistry and Microbiology and 2Medicine, Loma Linda University School of Medicine, Loma Linda, California; and 3Plexikon, Inc., Berkeley, California.

Abstract

The pim-1 kinase is a true oncogene that has been implicated in the development of leukemias, lymphomas, and prostate cancer, and is the target of drug development programs. We have used experimental approaches to identify a selective, cell-permeable, small-molecule inhibitor of the pim-1 kinase to foster basic and translational studies of the enzyme. We used an ELISA-based kinase assay to screen a diversity library of potential kinase inhibitors. The flavonol quercetagetin (I3.3'.4',5,6,7-hydroxyflavone) was identified as a moderately potent, ATP-competitive inhibitor (IC50, 0.34 μmol/L). Resolution of the crystal structure of PIM1 in complex with quercetagetin or two other flavonoids revealed a spectrum of binding modes and hydrogen-bonding patterns in spite of strong similarity of the ligands. Quercetagetin was a highly selective inhibitor of PIM1 compared with PIM2 and seven other serine-threonine kinases. Quercetagetin was able to inhibit PIM1 activity in intact RWPE2 prostate cancer cells in a dose-dependent manner (IC50, 5.5 μmol/L). RWPE2 cells treated with quercetagetin showed pronounced growth inhibition at inhibitor concentrations that blocked PIM1 kinase activity. Furthermore, the ability of quercetagetin to inhibit the growth of other prostate epithelial cell lines varied in proportion to their levels of PIM1 protein. Quercetagetin can function as a moderately potent and selective, cell-permeable inhibitor of the pim-1 kinase, and may be useful for proof-of-concept studies to support the development of clinically useful PIM1 inhibitors. [Mol Cancer Ther 2007;6(1):163-72]

Introduction

The pim family of serine-threonine kinases is composed of three highly homologous genes, pim-1, pim-2, and pim3. These enzymes are increasingly being recognized as important mediators of survival signals in cancers, stress responses, and neural development (1-6). In addition, these kinases are constitutively expressed in some tumors and function as true oncogenes. Thus, they are of significant interest as targets for therapeutic intervention.

Small-molecule inhibitors are important molecular probes for studying protein kinases. In addition, they may serve as prototype therapeutic agents for treating diseases resulting from unregulated kinase activity. Three prior reports have shown that known, promiscuous kinase inhibitors can inhibit FIM1 function in vitro. Jacobs et al. (7) showed that several staurosporine and bisindol-maleimide analogues, as well as the morpholino-substituted chromone LY294002, were able to inhibit FIM1 activity in vitro. Subsequently, Fabian et al. (8) presented an interaction map involving 113 kinases and 20 small-molecule kinase inhibitors now under clinical study. Only three inhibitors had detectable binding to (and presumably inhibitory activity against) FIM1—two staurosporine analogues and flavopindol, a flavonoid undergoing evaluation as an inhibitor of cyclin-dependent kinases. A recent report (9) confirmed the activity of bisindolylmaleimide derivatives as well as some flavonoids in vitro. All of the identified inhibitors either lacked specificity for FIM1 or were only modestly active at low micromolar concentrations, or both. Furthermore, none of these reports showed that the test agents could selectively inhibit FIM1 activity in intact cells.

To further our basic and translational studies of the pim kinases, we have sought to identify small-molecule inhibitors of FIM1. We here report that the flavonol quercetagetin is a selective FIM1 inhibitor with nanomolar potency and can differentially inhibit the kinase in cell-based assays.

Materials and Methods

Cell Lines and Culture Methods

The prostate epithelial cell lines RWPE1, RWPE2, LNCaP, and PC3 were obtained from the American Type Culture Collection (Manassas, VA) and cultured in the recommended medium. We produced additional pools of RWPE2 prostate cells that overexpressed pim-1 through retroviral transduction. The coding region for the human pim-1 gene was cloned into the pLCN XL recombinant vector (Clontech, Mountain View, CA). Infectious viruses were produced in the GP298 packaging cell line by cotransfection with retroviral backbone plasmids (pLCNX or pLCNX/pim-1) and with pVSV-G, a plasmid that expresses the envelope...
glycoprotein from vesicular stomatitis virus. Forty-eight hours after transfection, the medium was collected and the virus particles were concentrated as described in the manufacturer’s protocol (Clontech). RWPE2 cells were plated at 1 × 10^6 per 60-mm plate 16 to 18 h before infection. Cells were infected with 5 × 10^5 viral particles in the presence of 8 μg/mL polybrene. After 6 h of incubation, the virus-containing medium was replaced with fresh medium, and on the next day G418 (400 μg/mL) was added to select infected cells. After 10 days of selection, stable cell pools were established and PIM1 expression was verified by immunoblotting.

For growth-inhibition experiments, cells were plated onto 24-well plates and fixed with formaldehyde at intervals. Cell number was quantified by crystal violet staining (10).

Recombinant pim Kinases and Kinase Assays

We prepared recombinant PIM1 and PIM2 as glutathione S-transferase (GST) fusions in Escherichia coli, as described (11). For the inhibitor screening assays, a solid-phase kinase assay was developed based on our demonstration that PIM1 is a potent kinase for phosphorylating BAD on Ser^112 (11, 12). Ninety-six-well flat-bottomed plates were coated overnight at 4°C with recombinant GST-BAD [1 μg/well in HEPES buffer: 136 mM NaCl, 2.6 mM KCl and 20 mM HEPES (pH 7.5)]. The plates were then blocked for 1 h at room temperature with 10 mg/mL bovine serum albumin in HEPES buffer. The blocking solution was then removed and 5 μL of each inhibitor, dissolved in 50% DMSO, were added to each well. Then, 100 μL of kinase buffer (20 mM NaCl, 1 mM MgCl_2, 1 mM MnCl_2, 1 mM EDTA, 150 mM NaCl, 10 mM ATP, 1 mM DTT, and 5 mM L-β-glycerophosphate) containing 25 ng recombinant GST-PIM1 kinase were added to each well. The final concentration of each inhibitor was ~10 μmol/L. The plate was placed on a gel slab dryer prewarmed to 30°C, and the kinase reaction was allowed to proceed. The reaction was stopped after 60 min by removal of the reaction buffer, followed by the addition of 100 μL of HEPES buffer containing 20 mM EDTA to each well. Phosphorylated GST-BAD was detected by an ELISA reaction, using as first antibody a monoclonal anti-phospho-BAD(S112) antibody (Cell Signalling, Danvers, MA), a secondary goat anti-mouse IgG-peroxidase conjugated antibody (Pierce, Rockford, IL), and Turbo-TMB peroxidase substrate (Pierce). The level of phosphorylated GST-BAD present was proportional to the absorbance at 450 nm.

For quantitative and kinetic studies of inhibitors against various BAD/S112) kinases, a solution phase assay was used. A biotinylated peptide based on the PIM1 phosphorylation site of human BAD was synthesized (GGAGA-VEIRSRRSHSYGPAGTE) and used as the assay substrate. Recombinant GST-PIM1 (25 ng/reaction) was preincubated with various concentrations of inhibitors in the previous kinase buffer (final volume 100 μL). The reaction proceeded by addition of substrate peptide, followed by incubation for 5 min in a 30°C water bath. The reaction was terminated by transferring the mixture to a streptavidin-coated 96-well plate (Pierce) containing 100 μL/well of 40 mM/L EDTA. The biotinylated peptide substrate was allowed to bind to the plate at room temperature for 10 min. The level of phosphorylation was then determined by ELISA as described above. Curve fitting and enzyme analyses were done using GraphPad Prism version 4.0 for Windows (GraphPad Software, San Diego, CA). For the additional BAD/S112) kinases [PIM3, RSK2 (ribosomal S6 kinase 2), and FAK (cyclic AMP-dependent protein kinase)], reaction components were as described above. As with the PIM1 assays, an ATP concentration of 10 μmol/L was used. Furthermore, with each kinase, linear reaction velocities for the duration of the reaction were confirmed (data not shown).

To further assess the specificity of quercetagetin as a PIM1 inhibitor, its activity against a panel of serine-threonine kinases was also studied through a commercial kinase inhibitor profiling service (KinaseProfiler, Upstate Biotechnology, Charlottesville, VA). All KinaseProfiler assays were conducted using 10 μmol/L ATP concentrations.

Small-Molecule Library Screening

We obtained a library of 1,200 compounds that had structural affinity to known kinase inhibitors (TimTec, Inc., Newark, DE). The entire library was screened once with our solid-phase ELISA kinase assay, with each compound at ~10 μmol/L concentration. Positive hits were re-screened at the same concentration. Compounds that had reproducible activity at 10 μmol/L were then screened at a range of concentrations from 0.01 to 300 μmol/L. Additional flavonoids were purchased from Indofine Chemicals (Hillsborough, NJ) and were tested in a similar protocol.

Measurement of PIM1 Kinase Activity in Cells

RWPE2 cell pools, stably infected with empty retrovirus or paeI—encoding retrovirus, were seeded in six-well plates at 5 × 10^5 cells per well. After 18 h, the normal supplemented keratinocyte medium was removed and replaced with supplement-free keratinocyte medium. Cells were then incubated for an additional 20 h. Quercetagetin, or an equivalent volume of DMSO, was added to the cells 3 h before the end of the starvation period. At the conclusion of the starvation period, the cells were washed twice with PBS and subsequently lysed in a denaturing buffer with protease, phosphatase inhibitors. The lysates were normalized by total protein content (BCA protein assay, Pierce), then analyzed by immunoblotting with the following antibodies: monoclonal anti-PIM1 (Santa Cruz Biotechnologies, Santa Cruz, CA); monoclonal anti-β-actin (Sigma, St. Louis, MO); monoclonal anti-BAD (Transduction Laboratories, Franklin Lakes, NJ); and monoclonal anti-phospho-BAD(S112), polyclonal anti-phospho-AKT(S473), and anti-AKT (all from Cell Signaling).

Cloning, Expression, Purification, and Crystallization of PIM1

The production, purification, and characterization of recombinant 6His-tagged PIM1 proteins for crystallography have been described previously (13). To obtain cocrydals of complexes of the protein with ligands, the protein solution was initially mixed with the compound (dissolved...
in DMSO) at a final compound concentration of 1 mmol/L and then set up for crystallization. The protein was crystallized by a sitting-drop, vapor-diffusion experiment in which equal volumes of protein (10–15 mg/mL concentration) and reservoir solution [0.4–0.9 mol/L sodium acetate, 0.1 mol/L imidazole (pH 6.5)] were mixed and allowed to equilibrate against the reservoir at 4°C. The crystals routinely grew to a size of 200 × 200 × 800 μm in 2 to 3 days.

Structure Determination

X-ray diffraction data were collected at Advanced Light Source (Berkeley, CA). All data were processed and reduced with MOSFLM and scaled with SCALA of the CCP4 suite of programs using the software ELVES. The space group of all crystals was determined to be P65, with the cell axes being approximately 99, 99, and 80, and one protein monomer being present in the asymmetrical unit. All structures were determined by molecular replacement using the apo PIM1 structure (1YVV; ref. 13) as a model, and refined by CNS and REFMAC5. Crystallographic statistics are reported in Supplementary Table S1. The coordinates and structure factors for the structures have been deposited with the RCSB Protein Data Bank (accession codes 2O63, 2O64, 2O65).

Results

Screening of a Chemical Library with Structural Affinity to Known Kinase Inhibitors

As an initial approach to the identification of PIM1 inhibitors, we screened a library of small molecules whose structures were similar to those of known kinase inhibitors. Of the seven compounds that had reproducible inhibitory activity at 10 μmol/L, six were flavonoids [quercetin, luteolin, kaempferol, 7-hydroxyflavone, (5S,7R)-6,7-dihydroxy-8-(3-methylbut-2-ene)flavanone, and (R)-5,7-dihydroxyflavanone]. These compounds exhibited a range of inhibitory potencies (as IC50), from 1.1 to 60 μmol/L. Thirty-seven other flavonoids failed to show detectable inhibitory activity at 10 μmol/L. These inactive compounds were characterized in most cases by bulky (charged or uncharged) groups at the 3, 5, 4', or 7 positions; lack of at least two hydrogen bond donors on the A or C rings; presence of glycoside linkages; or failure of all rings to adopt a planar conformation.

The most active compound in the chemical library was the flavonol quercetin (IC50, 1.1 μmol/L), a known inhibitor of kinases and many other enzymes (14–19). Furthermore, six of the seven compounds with reproducible activity at 10 μmol/L were flavonoids. Hence, we screened additional flavonoids to identify molecules with inhibitory activity against the PIM1 kinase (Fig. 1). The most active molecule was the flavonol quercetagetin (IC50, 0.34 μmol/L). The four flavonoids with the highest inhibitory activity were characterized by the presence of five to six -OH groups distributed between the A and B rings. In comparison, the hydroxyl groups on the B ring seemed to be more critical for the activity of the compounds than those on the A ring, as compounds with an unsubstituted B ring showed greatly reduced activity. Finally, a hydrophobic substituent at the 8 position was tolerated.

Quercetagetin Is a Selective, Potent Inhibitor of PIM1 In vitro

To assess the selectivity of quercetagetin for PIM1, we determined its IC50 value toward the alternative BAD (S121) kinases RSK2, PKA, and FIM2 (Table I). The IC50 of quercetagetin for PIM1 kinase was 0.34 μmol/L, whereas the corresponding values for the other kinases were 9- to 70-fold higher.

To further characterize the specificity of quercetagetin, its inhibitory activity was examined at 1 or 10 μmol/L against additional serine-threonine kinases (c-Jun-NH2-kinase 1, PKA, Aurora-A, c-RAF, and FCK8; Fig. 2). At the lower concentration, the selectivity of quercetagetin was most apparent. In the presence of 1 μmol/L inhibitor, PIM1 activity was inhibited by 92%. In contrast, the activity of the other kinases was inhibited by only 0% to 41%. In aggregate, these studies established that quercetagetin was a severalfold more potent inhibitor for pim-1 kinase than for several other serine-threonine kinases. In addition, quercetagetin was completely inactive against the c-abl tyrosine kinase when tested at the 200 μmol/L concentration (data not shown).

Crystallographic Analysis of Quercetagetin in Complex with PIM1

Recently, several crystal structures of the PIM1 kinase have been solved and presented, including apo forms and the enzyme in complex with a variety of ligands (7, 9, 13, 20, 21). Because the PIM1 protein has several unique structural features around its ATP-binding pocket, including the lack of the canonical hydrogen bond donor from the hinge region typically used by kinases to bind ATP-like ligands, we determined the crystal structure for the kinase in complex with three flavonoid inhibitors: quercetin, myricetin, and 5,7,3′,4′,5′-pentahydroxyflavone (Fig. 3).

The three flavonoid inhibitors show two distinct binding poses, denoted here as orientations I and II, respectively. Quercetagetin, the compound with two hydroxyl groups on the B ring, adopts orientation I, whereas the compounds with a trisubstituted B ring (myricetin and 5,7,3′,4′,5′-pentahydroxyflavone) adopt orientation II.

The binding pose of quercetagetin in PIM1 (Fig. 3A) closely resembles that of quercetin in phosphatidylinositol 3-kinase γ (1E8W; ref. 22) and that of fisetin in CDK6 (1X02; ref. 23), designated here as orientation I. As seen in the two earlier structures (Fig. 3D and E), the 3-OH of the quercetin (Fig. 3A) makes a canonical hydrogen bond with backbone carbonyl oxygen of the hinge residue Glu19. In addition, the B ring of quercetagetin binds deep inside the PIM1 ATP-binding pocket, with the 4′-hydroxyl group hydrogen-bonded to the side chains of two highly conserved residues, Lys67 and Glu68. However, significant differences were also observed between the current
structure and the two reported structures. In both 1ESW and 1XO2, the 4-keto group of the chromone core of the compound formed a hydrogen bond with the same hinge amide nitrogen \([\text{Val}^{185}\text{ in phosphatidylinositol 3-kinase }\gamma\text{ (Fig. 3D)}\] and \([\text{Val}^{61}\text{ in CDK6 (Fig. 3E)}\] However, there is no direct interaction between the 4-keto group of quercetagetin and the amide nitrogen of the corresponding residue Pro\(^{79}\) in PIMI because proline is incapable of acting as a hydrogen bond donor. Instead, the 4-keto group of quercetagetin makes close contact with the backbone \(\text{Glu}^{121}\) (3.4 Å).

It is not clear whether this interaction makes a positive contribution to the binding of quercetagetin to PIMI.

The B ring of quercetagetin binds deep inside the PIMI ATP-binding pocket. The 4'-hydroxy group forms hydrogen bonds with both Lys\(^{67}\) and Glu\(^{89}\), two of the most conserved residues in kinases. As has been noted, satisfying the hydrogen bonding requirements at this region is one of the determining features of binding of compounds to PIMI (13).

When compared with quercetagetin, the chromene core of myricetin (Fig. 3B) and 7,3',5'-pentahydroxyflavone (Fig. 3C) has flipped 180° in PIMI such that the B ring is now oriented toward the entrance of the ATP pocket. A possible explanation for adopting this orientation is that the interior of the ATP pocket cannot accommodate the B ring with three hydroxyl substitutions. Although they bind in the same orientation, there are important differences between the binding poses of the two compounds, which can be attributed to the presence or absence of the 3'-hydroxyl group. The 3'-hydroxy group in myricetin still makes a hydrogen bond with the carbonyl oxygen of Glu\(^{121}\), despite the difference in binding orientation.

Because of the adjacent 4'-keto group, the 3'-hydroxy group is likely to be most acidic of all the hydroxyl groups in the compound, and, as a result, it dictates the overall positioning of the compound. Another interaction that may contribute to the observed binding pose is a hydrogen bond between the 3'-hydroxy group of myricetin and the carbonyl oxygen of Pro\(^{79}\) (Fig. 3B). The importance of the 3'-hydroxy group is evident. The second compound, 5,7,3',4',5'-pentahydroxyflavone, lacking such a group, makes no direct interaction with the hinge region.

Quercetagetin Inhibits PIMI Kinase Activity in Intact Cells

To determine if quercetagetin could act as a cell-permeable PIM1 inhibitor, we examined the activity of the flavonol in RWPE2 prostate cancer cells. We studied the phosphorylation of endogenous BAD on Ser\(^{136}\) under conditions of growth factor starvation, as an indicator of intracellular PIM1 activity (Fig. 4).
expression of PfMI kinase had a 4-fold higher amount of effects of quercetagetin on the growth of prostate cell lines pim-l expression. We examined the celk with little or no similar (Fig. 5C). Neither showed a <2n population suggested quercetagetin (6.25 umol/L) or DMSO vehicle were very 625 umol/L or higher concentrations (data not shown). disappeared in cultures treated with quercetagetin -il 1 -dependent phenotype at a drug concentration should reproduce a pira-1-dependent phenotype in the quercetagetin was able to selectively block the ability of celagelin did not inhibit the activity of the AKT kinase occulted at 55 umol/L extracellular concentration. Queicet acjetin Treatment Reproduces a Known pkn-1 Knockdown Phenotype

If quercetagetin acts as a true PIM1 inhibitor, then it should reproduce a pim-1-dependent phenotype in the target cells. We have shown that PIM1 inhibition by genetic means (small interfering RNA) inhibits the proliferation of RWPE1 and RWPE2 cells (Supplementary Fig. S1). We therefore determined if quercetagetin could reproduce this phenotype. RWPE2 cells were treated with quercetagetin for up to 72 h (Fig. 5A). Marked dose-dependent growth inhibition was apparent by 24 h, leading to persistent growth arrest thereafter. Quercetagetin reproduced this pim-1-dependent phenotype at a drug concentration that inhibited the enzyme in cells (ED50 3.8 μmol/L; Fig. 5B). Similar results were seen in RWPE1 cells (data not shown). Apoptotic cells, showing cytoplasmic blebbing and detachment, were rare, but dividing cells virtually disappeared in cultures treated with quercetagetin at 625 μmol/L or higher concentrations (data not shown). DNA histograms obtained at 24 h after the addition of quercetagetin (6.25 μmol/L) or DMSO vehicle were similar (Fig. 5C). Neither showed a <2n population suggestive of apoptosis. There was a slight increase in the proportion of cycling cells (G0 + G1-M) in the drug-treated samples. A PIM1 inhibitor would be predicted to inhibit the growth of cells that express the molecular target, more than cells with little or no pim-1 expression. We examined the effects of quercetagetin on the growth of prostate cell lines that express a spectrum of PIM1 levels. RWPE2 cells expressed the highest amount of PIM1 protein; PC3 had an intermediate level; and LNCaP cells showed the lowest amount of kinase protein (Fig. 6A). Treatment of the cells with various concentrations of quercetagetin for 72 h resulted in inhibition of cell growth (Fig. 6B). At all concentrations, RWPE2 cells were inhibited the most, being significantly more sensitive to quercetagetin growth inhibition than the other prostate cancer cell lines. PC3 cells showed intermediate growth suppression and were also significantly more sensitive than were LNCaP cells at quercetagetin concentrations of ≤125 μmol/L. Thus, the ability of the flavonol to inhibit proliferation was proportional to the amount of PIM1 protein in the target cells, particularly at lower drug concentrations. Although other interpretations are possible, these data support our observation that quercetagetin can act as a PIM1 inhibitor.

Discussion

The development of clinically useful small-molecule kinase inhibitors has been a seminal event in the world of oncology. Flavonoids were among the early scaffold structures identified as potential kinase inhibitors. However, although many flavones, isoflavones, and flavonoids have been shown to regulate the activity of kinases in cell-based assays, fewer data exist to show that these molecules can directly bind and inhibit kinase targets both in vitro and in cells. It is clear that some flavonoids are ATP-competitive ligands for both tyrosine and serine-threonine kinases, as well as other ATP-binding enzymes. The flavonol quercetin is one such ligand, and its ability to directly bind to ATP-binding enzymes has been well shown. At low-micromolar concentrations, it directly binds and inhibits such diverse enzymes as the phosphatidylinositol 3-kinase (14), the epidermal growth factor receptor tyrosine kinase (15), retroviral reverse transcriptases (16), DNA gyrase (17), phosphodiesterases (18), and thioredoxin reductase (19). Other direct flavonoid inhibitors have been described for RSK2 kinase (24), mitogen-activated protein/extracellular signal-regulated kinase 1 (25), and several cyclin-dependent kinases (23, 26–28). One such ligand, flavopiridol, has already entered clinical trials for the treatment of cancer. Others, such as PD98059, are familiar laboratory reagents for inhibition of kinase pathways. We now show, by means of crystallography, that quercetagetin is a direct ligand for the ATP-binding pocket of PIM1 kinase (Fig. 3).

Table 1. Quercetagetin is a selective inhibitor of the PIM1 kinase over other BAD(S112) kinases

<table>
<thead>
<tr>
<th>Kinase</th>
<th>IC50 (μmol/L)</th>
<th>Log IC50 (μmol/L)</th>
<th>SE of log IC50</th>
<th>R2</th>
</tr>
</thead>
<tbody>
<tr>
<td>PIM1</td>
<td>0.34</td>
<td>-0.46</td>
<td>0.12</td>
<td>0.98</td>
</tr>
<tr>
<td>PIM2</td>
<td>3.45</td>
<td>0.55</td>
<td>0.22</td>
<td>0.94</td>
</tr>
<tr>
<td>PKA</td>
<td>2.12</td>
<td>1.33</td>
<td>0.23</td>
<td>0.94</td>
</tr>
<tr>
<td>RSK2</td>
<td>2.82</td>
<td>0.45</td>
<td>0.09</td>
<td>0.99</td>
</tr>
</tbody>
</table>

NOTE: All data were derived from nonlinear regression analyses using a three-parameter logistic that assumes a Hill coefficient of -1.

RWPE2 cells infected with a neo-expressing retrovirus showed little phospho-BAD(S112) when cultured overnight in basal serum-free medium. However, cells with enforced expression of PIM1 kinase had a 4-fold higher amount of phospho-BAD, reflecting the inability of the PIM1 protein to phosphorylate the endogenous BAD protein. When pim-1-expressing cells were treated with quercetagetin, phospho-BAD(S112) levels were markedly reduced in proportion to the concentration of the inhibitor. Half-maximal inhibition occurred at 5.5 μmol/L extracellular concentration. Quercetagetin did not inhibit the activity of the AKT kinase under these conditions, as indicated by persistent phosphorylation of AKT on Ser473. These data indicate that quercetagetin was able to selectively block the ability of PIM1 to phosphorylate BAD in intact cells.

Quercetagetin Treatment Reproduces a Known pim-1 Knockdown Phenotype

If quercetagetin acts as a true PIM1 inhibitor, then it should reproduce a pim-1-dependent phenotype in the target cells. We have shown that PIM1 inhibition by genetic means (small interfering RNA) inhibits the proliferation of RWPE1 and RWPE2 cells (Supplementary Fig. S1). We therefore determined if quercetagetin could reproduce this phenotype. RWPE2 cells were treated with quercetagetin for up to 72 h (Fig. 5A). Marked dose-dependent growth inhibition was apparent by 24 h, leading to persistent growth arrest thereafter. Quercetagetin reproduced this pim-1-dependent phenotype at a drug concentration that inhibited the enzyme in cells (ED50 3.8 μmol/L; Fig. 5B). Similar results were seen in RWPE1 cells (data not shown). Apoptotic cells, showing cytoplasmic blebbing and detachment, were rare, but dividing cells virtually disappeared in cultures treated with quercetagetin at 625 μmol/L or higher concentrations (data not shown). DNA histograms obtained at 24 h after the addition of quercetagetin (6.25 μmol/L) or DMSO vehicle were very similar (Fig. 5C). Neither showed a <2n population suggestive of apoptosis. There was a slight increase in the proportion of cycling cells (G0 + G1-M) in the drug-treated samples. A PIM1 inhibitor would be predicted to inhibit the growth of cells that express the molecular target, more than cells with little or no pim-1 expression. We examined the effects of quercetagetin on the growth of prostate cell lines that express a spectrum of PIM1 levels. RWPE2 cells expressed the highest amount of PIM1 protein; PC3 had an intermediate level; and LNCaP cells showed the lowest amount of kinase protein (Fig. 6A). Treatment of the cells with various concentrations of quercetagetin for 72 h resulted in inhibition of cell growth (Fig. 6B). At all concentrations, RWPE2 cells were inhibited the most, being significantly more sensitive to quercetagetin growth inhibition than the other prostate cancer cell lines. PC3 cells showed intermediate growth suppression and were also significantly more sensitive than were LNCaP cells at quercetagetin concentrations of ≤125 μmol/L. Thus, the ability of the flavonol to inhibit proliferation was proportional to the amount of PIM1 protein in the target cells, particularly at lower drug concentrations. Although other interpretations are possible, these data support our observation that quercetagetin can act as a PIM1 inhibitor.

Discussion

The development of clinically useful small-molecule kinase inhibitors has been a seminal event in the world of oncology. Flavonoids were among the early scaffold structures identified as potential kinase inhibitors. However, although many flavones, isoflavones, and flavonoids have been shown to regulate the activity of kinases in cell-based assays, fewer data exist to show that these molecules can directly bind and inhibit kinase targets both in vitro and in cells. It is clear that some flavonoids are ATP-competitive ligands for both tyrosine and serine-threonine kinases, as well as other ATP-binding enzymes. The flavonol quercetin is one such ligand, and its ability to directly bind to ATP-binding enzymes has been well shown. At low-micromolar concentrations, it directly binds and inhibits such diverse enzymes as the phosphatidylinositol 3-kinase (14), the epidermal growth factor receptor tyrosine kinase (15), retroviral reverse transcriptases (16), DNA gyrase (17), phosphodiesterases (18), and thioredoxin reductase (19). Other direct flavonoid inhibitors have been described for RSK2 kinase (24), mitogen-activated protein/extracellular signal-regulated kinase 1 (25), and several cyclin-dependent kinases (23, 26–28). One such ligand, flavopiridol, has already entered clinical trials for the treatment of cancer. Others, such as PD98059, are familiar laboratory reagents for inhibition of kinase pathways. We now show, by means of crystallography, that quercetagetin is a direct ligand for the ATP-binding pocket of PIM1 kinase (Fig. 3).
Specificity is always a concern with ATP pocket ligands. There are probably no absolutely selective inhibitors for a kinase but rather ligands that show a spectrum of affinities for their various targets. We have shown that quercetagetin is severalfold more active against PIM1 than against eight other serine-threonine kinases and a tyrosine kinase, either with in vitro assays or in cell cultures. Interestingly, quercetagetin showed 10-fold more selectivity for PIM1 than for the homologous PIM2 kinase (sequence identity 56%). The ATP-binding pockets of these two kinases are identical with the exception of three residues along the edge of the PIM1 ATP-binding pocket—Ser^{24} (Ala^{100} in PIM2), Glu^{74} (Leu^{120} in PIM2), and Val^{224} (Ala^{122} in PIM2). Val^{224} of PIM1 makes direct van der Waals contact with the A ring of quercetagetin (Fig. 3A). Loss of such a contact due to the Val-to-Ala substitution is likely a contributing factor to the reduced activity of the compound in PIM2. The other residues are located close to the hinge Arg^{122} (Arg^{122} in PIM2). The polar side chains of Ser^{24} and Glu^{74} can form hydrogen bonds with Arg^{122}, thus affecting its conformation. Substitutions of these residues to hydrophobic amino acids in PIM2 will change the local environment (Fig. 3A).
kinases bound flavopiridol less well than did calcium/calmodulin-dependent protein kinase kinase I. These data suggest that cyclin-dependent kinases may not be the only kinases inhibited in cells by flavopiridol. Both PIM1 and PIM2 were among the bound kinases, with binding constants of 0.52 and 0.65 μmol/L, respectively. Although there is no absolute correlation between binding constants and enzymatic activity, flavopiridol could conceivably inhibit the activity of both PIM1 and PIM2 in test systems.

Because quercetagetin has not been tested against a large number of other kinases, we cannot predict what other enzymes would be perturbed by this flavonoid. It is likely, however, that its spectrum of selectivity will be substantially different from that of flavopiridol. Quercetagetin showed clear preference for inhibiting PIM1 over PIM2, whereas flavopiridol did not. Furthermore quercetagetin inhibited the activity of the Aurora-A kinase (IC_{50} = 4 μmol/L), a kinase that did not bind flavopiridol (8). The substantial
homology between Aurora-A kinase and PIM1 kinase likely contributed to the low-level inhibitory activity of quercetin for the former; Aurora-A and PIM1 are 29% identical over their entire kinase domains; and the ATP binding pockets have 68% conserved amino acids.

An earlier, smaller-scale study looked at the effect of the flavonol quercetin on the in vitro kinase activity of 25 kinases, none of which were pim family kinases (29). At the tested concentration (20 µmol/L), quercetin inhibited the enzymatic activity of eight of the kinases. The propensity of this flavonol to form aggregates in aqueous solution has been advanced as an explanation for its widespread enzyme-inhibitory activity in vitro (30). We have not detected quercetin aggregates at concentrations of <10 µmol/L in aqueous solution, using a light-scattering assay (data not shown). Thus, we feel that this artifact does not account for the ability of this flavonol to inhibit PIM1 at nanomolar concentrations.

Because of the potential ambiguities that may accompany the use of small-molecule kinase inhibitors, a series of standards have been proposed for their use (29). To validate the results, it is desirable to show that the effects of an inhibitor disappear when a drug-resistant mutant of the protein kinase is overexpressed. Although convincing, this standard often fails due to the lack of an identified mutant with the desired properties. No such mutant has been identified for any of the pim kinases. Another potential standard is to show that the cellular effect of the drug occurs at the same concentrations that prevents the phosphorylation of an authentic physiologic substrate of the protein kinase. We have seen in these studies that half-maximal growth inhibition of prostate cancer cells occurred at a drug concentration (3.8 µmol/L) that approximated the IC_{50} for PIM1 enzyme inhibition in cells (5.5 µmol/L). Furthermore, the selectivity for prostate cancer growth inhibition, in proportion to endogenous PIM1 levels, was greatest at 6.25 µmol/L. Higher concentrations suppressed growth more, but the relationship to endogenous PIM1 levels was obscured. These data suggest that, at relatively low concentrations (perhaps 5–10 µmol/L), the growth-inhibitory effects of quercetin likely involve PIM1 antagonism. A third standard is to observe the same effect with at least two structurally unrelated inhibitors of the protein kinase. Previously described inhibitors of pim
vonoids from adopting the binding orientation observed for quercetagetin. The hydrophobic side chain of Leu19, which extends into the ATP pocket in the same region occupied by the B ring of quercetagetin (Fig. 3A), may be incompatible with the 5' hydroxyl group of myricetin and 5,7,3',4',5'-pentahydroxyflavone.

Both pem-1 and pem-2 can phosphorylate 4EBP-1, a regulator of protein translation (31, 32). Rapamycin was unable to block this effect. These data suggest that pem kinases may function in a parallel pathway to the phosphatidylinositol 3-kinase/AKT/mammalian target of rapamycin cascade to regulate and support protein synthesis under stress conditions. Because AKT-1 and PIM2 function cooperatively to induce lymphoma formation in transgenic mice (6), it may be necessary to target both pathways for effective antitumor effects. Several prototype AKT inhibitors have been described (33, 34). Our identification of quercetagetin as a PIM1 inhibitor provides a tool for tissue culture studies to investigate this hypothesis. Under the tested conditions, we found no evidence that quercetagetin inhibited the phosphorylation of AKT on Ser433. Thus, it may be possible to combine inhibitors of these kinases to detect additive or synergistic effects resulting from the blockade of the two kinase pathways.

The crystal structures of PIM1 complexed with quercetagetin, myricetin, and 5,7,3',4',5'-pentahydroxyflavone show that flavonoids bind to PIM1 in two distinct orientations. Although interesting, this is not a surprising observation, as flavones have shown a variety of binding modes in kinases (9, 22, 23, 26–28). An examination of the intermolecular interactions of each flavonoid with PIM1 does not clearly reveal why one orientation was adopted over the other. However, it is possible that the presence of three hydroxyl groups on the B ring of myricetin and 5,7,3',4',5'-pentahydroxyflavone discourages these two flavonoids from adopting the binding orientation observed for quercetagetin.

Comparative molecular field analysis of flavonoid inhibitors of the PIM-1 kinase

Sheldon Holder, Michael Lilly, and Milton L. Brown

Abstract — The PIM-1 protein, the product of the pim-1 oncogene, is a serine/threonine kinase. Dysregulation of the PIM-1 kinase has been implicated in the development of human malignancies including lymphomas, leukemias, and prostate cancer. Comparative molecular field analysis (CoMFA) is a 3-D QSAR technique that has been widely used, with notable success, to correlate biological activity with the steric and electrostatic properties of ligands. We have used a set of 15 flavonoid inhibitors of the PIM-1 kinase, aligned de novo by common substructure, to generate a CoMFA model for the purpose of elucidating the steric and electrostatic properties involved in flavonoid binding to the PIM-1 kinase. Partial least squares correlation between observed and predicted inhibitor potency (expressed as -logIC50) using a non-cross-validated run of the in-house analyst, generated a new predictive model that may be used for the rational design of small-molecule inhibitors of the PIM-1 kinase.

© 2007 Published by Elsevier Ltd.

1. Introduction

The PIM-1 protein is a serine/threonine kinase that has been shown to be involved in the regulation of cell survival, differentiation, proliferation, and tumorigenesis (for review, see Refs. 4,5). The pim-1 gene was first identified as a preferential proviral insertion site of Moloney Murine Leukemia Virus in virally induced T-cell lymphomas in mice. In humans, pim-1 is expressed in normal lymphoid tissues (bone marrow, spleen, thymus, and lymph nodes), testes, and circulating myeloid cells. Although its specific role is not known, the PIM-1 kinase has been shown to be an integral part of growth factor signaling. Additionally, the PIM-1 kinase is involved in regulating the activity of phosphatases and transcription factors and has been shown to phosphorylate heterochromatin protein 1 (HP1), related protein 1 (PAP-1), and the nuclear mitotic apparatus protein (NuMA).

While the PIM-1 kinase is involved in numerous signaling events in normal cells, pim-1 knockout mice only exhibit a minimal phenotype. The near normal phenotype of these mice is attributed to functional compensation by other members of the PIM family of kinases, namely PIM-2 and PIM-3. Not surprisingly, hematopoietic cells taken from triple knockout mice devoid of PIM-1, PIM-2, and PIM-3 demonstrated to have an...
impaired response to growth factors. While the absence of pim-1 showed minimal adverse effects in mice, overexpression of pim-1 has been shown to have significant effects on cell survival. In vitro studies reveal that enforced expression of pim-1 caused increased cellular proliferation, decreased apoptosis, and decreased cell death, increased cell survival, and protection from toxin-induced cell death in the murine bone marrow FDCP1 cell line. Enforced expression of human pim-1 in FDCP1 cells also resulted in IL-3-independent cell survival. Furthermore, pim-1 has been shown to cooperate with both c-myc and N-myc in hematopoietic oncogenesis and significant overexpression of pim-1 has been demonstrated in clinical cases of lymphoma, leukemia, and prostate cancer.

Comparative molecular field analysis (CoMFA) is a three-dimensional quantitative molecular modeling technique used to study relationships between ligand structure (steric and electrostatic properties) and biological activity. The final validated model can be used for the design of novel ligands and to predict the functional activity of those ligands before synthesis.

In addition to its successful use to evaluate the properties of the binding sites of kinase-specific inhibitors, the CoMFA methodology has shown utility in evaluating the ligand-binding sites of numerous receptors, including calcium channels, chromosome p450 enzymes, human immunodeficiency virus-1 integrase, and β-tubulin. In each case the CoMFA models demonstrated a strong correlation between predicted and experimental ligand activity.

We have constructed CoMFA models, aligned with and without crystal structure guidance, for flavonoid ligands of the PIM-1 kinase using a training set of 15 flavonoid probes for which we have determined the inhibitory potency against the PIM-1 kinase. Here we describe the electrostatic and steric properties of the CoMFA model. We demonstrated its utility as a predictive model of flavonoid potency using a test set of six flavonoids that were not included in the training set. We also validated the model by overlay with a PIM-1 kinase crystal structure to elucidate the amino acid residues that may provide an explanation of the CoMFA contours.

Q2 2. Results

Simple correlations between PIM-1 kinase inhibition and flavonoid log P (Fig. 1) or molecule dipole (Fig. 2) resulted in poor correlations. This suggested that other parameters are important for kinase inhibition.

Hence we generated CoMFA models of flavonoid inhibitors of the PIM-1 kinase. The structures and corresponding $-\log IC_{50}$ values for the training set of flavonoids are presented in Table 1. A cross-validated partial least squares analysis determined the optimum number of components for use in non-cross-validated analysis to be 2 (Table 2).

![Figure 1](attachment:image1.png)

Figure 1. Predictive value of logP versus inhibitor potency for the training set.

![Figure 2](attachment:image2.png)

Figure 2. Predictive value of dipole moment versus inhibitor potency for the training set.

Using the alignment rule for model 1 (Fig. 3), a non-cross-validated partial least squares regression analysis of potency, expressed as $-\log IC_{50}$ and CoMFA descriptors generated a CoMFA model with $q^2 = 0.805$ for the training set (see Table 1 and Fig. 4a). The CoMFA model provided an improved correlation to flavonoid potency compared with $-\log P$ ($R^2 = 0.4939$) or dipole moment ($R^2 = 0.1749$) for the same set of data.

We validated the CoMFA model by determining how accurately it could predict the IC_{50} values of a test set of compounds (flavonoids not included in the training set; Table 3). We compared the CoMFA predicted $-\log IC_{50}$ with the experimental $-\log IC_{50}$ for each flavonoid in the test set. The model showed a strong correlation between predicted $-\log IC_{50}$ and experimental $-\log IC_{50}$ with a correlation coefficient of $R^2 = 0.829$ (Fig. 4b). These data demonstrated that the CoMFA model could successfully predict the potency of flavonoid inhibitors of the PIM-1 kinase not present in the training set.

The steric and electrostatic contributions to the model were determined to be 0.626 and 0.374, respectively, and are represented graphically in Figure 5. For electrostatic contributions the model predicts that increased binding will result by placing more negative charge near the flavonoid C4' position and more positive charges near C8. For steric contributions the model predicts that...
Table 1. Structures and non-cv PLS analysis for the training set using multiple alignments

![Chemical structures](image)

<table>
<thead>
<tr>
<th>Compound</th>
<th>R_1</th>
<th>R_2</th>
<th>R_3</th>
<th>R_4</th>
<th>R_5</th>
<th>R_6</th>
<th>R_7</th>
<th>R_8</th>
<th>R_9</th>
<th>R_10</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (quercetin)</td>
<td>OH</td>
<td>OH</td>
<td>OH</td>
<td>OH</td>
<td>H</td>
<td>H</td>
<td>OH</td>
<td>OH</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>2 (gossypetin)</td>
<td>OH</td>
<td>OH</td>
<td>H</td>
<td>OH</td>
<td>OH</td>
<td>H</td>
<td>OH</td>
<td>H</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>3 (myricetin)</td>
<td>OH</td>
<td>OH</td>
<td>H</td>
<td>OH</td>
<td>H</td>
<td>H</td>
<td>OH</td>
<td>OH</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>4 (apigenin)</td>
<td>H</td>
<td>OH</td>
<td>H</td>
<td>OH</td>
<td>H</td>
<td>H</td>
<td>OH</td>
<td>OH</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>5 (apigenin)</td>
<td>OH</td>
<td>OH</td>
<td>H</td>
<td>OH</td>
<td>H</td>
<td>H</td>
<td>OH</td>
<td>OH</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>6 (quercetin)</td>
<td>OH</td>
<td>OH</td>
<td>H</td>
<td>OH</td>
<td>OH</td>
<td>H</td>
<td>OH</td>
<td>H</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>7 (tectorin)</td>
<td>-2.03</td>
<td>0.318</td>
<td>1.78</td>
<td>0.059</td>
<td>0.374</td>
<td>0.10</td>
<td>0.25</td>
<td>0.29</td>
<td>0.12</td>
<td>0.01</td>
</tr>
<tr>
<td>8 (morin)</td>
<td>OH</td>
<td>OH</td>
<td>H</td>
<td>OH</td>
<td>H</td>
<td>H</td>
<td>OH</td>
<td>H</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>9</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>OH</td>
<td>H</td>
<td>H</td>
<td>OH</td>
<td>H</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>10</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>OH</td>
<td>H</td>
<td>H</td>
<td>OH</td>
<td>H</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>11</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>OH</td>
<td>H</td>
<td>H</td>
<td>OH</td>
<td>H</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>12</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>OH</td>
<td>H</td>
<td>H</td>
<td>OH</td>
<td>H</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>13</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>OH</td>
<td>H</td>
<td>H</td>
<td>OH</td>
<td>H</td>
<td>H</td>
<td>H</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Compound</th>
<th>Obsd</th>
<th>Pred</th>
<th>Res</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.47</td>
<td>0.20</td>
<td>0.27</td>
</tr>
<tr>
<td>2</td>
<td>0.37</td>
<td>0.21</td>
<td>0.15</td>
</tr>
<tr>
<td>3</td>
<td>0.19</td>
<td>0.23</td>
<td>0.05</td>
</tr>
<tr>
<td>4</td>
<td>0.11</td>
<td>0.28</td>
<td>0.18</td>
</tr>
<tr>
<td>5</td>
<td>0.03</td>
<td>0.09</td>
<td>0.06</td>
</tr>
<tr>
<td>6</td>
<td>0.20</td>
<td>0.25</td>
<td>0.21</td>
</tr>
<tr>
<td>7</td>
<td>0.20</td>
<td>0.12</td>
<td>0.08</td>
</tr>
<tr>
<td>8</td>
<td>-0.43</td>
<td>-0.78</td>
<td>0.35</td>
</tr>
<tr>
<td>9</td>
<td>-0.66</td>
<td>-0.66</td>
<td>0.33</td>
</tr>
<tr>
<td>10</td>
<td>-0.89</td>
<td>-0.86</td>
<td>0.03</td>
</tr>
<tr>
<td>11</td>
<td>-1.10</td>
<td>-1.76</td>
<td>0.67</td>
</tr>
<tr>
<td>12</td>
<td>-1.15</td>
<td>-0.98</td>
<td>0.17</td>
</tr>
<tr>
<td>13</td>
<td>-1.34</td>
<td>-0.89</td>
<td>-0.46</td>
</tr>
<tr>
<td>14 (R)</td>
<td>-1.78</td>
<td>-1.05</td>
<td>-0.73</td>
</tr>
<tr>
<td>15 (S)</td>
<td>-2.03</td>
<td>-1.78</td>
<td>-0.25</td>
</tr>
</tbody>
</table>

Model I

\[
\text{Pred} = \log_{10} C_{50} \ (\mu M)
\]

Model II

\[
\text{Pred} = \log_{10} C_{50} \ (\mu M)
\]

Model III

\[
\text{Pred} = \log_{10} C_{50} \ (\mu M)
\]

Table 2. Cross-validated partial least squares analysis using multiple alignments

<table>
<thead>
<tr>
<th>Components</th>
<th>Model I</th>
<th>Model II</th>
<th>Model III</th>
</tr>
</thead>
<tbody>
<tr>
<td>s</td>
<td>(R^2)</td>
<td>s</td>
<td>(R^2)</td>
</tr>
<tr>
<td>1</td>
<td>0.682</td>
<td>0.303</td>
<td>0.686</td>
</tr>
<tr>
<td>2</td>
<td>0.610</td>
<td>0.487</td>
<td>0.610</td>
</tr>
<tr>
<td>3</td>
<td>0.679</td>
<td>0.416</td>
<td>0.669</td>
</tr>
<tr>
<td>4</td>
<td>0.691</td>
<td>0.450</td>
<td>0.731</td>
</tr>
<tr>
<td>5</td>
<td>0.775</td>
<td>0.374</td>
<td>0.760</td>
</tr>
<tr>
<td>6</td>
<td>0.861</td>
<td>0.318</td>
<td>0.819</td>
</tr>
</tbody>
</table>

s, standard error for the estimate of \(-\log_{10} C_{50}\); \(R^2\), correlation coefficient. Optimum number of components for model I is 2 (\(R^2 = 0.487\)), model II is 2 (\(R^2 = 0.452\)), model III is 2 (\(R^2 = 0.409\)).

adding bulk near the C3' and C6' positions will improve binding.

We examined the interactions of the most potent PIM-1 antagonist, quercetin (IC_{50} = 0.34 \mu M), and those of the least potent flavonoid, compound 15 (IC_{50} = 107 \mu M), with the steric and electrostatic contours of the model. The model elucidates at least one reason for the dramatic differences in potency between these two flavonoid compounds. As illustrated in Figure 6, quercetin is almost completely flat within the contours. In this position the C3' and C4' hydroxyl groups on the...
Figure 3. CoMFA model alignment rules. (a) In model I compounds 2-21 were aligned by overlapping atoms indicated by red circles. (b) In model II myricetin was aligned to quercetin according to their respective poses within the co-crystallized PIM-1 structure. To achieve this alignment the protein crystal structure backbones of PIM-Quercetin and PIM-Myricetin were aligned. The relationship of the quercetin pose to the myricetin pose is illustrated by overlap of atoms indicated by blue squares and red circles. Compounds 2, 3, 5-21 were aligned to quercetin as in model I (indicated by green triangles). (c) In model III compounds 3 and 10 were aligned to the co-crystallized pose of myricetin. Compounds 2, 5-9, 11-21 were aligned to the co-crystallized pose of quercetin. (d) The crystal poses of quercetin (blue) and myricetin (green) in the PIM-1 ATP-binding pocket.

B ring are directed toward the area revealed by the model as favorable for negative charges (red contours). In contrast, compound 15 has a chiral center at the C2 position and does not lie flat within the contours (because of the sp^3 hybridization). The B ring of this flavonoid is positioned deep within a region where the model predicted less bulk would improve binding (yellow contour). Hence the model elucidates the steric interactions that make compound 15 a poor PIM-1 kinase inhibitor, that is, the position of the B ring produces steric hindrances that discourage flavonoid binding.

We sought to further validate the CoMFA model by comparing the steric and electrostatic contours of the model with a PIM-1 kinase crystal structure. We have previously reported the crystal structure of the PIM-1 kinase in complex with quercetin. We superimposed the quercetin in the PIM-1 co-crystal structure onto the quercetin in the CoMFA training set and examined the amino acid residues involved in flavonoid binding. In the areas where the model predicts improved binding by the addition of more positive charges, there are potential interactions with negatively charged acidic side chains (Glu^{27}, Asp^{26}, Asp^{31}, Glu^{31}). Similarly, the electrostatic contour favoring negative charges envelops the positively charged side chain of Lys^{67} (Fig. 6a).

The steric fields were also confirmed by the PIM-1 kinase crystal structure. The bulky side chains of Val^{12}, Ala^{65}, and Leu^{120} sterically hinder large groups in the region identified in the crystal structure that corresponds to regions in the CoMFA model where reduced bulk will improve binding. The model also identified a solvent exposed area near C7 as a region where reduced bulk would improve binding. Additionally, the side chain of Phe^{69} and those of Ile^{84} and Ile^{85} form two hydrophobic pockets. The model accurately identified both of these pockets as regions where the addition of bulk would improve binding (Fig. 6b). Hence, a comparison of the electrostatic and steric CoMFA fields with the PIM-1 kinase crystal structure validates the striking accuracy of this CoMFA model of the PIM-1 kinase.

To address the finding that flavonoids bind to the PIM-1 kinase in at least two different orientations we created additional CoMFA models using alternate alignment rules (Fig. 3). Model II, in which myricetin was aligned in the training set of compounds according to its crystal pose rather than by superimposition onto quercetin over their common substructure, showed no improvement over model I to predict the potencies of the test set compounds (Fig. 4). Similarly, model III, in which myricetin and compounds 3 and 10 were aligned in the training set according to the crystal pose of myricetin, showed no improvement over model I in predicting the potencies of the test set compounds (Fig. 4).

In light of the sterically restricted nature of the PIM-1 kinase ATP binding site we evaluated the relationship between volume and potency for flavonoid inhibitors.
of the PIM-1 kinase. Figure 7 demonstrates what appears to be an optimum volume near 218 Å³ (the volume of quercetin) for flavonoid antagonists of PIM-1. Flavonoids with volumes larger or smaller than 218 Å³ are progressively worse inhibitors of the PIM-1 kinase.

3. Discussion

Here we have described the generation of the first CoMFA model for PIM-1 kinase ligands using flavonoid probes. Sixty-three percent of the contributions to the model were steric, while only 37% were electrostatic, suggesting that flavonoid binding to the PIM-1 kinase is influenced predominantly by steric factors rather than by electrostatic factors.

The steric contours reveal that the PIM-1 kinase ATP-binding site is sterically hindered above and below the plane of the bound flavonoid. It is likely that the planar conformation of the flavone class of compounds is what allows them to fit well into the sterically restricted space within the PIM-1 kinase ATP-binding site. In contrast, (R)- and (S)-flavanones (compounds 11, 14, and 15), which have a chiral carbon at the C2 position, are inferior PIM-1 kinase antagonists compared to the flavones (see Fig. 6 and Table 1). Our model was able to predict the relative order in regard to enantioselective inhibition (R > S) of compounds 14 and 15. It appears that a planar conformation is advantageous for inhibition and presumably would not be limited to the flavonoid class of compounds. It is more likely that this favorable characteristic will be found in small-molecule inhibitors of the PIM-1 kinase as a group.

As demonstrated in Figure 7, the volume of the ligand also appears to play a role in the potency of flavonoid compounds as PIM-1 kinase antagonists. This feature...
Table 3. Observed and predicted potencies for the test set using multiple alignments

<table>
<thead>
<tr>
<th>Compound</th>
<th>R₁</th>
<th>R₂</th>
<th>R₃</th>
<th>R₄</th>
<th>R₅</th>
<th>R₆</th>
<th>R₇</th>
<th>R₈</th>
<th>R₉</th>
<th>R₁₀</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 (fisetin)</td>
<td>OH</td>
<td>H</td>
<td>H</td>
<td>OH</td>
<td>H</td>
<td>H</td>
<td>OH</td>
<td>H</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>17</td>
<td>OH</td>
<td>H</td>
<td>H</td>
<td>OH</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>18 (kaempferol)</td>
<td>OH</td>
<td>OH</td>
<td>H</td>
<td>OH</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>19</td>
<td>OH</td>
<td>H</td>
<td>H</td>
<td>OH</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>20</td>
<td>OH</td>
<td>H</td>
<td>OH</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>21</td>
<td>H</td>
<td>OH</td>
<td>H</td>
<td>OH</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Compound</th>
<th>R₁</th>
<th>R₂</th>
<th>R₃</th>
<th>R₄</th>
<th>R₅</th>
<th>R₆</th>
<th>R₇</th>
<th>R₈</th>
<th>R₉</th>
<th>R₁₀</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 (fisetin)</td>
<td>0.07</td>
<td>0.20</td>
<td>-0.13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>0.01</td>
<td>0.10</td>
<td>-0.09</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18 (kaempferol)</td>
<td>-0.11</td>
<td>-0.41</td>
<td>0.30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>-0.66</td>
<td>-0.59</td>
<td>0.23</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>-0.92</td>
<td>-0.77</td>
<td>-0.15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>-1.15</td>
<td>-0.94</td>
<td>-0.24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Q: Obsd, observed value; Pred, predicted value; Res, residual. *Generated from CoMFA non-cross-validated run (see Section 4).

Figure 5. Comparison of the most and least potent flavonoid inhibitors of the PIM-1 kinase within the contours of the CoMFA model. Quercetin, the most potent inhibitor, is pictured in gray. (S)-5,7-Dihydroxyflavanone (15), the poorest inhibitor, is pictured in purple. For the electrostatic contours increased binding is predicted by placing more positive (+) charges near blue areas and more negative (−) charges near red areas. The steric contours predict increased binding by placing more bulk near green areas and less bulk near yellow areas.

is related to the sterically restricted nature of the binding site. It appears that the potency of a flavonoid is reduced when the volume of the flavonoid is too small to adequately fill the ATP-binding pocket. Similarly, if the volume of the flavonoid is too large the restrictive nature of the binding pocket results in reduced efficiency of binding and inferior potency. A volume approaching 218 Å³, the volume of quercetin, appears near optimal for flavonoid inhibitors of the PIM-1 kinase.

The CoMFA model generated a superior correlation to observed flavonoid potency than simple correlation to either log P or dipole moment. It is important to note that the flavonoid potencies used to generate the CoMFA model were determined using a solid phase in vitro kinase assay. Because log P is a predictive measure of absorption, it is plausible that determining the flavonoid potencies using a cellular assay would improve the correlation between log P and observed flavonoid potency.

Nonetheless, the utility of the CoMFA model as a pre-
Figure 6. Characterization of the electrostatic and steric CoMFA fields with a superimposed PIM-1 kinase crystal structure. The crystal structure of the PIM-1 kinase in complex with quercetagetin is superimposed on the CoMFA fields using the positions of quercetagetin in the crystal and the model. For clarity, only the amino acid residues contributing to the properties of a CoMFA contour are shown. The pictured flavonoid is the CoMFA model quercetagetin structure; to reduce visual clutter the PIM-1 crystal quercetagetin structure is not shown. (a) For the electrostatic contours increased binding is predicted by placing more positive (+) charges near blue areas and more negative (-) charges near red areas. (b) The steric contours predict increased binding by placing more bulk near green areas and less bulk near yellow areas.

Table 6. Volume of flavonoids related to their potency as an inhibitor of the PIM-1 kinase.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Volume (Å³)</th>
<th>-Log Kᵢ (M⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quercetagetin 1</td>
<td>218.7 (1)</td>
<td>1.01 (1)</td>
</tr>
<tr>
<td>Quercetagetin 2</td>
<td>194.6 (1)</td>
<td>1.00 (1)</td>
</tr>
<tr>
<td>Quercetagetin 3</td>
<td>193.1 (1)</td>
<td>1.00 (1)</td>
</tr>
<tr>
<td>Quercetagetin 4</td>
<td>193.5 (1)</td>
<td>1.00 (1)</td>
</tr>
</tbody>
</table>

An effective tool for the in silico design and prediction of additional flavonoid inhibitors of the PIM-1 kinase. Further experiments will be conducted to determine the accuracy of using the model to determine the potency of small molecules that are not in the flavonoid class of compounds.

Additionally, the PIM-1 kinase crystal structure strongly supports the CoMFA model by providing reasonable rationale in regard to the amino acid residues that may contribute to the steric and electrostatic contours of the model. This type of analysis is fairly unique, as CoMFA models are usually employed when the structure of the enzyme or receptor protein is unknown. Similar types of analyses, where the contours of a CoMFA model for a protein were combined with a crystal structure of the enzyme, have been described. In each case, as in our case, the combination of the CoMFA contours with the enzyme structure elucidated specific amino acid residues that contribute to the binding of small molecules or drugs.
cific potential ligand–enzyme interactions and allowed for a more informed and predictive structure-based design.

Our analysis elucidated the three-dimensional contributions of specific amino acid residues to the steric and electrostatic properties of the PIM-1 kinase ATP-binding site. Results from these studies may provide invaluable information for the design of potent, selective inhibitors of the PIM-1 kinase.

Quercetagentin, quercetin, myricetin, and compound 3 share a common flavone scaffold and differ only in the number and positions of substituted hydroxyl groups onto the flavone backbone. Hence, our previous work demonstrating that these flavones do not all bind to the PIM-1 kinase in the same orientation was quite unexpected.1

One of the weaknesses of CoMFA is the choice of the alignment rule. We show for the first time that caution must be used in aligning compounds even when they appear to have a common pharmacophore. The varied orientation of flavonoid binding to the PIM-1 kinase presented a potential limitation of the CoMFA model. The alignment rule used to create model I did not take into account the varied binding orientations (crystal poses) that could be present in the training set of flavonoids. However, alignment rules incorporating the crystal orientations of compounds in the training set (model II) did not improve the ability of the model to predict the potencies of the test set of compounds. This unique example provides strong evidence of the robustness in a correlated partial least squares in regard to establishing alignment rules.

Flavonoids are promiscuous compounds, in that their effect is not limited to the kinase class of enzymes. Flavonoids have been shown to inhibit the mammalian topoisomerase II-dependent cleavage,71 and inhibit both mitochondrial NADH-oxidase72 and HIV-1 integrase.73 Flavonoids have also been shown to inhibit soybean lipoxygenase and stimulate cyclooxygenase.74 Gastric H+, K+-ATPase,75 reverse transcriptases,76 and DNA and RNA polymerases76 are also inhibited by flavonoids. Common to many of these studies, regardless of the target enzyme, is the observation that the polyhydroxylated core plays a major role in the potency of flavonoids. This polyhydroxylated core is also an important contributor to flavonoid promiscuity.

Comparing the hydroxylation patterns of quercetagentin and myricetin, as in Figure 3d, suggests that the polyhydroxylated ring of the flavonoids is preferentially oriented toward the same region when bound to the PIM-1 kinase. This general rule appears true whether the trihydroxylated ring is ring A (as in quercetagentin) or ring B (as in myricetin). An alignment rule based on this general rule would require compounds 3 and 10 to bind to the PIM-1 kinase in an orientation similar to myricetin, rather than quercetagentin. Such an alignment was employed for model III, with no improvement in the predictive value of the model.

The structure of myricetin is similar to that of quercetagentin, hence the two compounds share similar properties when aligned according to their common substructure (as in model I). Interestingly, when aligned according to their crystal orientations (as in models II and III) these two compounds still share similar spatial electrostatic and steric properties (see Fig. 3). This relationship likely contributes to the success of our model. Our findings demonstrate the utility of ligand-based methods, such as CoMFA, in elucidating structure activity relationships; particularly in cases where the binding orientations of ligands are unknown.

Thus the outcome of the three predictive models presented here demonstrates that with our training and test set of compounds CoMFA is sufficiently robust to provide predictive models despite the varied binding orientations of flavonoids to the PIM-1 kinase. The utility of our model has been demonstrated by its successful use to predict the potencies of the test set of flavonoids (r² = 0.829). Hence we present here the first predictive model that may be used for the rational design of small-molecule PIM-1 kinase inhibitors.

4. Methods

4.1. PIM-1 activity

The IC₅₀’s used in the CoMFA were recently reported for PIM-1 kinase activity (Holder, S., Zemskova, M., Zhang, C., Tabrizzad, M., Bremer, R., Neidigh, J. W., Lilly, M. B. Characterization of a potent and selective small-molecule inhibitor of the PIM1 kinase. Mol. Cancer Ther. 2007, 6, 163–172). These values were used without correction or normalization.

4.2. Molecular modeling

The octanol-water partition coefficient (log P) for each flavonoid was calculated using Chemdraw version 6.0 (Cambridgesoft, Cambridge, MA). Molecular dipoles were calculated using MOPAC with default settings. The molecular volume (Å³) of each compound was calculated in SYBYL. The structures and IC₅₀ values of the set of flavonoids that form the training set are listed in Table 1. Table 3 lists the structures and IC₅₀ values for the flavonoids that form the test set.

The structures of all of the compounds were constructed in the BUILD/EDIT mode of SYBYL and energy-minimized by the conjugate gradient method using the Tripos force field24 from a starting geometry of PIM-1 bound quercetagentin (203P). The flavonoids in the
training and the test sets have a common double six-membered ring structure; hence atoms in this common substructure were used to create the alignment rule for model I. All of the structures in the training set were aligned over the atoms C4, C5, C6, C7, and C8 of quercetin from the co-crystal structure with the PIM-1 kinase. Similarly, the flavonoids in the test set were also aligned over the atoms C4, C5, C6, C7, and C8. CoMFA, using default parameters, was calculated in the QSAR option of SYBYL 6.5. The CoMFA grid spacing was 2.0 Å in the x, y, and z directions, and the grid region was automatically generated by the CoMFA routine to encompass all molecules with an extension of 4.0 Å in each direction. An sp3 carbon (stereocenter) and a charge of +1.0 (electrostatics) were used as probes to generate the interaction energies at each lattice point.

Using the training set of flavonoids, cross-validated and non-cross-validated partial least squares analyses (PLS) were performed within the SYBYL/QSAR routine. Cross-validation of the dependent column (−logIC50) and the CoMFA column was performed with 2.0 kcal/mol column filtering. Scaled by the CoMFA standard deviation, the cross-validated analysis generated an optimum number of components equal to 2 and \(q^2 = 0.495 \) (Table 2). PLS analysis with non-cross-validation, performed with two components, generated a standard error of estimate of 0.376, a probability \((R^2) = 0 \) equal to 0.000, an \(F \) value (\(n_s = 2 \), \(n_c = 12 \)) of 24.792, and a \(q^2 = 0.805 \) (Table 1). The relative steric (0.626) and electrostatic (0.374) contributions to the final model were contoured as the standard deviation multiplied by the coefficient at 80% for favored steric (contoured in green) and favored positive electrostatic (contoured in blue) effects and at 20% for disfavored steric (contoured in yellow) and favored negative electrostatic (contoured in red) effects, as shown in Figures S5-7.

On the basis of this analysis, the IC50 values of the test set of flavonoids were predicted and correlated to the observed IC50 values as determined in our laboratory (Table 3). The CoMFA contours were also compared with a PIM-1 kinase crystal structure. A PIM-1 kinase crystal structure with bound quercetin (the most potent flavonoid inhibitor of the PIM-1 kinase among those we have assayed) was superimposed over the corresponding CoMFA model.

A crystal structure of myricetin in complex with the PIM-1 kinase revealed a surprisingly distinct and different binding orientation than quercetin. Thus, a second CoMFA alignment rule was employed (model II), in which myricetin was aligned to quercetin according to their crystal poses rather than by their common substructure as in model I. To accomplish this alignment, the two crystal structures of the PIM-1 kinase in complex with quercetin and myricetin (RCBS Protein Data Bank codes 2063, 2064, respectively) were superimposed over their protein backbones. The two PIM-1 kinase structures are notably similar, with an RMSD over the complete protein backbone of only 0.58 Å. Quercetin and myricetin were extracted from their respective PIM-1 kinase protein structures to assign a ligand alignment and orientation based on the crystal poses. The remaining compounds in the training set were aligned to quercetin by their common substructure, as in model I.

Based on their respective hydroxylation patterns, compounds 3 and 10 were identified as likely candidates for binding to the PIM-1 kinase in a similar pose to myricetin, rather than that of quercetin (see the discussion section for a detailed explanation). Consequently, a third alignment rule was employed (model III), where myricetin and compounds 3 and 10 were aligned in the crystal pose of myricetin, while the remaining compounds in the training set were aligned in the quercetin crystal pose.

Acknowledgments

We thank Ryan Bremer and Plexikon, Inc. for making the co-crystal structures of PIM-1 bound to quercetin and myricetin available to us in advance of publication for use in this study. We thank the Drug Discovery Program at Georgetown Medical Center for financial support.

References and notes

Please cite this article in press as: Holder, S. et al., Bioorg. Med. Chem. (2007), doi:10.1016/j.bmc.2007.06.025
The PIM1 Kinase Is a Critical Component of a Survival Pathway Activated by Docetaxel and Promotes Survival of Docetaxel-treated Prostate Cancer Cells

A defining characteristic of solid tumors is the capacity to divide aggressively and disseminate under conditions of nutrient deprivation, limited oxygen availability, and exposure to cytotoxic drugs or radiation. Survival pathways are activated within tumor cells to cope with these ambient stresses. We here describe a survival pathway activated by the anti-cancer drug docetaxel in prostate cancer cells. Docetaxel activates STAT3 phosphorylation and transcriptional activity, which in turn induces expression of the PIM1 gene, encoding a serine-threonine kinase activated by many cellular stresses. Expression of PIM1 improves survival of docetaxel-treated prostate cancer cells, and PIM1 knockdown or expression of a dominant-negative PIM1 protein sensitizes cells to the cytotoxic effects of docetaxel. PIM1 in turn modulates docetaxel-induced activation of NFκB transcriptional activity, and PIM1 depends in part on RELA/p65 proteins for its prosurvival effects. The PIM1 kinase plays a critical role in this STAT3 → PIM1 → NFκB stress response pathway and serves as a target for intervention to enhance the therapeutic effects of cytotoxic drugs such as docetaxel.

A defining characteristic of solid tumors is the capacity to divide aggressively and metastasize under conditions of nutrient deprivation and limited oxygen availability. These microenvironmental stresses arise from inadequate perfusion as the primary tumor rapidly outgrows its initial blood supply and from intrinsic structural abnormalities of tumor vessels that lead to aberrant microcirculation. Survival pathways are activated within tumor cells to cope with these ambient stresses. Examples include stress pathways that respond to hypoxia (1), oxidative stress (2), and unfolded protein/endoplasmic reticulum stresses (3). In addition to these microenvironmental stresses, anti-cancer treatment can cause additional stresses to cancer cells. These added insults call forth additional responses that can augment the survival mechanisms of the malignant cells and impair overall cell kill. Key participants in stress response pathways induced by cytotoxic drugs include AKT- and other kinase-dependent pathways (4–8), NFκB pathways (9), and mediators of DNA repair (10).

Among the potential survival proteins in cancer cells are the PIM family of kinases, including the PIM1, PIM2, and PIM3 genes. These small, cytoplasmic serine-threonine kinases function as true oncogenes, promoting the development of cancer in animal models, either alone (11) or synergistically with other oncogenes, such as MYC (12). In normal and malignant cells, PIM kinases are highly regulated at the transcriptional level. Expression is induced by many cellular stresses, including cytokines (13), oncogenes (14), hypoxia (15), heat shock (16), and toxin exposure (17). In addition, PIM kinases are constitutively expressed in a variety of leukemias and lymphomas (18), in head and neck squamous cell carcinomas (19), and in prostate cancer (20–22). Therefore, PIM kinases may mediate in part the process of carcinogenesis. PIM kinases have been shown to promote cell survival in the face of cytokine withdrawal as well as exposure to ionizing radiation and doxorubicin (13, 23, 24). This is accomplished in part through phosphorylation of the proapoptotic protein BAD on serine 112, leading to its sequestration (25). The PIM1 kinase is overexpressed in a variety of leukemias and lymphomas (18), in head and neck squamous cell carcinomas (19), and in prostate cancer (20–22). Therefore, PIM kinases may mediate in part the process of carcinogenesis. PIM kinases have been shown to promote cell survival in the face of cytokine withdrawal as well as exposure to ionizing radiation and doxorubicin (13, 23, 24). This is accomplished in part through phosphorylation of the proapoptotic protein BAD on serine 112, leading to its sequestration (25).

EXPERIMENTAL PROCEDURES

Reagents—Docetaxel pharmaceutical grade solution (Sanofi) was diluted in unsupplemented keratinocyte medium (Invitrogen) immediately before each experiment. 3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) was diluted in unsupplemented keratinocyte medium (Invitrogen) immediately before each experiment. 3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) was diluted in unsupplemented keratinocyte medium (Invitrogen) immediately before each experiment. 3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) was diluted in unsupplemented keratinocyte medium (Invitrogen) immediately before each experiment. 3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) was diluted in unsupplemented keratinocyte medium (Invitrogen) immediately before each experiment.
PIM1 Mediates Docetaxel Resistance

pre pared as stock solutions in PBS. The following monoclonal antibodies were used: anti-β-ACTIN (clone AC-15; Sigma), anti-PIM1 (clone 28H8; Santa Cruz Biotechnology, Inc., Santa Cruz, CA), anti-BCCL4 (clone H-5; Santa Cruz Biotechnology), anti-phospho-STAT3 (Tyr705) (clone 3E2; Cell Signaling), anti-total STAT3 (clone 84B; BD Biosciences), anti-GAPDH (clone FL-335; Santa Cruz Biotechnology), anti-PDRX5 (Transduction Laboratories), and anti-human cyclin B1 (clone G16S-1; BD Biosciences).

Cell Culture and Generation of Stable Clones—RWPE-2 prostate epithelial cell lines (ATCC) were maintained in keratinocyte medium (Invitrogen) supplemented with 5 ng/ml human recombinant EGF, 0.05 mg/ml bovine pituitary extract, 100 units/ml penicillin, and 100 μg/ml streptomycin (Mediatech). DU145 prostate cancer cells were obtained from the ATCC and grown in RPMI1640 medium with 10% fetal bovine serum.

For some experiments, we produced additional pools of prostate cells that overexpressed wild-type or dominant-negative PIM1 cDNAs (23) through retroviral transduction. The coding regions for the human PIM1 gene or a dominant-negative variant (NT81) were cloned into the pLNCX retroviral vector (Clontech). To produce infectious viruses, the GP-293 packaging cell line was co-transfected with retroviral backbone plasmids (pLNCX, pLNCX'PIM1, or pLNCX'NT81) and with pVSV-G, a plasmid that expresses the envelope glycoprotein of vesicular stomatitis virus, using the calcium phosphate method. Alter 48 h of incubation, the medium was collected, and the virus particles were concentrated by centrifugation. Prostate cells were plated at 1 × 10^5 cells/60-mm plate 16–18 h before infection. Cells were infected with 5 × 10^5 viral particles/plate in the presence of 8 μg/ml Polybrene. Alter 6 h of incubation, the virus-containing medium was replaced with fresh medium, and on the next day, 400 μg/ml G418 was added to select stably infected cell populations. After 10 days of selection, stable cell pools were established, and expression of the PIM1 transgenes was verified by Western blot analysis.

For reporter gene assays, RWPE-2 cells stably expressing a NFlxB-luciferase reporter plasmid were prepared. The parental cell line was co-transfected with the reporter gene plasmid (Stratagene) and a puromycin resistance plasmid. Puromycin-resistant clones were screened for expression of firefly luciferase (Stratagene) and a NFlxB reporter plasmid were prepared. The parental transgenes was verified by Western blot analysis.

Real-time PCR—Total RNA was extracted with TRIzol reagent (Invitrogen) and single-stranded cDNA was constructed by Superscript III polymerase (Invitrogen) and oligo(dT) primers. Real-time PCR was performed using iCycler (Bio-Rad) and SYBR Green PCR master mix reagents (Qiagen). The following primers were used: PIM1 forward, 5'-AAGTGTGCTCTCCTTTGGTT-3'; PIM1 reverse, 5'-TACCATGGCAACAGTCTACAC-3'; CFL (colillin) forward, 5'-GAGCAAGAGGAGCATGCTG-3'; CFL reverse, 5'-CAATTGATGCTGATCCGTG-3'. The PIM1 primer concentration was 0.5 μM, and the CFL (colillin) primer concentration was 0.5 μM per reaction.

STAT3 decoy and mutant control decoy oligonucleotide treatment—The STAT3 decoy and mutant decoy oligonucleotides utilized previously described sequences (30). RWPE-2 cells were seeded into 6-well plates (5 × 10^5 cells/well) and allowed to grow. Twenty-four hours later, the cells were treated.
FIGURE 1 PIM1 expression is induced by docetaxel in RWPE-2 cells. A, cells were treated with 100 nM docetaxel for the indicated times. PIM1 and β-ACTIN proteins were analyzed by immunoblot analysis. One of three similar blots is shown. Ratio, ratio of PIM1/β-ACTIN from pooled densitometry data from three separate experiments, each normalized to that of untreated cells. *p value**, probability of no difference in ratios (treated versus untreated cells) by paired t test (n = 3). B, cells were treated with 100 or 1000 nM docetaxel for the indicated time. Real-time PCR was used to measure PIM1 mRNA. Each value represents the mean ± S.D. of nine pooled measurements produced by three independent experiments. Bars, relative fold increase of PIM1 mRNA level normalized to the mRNA level of the housekeeping gene GAPDH, compared with untreated control (0 h). **p < 0.01**. P values were calculated by t tests and represent the probability of no difference between the treated and untreated values.

with STAT3 decoy oligonucleotide (50 nM) or mutant control oligonucleotide (50 nM) using TransIT®-Oligo Transfection Reagent (Mirus). Incubation times of cells with decoy oligonucleotides varied between experiments (see figure legends).

siRNA Studies—In some cases (NFκB siRNA studies), cells were transfected with NFκB1 (p50) siRNA, RELA (p65) siRNA, or control siRNA (Santa Cruz Biotechnology). One day prior to transfection, 5 × 10^5 cells/well were seeded into 6-well plates. Twenty-four hours later, the cells were transfected with siRNAs using the TransIT®-TKO® Transfection Reagent (Mirus) and incubated overnight. The cells were then trypsinized, counted, and plated into 24-well plates (5–7 × 10^5/well) for luciferase assay, performed 24 h after transfection. Alternately, for immunoblot analysis, the cells were plated in 6-well plates, transfected with siRNAs, and lysed after 48 h after transfection. For docetaxel treatment, the cells were seeded into a 96-well plate (1–2 × 10^5 cell/well, 100-μl total volume) and allowed to adhere for 12 h. They were then transfected with siRNAs using TransIT®-TKO® transfection reagent (Mirus). Twenty-four hours later, docetaxel (100 nM) was added to the cells, and incubation continued for 48 h. The MTT assay was then performed.

Alternately (PIM1 siRNA studies), specific and control siRNA sequences were cloned into pSILENCER (Ambion) plasmid and used for transfection. The PIM1-targeting sequence

FIGURE 2 PIM1 expression is induced by docetaxel in DU145 cells. A, cells were treated with docetaxel 100 nM for the indicated time and then analyzed by immunoblot analysis for PIM1 and β-ACTIN proteins. B, ratio of PIM1/β-ACTIN from densitometry analysis, normalized to that of untreated cells. C, immunoblot analysis of PIM1, PRDX5, and GAPDH proteins in lysates of DU145 tumor tissue. Tumors 1 and 3 were from mice treated with 0.1 ml of DMSO intraperitoneally. Tumors 2 and 4 were from mice treated with docetaxel, 15 mg/kg for 0.1 ml of DMSO intraperitoneally. The upper panel was probed sequentially with antibodies to the 33-kDa PIM1 protein and the 17-kDa PRDX5 protein. The blot was then stripped and probed with antibody to the GAPDH protein. C, real-time PCR analysis of human PIM1 mRNA in DU145 tumor tissue. Equal amounts of RNA from tumors 1 and 3 were mixed as a DMSO-treated pool, as were tumors 2 and 4 (docetaxel-treated pools), followed by reverse transcription and amplification. Each bar is the mean ± S.D. of three pooled measurements from two independent experiments. **p < 0.01** that the increased PIM1 mRNA following docetaxel treatment was the result of chance, calculated by paired t test.
PIM1 Mediates Docetaxel Resistance

A

- Untreated
- Docetaxel 10nM
- Docetaxel 100nM

B

- Docetaxel 10nM
- Docetaxel 100nM

FIGURE 3. Independence of PIM1 expression and cell cycle arrest. A, DNA histogram analysis of RWPE-2 cells after docetaxel 10nM or 100nM treatment for 24 h. G1, G2/S, and G0/G1 cell population with less than 2 nDNA content. G1 and G2, the appearance of cells in G1, S, or G2/M phases of the cell cycle. B, Immunoblot analysis of cyclin B1 and PIM1 after docetaxel 10nM (left) or 100nM (right) treatment at various time points.

RESULTS

Docetaxel Increases Expression of PIM1 mRNA and Protein in Prostate Epithelial Cell Lines. To investigate the effect of docetaxel on the expression of the PIM1 kinase, we treated RWPE-2 prostate epithelial cells with pharmacological concentrations of docetaxel that approximate those observed in plasma within 24 h after drug administration. Docetaxel induced expression of the kinase protein by 3 h, with maximum expression between 6 and 12 h, and then a decline to near baseline levels thereafter (Fig. 1A). Quantitative analysis of the densitometry data showed that PIM1 expression increased up to 6.25-fold during this interval. The increase was statistically significant at 3, 6, and 9 h and less significant at later time points. Similar results were seen with either 10 nM (data not shown) or 100 nM docetaxel concentrations.

To explore whether docetaxel-mediated induction of PIM1 expression was transcriptionally regulated, real time reverse transcription-PCR analysis was used (Fig. 1B). Docetaxel induced up-regulation of the PIM1 transcript level by 2-4-fold in RWPE-2 cells treated with either 10 or 100 nM drug.

Prostate Cancer Xenografts. Studies were carried out under an Institutional Animal Care and Use Committee-approved protocol. Male NCR nu/nu mice were implanted subcutaneously with 10^6 DU145 cells, and tumors were allowed to form. Tumor-bearing mice (n = 4) were treated with docetaxel (15 mg/kg) or an equal volume of DMSO. Twenty-four hours later, the mice were sacrificed, and the tumors were excised and measured for histology and for RNA and protein extraction. Part of the tumor was placed immediately into RNA Later solution (Ambion) and stored at -20°C until RNA extraction with Trizol reagent. Another tumor fragment was minced and placed into RNALater solution (Ambion) and stored at -20°C until RNA extraction with Trizol reagent. We used DNA histogram analysis to identify changes in cell cycle distributions in RWPE-2 cells after docetaxel treatment (Fig. 2A). Onset of the response was similar to that seen in RWPE cells. However, elevated levels of PIM1 protein persisted and indeed increased at least to 24 h after drug addition. Mice with DU145 xenografts were also treated with docetaxel or vehicle (DMSO) by intraperitoneal injection (Fig. 2B). Tumors harvested 2 h after drug administration showed a marked increase in PIM1 protein, compared with loading control proteins GAPDH and PRLX5. In addition, real time PCR analysis of tumor RNA showed a significant increase in human PIM1 mRNA in the tissue from drug-treated mice (Fig. 2C).

Previous studies suggest that the PIM1 protein increases during the G2/M phase of the cell cycle (31). Since docetaxel treatment has been reported to cause G2/M arrest, it was possible that the increase in PIM1 protein that accompanies drug treatment might merely reflect a change in cell cycle distribution. We used DNA histogram analysis to identify changes in cell cycle distributions in RWPE-2 cells after docetaxel treatment (Fig. 2A). There was no over all increase in the G2/M cell population after 24 h of low dose (10 nM) docetaxel treatment, compared with vehicle-treated cells (p = 0.31 for no difference, based on six independent experiments). A large increase in G2/M cells was observed after treatment of RWPE-2 cells with a higher concentration (100 nM) of docetaxel for 24 h. Variable G2/M arrest was confirmed by immunoblotting to detect expression of cyclin B1 (a G2/M phase marker). There was no change in cyclin B1 expression within 24 h after 10 nM docetaxel treatment, but a time-dependent increase of cyclin B1 protein was apparent after 100 nM docetaxel exposure (Fig. 2B, right). During both treatments, however, PIM1 expression increased between 3 and 12 h of exposure, independent of the extent of G2/M arrest and cyclin B1 expression.
Endogenous and Enhanced Expression of PIM1 Protects Prostate Epithelial Cells from Docetaxel-induced Cell Death and Apoptosis—To determine whether PIM1 can protect prostate cells from docetaxel-triggered cell death, we infected RWPE-2 and DU145 cells with retroviruses encoding a PIM1 cDNA (pLNCX/PIM1) or an empty retrovirus (pLNCX). Pools of stably transduced cells were selected, treated with docetaxel for up to 72 h, and then analyzed by MTT assay to measure metabolically active cells. Enforced expression of wild-type PIM1 kinase was able to consistently improve survival of RWPE-2 and DU145 cells, as reflected by the MTT assay, at time points up to 72 h after the start of docetaxel exposure (Fig. 4).

To determine if ambient levels of PIM1 can protect prostate cells from docetaxel toxicity, we transiently introduced plasmids encoding control and PIM1-specific siRNA sequences into target cells. Control siRNA was unable to block the docetaxel-induced increase in PIM1 expression. In contrast, PIM1 siRNA substantially prevented the increase in kinase expression following drug exposure (Fig. 5, A and C). Down-regulation of endogenous PIM1 kinase expression led to enhanced cell kill up to 72 h after drug application (Fig. 5, B and D). The drug sensitization was statistically significant at every time point. To confirm the protective effect of endogenous PIM1 kinase, we also introduced a dominant negative enzyme (PIM1/NT81) into RWPE-1 and RWPE-2 cells by retroviral transduction. This truncated protein was expressed well (supplemental Fig. 15). As was seen with the knockdown experiments, the NT81 mutant kinase also sensitized cells to the cytotoxic effect of docetaxel. These experiments clearly demonstrate that ambient levels of PIM1 are protective against docetaxel-induced cell death.

Docetaxel has previously been shown to induce cell death in part by apoptosis (32–35). Therefore, we measured caspase activation by a fluorescent caspase activity assay in drug-treated cells as an index of docetaxel cytotoxicity. The wild-type PIM1 kinase decreased drug-induced caspase activation, consistent with its previously demonstrated survival activity (supplemental Fig. 25). The dominant negative PIM1 kinase markedly enhanced drug-induced caspase activation.

The docetaxel effect reflected by the MTT and caspase assays was not great, and its reversal by PIM1 expression, although statistically significant, was still quantitatively modest. These data reflect the fact that docetaxel does not produce massive, immediate apoptotic cell death. To better measure the protective effects of PIM1 kinase on the proliferative potential of docetaxel-treated cancer cells, we used a regrowth assay (Fig. 6). RWPE-2/PIM1 and RWPE-2/NT81 cells were treated with various concentrations of docetaxel for 24 h and then were trypsinized and plated in fresh medium (without drug) and allowed to grow for 6–7 days. Cell growth was then quantified by staining with crystal violet dye. Docetaxel produced dose-dependent inhibition of growth in both cell lines. However, growth inhibition was up to 8-fold greater in the RWPE-2/NT81 cells, particularly at drug concentrations of 5 nM or higher. Thus, the presence of biologically active PIM1 kinase markedly inhibited docetaxel-induced cell death.

The STAT3 Transcription Factor Mediates Induction of PIM1 by Docetaxel—To identify mechanisms by which docetaxel could induce PIM1 expression, we examined the activation status of STAT3 and STAT5 transcriptional factors, known mediators of PIM1 transcription, after docetaxel treatment of RWPE-2 cells. STAT5 was not consistently phosphorylated in RWPE-2 cells (data not shown). The level of phospho-STAT3 (Y705) was strongly and rapidly increased after 10 and 100 nM treatment of RWPE-2 cells (Fig. 7A) (data not shown), whereas the total amount of STAT3 protein was not changed. Docetaxel induced phosphorylation of STAT3 simultaneously with up-regulation of PIM1 expression. These results suggested that docetaxel-induced expression of PIM1 may be dependent of activation of the STAT3 transcriptional factor.

To determine if docetaxel induces PIM1 expression in a STAT3-dependent manner, we used double-stranded STAT3
Docetaxel activates NFκB transcriptional activity in a PIM1-independent manner. Inhibition of the NFκB transcriptional complex sensitizes prostate cancer cells to paclitaxel (another taxane) and enhances drug-induced apoptosis (36). We hypothesized that the protective role of PIM1 in docetaxel-induced apoptosis could be mediated through activation of NFκB transcriptional activity as well. We initially investigated the effect of PIM1 expression on NFκB transcriptional activity. RWPE-2 cells stably expressing an NFκB-dependent luciferase expression plasmid were infected with retroviruses encoding PIM1 or empty retrovirus only. Enhanced expression of PIM1 consistently increased NFκB transcriptional activity about 2-fold (supplemental Fig. 4S).

We then treated the NFκB reporter cell line with docetaxel. Cells were incubated for 6 h with docetaxel and then were assayed for luciferase activity. Docetaxel increased NFκB-directed luciferase expression in a concentration-dependent manner (Fig. 8A). Co-expression of a dominant negative PIM1 protein substantially blocked drug-induced activation of NFκB transcriptional activity at each docetaxel concentration.

The Protective Effect of PIM1 Expression from Docetaxel-Induced Death Depends in Part on NFκB Activation. To determine if PIM1 enhances survival of docetaxel-treated cells through NFκB activation, we used siRNA to inhibit expression of the RELA (p65) and NFKB1 (p105, p50) proteins, the two components of the major NFκB complex. Fig. 8B shows that basal and PIM1-dependent activation of NFκB was decreased by p65/REL and p50/NFKB1 siRNAs. Immunoblotting confirmed the knockdown of the corresponding p65/REL and p50/NFKB1 proteins (supplemental Fig. 5S).

A survival analysis, based on the MTT assay, was then performed on docetaxel-treated cells (Fig. 8A, C, and D). With all siRNA treatments, RWPE-2/PIM1 cells showed improved survival compared with that of cells infected with pLNCX virus alone (Fig. 8C). The p65/REL and p50/NFKB1 siRNAs reduced survival of both cell lines. The p50/NFKB1 siRNA did not significantly impair the survival of docetaxel-treated RWPE-2/pLNCX cells, whereas it did have a significant effect on RWPE-2/PIM1 cells. In contrast, p65/REL siRNAs significantly enhanced docetaxel cell kill in both cell lines. These data suggested that cells with high expression of PIM1 (RWPE-2/
PIM1 might be more sensitive to the effects of NFκB siRNAs than were cells with low levels of PIM1 (RWPE-2/pLNCX). We then analyzed the data by normalizing the survival of p65/RELA and p50/NFκB1 siRNA-treated cells to that of cells treated with docetaxel and control siRNA (Fig. 6D). The p65/RELA and p50/NFκB1 siRNAs enhanced docetaxel-induced cell kill of RWPE-2/PIM1 cells to a greater extent than they enhanced kill of RWPE-2/pLNCX (vector only) cells. This enhancement was of borderline significance for p50/NFκB1 siRNA (p = 0.057) but was highly significant for p65/RELA siRNA. These results demonstrate that the p65/RELA and p50/NFκB1 proteins mediate resistance to docetaxel cell kill. Their effects are more pronounced in prostate cells with higher PIM1 levels that in similar cells with lower amounts of PIM1. These data demonstrate that the ability of PIM1 to decrease docetaxel-induced cell kill depends in part on the p65/RELA, and possibly the p50/NFκB1, protein.

DISCUSSION

The present study assessed the up-regulation of PIM1 expression following docetaxel treatment of prostate epithelial cells. The drug effect was seen in both engineered and spontaneously transformed prostate cancer cells. Furthermore, the effect was documented in both cultured cells and tumor xenografts, suggesting that it is a physiologically significant response. Apoptosis is involved in the antitumor effects of docetaxel, both in cultured cells and in clinical settings (34, 35, 37). Our results demonstrated that PIM1 inhibited docetaxel-induced apoptosis. Recent work has indicated that other modes of cell death may also contribute significantly to the overall therapeutic response to docetaxel (33). Whether PIM1 modulates these other forms of docetaxel-induced cell death requires further investigation. Cellular stressors are known to activate survival pathways. Among these stressors are a wide variety of antineoplastic agents, such as cytotoxic drugs (including taxanes (6, 7, 10, 39)), tyrosine- and serine-threonine kinase inhibitors (4, 5), and triterpenes, such as betulinic acid (38). These agents are capable of transiently activating kinases and other survival mediators, such as AKT, ERK1, and NFκB transcriptional activity. It appears that drug-induced activation of survival signaling pathways can impair the cytotoxic effects of chemotherapy drugs both in vivo and in vitro (9, 40), and inhibition of activated kinases can potentiate cytotoxic drug cell kill (40-44).

Our data document the existence of a STAT3 → PIM1 → NFκB survival pathway that is activated by docetaxel and mediates a form of docetaxel resistance. The linear relationships among the pathway components were established by temporal correlations as well as by blocking experiments using siRNAs, dominant negative proteins, and oligonucleotide decoys. Resistance to docetaxel has previously been ascribed to tubulin mutations (45) as well as to MDR-dependent effects (46, 47) and to limited tissue penetration (48). Fewer data exist to implicate transient or acquired resistance mediated through survival pathways. A previous report has shown that stable overexpress-
Docetaxel Resistance

PIM1 Mediates Docetaxel Resistance

A.

B.

C.

D.

Thus, the involvement of PIM kinases in induced resistance to cytotoxic drugs may be anticipated in cells where the kinase is expressed.

DU145 cells showed a more prolonged PIM1 response following docetaxel treatment than did RWPE-2 cells. This may reflect the greater degree of transformation in the DU145 cells, which are hyperdiploid and form tumors readily. Such cells might have constitutive activation of multiple signaling pathways. For this reason, we performed mechanistic studies in the weakly transformed, nearly diploid RWPE-2 cells, which may offer a simpler cancer model.

The mechanism through which docetaxel activates the STAT3 → PIM1 → NFκB pathway is unknown at present. Docetaxel induces an increase in reactive oxygen species (ROS), as do many cytotoxic drugs (53). This form of oxidizing stress inhibits phosphatase activity, leading to an increase in tyrosine phosphorylation of multiple proteins (54–56). Transactivation of receptor-type tyrosine kinases (such as the EGFR) has been shown in cells stressed by ROS and by cytotoxic agents, including paclitaxel (57–59).

Docetaxel can transactivate the EGFR, and EGFR inhibitors can act synergistically with taxanes to enhance cancer cell kill (43, 51). However, we continue to see expression of pSTAT3 or PIM1 proteins following docetaxel treatment of RWPE-2 cells pretreated with an EGFR inhibitor (data not shown).

ROS have previously been shown to activate JAK kinase signaling in some cell lines, possibly providing a mechanism for STAT activation as well (60, 61). ROS can also activate STAT proteins without JAK kinase activation (62). Regardless of the most proximal mediators, activated STAT3 is a known mediator of ROS-induced survival signals. Furthermore, STAT transcription factors are known upstream mediators of PIM1 transcription, at least in hematopoietic cells (63–65). Our data demonstrate that STAT3 regulates PIM1 expression in prostate cells as well. The decay studies establish a linear relationship between STAT3 and PIM1 as downstream mediators of docetaxel survival signals. Since prostate cancer cells frequently express activated STAT3 and

Michael B. Lilly, MD
W81XWH-04-1-0887
Expression of NFKB transcripational activity (721, although alternative opinions about the PIM1 kinase have been presented (73). PIM2 activates NFKB activity through phosphorylation and activation of the COT/TP2 kinase, a kinase with known IkB kinase-like activity (72). Clarification as to whether the PIM1 kinase acts through this mechanism or through another pathway will require further studies.

A decrease in NFKB expression or activity would be predicted to increase docetaxel-induced cell death in both RWPE-2/pLNCX and RWPE-2/PIM1 cells (36), and this was in fact seen (Fig. 8B and C). However, cells with higher expression of the PIM1 kinase were more sensitive to the blockage of NFKB function (Fig. 8D). Compared with their effects in RWPE-2/pLNCX cells, p65/RELA siRNAs were significantly more effective at potentiating docetaxel-induced death in RWPE-2/PIM1 cells. PSOcNFKBl siRNAs were also more active against cells with high levels of PIM1, but the effect was of borderline significance. These data suggest that the pro-survival effect of PIM1 kinase in docetaxel-treated cells probably involves members of the NFKB transcriptional complex, particularly p65/RELA. The observation that inhibition of NFKB only partially enhances docetaxel-induced cell death in PIM1-expressing cells is consistent with the ability of the kinase to protect cells through other mechanisms as well as the incomplete knockdown of the target protein in RWPE-2 cells. Nevertheless, the result demonstrates that PIM1, like PIM2 (72), can mediate NFKB activation and that PIM1 also requires NFKB transcriptional activity for the development of the full drug resistance phenotype.

The survival response induced by low concentrations of docetaxel is reminiscent of the concept of hormesis. A controversial body of literature documents that stressors (including radiation, gases, toxins, exercise, and others) can produce a beneficial dose−response curve (74−76). The observation that inhibition of NFKB only partially enhances docetaxel-induced cell death in PIM1-expressing cells is consistent with the ability of the kinase to protect cells through other mechanisms as well as the incomplete knockdown of the target protein in RWPE-2 cells. Nevertheless, the result demonstrates that PIM1, like PIM2 (72), can mediate NFKB activation and that PIM1 also requires NFKB transcriptional activity for the development of the full drug resistance phenotype.

The survival response induced by low concentrations of docetaxel is reminiscent of the concept of hormesis. A controversial body of literature documents that stressors (including radiation, gases, toxins, exercise, and others) can produce a beneficial dose−response curve (74−76). The observation that inhibition of NFKB only partially enhances docetaxel-induced cell death in PIM1-expressing cells is consistent with the ability of the kinase to protect cells through other mechanisms as well as the incomplete knockdown of the target protein in RWPE-2 cells. Nevertheless, the result demonstrates that PIM1, like PIM2 (72), can mediate NFKB activation and that PIM1 also requires NFKB transcriptional activity for the development of the full drug resistance phenotype.

The survival response induced by low concentrations of docetaxel is reminiscent of the concept of hormesis. A controversial body of literature documents that stressors (including radiation, gases, toxins, exercise, and others) can produce a beneficial dose−response curve (74−76). The observation that inhibition of NFKB only partially enhances docetaxel-induced cell death in PIM1-expressing cells is consistent with the ability of the kinase to protect cells through other mechanisms as well as the incomplete knockdown of the target protein in RWPE-2 cells. Nevertheless, the result demonstrates that PIM1, like PIM2 (72), can mediate NFKB activation and that PIM1 also requires NFKB transcriptional activity for the development of the full drug resistance phenotype.

The survival response induced by low concentrations of docetaxel is reminiscent of the concept of hormesis. A controversial body of literature documents that stressors (including radiation, gases, toxins, exercise, and others) can produce a beneficial dose−response curve (74−76). The observation that inhibition of NFKB only partially enhances docetaxel-induced cell death in PIM1-expressing cells is consistent with the ability of the kinase to protect cells through other mechanisms as well as the incomplete knockdown of the target protein in RWPE-2 cells. Nevertheless, the result demonstrates that PIM1, like PIM2 (72), can mediate NFKB activation and that PIM1 also requires NFKB transcriptional activity for the development of the full drug resistance phenotype.

The survival response induced by low concentrations of docetaxel is reminiscent of the concept of hormesis. A controversial body of literature documents that stressors (including radiation, gases, toxins, exercise, and others) can produce a beneficial dose−response curve (74−76). The observation that inhibition of NFKB only partially enhances docetaxel-induced cell death in PIM1-expressing cells is consistent with the ability of the kinase to protect cells through other mechanisms as well as the incomplete knockdown of the target protein in RWPE-2 cells. Nevertheless, the result demonstrates that PIM1, like PIM2 (72), can mediate NFKB activation and that PIM1 also requires NFKB transcriptional activity for the development of the full drug resistance phenotype.

The survival response induced by low concentrations of docetaxel is reminiscent of the concept of hormesis. A controversial body of literature documents that stressors (including radiation, gases, toxins, exercise, and others) can produce a beneficial dose−response curve (74−76). The observation that inhibition of NFKB only partially enhances docetaxel-induced cell death in PIM1-expressing cells is consistent with the ability of the kinase to protect cells through other mechanisms as well as the incomplete knockdown of the target protein in RWPE-2 cells. Nevertheless, the result demonstrates that PIM1, like PIM2 (72), can mediate NFKB activation and that PIM1 also requires NFKB transcriptional activity for the development of the full drug resistance phenotype.

The survival response induced by low concentrations of docetaxel is reminiscent of the concept of hormesis. A controversial body of literature documents that stressors (including radiation, gases, toxins, exercise, and others) can produce a beneficial dose−response curve (74−76). The observation that inhibition of NFKB only partially enhances docetaxel-induced cell death in PIM1-expressing cells is consistent with the ability of the kinase to protect cells through other mechanisms as well as the incomplete knockdown of the target protein in RWPE-2 cells. Nevertheless, the result demonstrates that PIM1, like PIM2 (72), can mediate NFKB activation and that PIM1 also requires NFKB transcriptional activity for the development of the full drug resistance phenotype.

The survival response induced by low concentrations of docetaxel is reminiscent of the concept of hormesis. A controversial body of literature documents that stressors (including radiation, gases, toxins, exercise, and others) can produce a beneficial dose−response curve (74−76). The observation that inhibition of NFKB only partially enhances docetaxel-induced cell death in PIM1-expressing cells is consistent with the ability of the kinase to protect cells through other mechanisms as well as the incomplete knockdown of the target protein in RWPE-2 cells. Nevertheless, the result demonstrates that PIM1, like PIM2 (72), can mediate NFKB activation and that PIM1 also requires NFKB transcriptional activity for the development of the full drug resistance phenotype.

The survival response induced by low concentrations of docetaxel is reminiscent of the concept of hormesis. A controversial body of literature documents that stressors (including radiation, gases, toxins, exercise, and others) can produce a beneficial dose−response curve (74−76). The observation that inhibition of NFKB only partially enhances docetaxel-induced cell death in PIM1-expressing cells is consistent with the ability of the kinase to protect cells through other mechanisms as well as the incomplete knockdown of the target protein in RWPE-2 cells. Nevertheless, the result demonstrates that PIM1, like PIM2 (72), can mediate NFKB activation and that PIM1 also requires NFKB transcriptional activity for the development of the full drug resistance phenotype.

The survival response induced by low concentrations of docetaxel is reminiscent of the concept of hormesis. A controversial body of literature documents that stressors (including radiation, gases, toxins, exercise, and others) can produce a beneficial dose−response curve (74−76). The observation that inhibition of NFKB only partially enhances docetaxel-induced cell death in PIM1-expressing cells is consistent with the ability of the kinase to protect cells through other mechanisms as well as the incomplete knockdown of the target protein in RWPE-2 cells. Nevertheless, the result demonstrates that PIM1, like PIM2 (72), can mediate NFKB activation and that PIM1 also requires NFKB transcriptional activity for the development of the full drug resistance phenotype.

The survival response induced by low concentrations of docetaxel is reminiscent of the concept of hormesis. A controversial body of literature documents that stressors (including radiation, gases, toxins, exercise, and others) can produce a beneficial dose−response curve (74−76). The observation that inhibition of NFKB only partially enhances docetaxel-induced cell death in PIM1-expressing cells is consistent with the ability of the kinase to protect cells through other mechanisms as well as the incomplete knockdown of the target protein in RWPE-2 cells. Nevertheless, the result demonstrates that PIM1, like PIM2 (72), can mediate NFKB activation and that PIM1 also requires NFKB transcriptional activity for the development of the full drug resistance phenotype.
PIM1 Mediates Docetaxel Resistance

38
Althea Diagnostics (2008-present)

GRANTS & CONTRACTS (PRINCIPAL INVESTIGATOR) Note: This listing does not include multicenter clinical trials in which Dr. Lilly was the local principal investigator.

National Institutes of Health F32CA27980 Hyperthermia of animal and human tumors; 7/80-6/82

National Institutes of Health R01CA18138-11 Prediction of thermal tolerance by in vivo NMR spectroscopy; 7/82-6/83

National Institutes of Health R01CA36790 Assessment of hyperthermia by in vivo 31P-NMR spectroscopy; 9/84-9/87

Cetus Corporation Characterization of a human granulocyte CSF; 7/85-6/86

National Institutes of Health R01CA45672 Cytokine signaling in myeloid leukemia; 9/87-10/98

VA Merit Review Award Non-protein hematopoietic agents; 10/90-4/97

March of Dimes Birth Defects Foundation Characterization of a 28kd protein related to G-CSF; 7/93-6/96

Lymphoma Research Foundation of America Mechanism of action of the pim-1 oncogene; 7/95-7/96

Roche Pharmaceuticals Preclinical study of Roferon and bryostatin 1 in a melanoma model; 1/98-12/99

Department of Defense, National Medical Technology Testbed #76-FY99: Cell-permeable proteins for cell regulation. 12/99 – 7/02

Leukemia Society of American Translational Award Propionic Acid Analogues for CLL. 9/1/01 – 8/31/05

Celgene Corporation, Phase I-II trial of combined GM-CSF (sargramostim) and thalidomide for hormone-refractory prostate cancer (5/02-5/04).

National Institutes of Health R03CA107820 Molecular Targets of NSAIDs in Prostate Cancer; (5/1/04-4/30/08)

Department of Defense, CDMRP Prostate Cancer Program PC040635 Pim-1: A Molecular Target to Modulate Cellular Resistance to Therapy in Prostate Cancer (10/04 – 10/09)
GRANTS and CONTRACTS (Co-investigator)

National Institutes of Health R01CA097043 Molecular pathology of 2-deoxy-5-azacytidine; L. Sowers, PI; Michael Lilly, co-investigator (10% FTE). 7/1/03 – 6/30/08

National Institutes of Health R43CA119833 SIMPKIN: a facile method for identification of unknown kinase substrates. Q. Hamid, PI; Michael Lilly, co-investigator (5% FTE) 10/1/06-2/28/07.

PUBLICATIONS IN PEER-REVIEWED JOURNALS

43

52. Ma J, Arnold HK, Lilly MB, Sears R, Kraft AS: Negative regulation of PIM-1 protein kinase levels by the B56b subunit of PP2A. *Oncogene* Feb 12, 2007; [Epub ahead of print]

BOOKS AND CHAPTERS:

RECENT ABSTRACTS:

Lilly M, Cooper JJ: Enforced expression of the human 33kd Pim-1 kinase prevents apoptosis-associated mitochondrial dysfunction and upregulates *bcl-2* mRNA expression in murine myeloid cells. (oral presentation, ASH 12/97)

Chen CS, Lilly MB, Wang FS, Howard FD, Houwen B: Rapid monitoring of peripheral blood stem cells (PBSC) mobilization by using cell membrane phospholipid content correlates well with CD34+ measurements, successful harvest and engraftment (abstract #1642). *Blood* 96:380a (poster presentation, ASH 12/00)

Lilly MB, Wechter W, Puuvula L, Henry H: R-Flurbiprofen (RFB) a non-steroidal anti-inflammatory drug (NSAID) with anti-tumor activity, inhibits the expression of CYP24 in murine prostate carcinomas. (poster presentation at Biennial Vitamin D Conference "Vitamin D and Cancer Chemoprevention", NIH, Bethesda, MD, November 2004)

Zemskova M, Sahakian E, Lilly MB. The PIM1 kinase is a critical component of a survival pathway that protects prostate cancer cells from docetaxel-induced death Proc AACR 47:171 (2006).