

NAVAL

POSTGRADUATE
SCHOOL

MONTEREY, CALIFORNIA

THESIS

Approved for public release; distribution is unlimited

DATA ACQUISITION FROM VOLATILE MEMORY: A
MEMORY ACQUISITION TOOL FOR MICROSOFT

WINDOWS VISTA

by

Cheong Choong Wee Vincent

December 2008

 Thesis Advisor: Timothy M. Vidas
 Second Reader: George W. Dinolt

THIS PAGE INTENTIONALLY LEFT BLANK

 i

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing
instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection
of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215
Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction
Project (0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
December 2008

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE Data Acquisition from Volatile Memory: A Memory
Acquisition Tool for Microsoft Windows Vista
6. AUTHOR(S) Cheong Choong Wee Vincent

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)

The focus of this research is on extracting data from the volatile random access memory (RAM) on
a personal computer running Microsoft’s Windows Vista operating system, while minimally affecting the
existing data. The projected work includes the development of a kernel-mode device driver with the
capabilities on one or more versions of Microsoft Windows Vista, a user-mode application that interacts
with the driver, usage documentation and outcome of the research.

The main objectives of the research is to show the possibility of extracting information from the
random access memory using a user mode application (with a suitable driver already installed) and to
document the process of Window Vista driver development, so that future works in this area can benefit by
putting more effort into specific research rather than configuring a development environment.

15. NUMBER OF
PAGES

127

14. SUBJECT TERMS Windows Vista Memory Acquisition, Computer Forensics, Device
Driver

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UU
NSN 7540-01-280-5500 Standard Form 298 (Rev. 8-98)
 Prescribed by ANSI Std. Z39.18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited

DATA ACQUISITION FROM VOLATILE MEMORY: A MEMORY
ACQUISITION TOOL FOR MICROSOFT WINDOWS VISTA

Choong Wee Vincent Cheong
Civilian, Singapore Technologies Electronics Limited
B.Eng (Hon), National University of Singapore, 2003

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
December 2008

Author: Choong Wee Vincent Cheong

Approved by: Timothy M. Vidas
Thesis Advisor

George W. Dinolt
Second Reader

Peter J. Denning
Chairman, Department of Computer Science

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

The focus of this research is on extracting data from the volatile random

access memory (RAM) on a personal computer running Microsoft’s Windows

Vista operating system, while minimally affecting the existing data. The projected

work includes the development of a kernel-mode device driver with the

capabilities on one or more versions of Microsoft Windows Vista, a user-mode

application that interacts with the driver, usage documentation and outcome of

the research.

The main objectives of the research is to show the possibility of extracting

information from the random access memory using a user mode application (with

a suitable driver already installed) and to document the process of Window Vista

driver development, so that future works in this area can benefit by putting more

effort into specific research rather than configuring a development environment.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION... 1
A. BACKGROUND AND MOTIVATION... 1

1. Primary Memory (Random Access Memory)......................... 1
2. Analysis of Forensic Data from Volatile System Memory.... 2
3. Tools used for Volatile Memory Acquisition 2

a. Hardware Based Techniques 3
b. Software Based Techniques .. 3

4. Windows Operating System ... 4
B. RESEARCH METHODOLOGIES AND ORGANIZATION 5

1. Primary Research Question.. 5
2. Subsidiary Research Questions... 5
3. Assumptions .. 5
4. Scope.. 6
5. Chapter and Appendix Overview.. 6

II. BACKGROUND OF WINDOWS DEVICE DRIVERS...................................... 8
A. OVERVIEW OF THE SIGNING PROCESSES..................................... 9

1. Kind/ Type of Signatures... 9
a. Test-Signing .. 9

2. Software Publishing Certificate (SPC) 9
B. MINIMAL REQUIREMENTS TO GET THE DRIVER LOADED 10

1. Registering Drivers and Services... 10
a. CreateService API ... 10
b. Manually Editing the Windows Registry 10

2. Starting the Service ... 11
3. Using the Windows Control Panel 11

C. INSTALLATION FOR 32-BIT AND 64-BIT PLATFORM 11
D. OVERVIEW OF THE WINDOWS DRIVER .. 12

1. Kernel Mode Drivers.. 12
2. Kernel Mode Driver Framework (KMDF) 12

a. KMDF Components... 13
b. Structure of a KMDF Driver .. 13

3. Description of the KMDF API .. 13

III. REQUIREMENTS AND HIGH LEVEL DESIGN ... 17
A. BUILDING A KERNEL DRIVER .. 17

1. Minimal Requirements to Obtain Developmental
Environment... 17
a. Operating System Requirement 17
b. Hardware Requirements... 18

2. Development Environment ... 18
a. Build Utility .. 18
b. Build Environment .. 18

 viii

c. Editor and Integrated Development Environment
(IDE).. 19

3. Debugging Tools ... 19
a. Windows Debuggers... 19
b. Debug Output Viewer (DebugView) 20

B. DESIGN COMPARISON TO SIMILAR TOOLS 21

IV. IMPLEMENTATION.. 23
A. IMPLEMENTATION OBJECTIVE REVIEW....................................... 23
B. IMPLEMENTATION STRATEGY... 23

1. Windows Driver Kit (WDK) Samples 23
2. The Echo Sample... 24
3. Development Process ... 25

a. Functional Description ... 25
b. Development Cycle... 25

C. DEBUGGING ... 26
1. Printing Debug Statements... 27
2. Analyzing the Memory Dump File .. 27

D. DEVICE DRIVER PACKAGE... 28
1. Driver Files (.sys file)... 28
2. Installation Files... 28

a. Device Setup Information file (.inf file)...................... 28
b. Co-installers .. 28
c. Driver Catalog file (.cat file).. 29

E. PROBLEMS ENCOUNTERES... 29
1. Windows Driver Development .. 29

a. Windows Operating System....................................... 29
b. Driver Development and Its API................................. 30

2. Testing and Debugging... 31
a. Blue Screen of Death (BSoD)..................................... 31
b. ZwMapViewOfSection [28] ... 32

V. TEST METHODOLOGY.. 35
A. TESTING OVERVIEW.. 35
B. TESTING FOR THE PRESENCE OF DATA...................................... 35
C. TESTING BY COMPARISON .. 36

1. RAM Image Obtained Using a Known Good Tool 36
2. RAM Image Obtained Using VMware 37

D. TESTING ENVIRONMENT AND SETUP... 37

VI. RESULTS AND ANALYSIS.. 39
A. DEVELOPMENT RESULTS .. 39
B. MODIFIED TESTING METHODOLOGY.. 40
C. TESTING RESULTS .. 42
D. ANALYSIS OF RESULTS.. 44

1. Preliminary Analysis ... 44
2. Testing for the Presence of Data.. 45

 ix

3. Testing by Comparison... 48

VII. FUTURE WORK ... 57
A. STABILITY OF THE MEMREADER DRIVER.................................... 57
B. POWER MANAGEMENT EVENT CALLBACKS............................... 57
C. TESTING ON DIFFERENT FLAVORS OF WINDOWS VISTA.......... 57
D. WRITE CAPABILITY (SIMILAR TO DD) ... 58

VIII. CONCLUSIONS AND RECOMMENDATIONS... 59

APPENDIX A: INSTRUCTIONS TO SETTING UP A SIGNING ENVIRONMENT... 61

APPENDIX B: INSTRUCTIONS TO SETUP A KERNEL DEVELOPMENT
ENVIRONMENT.. 63

APPENDIX C: INSTRUCTIONS FOR INSTALLING AND UNINSTALLING
WINDOWS DRIVER ... 65

APPENDIX D: INSTRUCTIONS FOR CREATING A RAM IMAGE 67

APPENDIX E: FULL SOURCE CODE AND INSTALLATION FILES 69

LIST OF REFERENCES.. 103

INITIAL DISTRIBUTION LIST ... 109

 x

THIS PAGE INTENTIONALLY LEFT BLANK

 xi

LIST OF FIGURES

Figure 1. Graphical Representation of MemReader Application and Driver 22
Figure 2. Blue Screen of Death: Page_Fault_In_Non_Paged_Area.................. 32
Figure 3. VBinDiff output – Not difference in data.. 41
Figure 4. VBinDiff – Difference in data marked in red.. 41
Figure 5. VBinDiff – Difference in data marked in red.. 42
Figure 6. MDD output screen when creating control image............................... 43
Figure 7. VBinDiff – Difference in data between Set1\control and Set2\control . 44
Figure 8. VBinDiff – Difference in data between Set1\test and Set2\test........... 45
Figure 9. A find on the signature “usually” for set 1 control image..................... 46
Figure 10. A find on the signature “usually” for set 1 test image.......................... 46
Figure 11. A find on the signature “quick brown” for set 1 control image............. 47
Figure 12. A find on the signature “quick brown” for set 1 test image.................. 47
Figure 13. Set 1: No difference between the images (till 0x00123050) 49
Figure 14. Set 1: First difference between the images (0x00123060) 49
Figure 15. Set 1: Position (0x0014C000) where images start to differ................. 50
Figure 16. Set 2: No difference between the images (till 0x0011A000) 50
Figure 17. Set 2: First difference between the images (0x0011A000) 51
Figure 18. Set 2: Position (0x0015F000) where images start to differ 51
Figure 19. Set 3: No difference between the images (till 0x00123090) 52
Figure 20. Set 3: First difference between images (0x00123090) 52
Figure 21. Set 3: Position (0x0015F000) where images start to differ 53
Figure 22. Set 1: An area (0x001F14C0) where data do not match 54
Figure 23. Set 1: An area (0x001FFD20) where the data match 54
Figure 24. Set 1: The first instance of the signature “usually”.............................. 55
Figure 25. Set 1: The first instance of the signature “quick brown”...................... 55
Figure 26. Set 1: Another area (0x0FFFC000) where data do not match............ 56
Figure 27. Set 1: Another area (0x0FFFA0D0) where the data match 56

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiii

LIST OF TABLES

Table 1. Example Service Registry Entry ... 11
Table 2. KMDF Components .. 13
Table 3. Test Target System Specification... 37
Table 4. Text files of repeated known strings ... 40
Table 5. Test Results ... 43

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

 xv

ACKNOWLEDGMENTS

The completion of this thesis is a culmination of my wonderful experience

at the Naval Postgraduate School, Monterey. The results presented in this thesis

also marks a major achievement for me and I would like to take this opportunity

to express my heartfelt gratitude to the people that have helped me along the

way and made achieving this feat a possibility.

I would like to thank my thesis advisor, Timothy M. Vidas, for his patience

and guidance. Without which the completion of this thesis would not be possible.

I would also like to thank my second reader, George W. Dinolt, for agreeing to

participate and signoff on my thesis work. My gratitude also goes out to all the

lecturers and professors who have taught me during my brief spell in the Naval

Postgraduate School.

I would also like to give special thanks to my Singapore Comrades that for

their help and support.

 xvi

THIS PAGE INTENTIONALLY LEFT BLANK

 1

I. INTRODUCTION

A. BACKGROUND AND MOTIVATION

1. Primary Memory (Random Access Memory)

The Primary Memory or Random Access Memory (RAM) also referred to

as main or real memory is typically considered to be a volatile resource. The

data residing on the memory becomes less reliable as power is weaned from it.

Data stored in RAM persists briefly if power is not refreshed [1]. Some factors

that affect the persistence of data in memory [2] include:

• System Activity

• Main memory size

• Data Type and

• Operating System

Both user space applications and the operating system kernel1 use this

form of storage to store data and execution codes. Since all executions leave a

trace on the primary memory, there is an abundance of in-memory data at any

time. Inspecting a snapshot of memory can reveal or help reconstruct the state of

a system when the memory snapshot2 was taken. This includes not only current

running processes but also terminated processes as the portions of memory

used by them (the terminated processes) will not be purged when these portions

are no longer required for current operation [3].

1 User space is often referred to as “ring 3” or “privilege level 3.” Similarly, kernel space is

often referred to as “ring0” or “privilege level 0.” Both are artifacts of Intel’s architectural
protection mechanisms present in the CPU.

2 For purposes of this paper, a “memory snapshot” is simply an archive of the state of RAM
at a point in time, saved to a file for example.

 2

2. Analysis of Forensic Data from Volatile System Memory

It is therefore beneficial to analyze the content of RAM to gain insight into

either the well being of the system or to gain access to information that is hidden

or not available in plain sight. This information include open TCP/UDP ports/raw

sockets/active connection, memory mapped files and caches such as web

addresses and typed commands. Information that is usually obscured or not

even present on disk, such as passwords, can potentially be retrieved from an

analysis of RAM.

Since most modern operating systems do not purge the information on

RAM until the space is needed, information related to recently terminated

processes can also be extracted. This presents special significance for forensics

purposes. The applications are countless and can range from trying to extract

messages from an Instant Messenger of a kidnapped child to help with an

investigation in trying to prove that someone has executed certain programs that

he or she has recently terminated.

The applications, however, are not limited to just aiding criminal

prosecution and investigations. Computer systems in large corporations and

institutes such the U.S. Department of Defense are high value subversion

targets. The sensitivity and value of the information on these systems makes it

important not only to protect these systems but also to detect the presence of

malicious software. An offline analysis of a memory image is one of the best

ways to defeat most known anti-forensic technique and discovering Rootkits [2]

[4].

3. Tools used for Volatile Memory Acquisition

There are many known techniques and tools available for capturing a

volatile memory image. They can be broadly categorized into Hardware and

Software based techniques, each method with its own suitability and limitations.

These techniques are discussed below:

 3

a. Hardware Based Techniques

The most direct method would be to have a piece of dedicated

hardware for the sole purpose of creating a system memory dump, perhaps at

the push of a button. A proposed method was to use a PCI card that disables

the CPU and use DMA to access the host memory, creating the memory image

on a connected device [5]. This has the major disadvantages of requiring the

device to be installed prior to an incident and the cost associated with purchasing

these devices for all computers in an organization.

Another technique makes use of the bus mastering capabilities of

the Firewire protocol for imaging the memory of arbitrary host [6]. This is a

feature of the Firewire protocol. Anyone with physical access to a machine with

a working Firewire port can read and write to the main memory of the system.

This technique obviously requires the target system to have a firewire port

present. Making use of this technique would require that the target system be

equipped with the necessary Firewire hardware and software (device driver).

More importantly, the same vulnerability that is exploited for imaging the memory

can also be used to subvert the system. This is therefore not a good way for

acquiring volatile memory.

b. Software Based Techniques

A common UNIX program that is used for low level copying and

conversion of data is dd. Specifying the /dev/mem as the input file parameter, dd

can be used to image the data in the RAM of UNIX systems. George Garner

successfully ported this tool to Windows system in 2006 [7].

Helix is a bootable CD with a customized distribution of Ubuntu

Linux [8]. It is a computer forensic toolkit used for incident response. It is also

capable of creating an image of the data that exists in RAM. This feature

however does not work in the newer versions of the Windows Operating System

 4

as user mode applications are no longer capable of directly accessing RAM. As

such this is not a viable way to acquire a memory image of system running

Windows Vista.

Some implementations of Virtual Machine Concept [9] such as

VMWare [10] provide a means of taking a snapshot of the state of a machine.

This includes the CPU, memory (main and virtual), hard disks, active processes,

etc. When a snapshot of the machines is taken, the contents of the memory is

preserved and stored as a file on the host machine3. This form of capturing the

image content of memory is particularly useful for research and analysis of

memory images. However, this method does not address the issue of creating a

memory image on a live (non-virtualized) system.

4. Windows Operating System

The focus of this research is on extracting data from the volatile random

access memory (RAM) on a personal computer running Microsoft’s Windows

Vista operating system, while minimally affecting the existing data. The research

work includes the development of a kernel-mode device driver with the

capabilities on one or more versions of Microsoft Windows Vista, a user-mode

application that interacts with the driver, and a thesis that documents the

development process and the research findings.

The device driver is capable of exposing the volatile memory as a read

only media (similar to a CD-ROM). The MemReader tool will also include a user

mode application that makes use of this device driver and writes the content of

the memory unto a specified storage media.

The thesis also documents the developmental process and captures

information on kernel driver development. This includes some problems

encountered and certain knowledge and gotchas that will aid future students

working in this area of research.

3 Often RAM is preserved as a single file with a .vmem extension.

 5

B. RESEARCH METHODOLOGIES AND ORGANIZATION

1. Primary Research Question

• Is it possible to build a driver capable of extracting data from the

volatile memory? If so, in what ways will the machine state prior to

acquisition (volatile and non-volatile memory) be affected by this

method of acquisition?

2. Subsidiary Research Questions

• What are the different ways the device driver can be employed (i.e.

at runtime, boot time) to extract data and what are the differences

(between these ways)?

• How portable is the device driver between different Windows Vista

versions?

• How does the tool differ from the plethora of tools becoming

available in the market4 in obtaining an image of volatile RAM and

how does the image captured by our tool compare with those

captured by the others?

3. Assumptions

Memory management is often carried out dynamically by the operating

system to cater to the needs of existing and ongoing services and processes.

This also means that the content of the memory is constantly changed; hence,

the term “volatile memory”. It is also relatively difficult to determine the exact

content and location of data residing in memory. This makes verifying the output

of any MemReader a difficult job.

4 ManTech’s DD was not available when work on this thesis was started. Below we provide a

comparison of our work with “DD.”

 6

The content of RAM can also be captured when a snapshot of a system is

taken by VMware. To use this method of comparison for this research, the

snapshot would need to be taken immediately after the image of RAM is created

by an imaging tool. The instability caused to systems during device driver

development means that it is not always possible for the tool being developed to

terminate gracefully before it crashes the system. This method of collecting the

RAM images for comparison was therefore not chosen.

For the purpose of this research, the ManTech’s DD (MDD) tool was used

to create a RAM image that was used as a baseline for comparison with the RAM

image created by the MemReader driver and application. The RAM image

create by MDD is assumed to be correct and therefore suitable for validation

purposes.

4. Scope

Windows Vista Business was the version of the Windows operating

system used for both the development and testing of the tool. Although the

Window Driver Kit (WDK) [39] provides the development environment for some

versions and architectures (like the x86 and x64). This project was only

interested in the development of a tool for the Intel x86 architecture.

Since version of Windows later than Windows Vista require kernel mode

drivers to be signed, a self-signed certificate created using the MakeCert tool in

WDK can be used for self signing purposes.

5. Chapter and Appendix Overview

This thesis is comprised of the following chapters and appendices:

Chapter I: Introduction – This chapter gives an overview on the thesis.

This includes some background information, objectives and scope of the

research work and a brief overview of the proceeding chapters.

 7

Chapter II: Background of Windows Device Drivers – This chapter

touches on the background of Windows Device Drivers that will be beneficial for

understanding the rest of the thesis. The information is also a good starting point

for anyone that is interested in taking up Windows device driver development.

Chapter III: Requirements and High Level Design – The chapter

describes the requirements for developing a device driver for Windows. This

includes the testing the debugging requirement. There is also a comparison

between the available tools that can extract a RAM image on a Windows system

and the driver that was developed.

Chapter IV: Implementation – This chapter is presents the

implementation strategy adopted in this research and outlines some of the

problems encountered.

Chapter V: Test Methodology – This chapter presents the methods

adopted in this thesis to verify the correctness of the work.

Chapter VI: Results and Analysis – This chapter presents the results of

the testing. This includes method used in gathering the results and an analysis

of the collected images.

Chapter VII: Future Work – This chapter proposes areas of research

work that can be further extended from the outcome of this research.

Chapter VIII: Conclusions and Recommendations – This chapter

summarizes the conclusion, discusses the major challenges and presents certain

recommendation regarding the ramifications of this research.

 8

THIS PAGE INTENTIONALLY LEFT BLANK

 9

II. BACKGROUND OF WINDOWS DEVICE DRIVERS

A. OVERVIEW OF THE SIGNING PROCESSES

Digitally signed kernel-mode software is a process that attempts to ensure

security on computer systems. Microsoft’s Windows Vista relies on digital

signatures for kernel-mode code to increase the safety and stability of the

Windows platform. All 64-bit kernel-mode software intended for x64-based

computers running Windows Vista must be digitally signed. This applies to boot-

start drivers for x86 and x64 versions of Windows. Microsoft however

encourages publishers to digitally sign all software, including device drivers for

both 32-bit and 64-bit platforms [35].

1. Kind/ Type of Signatures

a. Test-Signing

This refers to using a test certificate to sign a pre-released version

of software for use on test computers. There is a MakeCert [40] utility program

included in the Window Driver Kit (WDK) installation, which generates a self-

signed certificate that developers can use to sign kernel mode binaries. The boot

configuration of the machine must be changed, using the bcdedit.exe command

[57], before test-signed drivers will be loaded.

2. Software Publishing Certificate (SPC)

A Software Publishing Certificate (SPC) is used for signing the catalog file

for a driver package. A SPC can be obtained from a Commercial Certificate

Authority (CA). The list of CAs that provides SPC that can be used for kernel-

mode code signing is available at the Microsoft Website [41]. A corresponding

 10

cross certificate from Microsoft is needed together with the root CA issued by the

SPC, so that the signature can be verified by a trusted root authority known to

the Windows Vista operating system.

B. MINIMAL REQUIREMENTS TO GET THE DRIVER LOADED

A driver using the Kernel Mode Driver Framework (KMDF) provided by the

WDK is a kernel module that lives permanently inside the system. In many ways,

a driver is treated by Windows as a regular service that can be started and

stopped just like any other system service. The two steps involved in installing a

driver are:

1. Registering the driver as a system service

2. Enabling/ Starting the driver/ service

The Service Control Manager exposes APIs that can be used to install

and start a device driver/ service from any win32 application. It is therefore

possible to register and start a driver programmatically.

1. Registering Drivers and Services

A service can registered in one of the two ways:

a. CreateService API

The CreateService API can be used to register a driver as a system

service. Details of the API call can be found at Microsoft Developer Network

(MSDN) documentation [20]. The service StartType [18] can be specified, as a

parameter to the CreateService API, when the service is being registered.

b. Manually Editing the Windows Registry

The CreateService API creates the relevant entries and values in

the Windows registry. It is possible to manually create these values in the

following registry by adding a new subkey with the name of your driver. The

registry entry will look like:

HKEY_LOCAL_MACHINE\System\CurrentControlSet\Services\<driver name>

 11

The registry values of the name, path and start-type of the driver

need to be supplied.

Registry Value Description Example
DisplayName Name of service/ driver as it appears on the

service list
IP Traffic Filter Driver

ImagePath Full path to the driver (or just the filename if it
resides in the system32\drivers directory)

system32\DRIVERS\ipfltdrv.sys

Start The point where the service is started 3 (SERVICE_DEMAND_START)5
Type The type of service 1 (SERVICE_KERNEL_DRIVER)6

Table 1. Example Service Registry Entry

2. Starting the Service

After the driver has been registered as a system service, it can be loaded

(and unloaded) using the Service Control Manager. It can be started either

programmatically using the StartService API or using the Windows net

command:

net start <service name>

3. Using the Windows Control Panel

Using the Add Hardware option in the Windows Control Panel, a device

driver can be added to the system. This will be described in more detail in the

section on driver packaging in Chapter IV.

C. INSTALLATION FOR 32-BIT AND 64-BIT PLATFORM

A native driver package must be provided for installation on different

platforms. A single 32-bit installer can however be used to install the driver

package on the different platforms. This will be described in more details in the

section on driver packaging in Chapter IV.

5 Some other possible values include: SERVICE_BOOT_START (0),

SERVICE_SYSTEM_START (1), SERVICE_AUTO_START (1), SERVICE_DISABLED(4) [37].
6 Some other possible values include: SERVICE_FILE_SYSTEM_DRIVER (2),

SERVICE_WIN32_OWN_PROCESS (8), SERVICE_WIN32_SHARE_PROCESS (9) [37].

 12

D. OVERVIEW OF THE WINDOWS DRIVER

Device drivers mediate communication between the kernel and a device.

The Microsoft’s Windows operating system provides an abstract device support

interface called a driver model to facilitate this communication. Device drivers

provide the implementation to this interface to support the specific requirements

of the device. Device drivers operate much like services provided by the

operating system; they handle communication between applications (or other

drivers) and a device.

1. Kernel Mode Drivers

Kernel Mode Drivers run entirely in kernel space and are capable of

communicating and transferring data directly to kernel mode components. This

means that Kernel Mode Drivers can bypass the mediators lying between user

and kernel space. Tasks involving kernel mode components therefore carry less

overhead when carried out by a Kernel Mode Driver as compared to User Mode

Drivers. Moving a driver into the kernel can also sometimes improve

performance. The flipside of it all is that when a kernel mode driver fails, it can

crash an entire system, whereas the failure of a user mode driver causes only

the current process to crash.

2. Kernel Mode Driver Framework (KMDF)

The KMDF is an infrastructure for developing Kernel Mode Drivers. The

framework is a skeletal device driver that can be customized for specific devices

and event handling. The framework drivers are customized by setting object

properties, registering callbacks of relevant events, and using and including

features that are needed. Not only does KMDF define a set of object models, it

controls the lifetime and the memory allocation of these objects.

 13

a. KMDF Components

Table 1 lists the KMDF components that are installed part of WDF.

Component Location Description
Header files wdf/inc Header files required to build KMDF drivers
Libraries wdf/lib Libraries for x86, x64, and Intel Itanium

architectures
Sample drivers wdf/src Sample drivers for numerous device types; most

are ported from Windows Driver Development Kit
(DDK) WDM samples

Tools wdf/bin Tools for testing, debugging, and installing drivers;
includes the redistributable KMDF co-installer,
WdfCoinstallernn.dll

Debugging
symbols

wdf/symbols Public symbol database (.pdb) files for KMDF
libraries and co-installer for checked and free
builds

Tracing format
files

wdf/tracing Trace format files for the trace messages
generated by KMDF libraries and co-installer

Table 2. KMDF Components

b. Structure of a KMDF Driver

A KMDF driver is identified by a DriverEntry function that

represents the driver’s primary entry point. Drivers that support Plug and Play

devices also have An EvtDriverDeviceAdd callback. Specific I/O request events

for a particu2lar queue can also be registered as EvtIo* callbacks. A simple

device will have the above-described functions and nothing more. KMDF also

includes code to support power management, Plug and Play and Windows

Management Instrumentations.

3. Description of the KMDF API

The Kernel Mode Driver Framework (KMDF) object model defines a set of

objects that represent common driver constructs such as devices, memory,

queues, I/O requests, and the driver itself. The framework objects have well-

defined life cycles and contracts, and a WDF driver interacts with them through

well-defined interfaces and they expose programming interfaces that handle their

 14

properties, methods that perform actions, and events handling through callback

registration [36]. Listed below is the description of some of the prominent

Application Programming Interfaces that were used in the development. This list

is provided as a reference for those not familiar with KMDF when studying the

source code that is attached as Appendix E.

1. NTSTATUS DriverEntry(IN PDRIVEROBJECT Driver Objects, IN

PUNICODE_STRING RegistryPath) – This is the entry point for the

application programming of a Windows device driver. It is the first

function that will be called by the framework [46].

2. WDF_DRIVER_CONFIG_INIT() – This method initializes the

WDF_DRIVER_CONFIG structure and the second parameter to the

method also registers the user defined MemReaderEvtDeviceAdd

function [47].

3. WdfDriverCreate() – This method creates a framework driver object for

the calling driver. Specific driver attributes can also be defined in the

user allocated WDF_OBJECT_ATTRIBUTES structure [48].

4. WdfDeviceCreate() – This method creates a framework device object.

Similar to the DriverCreate method, specific device attributes can be

defined. This method is called in the user defined

MemReaderDeviceCreate function, which creates a device and the

software resources needed by the MemReader driver [49].

5. WdfDeviceCreateDeviceInterface() – This method creates a device

interface for a specified device, i.e. the device create with

WdfDeviceCreate. The device interface is a symbolic link that

applications can use to access the device [50].

6. WdfIoQueueCreate() – This method creates and configures an I/O

queue for a specified device, i.e. the device create with

WdfDeviceCreate. Specific queue attributes, such as user defined

 15

queue callback events, can also be defined in the user allocated

WDF_OBJECT_ATTRIBUTES structure [51].

7. WdfRequestRetrieveOutputMemory() – This method retrieves a handle

to a framework memory object that represents an I/O request’s output

buffer. It is used to receive information that the driver provides to the

originator of the request, such as a read request [52].

8. WdfMemoryCopyFromBuffer() – This method copies the contents of a

specified source buffer, such as the framework memory object, into a

specified memory object’s buffer [53].

9. WdfRequestCompleteWithInformation() – This method stores

completion information and then completes a specified I/O request with

the supplied completed status, as the second input parameter, to the

calling application [54].

10. WdfMemoryCopyToBuffer() – This method copies the contents of a

specified memory object’s buffer into a specified destination buffer.

This is a reverse WdfMemoryCopyFromBuffer operation [55].

11. WdfRequestRetrieveInputBuffer() – This method retrieves the an I/O

request’s input buffer. It is used during a write operation to write to the

where the application passes down information to the driver. This is a

reverse WdfRequestRetrieveOutputBuffer operation [56].

A MemReader tag precedes all the user-defined functions that are not part

of the API. These include user-defined callback, plug and play related and other

functions.

 16

THIS PAGE INTENTIONALLY LEFT BLANK

 17

III. REQUIREMENTS AND HIGH LEVEL DESIGN

A. BUILDING A KERNEL DRIVER

The goal of this research is to build a Kernel Mode Driver Framework

(KMDF) driver for the Windows Vista operating system that can interface with a

user-mode application and extract data from the RAM. The discussion below will

be limited to areas related to this research.

1. Minimal Requirements to Obtain Developmental Environment

The Windows Driver Foundation (WDF) defines a single driver model for

creating object-oriented, event-driven drivers for either kernel mode or user

mode. The Windows Drivers Kit (WDK), which contains the Driver Development

Kit (DDK), is the primary resource needed for driver development using the WDF.

The latest version of the WDK can be downloaded from Microsoft Connect [13].

A Windows Live ID or Microsoft passport is required to join the Microsoft

Connect. Detail instructions on obtaining and installing the WDK can be found

on the Windows Hardware Developer Central (WHDC) website [14].

a. Operating System Requirement

Any recent version of Windows can be used to develop and build

KMDF drivers for Windows 2000 or later versions of Windows. The appropriate

build environment configuration must be specified when using the build.exe utility

to target a driver for a particular version and CPU architecture.

It is, however, recommended to install, test, and debug the driver

on a system that is running the target version of Windows and hardware that is

the same as or similar.

 18

b. Hardware Requirements

It is highly recommended that the developmental work configuration

includes a computer that supports some form of Symmetric Multiprocessing or

Multithreading (such as hyperthreading). This allows certain type of bugs, such

as race conditions, to be detected.

It is also highly recommended that the hardware and the Operating

System is matched, i.e., a 64-bit computer that runs x64 version of Windows.

Some critical errors can only be detected on a 64-bit system. For the purpose of

this thesis, a 32-bit system was used.

Two computers are needed to carry out “live” debugging of KMDF

drivers, one to host the debugger and the other to host the driver (and requisite

operating system) to be debugged. Kernel-mode driver bugs commonly cause

system crashes and can corrupt the file system, causing loss of data. It is

therefore necessary to have the debugger and driver on separate computers.

2. Development Environment

a. Build Utility

The Build utility in the Windows Driver Kit (WDK) invokes the

correct tools with the appropriate options to build your driver. The Build utility is a

wrapper around the Microsoft NMAKE utility, so it handles issues like checking

dependencies to ensure that the correct files are rebuilt after a change. Building

the samples provided in the WDK is a good starting ground for familiarizing and

understanding the Build utility.

b. Build Environment

The WDK has build environments for four versions of Windows

namely:

 19

• Windows 2000

• Windows Server 2003

• Windows Vista and Windows Server Longhorn and

• Windows XP

For each version of Windows, there is a checked and free build

environment for each CPU type. Drivers compiled in the checked build

environment will have many of the optimizations disabled and conditional code

for debugging included. Production drivers are compiled in the free build

environment will have debug code disable and will contain optimized code.

c. Editor and Integrated Development Environment (IDE)

The source code in this research was edited using the Windows

wordpad.exe. Microsoft Visual Studio can however be used as both an editor

and an IDE for driver development. It would require all Microsoft Visual Studio

options to be configured to match those of WDK and it should be configured to

invoke the build.exe utility (provided by WDK) using a batch command line.

However, Microsoft Visual Studio was not used in this research. A more detailed

discussion on configuring Microsoft Visual Studio for driver development can be

found on the OSR Online [58] and Hollis Technology Solution [59] website.

3. Debugging Tools

a. Windows Debuggers

Microsoft provides a 32-bit and 64-bit set of Debugging Tools [22]

for debugging the operating system, applications, services, and drivers that run

on the operating system. Out of the four debuggers provided by the installation

package, only Microsoft Kernel Debugger (KD) and Microsoft Windows Debugger

(WindDbg) are capable of debugging kernel-mode programs and drivers.

 20

The setup of kernel-mode debugging is an elaborate one that

requires both hardware and software configuration. KD and WinDbg are both

powerful debuggers that are capable of monitoring the behavior of the operating

system itself and full source level debugging for Windows kernel, kernel-mode

drivers and system services respectively.

b. Debug Output Viewer (DebugView)

DebugView [23] is an application for monitoring the debug outputs

on your local system, or any computer on the network that is reachable via TCP/

IP. It is capable of displaying both kernel mode and Win32 debug outputs that

are generated by applications and device drivers. DebugView will capture the

output of the following functions:

• Win32 OutputDebugString

• Kernel-mode DbgPrint

• All kernel-mode variants of DbgPrint implemented in

Windows XP, Server 2003 and Vista

DebugView also extracts kernel-mode debug output generated

before a crash if it was capturing at the time of the crash.

In Windows Vista, DbgPrint defaults to the DEFAULT debug

component and the default settings for this component is to hide all outputs. To

display the DbgPrint outputs, go to the registry path at

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\SessionManager

\ add a new key called “Debug Print Filter” and add the following value

“DEFAULT” : REG_DWORD : 0xFFFFFFFF and then reboot.

DebugView is a simple tool that requires little setup before it is

ready for use. It, however, requires elevated privileges to display kernel debug

outputs. This tool is used extensively in the debugging during developmental

work due to its simplicity and ease of use.

 21

B. DESIGN COMPARISON TO SIMILAR TOOLS

Several free and commercial tools are capable of creating a memory

image of the data contained in RAM. This includes the DD released by ManTech

[16], Helix released by eFense [8] and the Forensics Acquisition Utilities [7] by

George M Garner. Microsoft changed the way memory is accessed on Windows

Vista and has moved the access from user space into kernel space. The three

tools all require elevated privileges for them work to on Windows Vista.

The source code and design of the version 1.2 of the ManTech DD tool

was studied in more detail for literary and comparison purposes. The package

released in version 1.2 includes an executable application file and a device

driver. Similarly, the goals of this development will include an executable

application and a device driver. The application needs to be started in a

command prompt that has elevated privileges.

Once the DD application starts, it determines if it is executed in the correct

environment, such as operating system and architecture. It then proceeds to

load the device driver that came with the package and starts it as a system

service. The device driver opens a handle to the physical memory segment.

This handle is passed to the application that utilizes it to create an image of the

RAM. Since the handle to the physical memory section is being used in the

application, it requires elevated administrator privileges.

One of the objectives of this research is to show that utilizing an

appropriate device driver; a user space application can also be used to create an

image of RAM. For the purpose of this research, a kernel mode device driver

was developed and loaded into the kernel. The driver opens a handle to the

physical memory segment and when the user mode application interacts with the

device driver, the driver maps sections of the physical memory into the process’s

virtual address space. The driver then copies the information from the physical

memory into the buffer of the application. The application then saves the data on

 22

the buffer into an image file in a filesystem present on the computer system.

Figure 1 is a graphical representation of this process.

User space

Kernel space

Physical
Memory

Virtual
Addresses

Application Buffer

Copying from

Physical M
em

ory to

Application Buffer

RAM Image file

Copying fro
m Applica

tion

Buffer to
 RAM Im

age file

MemReader Application

MemReader Service Driver

Figure 1. Graphical Representation of MemReader Application and Driver

 23

IV. IMPLEMENTATION

A. IMPLEMENTATION OBJECTIVE REVIEW

Part of the objective of this research is to develop a tool that is capable of

extracting the contents of the volatile RAM from a Windows Vista system. Since

the proposal for this research was approved, ManTech International Corporate

[15] has released a similar open source tool [16] for capturing memory on

Windows Vista and Windows 2003 Server.

The tool release by ManTech consisted of a device driver and a separate

Windows application. The device driver does not need to be installed on the

system before the application is run. However, since a driver is being installed,

administrative privileges are required for the user running the tool .

The purpose of the research is therefore to develop a driver that can be

preinstalled on Windows Vista system such that a user mode application can be

used to extract a copy of the memory when it is needed, providing organizations

a method of incident preparation in addition to incident response.

Such a driver can be preinstalled on systems that are vulnerable to

attacks, extracting an image of the RAM will have significant forensic benefits.

An example would be honeypots that have been setup by system administrators.

B. IMPLEMENTATION STRATEGY

1. Windows Driver Kit (WDK) Samples

Besides the development environment, there is a wealth of useful

information that is distributed together with the WDK. One such source is the

samples that are included with each distribution. The different samples not only

provide a starting point for understanding the User Mode Driver Framework

 24

(UMDF) [17] and the Kernel Mode Driver Framework (KMDF) [18] but also the

different object models and functionalities.

The sample codes are all “ready to compile” in the WDK development

environment and no modification to the system or any files is required.

Depending on the chosen type of build environment (checked or free) for

compilation, the output files will be built accordingly. The built driver

(<sample>.sys) be installed using a Co-installer that should come with the

distribution of the WDK. This will be described in more detail in a later chapter.

The sample codes are therefore good starting points for developmental

work to begin. This greatly reduces the learning curve of driver development and

environment setup. The samples were studied and the one with the closest

structure and functionality that fits the purpose of this research was selected to

be the starting point of development work. Modifications were made to the

sample code to fulfill the functionality requirement of this research.

2. The Echo Sample

The very nature of the driver requires access to the physical memory and

some form of I/O between a kernel mode driver and a user mode application

limited the workable set of samples to those that made use of the KMDF. The

Echo sample, though not the only sample that fulfilled these two requirements,

was chosen for its simplicity and elegance.

The driver in the echo sample demonstrates the use of a default I/O

queue, it requests start events, cancellation events, and a synchronized Deferred

Procedure Call (DPC). The modifications were mainly limited to how the driver

interacted with the physical memory and how the data read from the physical

memory is transferred onto the I/O queue. The full source code can found in

Appendix C.

 25

3. Development Process

a. Functional Description

The driver is an interface between the application and the physical

memory device. As such, it has to be capable of accessing the data on the

physical memory device and transferring it to the user mode application. The

driver acts as an intermediary that transfers data from the physical memory to the

buffer of the user mode application. The user mode application will need to write

the data it receives from the driver into a file.

Before the driver can gain access to the data on the physical

memory, it will need to get a handle to the physical memory device. This can be

accomplished by the ZwOpenSection [24] function call to the

\Device\PhysicalMemory [25] location. This handle is used by the driver during

subsequent read events, EvtIoRead, where different sections of the physical

memory section will be mapped into the virtual address space of the application

that invoked the driver. The complete source code is attached as Appendix E.

b. Development Cycle

The DbgPrint function is used extensively in the driver code for

verification and debugging. The driver is modified incrementally either by adding

new functionalities such as retrieving a handle to the physical memory and by

trimming the unnecessary functions such as the timer for Deferred Procedure

Calls from the sample code.

As the driver is modified, the older version of the driver is

uninstalled and a new version is installed on the target system and tested.

Installation of driver is done through the Add Hardware menu in the Control

Panel. It is worth noting that when a driver is uninstalled, through the Device

Manager in the Control Panel, only the devnode associated with the device is

removed. The device instance no longer exists but the device package is still in

 26

the driver store. When the driver code is modified and subsequently rebuilt,

there will be an updated version of the .sys driver file. The information in the INF

file is however unchanged and remains the same as prior compilations. When

the newly built package is installed (Control Panel > Add Hardware), Setup

simply re-associates the devnode with the previous version of the driver package

in the driver store by recreating the appropriate registry entries.

To ensure that the updated version of the driver package is

installed correctly, the driver package must be deleted from the driver store

during uninstallation. This can be done by selecting the “Delete the driver

software for this device” checkbox during the uninstallation process (Control

Panel > System > Device Manager). The WDF co-installer DLL file must be in

the same directory as the INF and driver (.sys) file when the updated driver is

being installed.

Once the updated driver package has been installed, the debug

outputs are captured using DebugView and the application debug output are

printed to the console. Together with the information saved in the dump file

(RAM image), the correctness of the driver and the application is verified. The

cycle of modification, rebuilding, uninstallation, reinstallation and testing is

continued until the driver and the application are verified to be working correctly.

C. DEBUGGING

Debugging a KMDF driver for beginners is a tricky business. Since kernel

mode drivers execute in a lower and more privileged level of the operating

system, they do not have straightforward access to the user mode components

such as the standard output. Debug and print statements are therefore not as

easily displayed as in user mode applications. The ramifications of any violation

in kernel mode components are also much greater and they are almost certain to

be met with a bug check (system crash). Operating in kernel space also means

that the components will need to cater to operating features such as paging and

 27

interaction with other system drivers. A careless mistake can sometimes be

propagated down the chain and be amplified into a big problem.

1. Printing Debug Statements

Printing output statements represents the simplest debugging aid.

DebugView is therefore the most widely used debugging tool during the

development. The DbgPrint API call be made from anywhere within the driver

code and it will be displayed with drivers built in the check and free

environments. The DbgPrint function [26] takes in a variable argument list much

like its user mode counterpart – printf, and can be formatted to display variable

values.

DebugView was used at all times during the testing and debugging phase.

This ensured that debug statements could be retrieved later in the event of an

unexpected bug check. To retrieve the debug statements prior to a bug check,

use the process dump file from the File option in top menu bar and browse to and

select the memory dump file created by the bug check.

2. Analyzing the Memory Dump File

When a bug check is issued, a crash dump file will be created proved that

the system is configured to create it. To configure for a full memory dump during

a bug check, go to the System Menu in the Control Panel (Hold Windows key +

Pause/ Break). In the “Advance” tab in the “Advance System Settings” menu,

select “Settings” for “Startup and Recovery”, choose a “Complete memory dump”

in the “System failure” section. The memory dump file contains a snapshot of

useful low-level information about the system that can be used to debug the root

cause of the bug check.

WinDbg was used to analyzed the memory dump files when the

MemReader driver caused any system crash. The stack traces and device driver

 28

that led to the crash can be inspected. The appropriate symbol package [44]

need to be installed before trace information of the system drivers is observable.

D. DEVICE DRIVER PACKAGE

A driver package consists of all the hardware and software components

that are needed to support the device under Windows [21]. Since the driver that

was developed in this research is a pure functional driver not associated with any

hardware, the driver package we create will only consist of software components.

This includes the driver files and the installation files.

1. Driver Files (.sys file)

The driver files provide the I/O interface between the application and the

physical memory. The driver files are usually in the form of a dynamically linked

library with a .sys file extension. Upon installation of the driver, the .sys file is

copied to the %windir%\system32\drivers\ directory.

2. Installation Files

These files are needed for driver installation. Drivers can be installed

through the Add Hardware menu in the Control Panel.

a. Device Setup Information file (.inf file)

A .inf file contains information that the system Setup components

use to install support for the device driver. The registry entry information related

to the driver makes up part of the .inf file. The .inf file of the driver package for

this thesis is attached as Appendix E.

b. Co-installers

A co-installer is a Microsoft Win32 dynamic-link library that assists

in device driver installation on Windows NT-based operating systems. A different

co-installer file is needed for installing the checked build of a driver. The free

 29

version co-installer should not be packaged interchangeably with the checked

version. A checked build of a KMDF driver cannot be installed on a free build of

the OS.

These KMDF redistributable binaries are architecture dependent

and are all distributed as part of the Windows Driver Kit. They can be found in

the <WDKInstallation>\<BuildNumber>\redist\wdf\<architecture> directory.

c. Driver Catalog file (.cat file)

A .cat file contains a cryptographic hash of each file in the driver

package. Windows uses these hashes to verify that the package has not been

altered after it has been published. The software publisher offers authenticity by

digitally signing all the files in the driver package.

The mandatory kernel-mode code-signing policy applies to all

kernel-mode software and drivers for x64-based systems that are running

Windows Vista. Kernel-mode signatures are also verified on 32-bit system but

an administrator has the capability of installing an unsigned driver.

E. PROBLEMS ENCOUNTERES

1. Windows Driver Development

a. Windows Operating System

Despite having more than ninety percent of the market share for

commercial consumer Operating Systems [27], Microsoft’s Windows has perhaps

the least open literature available for understanding how the clock works beneath

its desktop graphical user interface; this is Microsoft’s attempt to protect the

Microsoft Windows’ proprietary. Since the MemReader driver interacts with the

Physical Memory segment, a more thorough understanding of the Window’s

Memory Model is needed to develop a smooth working driver.

 30

When mapping the physical memory using the native windows API

call, ZwMapViewOfSection [28], a page protection attribute needs to be provided.

This specifies the type of protection for the region of initially committed pages.

This attribute determines the memory type marked by Windows in a page table

entry. The memory type tells the processor how to handle accesses to a page.

This affects how the memory locations are read and written from the different

caches (L1, L2 and L3 cache). The behavior of the Operating System becomes

indeterminate when a single physical page is mapped to more than one virtual

address space with conflicting memory type [45].

The anomaly described above exists in versions of the Windows

Operating system before Windows XP. Versions of Windows after XP check for

page mapping with different memory types. An attempt to map a page with a

second memory type will result in a failure with the

STATUS_CONFLICTING_ADDRESSES (0xC0000018 [29] [30]) error message.

b. Driver Development and its API

One of the design goals of the Windows Driver Foundation (WDF)

[31], is to provide a consistent model to ensure that knowledge gained in the

development of one driver can be transferred across device classes. This does

not however reduce the copious amount of familiarization that one needs before

being able to embark on driver development. With this being said, the bulk of the

information available on Windows driver development can only be found at the

MSDN [32] and WHDC [14] website. Each topic in driver development is written

and maintained in separate papers. As such, there is largely no consistency

amongst the content of the papers and not all the papers are updated with the

most current material.

The community involved in driver development is also largely a

small one. Sources of information are scarce especially when it comes to the

specifics of dealing with the Driver Development Framework or kernel

programming in Windows. The situation is not helped by the changes that are

 31

brought about with each new version of the Windows Operating system. Each of

the different versions of the Windows kernel operates slightly differently and the

kernel APIs are subtly different in each of the versions. Since many kernel

drivers are developed to support commercial hardware products, it may not be in

a company’s best interest to aide a competing company in software

development.

2. Testing and Debugging

The complexity and the intertwined nature of how device drivers depend

on each other to operate, with many device drivers working together and

depending of each other, greatly complicate the job of testing and debugging a

device driver. It is difficult to determine the source of error and explain anomalies

and erroneous behavior during testing.

a. Blue Screen of Death (BSoD)

It is often difficult to recover from errors and faults in an Operating

System’s kernel components. Faults or errors usually result in a system crash or

in Microsoft Windows Operating System’s case, a Blue Screen of Death (BSoD).

This is also sometimes referred as a system halt or bug check. When this

happens, Windows halts its operations and creates a memory dump file with

information on the state of the system when the error occurred. There is also

some information displayed on the Blue Screen that describes the error [33].

The first section shows the actual error message. The error

messages may give a clue regarding the source of the error, but messages like

BAD_POOL_HEADER are cryptic and they do not really help with pin pointing

the source of error. Specific technical information regarding the crash can be

found at the bottom of the screen in a section aptly titled ‘Technical Information’.

Figure 2 is a screen capture of a BSoD for a Page Fault In Non

Paged Area bug check. The hexadecimal code that follows the word ‘STOP’ in

the Technical Information section is the bug check code used by the Operating

 32

System. The four parameters that follow contain specific information regarding

this instance of bug check. The name of the component, if available, that caused

this error is also listed. The SPCMDCON.SYS is the device driver that caused

the bug check in Figure 2. The bug check code can be used as a reference key

[34] to find specific information on each parameter.

Figure 2. Blue Screen of Death: Page_Fault_In_Non_Paged_Area

b. ZwMapViewOfSection [28]

The ZwMapViewOfSection routine maps a view of a section of the

Physical Memory into the virtual address space of a subject process. Ten

parameters need to be provided to create a successful mapping.

ZwMapViewOfSection returns a NTSTATUS value to report on the status of the

 33

mapping operation. ZwMapViewOfSection is a nontrivial mapping function and

an unsuccessful mapping can be due to many reasons. It can be exasperating

when trying to determine the cause of a failed operation.

There are many return values for NTSTATUS that will help

determine the cause of an unsuccessful mapping. It is important to capture the

specific returned status in the event of an unsuccessful mapping. The

description of each specific error code can be found in the ntstatus.h file in the

win32api package and it is readily available on the Internet [30]. It is useful to

include the error code and/ or the error description when searching, for example

on Google.com, to find the meaning of an error return value and a possible

approach to mitigate the error.

In the earlier stages of testing, there was a consistent discrepancy

in the location of the first appearance of the known string. These known strings

are deliberately injected into RAM as markers. They will be discussed in more

detail in the chapter on test methodology. There was always a misalignment of 8

times the TX_BLOCK_SIZE constant (see public.h in Appendix E). Upon further

examination, this misalignment was attributed to the failed mappings of the

ZwMapViewOfSection. In the event of a read failure from the MemReader driver,

the MemReader application will skip this write operation for the cycle and

proceed on to the next offset. Instead of skipping the write operation, the

MemReader will need to pad the image file with NULL bytes7 so that the two

images (the control image created by ManTech’s DD or MDD and the image

created by MemReader) maintained offset synchronization. This also leads to

the use of the same TX_BLOCK_SIZE as MDD.

7 This operation is similar to the conv=sync option in the linux tool dd.

 34

THIS PAGE INTENTIONALLY LEFT BLANK

 35

V. TEST METHODOLOGY

A. TESTING OVERVIEW

The content of RAM is changing every minute, with or without any human

intervention, as many background processes are executing to support the

Operating System. When the any tool or application is executed, it too will be

loaded into memory thereby changing the contents of RAM.

The testing to show that both the developed driver and application is

extracting a correct image of RAM can be split into two parts as described the

following section.

B. TESTING FOR THE PRESENCE OF DATA

A certain amount of known information was injected into memory and the

image created by the developed driver (and tool) was inspected for the presence

of that information .The simplest form of information to inject and detect would be

ASCII encoded strings.

This can be achieved by opening the notepad application and typing many

instances of a string of characters on a Windows system that is loaded with the

MemReader driver. The binary representation of the repeated string must be

stored in some part of memory. Without exiting the notepad application, start the

MemReader tool to create an image of the system’s RAM. If the MemReader

has correctly imaged the RAM, the repeated string of characters should also be

found in the created image file.

The image file can then be inspected with a HEX/ ASCII editor [11] [12]

that is capable of displaying both the binary form of the data and any ASCII

encoded information. If the extraction and creation of the image file is done

correctly, the repeated string of characters should be correctly displayed in the

editor.

 36

C. TESTING BY COMPARISON

The testing approach described in Section B in this chapter is a simple,

functional test to prove that the driver and imaging tool is working. However, the

test only shows that MemReader has correctly imaged the part of memory used

by an active process (notepad). In comparison with the size of memory in

systems today, application memory only accounts for a small percentage of the

memory, and does not provide for any method of verifying addresses, page

alignment, etc.

A more definitive method of testing is by comparing two memory images,

one that is created by a known good means and the other by MemReader. Since

the content of RAM is consistently changing due to a “sliding window” effect [3], it

will be impossible to have two images that have a 100% match. A high degree of

congruency between the images is however expected.

1. RAM Image Obtained Using a Known Good Tool

For the purpose of this research, the comparison was made with the

image created by the ManTech DD (MDD) tool. The ManTech DD was an

obvious candidate for the following reason:

a. The source code was accessible and understood so that there was no

ambiguity about the format of the data image created by MDD.

b. To date, not many other software tools are available for creating an

image of the RAM for the Windows Operating System.

To ensure minimal difference between the two images, created using

MemReader and the ManTech DD, the system should be very lightly loaded

during the test and the two tools should be run, one immediately followed by the

other. A more detailed discussion on the expected content of memory is done in

the next chapter.

 37

2. RAM Image Obtained Using VMware

The use of VMWare [10] creates a pristine image of the Operating System

when the Virtual Machine (VM) is paused. If the VM is loaded with the

MemReader driver, an image of the RAM can be captured immediately after the

VM is restarted. This ensures minimal changes between the two images. Since

this method does not require any instrumentation in the VM itself (the action is

entirely external), the delta between the VMWare memory file and the acquired

file are expected to be smaller than the delta present in method 1.

D. TESTING ENVIRONMENT AND SETUP

The test target is a Dell Optiplex GX280 Series system running on the

Windows Vista Business Operating System. The machine specification is listed

in Table 3. The RAM capacity was obtain programmatically using Window native

API GlobalMemoryStatusEx [42].

 Description
Processor Intel® Pentium® 4 CPU 3.40GHz 3.39GHz
Memory (RAM) 2037.52MB

System Type 32-bit Operating System
Operating System Windows Vista Business

Table 3. Test Target System Specification

In an ideal situation, images should be created by the several testing

methods so that the information of the physical memory is the same for each

method. A set of procedure are followed in order to ensure that the data in the

physical memory is as similar as possible on each test of the system when the

different RAM images are created. Upon system start up, the same user-account

is used. The system is left to idle for a five-minute period for the system

applications and service to be loaded, this includes the MemReader service

driver. A text file containing repeated known strings as described in subsection B

is opened using notepad. The RAM image file is first created using the

 38

ManTech’s DD tool. Subsequently, another RAM image is created using the

MemReader application. For more detailed information on the procedures for

creating a RAM image see Appendix D.

 39

VI. RESULTS AND ANALYSIS

A. DEVELOPMENT RESULTS

The MemReader device driver developed is still an unfinished product.

There are still a few bugs and there are still some issues with its stability that can

be further explored in future works. MemReader requires some fine-tuning and

arguably better integration with the Windows operating system in order to

achieve enough stability for production use. The testing methodology proposed

in the previous chapter, therefore, cannot currently be strictly adhered to.

The development still yielded an installable MemReader driver package

and a user-mode MemReader application that utilizes and interfaces with the

MemReader driver and extracts information from the RAM. The MemReader

driver installs under the Class Name ‘Tools’ with Service Description name

“Memory Reader Service’, specified in the memreader.inx file (see Appendix E).

The MemReader application takes in two parameters, namely the file

name of the image in which the extracted information will be saved and an

optional offset (in Megabytes) where the driver will start reading memory

information from. The following example would create an image file name

test.bin from starting one megabyte into memory:

>MemReader.exe test.bin 1

The first observation from running the MemReader application on a

system installed with the MemReader Service driver was that the application was

unable to extract information at the sixth megabytes offset. This happened in all

the test runs and the MemReader application fails with a system error 487. A

simple lookup [38] explains that the application made an “attempt to access (an)

invalid address”. Debugging the MemReader service driver revealed that the

routine ZwMapViewOfSection has failed with a NTSTATUS error code

0xC0000018 – STATUS_CONFLICTING_ADDRESSES. The MemReader

 40

application ignores this error and continues extracting information from other

memory locations by skipping this offset. The MemReader driver is however still

somewhat unstable and can cause indeterminate system crashes during the

process of extracting data from RAM. The cause of these crashes could not be

determined.

B. MODIFIED TESTING METHODOLOGY

A RAM image extracted using the ManTech’s DD (MDD) tool was created

and used as a control for which the other extracted image, using the MemReader

application and MemReader service driver, were verified against. There is still a

stability issue with the MemReader service driver and it causes indeterminate

system halts during the creation of the test RAM image. Although a complete

image of RAM is not captured, the lower regions (offset) are captured8 and can

be used for verification purpose.

Two text files containing the repetition of two different known strings are

opened during testing. The two text files, that are opened using two separate

instances of the notepad application, will occupy two separate region of memory.

This was a useful marker for the verification of the created test image. The

details of the two text files are as specified in Table 4.

File Name TestFile1.txt TestFile2.txt
File Size 16,391KB 16,393KB
Repeated String This is an usually short string

for such a big file.
the quick brown fox jumped
over the lazy dog.

String count 316426 (1 incomplete) 364525 (1 incomplete)

Table 4. Text files of repeated known strings

An open source application, Visual Binary Diff [12], was used to compare

the two images created. Visual Binary Diff or VBinDiff opens the two files

simultaneously and dumps their hex and ASCII outputs one on top of the other.

8 Captures of greater than 1,600 MB’s have been achieved.

 41

Differences between the two file are marked red. Figure 3 and 4 are screenshots

of the VBinDiff showing how the information is presented.

Figure 3. VBinDiff output – Not difference in data

Figure 4. VBinDiff – Difference in data marked in red

A trial version of a Text/ Hex editor, 010 Editor [11] was used to inspect

the image files to locate traces of the known strings. The editor is capable of

display the hex and ASCII representation beside each other, and has powerful

 42

features such as searching for ASCII, EBCDIC, Unicode strings. Figure 5 is a

screenshot of the 010 Editor and it shows how the information is represented.

Figure 5. VBinDiff – Difference in data marked in red

C. TESTING RESULTS

Three sets of images were collected and analyzed. A summary of the

images collected is found in Table 5. The transfer block size defined by the

TX_BLOCK_SIZE constant in the file public.h (See Appendix E) is the equivalent

of the block size parameter of the GNU dd tool [43]. The MemReader driver and

application needs to be rebuilt if the TX_BLOCK_SIZE is changed.

 43

 Set 1 Set 2 Set 3
Control Image File
Size

2,086,424KB
(~2037.5MB)

2,086,424KB 2,086,424KB

Test Image File Size 1,638,464KB 1,263,936KB 587,904KB
Transfer Block Size 4096bytes 4096bytes 4096bytes

Table 5. Test Results

The control image file size created was the same for the all three

collections. MDD, however, did not manage to extract information from certain

regions of memory. The MDD output shows that there are 8 failed mappings

during the creation of the control image. See Figure 6. These failed mapping

would not have resulted in a smaller image as MDD will pad the images at

locations where the mapping failed. This is important as the MemReader

application should behave in the same way so that it can be compared against

the images created by MDD.

Figure 6. MDD output screen when creating control image

 44

D. ANALYSIS OF RESULTS

1. Preliminary Analysis

The first significant observation was that even with the MDD, a complete

image of RAM could not be extracted. The blocks that MDD was unable to

extract could possibly be the regions which the MemReader driver gets a

STATUS_CONFLICTING_ADDRESSES error.

A comparison was done between the control images collected. Upon

visual inspection using VBinDiff, the memory segment from 0x00000000 to

0x000FFFF, the first megabyte, remained largely the same. This is expected as

most of the system information would have been the first to be loaded into the

RAM and this information should remain largely the same. This was consistent

with the comparison between the test images. Significant differences began only

at the one megabyte offset. Figure 7 shows the VBinDiff differences between

two control images. Figure 8 shows the VBinDiff differences between two test

images.

Figure 7. VBinDiff – Difference in data between Set1\control and Set2\control

 45

Figure 8. VBinDiff – Difference in data between Set1\test and Set2\test

2. Testing for the Presence of Data

The image files were searched using parts of the known string as a

“signature” and it was expected that the repeated known strings occupied

multiple fragments of contiguous chunk of memory. The “signature” used to

detect the TestFile1.txt and TestFile2.txt strings are “usually” and “quick brown”

respectively. Figure 10 to 13 shows the result of a “find” on the two signatures in

the control and test images. The box highlighted in yellow is a graphical

representation of the image file. Regions marked in blue are the locations where

the signatures are found. In an ideal situation, the content of the TestFiles

should occupy a contiguous block of memory. The fragmentation into smaller

chunks by the Operating System’s Memory Management is to fulfill existing and

new memory requests at the time the image was created.

 46

Figure 9. A find on the signature “usually” for set 1 control image

Figure 10. A find on the signature “usually” for set 1 test image

 47

Figure 11. A find on the signature “quick brown” for set 1 control image

Figure 12. A find on the signature “quick brown” for set 1 test image

 48

Both the signatures are littered throughout the entire length of the control

image. These are the blue segments as on Figure 10 and Figure 12. Since the

test image captured is incomplete (approximately 440MB less), an approximation

of it would be the first 1600 MB of the control image. The Memory Management

Unit of the Operating System would have made some changes to memory in

between the time the two images are captured, but the general spread pattern

should still be observable. The vertical yellow line in Figure 12 marks the end of

the capture test image. The top half of the boxed region would be an

approximate of the captured test image. Compare this to the boxed region in

Figure 13. The blue regions are more spread out, imagine stretching the box

region in Figure 12, but the similarity between the two is apparent. This is

observable from Figure 10 and 11 as well.

3. Testing by Comparison

The VBinDiff tool was used to compare the control and test image of each

set. Figure 13 show that the images in set 1 are largely the same at the

beginning of the images. The first difference between the two images is at the

offset position 0x00123060 as seen in Figure 14. The two images remain largely

the same with slight difference, like those in Figure 14, until the offset position

0x0014C000. These changes can be due to the memory requirement needed by

the MemReader application and driver. From position 0x0014C000 onwards, the

two images start to differ. Figure 15 shows the image at position 0x0014C000.

 49

Figure 13. Set 1: No difference between the images (till 0x00123050)

Figure 14. Set 1: First difference between the images (0x00123060)

 50

Figure 15. Set 1: Position (0x0014C000) where images start to differ

The result is consistent with the images extracted in set 2, see Figure 16 –

18, and set 3, see Figure 19 – 21. The only notable difference is that point which

the data on the two images start to get drastically different. In both set 2 and set

3, the tripping point is at 0x0015F000 – 76KB later than set 1.

Figure 16. Set 2: No difference between the images (till 0x0011A000)

 51

Figure 17. Set 2: First difference between the images (0x0011A000)

Figure 18. Set 2: Position (0x0015F000) where images start to differ

 52

Figure 19. Set 3: No difference between the images (till 0x00123090)

Figure 20. Set 3: First difference between images (0x00123090)

 53

Figure 21. Set 3: Position (0x0015F000) where images start to differ

Bringing the discussion back to the images in set 1, the rest of the images

from position 0x0014C000 onwards are patches where data is different – see

Figure 22, and patches where data match – see Figure 23. This is expected, as

the Operating System would have changed some of the data in RAM – the

patches where data is different, but not all of the data in RAM – thereby leaving

some areas where data still do match. One of the areas where data do match

contains the information that was deliberately inserted into memory. Figure 24

shows the earliest location, 0x005CA012, where either of the “known strings” is

found. This is a match, albeit expected, to the first address in the red boxes of

Figure 9 and 10. Upon closer inspection of the two red boxes in Figure 9 and 10

and Figure 24, both 010 Editor and VBindiff reveal that the “known strings” are

occupying the same addresses in the two images

 54

Figure 22. Set 1: An area (0x001F14C0) where data do not match

Figure 23. Set 1: An area (0x001FFD20) where the data match

 55

Figure 24. Set 1: The first instance of the signature “usually”

Figure 25 show the VBinDiff output of the earliest instance of the signature

“quick brown”. Not only does the segment of memory match in both images, this

is consistent with the results boxed in red of Figure 11 and Figure 12.

Figure 25. Set 1: The first instance of the signature “quick brown”

 56

Figure 26 and Figure 27 shows the pattern of matching and unmatching

segments of memory continue further in the images of set 1. This pattern

continues to the end of the images.

Figure 26. Set 1: Another area (0x0FFFC000) where data do not match

Figure 27. Set 1: Another area (0x0FFFA0D0) where the data match

 57

VII. FUTURE WORK

The goal of this research is an attempt to show the possibility of creating

an image of volatile RAM using only user mode privileges, and the help of a

custom preinstalled windows driver. It is far from being a completed and finished

product and below are some possibilities of how this is research can be further

polished and perpetuated.

A. STABILITY OF THE MEMREADER DRIVER

As mentioned in previous chapters, the MemReader driver should not be

considered a production quality product. The source of crashes needs to be

determined. This will require “live” debugging to be done and likely a detailed

understanding of memory management of the Windows kernel. Once the

stability issue is addresses, the driver can used as a commercially viable

package.

B. POWER MANAGEMENT EVENT CALLBACKS

There are two power callback events currently registered in the

MemReader driver, the DeviceSelfManagedIoStart and the

DeviceSelfManagedIoSuspend events. These are shell functions without

implementation. Implementing these functions would complete the driver and

make the environment where it operates be more stable, especially when there is

a power transition event when it is operating.

C. TESTING ON DIFFERENT FLAVORS OF WINDOWS VISTA

There are four flavors to the Windows Vista Operating System, the Home,

Home Premium, Business and Ultimate and there is a 64-bit version that takes

advantage of the 64-bit processors. Since the development was done on a

System running Windows Vista Business, testing was not done on the other

 58

flavors and versions of Windows Vista. The driver was also not tested on any

other hardware architecture except for the x86 architecture (the development

environment).

D. WRITE CAPABILITY (SIMILAR TO DD)

Since the physical memory segment is fully accessible by the Memreader

device driver, its functionality can be expanded to include write capabilities much

like what the UNIX command dd can do. Currently the physical memory section

is opened and mapped with a READ_ONLY attribute, this needs to be changed

to include the possibility of writing to it. The write command can be implemented

in many ways. This can include registering another callback for I/O control

events or simply by modifying the memaddr data structure to include addition

parameters needed to initiate the write operation.

The read and write capability can be further extended to files and even

blocks and sectors of the hard disk, much like dd. Adding a write capability can

result in obvious negative effects for forensic purposes.

 59

VIII. CONCLUSIONS AND RECOMMENDATIONS

The main objective of this research is to show that, with a suitable device

driver, it is possible for a user mode process to create an image of RAM. In

order to verify that the MemReader driver and application pair is functioning

correctly, it must be shown that the image created using the MemReader driver

and application is correct.

It is impossible to determine the exact content of RAM when the

MemReader driver and application was creating the image. In fact, the very

operation of the MemReader driver and application will alter the content of

memory. Therefore, it is only possible to verify to a certain degree that the

information captured is correct and accurate. For the driver to work seamlessly,

an in-depth knowledge of Windows Vista is needed. The proprietary nature of

Windows operating system makes this a tricky task as many hypotheses are

formed and testing is needed. It is however not unfathomable that such a driver

can be written.

The results clearly shows that the image created by the MemReader

driver and the user mode MemReader application has capture the consistent part

of RAM, which mainly consist of machine and system related information. The

image created by MemReader also captured the injected known strings at

position where they are expected. There is strong evidence that the driver and

application pair in able to create an image of RAM.

The results achieved are satisfactory and they clearly show that it is

possible to create an image of RAM using a user-mode application with the help

of a suitable, pre-installed device driver. The objectives of the research are

therefore met.

 60

THIS PAGE INTENTIONALLY LEFT BLANK

 61

APPENDIX A: INSTRUCTIONS TO SETTING UP A SIGNING
ENVIRONMENT

Test Signing [35]

1. Prepare a computer for signing

a. Install WDK

2. Create a test certificate and adding it to the Trusted Root certificate store

and the Trusted Publishers certificate store

a. Makecert -r -pe -ss SubjectCertStoreName -n “CN=CertName”

OutputFile.cer

b. certmgr.exe -add OutputFile.cer -s -r localMachine root

c. certmgr.exe -add OutputFile.cer -s -r localMachine trustedpublisher

3. Create a catalog file using Inf2Cat9

a. Create a driver package directory that contains all of the files in

your driver package.

b. Create an INF file in the driver package directory and edit it for

Windows Vista. Change the build date and the version number to 6.

For example: DriverVer=12/04/2008, 6.0.1.0

c. Inf2cat.exe /driver:C:\WinDDK\6000\src\kmdf\memreader\

/os:Vista_x86

Test-sign the catalog file using SignTool

SignTool sign /v /ac CrossCertificateFile /s SPCCertificateStore /n

SPCSubjectName /t http://timestamp.verisign.com/scripts/timestamp.dll Good.cat

9 Registration is required at the Winqual website before the Inf2Cat application is available

for download.

 62

THIS PAGE INTENTIONALLY LEFT BLANK

 63

APPENDIX B: INSTRUCTIONS TO SETUP A KERNEL
DEVELOPMENT ENVIRONMENT

1. Download and install the Windows Driver Kit (WDK)

a. WDK is available for download the Microsoft Connect website,

http://connect.microsoft.com/. Registration is required before the WDK

is available for download.

b. Upon logging into Microsoft connect, browse to the connections

directory and join the Windows Driver Kit (WDK), Windows Logo Kit

(WLK) and Windows Driver Framework (WDF)10.

c. The WDK installation package can be downloaded from the Windows

Driver Kit (WDK), Windows Logo Kit (WLK) and Windows Driver

Framework (WDF) connection page.

d. Run the downloaded executable and install WDK.

2. Download and install DebugView

a. DebugView is freely available for download from the Microsoft

Technet, http://technet.microsoft.com/en-

us/sysinternals/bb896647.aspx.

b. Run the downloaded executable to install DebugView.

c. DebugView requires elevated privileges to function. Right click on the

application shortcut and select the ‘Run as administrator’ option to run

DebugView.

10 If this connection is not available for joining, a request can be made to the administrator

through the connection directory help.

 64

THIS PAGE INTENTIONALLY LEFT BLANK

 65

APPENDIX C: INSTRUCTIONS FOR INSTALLING AND
UNINSTALLING WINDOWS DRIVER

INSTALLATION (x86 Free Build Environment)

1. Build the driver files

2. Copy the WDF Co-installer files (WdfCoInstaller<version#>.dll) from the

<WDKROOT>\redist\wdf\x86 directory to directory where the build output files

(INF, .sys, .pdb, .mac and .obj files) are found.

3. Open Control Panel > Add Hardware menu (Administrator Privileged needed)

4. At the Add Hardware wizard select “Next >”

5. Select the “Install the hardware that I manually select from a list (Advance)”

radio button then hit “Next >”

6. Select “Show All Devices” and hit “Next >”

7. Select “Have Disk…”

8. In the “Install From Disk” menu select “Browse…”

9. In the “Locate File” menu, navigate to the directory where the outputs files are

located and select the installation (INF) file then select “Open”

10. Select “OK” and hit “Next >”

11. Hit “Next >” again

12. If a “Windows Security” alert pops up, Select the option “Install this driver

software anyway”

13. Select “Finish” to complete the installation

UNINSTALLATION

1. Open Control Panel > System > Device Manager menu (Administrator

Privileged needed)

 66

2. Locate and select the device node in the “Device Manager” Menu

3. Right click on the selected device node and select “Uninstall”

4. In the “Confirm Device Uninstall” menu check the “Delete the driver software

for this device” checkbox and hit “OK”

 67

APPENDIX D: INSTRUCTIONS FOR CREATING A RAM IMAGE

1. Start the system and log into the user account

2. Open a text file with a repeated (file size ~150MB) known string (e.g. a quick

brown fox jumped over the lazy dog).

Creating a RAM image using ManTech’s DD

3. Open a Command Prompt with administrator privileges

a. Click on the start Windows Key and select Programs > Accessories >

Command Prompt

b. Right click of the highlighted Command Prompt and select “Run as

administrator”

4. Navigate to the directory where the ManTech’s DD tool is installed

c. cd C:\MDD

5. Create an image file of the RAM

d. mdd_v1.3.exe –o control.bin

Creating a RAM image using MemReader

3. Open a Command Prompt

a. Click on the start Windows Key and select Programs > Accessories

> Command Prompt and click on/ select it

4. Navigate to the directory where the MemReader application is installed

a. cd C:\MemReader

5. Create an image file of the RAM

a. MemReader.exe test.bin <offset>

 68

THIS PAGE INTENTIONALLY LEFT BLANK

 69

APPENDIX E: FULL SOURCE CODE AND INSTALLATION FILES

The source code of MemReader is licensed under the BSD license.

public.h
/*
* Copyright (c) 2008, Vincent Cheong
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
copyright
* notice, this list of conditions and the following disclaimer in
the
* documentation and/or other materials provided with the
distribution.
* * Neither the name of the Naval Postgraduate School nor the
* names of its contributors may be used to endorse or promote
products
* derived from this software without specific prior written
permission.
*
* THIS SOFTWARE IS PROVIDED BY VINCENT CHEONG ''AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE
* DISCLAIMED. IN NO EVENT SHALL <copyright holder> BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/

#define WHILE(a) \
while(__pragma(warning(disable:4127)) a
__pragma(warning(disable:4127)))

#define TX_BLOCK_SIZE 4096

 70

// Define an Interface Guid so that app can find the device and talk to
it.
DEFINE_GUID (GUID_DEVINTERFACE_ECHO,
 0xcdc35b6e, 0xbe4, 0x4936, 0xbf, 0x5f, 0x55, 0x37, 0x38, 0xa, 0x7c,
0x1a);
// {CDC35B6E-0BE4-4936-BF5F-5537380A7C1A}

 71

driver.h
/*
* Copyright (c) 2008, Vincent Cheong
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
copyright
* notice, this list of conditions and the following disclaimer in
the
* documentation and/or other materials provided with the
distribution.
* * Neither the name of the Naval Postgraduate School nor the
* names of its contributors may be used to endorse or promote
products
* derived from this software without specific prior written
permission.
*
* THIS SOFTWARE IS PROVIDED BY VINCENT CHEONG ''AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE
* DISCLAIMED. IN NO EVENT SHALL <copyright holder> BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/

#define INITGUID

#include <ntddk.h>
#include <wdf.h>

#include "device.h"
#include "queue.h"

// WDFDRIVER Events
DRIVER_INITIALIZE DriverEntry;

NTSTATUS
MemReaderEvtDeviceAdd(

 72

 IN WDFDRIVER Driver,
 IN PWDFDEVICE_INIT DeviceInit
);

NTSTATUS
MemReaderPrintDriverVersion(
);

 73

driver.c
/*
* Copyright (c) 2008, Vincent Cheong
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
copyright
* notice, this list of conditions and the following disclaimer in
the
* documentation and/or other materials provided with the
distribution.
* * Neither the name of the Naval Postgraduate School nor the
* names of its contributors may be used to endorse or promote
products
* derived from this software without specific prior written
permission.
*
* THIS SOFTWARE IS PROVIDED BY VINCENT CHEONG ''AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE
* DISCLAIMED. IN NO EVENT SHALL <copyright holder> BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/

#include "driver.h"

#ifdef ALLOC_PRAGMA
#pragma alloc_text (INIT, DriverEntry)
#pragma alloc_text (INIT, MemReaderPrintDriverVersion)
#pragma alloc_text (PAGE, MemReaderEvtDeviceAdd)
#endif

NTSTATUS
DriverEntry(
 IN PDRIVER_OBJECT DriverObject,
 IN PUNICODE_STRING RegistryPath

 74

)
{
 NTSTATUS status;
 WDF_DRIVER_CONFIG config;

 WDF_DRIVER_CONFIG_INIT(&config,
 MemReaderEvtDeviceAdd
);

 status = WdfDriverCreate(DriverObject,
 RegistryPath,
 WDF_NO_OBJECT_ATTRIBUTES,
 &config,
 WDF_NO_HANDLE);
 if (!NT_SUCCESS(status)) {
 DbgPrint("MEM: Error: WdfDriverCreate failed 0x%x\n",
status);
 return status;
 }

#if DBG
 EchoPrintDriverVersion();
#endif

 return status;
}

NTSTATUS
MemReaderEvtDeviceAdd(
 IN WDFDRIVER Driver,
 IN PWDFDEVICE_INIT DeviceInit
)
{
 NTSTATUS status;

 UNREFERENCED_PARAMETER(Driver);

 PAGED_CODE();

 DbgPrint("MEM: Enter EchoEvtDeviceAdd\n");

 status = MemReaderDeviceCreate(DeviceInit);

 return status;
}

NTSTATUS
MemReaderPrintDriverVersion(
)
{
 NTSTATUS status;
 WDFSTRING string;
 UNICODE_STRING us;
 WDF_DRIVER_VERSION_AVAILABLE_PARAMS ver;

 75

 // Retreive version string and print that in the debugger.
 status = WdfStringCreate(NULL, WDF_NO_OBJECT_ATTRIBUTES, &string);
 if (!NT_SUCCESS(status)) {
 DbgPrint("Error: WdfStringCreate failed 0x%x\n", status);
 return status;
 }

 status = WdfDriverRetrieveVersionString(WdfGetDriver(), string);
 if (!NT_SUCCESS(status)) {
 //
 // No need to worry about delete the string object because
 // by default it's parented to the driver and it will be
 // deleted when the driverobject is deleted when the
DriverEntry
 // returns a failure status.
 //
 DbgPrint("Error: WdfDriverRetrieveVersionString failed 0x%x\n",
status);
 return status;
 }

 WdfStringGetUnicodeString(string, &us);
 DbgPrint("MEM: MemReader %wZ, built on %s %s\n", &us,
 __DATE__, __TIME__);

 WdfObjectDelete(string);
 string = NULL; // To avoid referencing a deleted object.

 // Find out to which version of framework this driver is bound to.
 WDF_DRIVER_VERSION_AVAILABLE_PARAMS_INIT(&ver, 1, 0);
 if (WdfDriverIsVersionAvailable(WdfGetDriver(), &ver) == TRUE) {
 DbgPrint("MEM: Yes, framework version is 1.0\n");
 }else {
 DbgPrint("MEM: No, framework verison is not 1.0\n");
 }

 return STATUS_SUCCESS;
}

 76

device.h
/*
* Copyright (c) 2008, Vincent Cheong
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
copyright
* notice, this list of conditions and the following disclaimer in
the
* documentation and/or other materials provided with the
distribution.
* * Neither the name of the Naval Postgraduate School nor the
* names of its contributors may be used to endorse or promote
products
* derived from this software without specific prior written
permission.
*
* THIS SOFTWARE IS PROVIDED BY VINCENT CHEONG ''AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE
* DISCLAIMED. IN NO EVENT SHALL <copyright holder> BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/

#include "..\exe\public.h"

// The device context performs the same job as
// a WDM device extension in the driver frameworks
typedef struct _DEVICE_CONTEXT
{
 ULONG PrivateDeviceData; // just a placeholder

} DEVICE_CONTEXT, *PDEVICE_CONTEXT;

// This macro will generate an inline function called
WdfObjectGet_DEVICE_CONTEXT
// which will be used to get a pointer to the device context memory

 77

// in a type safe manner.
WDF_DECLARE_CONTEXT_TYPE(DEVICE_CONTEXT)

// Function to initialize the device and its callbacks
NTSTATUS
MemReaderDeviceCreate(
 PWDFDEVICE_INIT DeviceInit
);

// Device events
VOID
MemReaderEvtDeviceContextCleanup(
 IN WDFDEVICE hDevice
);

NTSTATUS
MemReaderEvtDeviceSelfManagedIoStart(
 IN WDFDEVICE Device
);

NTSTATUS
MemReaderEvtDeviceSelfManagedIoSuspend(
 IN WDFDEVICE Device
);

 78

device.c
/*
* Copyright (c) 2008, Vincent Cheong
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
copyright
* notice, this list of conditions and the following disclaimer in
the
* documentation and/or other materials provided with the
distribution.
* * Neither the name of the Naval Postgraduate School nor the
* names of its contributors may be used to endorse or promote
products
* derived from this software without specific prior written
permission.
*
* THIS SOFTWARE IS PROVIDED BY VINCENT CHEONG ''AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE
* DISCLAIMED. IN NO EVENT SHALL <copyright holder> BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/

#include "driver.h"

#ifdef ALLOC_PRAGMA
#pragma alloc_text (PAGE, MemReaderDeviceCreate)
#pragma alloc_text (PAGE, MemReaderEvtDeviceSelfManagedIoStart)
#pragma alloc_text (PAGE, MemReaderEvtDeviceSelfManagedIoSuspend)
#endif

NTSTATUS
MemReaderDeviceCreate(
 PWDFDEVICE_INIT DeviceInit
)

 79

{
 WDF_OBJECT_ATTRIBUTES deviceAttributes;
 PDEVICE_CONTEXT deviceContext;
 WDF_PNPPOWER_EVENT_CALLBACKS pnpPowerCallbacks;
 WDFDEVICE device;
 NTSTATUS status;

 PAGED_CODE();

 WDF_PNPPOWER_EVENT_CALLBACKS_INIT(&pnpPowerCallbacks);

 // Register pnp/power callbacks so that we can start and stop the
timer as the device
 // gets started and stopped.
 pnpPowerCallbacks.EvtDeviceSelfManagedIoInit =
MemReaderEvtDeviceSelfManagedIoStart;
 pnpPowerCallbacks.EvtDeviceSelfManagedIoSuspend =
MemReaderEvtDeviceSelfManagedIoSuspend;
 pnpPowerCallbacks.EvtDeviceSelfManagedIoRestart =
MemReaderEvtDeviceSelfManagedIoStart;

 // Register the PnP and power callbacks.
 WdfDeviceInitSetPnpPowerEventCallbacks(DeviceInit,
&pnpPowerCallbacks);

 WDF_OBJECT_ATTRIBUTES_INIT_CONTEXT_TYPE(&deviceAttributes,
DEVICE_CONTEXT);

 // Set WDFDEVICE synchronization scope. By opting for device
level
 // synchronization scope, all the queue and timer callbacks are
 // synchronized with the device-level spinlock.
 deviceAttributes.SynchronizationScope =
WdfSynchronizationScopeDevice;

 status = WdfDeviceCreate(&DeviceInit, &deviceAttributes, &device);

 if (NT_SUCCESS(status)) {
 // Get the device context and initialize it.
WdfObjectGet_DEVICE_CONTEXT is an
 // inline function generated by WDF_DECLARE_CONTEXT_TYPE macro
in the
 // device.h header file. This function will do the type
checking and return
 // the device context. If you pass a wrong object handle
 // it will return NULL and assert if run under framework
verifier mode.
 deviceContext = WdfObjectGet_DEVICE_CONTEXT(device);
 deviceContext->PrivateDeviceData = 0;

 // Create a device interface so that application can find and
talk
 // to us.
 status = WdfDeviceCreateDeviceInterface(
 device,

 80

 &GUID_DEVINTERFACE_ECHO,
 NULL // ReferenceString
);

 if (NT_SUCCESS(status)) {
 // Initialize the I/O Package and any Queues
 status = MemReaderQueueInitialize(device);
 }
 }

 return status;
}

NTSTATUS
MemReaderEvtDeviceSelfManagedIoStart(
 IN WDFDEVICE Device
)
{
 DbgPrint("MEM: MemReaderEvtDeviceSelfManagedIoInit\n");

 PAGED_CODE();

 WdfIoQueueStart(WdfDeviceGetDefaultQueue(Device));

 DbgPrint("MEM: MemReaderEvtDeviceSelfManagedIoInit\n");

 return STATUS_SUCCESS;
}

NTSTATUS
MemReaderEvtDeviceSelfManagedIoSuspend(
 IN WDFDEVICE Device
)
{
 PAGED_CODE();

 DbgPrint("MEM: MemReaderEvtDeviceSelfManagedIoSuspend\n");

 WdfIoQueueStopSynchronously(WdfDeviceGetDefaultQueue(Device));

 DbgPrint("MEM: MemReaderEvtDeviceSelfManagedIoSuspend\n");

 return STATUS_SUCCESS;
}

 81

queue.h
/*
* Copyright (c) 2008, Vincent Cheong
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
copyright
* notice, this list of conditions and the following disclaimer in
the
* documentation and/or other materials provided with the
distribution.
* * Neither the name of the Naval Postgraduate School nor the
* names of its contributors may be used to endorse or promote
products
* derived from this software without specific prior written
permission.
*
* THIS SOFTWARE IS PROVIDED BY VINCENT CHEONG ''AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE
* DISCLAIMED. IN NO EVENT SHALL <copyright holder> BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/

// Memory Address data structure that is also defined in memreaderapp
typedef struct _memaddr{
 ULONGLONG offset;
 ULONGLONG len;
} memaddr;

// This is the context that can be placed per queue
// and would contain per queue information.
typedef struct _QUEUE_CONTEXT {

 HANDLE hPhysicalMemory ;
 PVOID pVirtualAddr ;
 memaddr ma ;

 82

 WDFREQUEST CurrentRequest;

} QUEUE_CONTEXT, *PQUEUE_CONTEXT;

WDF_DECLARE_CONTEXT_TYPE_WITH_NAME(QUEUE_CONTEXT, QueueGetContext)

NTSTATUS
MemReaderQueueInitialize(
 WDFDEVICE hDevice
);

VOID
MemReaderEvtIoQueueContextDestroy(
 WDFOBJECT Object
);

// Callback Events from the IoQueue object
VOID
MemReaderEvtRequestCancel(
 IN WDFREQUEST Request
);

VOID
MemReaderEvtIoRead(
 IN WDFQUEUE Queue,
 IN WDFREQUEST Request,
 IN size_t Length
);

VOID
MemReaderEvtIoWrite(
 IN WDFQUEUE Queue,
 IN WDFREQUEST Request,
 IN size_t Length
);

 83

queue.c
/*
* Copyright (c) 2008, Vincent Cheong
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
copyright
* notice, this list of conditions and the following disclaimer in
the
* documentation and/or other materials provided with the
distribution.
* * Neither the name of the Naval Postgraduate School nor the
* names of its contributors may be used to endorse or promote
products
* derived from this software without specific prior written
permission.
*
* THIS SOFTWARE IS PROVIDED BY VINCENT CHEONG ''AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE
* DISCLAIMED. IN NO EVENT SHALL <copyright holder> BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/

#include "driver.h"

#ifdef ALLOC_PRAGMA
#pragma alloc_text (PAGE, MemReaderQueueInitialize)
#endif

NTSTATUS
MemReaderQueueInitialize(
 WDFDEVICE Device
)
{
 WDFQUEUE queue;
 NTSTATUS status;

 84

 UNICODE_STRING usPhysicalMemory;
 PQUEUE_CONTEXT queueContext;
 OBJECT_ATTRIBUTES oa;
 WDF_IO_QUEUE_CONFIG queueConfig;
 WDF_OBJECT_ATTRIBUTES queueAttributes;

 PAGED_CODE();
 DbgPrint("MEM: Queue Initialize X!\n");

 // Configure a default queue so that requests that are not
 // configure-fowarded using WdfDeviceConfigureRequestDispatching to
goto
 // other queues get dispatched here.
 WDF_IO_QUEUE_CONFIG_INIT_DEFAULT_QUEUE(
 &queueConfig,
 WdfIoQueueDispatchSequential
);

 // register event callbacks
 queueConfig.EvtIoRead = MemReaderEvtIoRead;
 queueConfig.EvtIoWrite = MemReaderEvtIoWrite;

 // Fill in a callback for destroy, and our QUEUE_CONTEXT size
 WDF_OBJECT_ATTRIBUTES_INIT_CONTEXT_TYPE(&queueAttributes,
QUEUE_CONTEXT);
 queueAttributes.EvtDestroyCallback =
MemReaderEvtIoQueueContextDestroy;

 status = WdfIoQueueCreate(
 Device,
 &queueConfig,
 &queueAttributes,
 &queue
);

 if(!NT_SUCCESS(status)) {
 DbgPrint("WdfIoQueueCreate failed 0x%x\n",status);
 return status;
 }

 // Get our Driver Context memory from the returned Queue handle
 queueContext = QueueGetContext(queue);

 //initialise queue context
 queueContext->CurrentRequest = NULL;
 queueContext->ma.len = 0;
 queueContext->ma.offset = 0;
 queueContext->hPhysicalMemory = NULL;
 queueContext->pVirtualAddr = NULL;

 //Initializes a counted Unicode string
 RtlInitUnicodeString(&usPhysicalMemory,
L"\\Device\\PhysicalMemory");

 85

 //The InitializeObjectAttributes macro initializes the opaque
OBJECT_ATTRIBUTES
 //structure, which specifies the properties of an object handle
to routines that
 //open handles.
 //The OBJECT_ATTRIBUTES structure specifies attributes that can
be applied to
 //objects or object handles by routines that create objects
and/or return handles
 //to objects.
 InitializeObjectAttributes(&oa, &usPhysicalMemory,
 OBJ_CASE_INSENSITIVE |
OBJ_KERNEL_HANDLE,
 (HANDLE) NULL,
 (PSECURITY_DESCRIPTOR)
NULL);

 //The ZwOpenSection routine opens a handle for an existing
section object.
 //An object that represents a section of memory that can be
shared
 status = ZwOpenSection(&(queueContext->hPhysicalMemory),
SECTION_ALL_ACCESS, &oa);
 if(!NT_SUCCESS(status))
 {
 DbgPrint("MEM: Failed to open %wZ! Status %p\n",
usPhysicalMemory, status);
 queueContext->hPhysicalMemory = NULL;
 return status;
 }
 DbgPrint("MEM: Opened section handle %p in driver\n",
queueContext->hPhysicalMemory);

 return status;
}

VOID
MemReaderEvtIoQueueContextDestroy(
 WDFOBJECT Object
)
{
 DbgPrint("MEM: IoContextQueueDestroy!\n");
 return;
}

VOID
MemReaderEvtRequestCancel(
 IN WDFREQUEST Request
)
{
 PQUEUE_CONTEXT queueContext =
QueueGetContext(WdfRequestGetIoQueue(Request));

 86

 DbgPrint("MEM: MemReaderRequestCancel called on Request 0x%p\n",
Request);

 WdfRequestCompleteWithInformation(Request, STATUS_CANCELLED, 0L);

 // This book keeping is synchronized by the common
 // Queue presentation lock
 ASSERT(queueContext->CurrentRequest == Request);
 queueContext->CurrentRequest = NULL;

 return;
}

VOID
MemReaderEvtIoRead(
 IN WDFQUEUE Queue,
 IN WDFREQUEST Request,
 IN size_t Length
)
{
 NTSTATUS Status;
 WDFMEMORY memory;
 LARGE_INTEGER sectionOffset ;
 PQUEUE_CONTEXT queueContext = QueueGetContext(Queue);
 ULONG writeBlockSize = TX_BLOCK_SIZE;

 DbgPrint("MEM: EchoEvtIoRead Called! Queue 0x%p, Request 0x%p
Length %d, writeBlockSize %d,\
 Offset
%d\n",Queue,Request,Length,writeBlockSize,queueContext->ma.offset);

 // Read what we have
 if(Length <= 0) {
 WdfRequestCompleteWithInformation(Request, STATUS_SUCCESS,
(ULONG_PTR)0L);
 return;
 }

 if(writeBlockSize > (ULONG)(queueContext->ma.len - queueContext-
>ma.offset)){
 writeBlockSize = (ULONG)(queueContext->ma.len -
queueContext->ma.offset);
 }

 DbgPrint("MEM: After decrement ma.len=%u\n", queueContext-
>ma.len);
 sectionOffset.QuadPart = queueContext->ma.offset;
 Status = ZwMapViewOfSection(queueContext->hPhysicalMemory, //
handle to section object
 ZwCurrentProcess(), // macro to retrieve handle for current
process
 &(queueContext->pVirtualAddr),
 0L, // ZeroBits
 Length, // CommitSize
 §ionOffset, // Section Offset

 87

 &Length, // View Size
 ViewShare, // Inherit Disposition
 0,
 PAGE_READONLY // Win32 Protection
);
 //increase offset even if mapping fails
 queueContext->ma.offset += writeBlockSize;

 if(!NT_SUCCESS(Status)) {
 DbgPrint("MEM: EvtIoRead Mapping of Section Object failed
Status: 0x%x\n",Status);
 DbgPrint("MEM: EvtIoRead Mapping of Section Object failed
ma.offset=%u ma.len=%u\n",
 (queueContext->ma.offset), queueContext->ma.len);
 WdfVerifierDbgBreakPoint();
 WdfRequestCompleteWithInformation(Request, Status, 0L);
 return;
 }

 // Get the request memory
 Status = WdfRequestRetrieveOutputMemory(Request, &memory);
 if(!NT_SUCCESS(Status)) {
 DbgPrint("MEM: EvtIoRead Could not get request memory
buffer 0x%x\n",Status);
 WdfVerifierDbgBreakPoint();
 WdfRequestCompleteWithInformation(Request, Status, 0L);
 return;
 }

 // Copy the memory out
 DbgPrint("MEM: Copy %d bytes from buffer!\n", Length);
 Status = WdfMemoryCopyFromBuffer(memory, // destination
 0, // offset into the destination
memory
 queueContext->pVirtualAddr,//
queueContext->Buffer
 (Length));
 if(!NT_SUCCESS(Status)) {
 DbgPrint("MEM: EvtIoRead: WdfMemoryCopyFromBuffer failed
0x%x\n", Status);
 WdfRequestComplete(Request, Status);
 return;
 }

 if(queueContext->pVirtualAddr){
 DbgPrint("MEM: EvtIoRead Unmapping Section Object!\n");
 Status = ZwUnmapViewOfSection(
 ZwCurrentProcess(), // macro to retrieve handle for
current process
 queueContext->pVirtualAddr) ;
 queueContext->pVirtualAddr = NULL;

 if(!NT_SUCCESS(Status)) {
 DbgPrint("MEM: EvtIoRead Unmapping of Section Object
failed: 0x%x\n",Status);

 88

 WdfVerifierDbgBreakPoint();
 WdfRequestCompleteWithInformation(Request, Status,
0L);
 return;
 }
 }

 // Set transfer information
 WdfRequestSetInformation(Request, (ULONG_PTR)(Length));

 // Mark the request is cancelable
 WdfRequestMarkCancelable(Request, MemReaderEvtRequestCancel);

 WdfRequestComplete(Request, Status);
 DbgPrint("MEM: Completed EvtIoRead View Size=%d!\n",Length);
 return;
}

VOID
MemReaderEvtIoWrite(
 IN WDFQUEUE Queue,
 IN WDFREQUEST Request,
 IN size_t Length
)
{
 NTSTATUS Status;
 WDFMEMORY memory;
 PQUEUE_CONTEXT queueContext = QueueGetContext(Queue);
 PVOID temp = ExAllocatePoolWithTag(NonPagedPool,
Length, 'sam1');

 DbgPrint("MEM: EvtIoWrite Called! Queue 0x%p, Request 0x%p Length
%d\n",
 Queue,Request,Length);

 // Get the memory buffer
 Status = WdfRequestRetrieveInputMemory(Request, &memory);
 if(!NT_SUCCESS(Status)) {
 DbgPrint("MEM: EvtIoWrite Could not get request memory
buffer 0x%x\n",
 Status);
 WdfVerifierDbgBreakPoint();
 WdfRequestComplete(Request, Status);
 return;
 }

 // Copy the memory in
 Status = WdfMemoryCopyToBuffer(memory,
 0, // offset into the source memory
 temp,
 Length);

 if(!NT_SUCCESS(Status)) {
 DbgPrint("MEM: EchoEvtIoWrite WdfMemoryCopyToBuffer failed
0x%x\n", Status);

 89

 WdfVerifierDbgBreakPoint();
 WdfRequestComplete(Request, Status);
 return;
 }

 queueContext->ma.len = ((memaddr *)temp)->len;
 queueContext->ma.offset = ((memaddr *)temp)->offset;
 DbgPrint("MEM: ma.len %u ma.offset %u!\n",queueContext-
>ma.len,queueContext->ma.offset);

 // Set transfer information
 WdfRequestSetInformation(Request, (ULONG_PTR)Length);
 DbgPrint("MEM: Write After Set Information!\n");

 // Specify the request is cancelable
 WdfRequestMarkCancelable(Request, MemReaderEvtRequestCancel);
 DbgPrint("MEM: Write After RequestMarkCancellable!\n");

 queueContext->CurrentRequest = Request;

 WdfRequestComplete(Request, Status);
 DbgPrint("MEM: return!\n");

 return;
}

 90

memreaderapp.cpp
/*
* Copyright (c) 2008, Vincent Cheong
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
copyright
* notice, this list of conditions and the following disclaimer in
the
* documentation and/or other materials provided with the
distribution.
* * Neither the name of the Naval Postgraduate School nor the
* names of its contributors may be used to endorse or promote
products
* derived from this software without specific prior written
permission.
*
* THIS SOFTWARE IS PROVIDED BY VINCENT CHEONG ''AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE
* DISCLAIMED. IN NO EVENT SHALL <copyright holder> BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/

#define INITGUID

#include <windows.h>
#include <strsafe.h>
#include <setupapi.h>
#include <stdio.h>
#include <stdlib.h>
#include "public.h"

#define NUM_ASYNCH_IO 100

#define VISTA_VERSION_NUMBER 6
#define XP_VERSION_NUMBER 5

 91

#define ACCEPTABLE_VERSION XP_VERSION_NUMBER

#define READER_TYPE 1
#define WRITER_TYPE 2
typedef struct _memaddr{
 ULONGLONG offset;
 ULONGLONG len;
} memaddr;

PCHAR DevicePath;
memaddr ma;

PCHAR
GetDevicePath(
 IN LPGUID InterfaceGuid
);

BOOLEAN
correctOsVersion();

ULONGLONG
CheckDiskSpace(
 IN HANDLE hDumpFile
);

BOOLEAN
WriteMemAddr(
 IN HANDLE hDevice
);

BOOLEAN
ReadRam(
 IN HANDLE hDevice,
 IN HANDLE hDumpFile,
 IN ULONG blockSize
);

void __cdecl
main(
 __in int argc,
 __in_ecount(argc) char* argv[]
)
{
 HANDLE hDevice = INVALID_HANDLE_VALUE,
 hDumpFile = INVALID_HANDLE_VALUE;
 HANDLE th1 = NULL;
 ULONGLONG testLength = 0;
 BOOLEAN result;
 ULONG offset = 0 ;

 if(argc == 2) {
 }
 else if (argc == 3){
 offset = atol(argv[2]) * 1024 * 1024; // in MB

 92

 }
 else{
 printf("Wrong Usage: > memreader <filename>\n");
 printf("Wrong Usage: or > memreader <filename> <offset in
MB> <end>\n");
 goto exit;
 }

 printf("Dumping to file %s\n", argv[1]);
 printf("Enter 'q' to exit and any key to continue: ");

 int ip = getchar();

 if((ip == 'q') || (ip == 'Q')){
 goto exit;
 }
 else {
 }

 ma.offset = offset;
 ma.len = 0;

 if(!correctOsVersion())
 goto exit ;

 WCHAR dumpFile[MAX_PATH] = { L'\0' };

 // just do a simple file name check and we are good to go?
 hDumpFile = CreateFile(argv[1], GENERIC_WRITE, 0, NULL,
CREATE_ALWAYS, 0, NULL);
 if(hDumpFile == INVALID_HANDLE_VALUE) {
 fprintf(stderr, " -> ERROR: Failed to open dump file
\"%s\"! (%u)\n\n", dumpFile, GetLastError());
 printf(" -> ERROR: Failed to open dump file \"%s\"!
(%u)\n\n", dumpFile, GetLastError());
 goto exit;
 }

 testLength = CheckDiskSpace(hDumpFile);

 DevicePath = GetDevicePath((LPGUID)&GUID_DEVINTERFACE_ECHO);

 printf("DevicePath: %s\n", DevicePath);

 hDevice = CreateFile(DevicePath,
 GENERIC_READ|GENERIC_WRITE,
 FILE_SHARE_READ,
 NULL,
 OPEN_EXISTING,
 0,
 NULL);

 if (hDevice == INVALID_HANDLE_VALUE) {
 printf("Failed to open device. Error %d\n",GetLastError());

 93

 goto exit;
 }

 printf("Opened device successfully\n");
 WriteMemAddr(hDevice);
 Sleep(100);
 ReadRam(hDevice, hDumpFile, TX_BLOCK_SIZE);

exit:
 if (th1 != NULL) {
 WaitForSingleObject(th1, INFINITE);
 CloseHandle(th1);
 }

 if (hDevice != INVALID_HANDLE_VALUE) {
 CloseHandle(hDevice);
 }
 printf("Exiting...\n");
 return;

}

PUCHAR
CreatePatternBuffer(
 IN ULONG Length
)
{
 unsigned int i;
 PUCHAR p, pBuf;

 pBuf = (PUCHAR)malloc(Length);
 if(pBuf == NULL) {
 printf("Could not allocate %d byte buffer\n",Length);
 return NULL;
 }

 p = pBuf;

 for(i=0; i < Length; i++) {
 *p = (UCHAR)i;
 p++;
 }

 return pBuf;
}

BOOLEAN
VerifyPatternBuffer(
 IN PUCHAR pBuffer,
 IN ULONG Length
)
{
 unsigned int i;
 PUCHAR p = pBuffer;

 94

 for(i=0; i < Length; i++) {

 if(*p != (UCHAR)(i & 0xFF)) {
 printf("Pattern changed. SB 0x%x, Is 0x%x\n",
 (UCHAR)(i & 0xFF), *p);
 return FALSE;
 }

 p++;
 }

 return TRUE;
}

PCHAR
GetDevicePath(
 IN LPGUID InterfaceGuid
)
{
 HDEVINFO HardwareDeviceInfo;
 SP_DEVICE_INTERFACE_DATA DeviceInterfaceData;
 PSP_DEVICE_INTERFACE_DETAIL_DATA DeviceInterfaceDetailData = NULL;
 ULONG Length, RequiredLength = 0;
 BOOL bResult;

 HardwareDeviceInfo = SetupDiGetClassDevs(
 InterfaceGuid,
 NULL,
 NULL,
 (DIGCF_PRESENT | DIGCF_DEVICEINTERFACE));

 if (HardwareDeviceInfo == INVALID_HANDLE_VALUE) {
 printf("SetupDiGetClassDevs failed!\n");
 exit(1);
 }

 DeviceInterfaceData.cbSize = sizeof(SP_DEVICE_INTERFACE_DATA);

 bResult = SetupDiEnumDeviceInterfaces(HardwareDeviceInfo,
 0,
 InterfaceGuid,
 0,
 &DeviceInterfaceData);

 if (bResult == FALSE) {

 LPVOID lpMsgBuf;

 if (FormatMessage(FORMAT_MESSAGE_ALLOCATE_BUFFER |
 FORMAT_MESSAGE_FROM_SYSTEM |
 FORMAT_MESSAGE_IGNORE_INSERTS,
 NULL,
 GetLastError(),
 MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT),

 95

 (LPSTR) &lpMsgBuf,
 0,
 NULL
)) {

 printf("Error: %s", (LPSTR)lpMsgBuf);
 LocalFree(lpMsgBuf);
 }

 printf("SetupDiEnumDeviceInterfaces failed.\n");
 SetupDiDestroyDeviceInfoList(HardwareDeviceInfo);
 exit(1);
 }

 SetupDiGetDeviceInterfaceDetail(
 HardwareDeviceInfo,
 &DeviceInterfaceData,
 NULL,
 0,
 &RequiredLength,
 NULL
);

 DeviceInterfaceDetailData = (PSP_DEVICE_INTERFACE_DETAIL_DATA)
LocalAlloc(LMEM_FIXED, RequiredLength);

 if (DeviceInterfaceDetailData == NULL) {
 SetupDiDestroyDeviceInfoList(HardwareDeviceInfo);
 printf("Failed to allocate memory.\n");
 exit(1);
 }

 DeviceInterfaceDetailData->cbSize =
sizeof(SP_DEVICE_INTERFACE_DETAIL_DATA);

 Length = RequiredLength;

 bResult = SetupDiGetDeviceInterfaceDetail(
 HardwareDeviceInfo,
 &DeviceInterfaceData,
 DeviceInterfaceDetailData,
 Length,
 &RequiredLength,
 NULL);

 if (bResult == FALSE) {

 LPVOID lpMsgBuf;

 if (FormatMessage(FORMAT_MESSAGE_ALLOCATE_BUFFER |
 FORMAT_MESSAGE_FROM_SYSTEM |
 FORMAT_MESSAGE_IGNORE_INSERTS,
 NULL,
 GetLastError(),
 MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT),

 96

 (LPSTR) &lpMsgBuf,
 0,
 NULL
)) {

 MessageBox(NULL, (LPCTSTR) lpMsgBuf, "Error", MB_OK);
 LocalFree(lpMsgBuf);
 }
 printf("Error in SetupDiGetDeviceInterfaceDetail\n");

 SetupDiDestroyDeviceInfoList(HardwareDeviceInfo);
 LocalFree(DeviceInterfaceDetailData);
 exit(1);
 }

 return DeviceInterfaceDetailData->DevicePath;

}

BOOLEAN
correctOsVersion()
{
 OSVERSIONINFO osvi;
 ZeroMemory(&osvi, sizeof(OSVERSIONINFO));

 osvi.dwOSVersionInfoSize = sizeof(OSVERSIONINFO);

 if(!GetVersionEx ((OSVERSIONINFO *) &osvi))
 return FALSE;

 if (VER_PLATFORM_WIN32_NT==osvi.dwPlatformId &&
 osvi.dwMajorVersion > ACCEPTABLE_VERSION)
 {
 if(osvi.dwMajorVersion == VISTA_VERSION_NUMBER)
 printf("Windows VISTA detected\n");
 else if (osvi.dwMajorVersion == XP_VERSION_NUMBER)
 printf("Pre VISTA Version of Windows detected\n");
 else
 printf("Post VISTA Version(%d) of Windows detected, \
 application has not been tested for this version.\n",
osvi.dwMajorVersion);
 return TRUE;
 }

 return FALSE;
}

ULONGLONG
CheckDiskSpace(
 IN HANDLE hDumpFile
)
{
 // Check that there is sufficient space the full memory dump

 97

 MEMORYSTATUSEX ms;
 ms.dwLength = sizeof(MEMORYSTATUSEX);
 //Retrieves information about the system's current usage of both
physical and virtual memory.
 if(!GlobalMemoryStatusEx(&ms)) {
 fprintf(stderr, " -> ERROR: GlobalMemoryStatusEx failed,
%u\n", GetLastError());
 return ma.len;
 }

 LARGE_INTEGER liDistanceToMove;
 liDistanceToMove.QuadPart = ms.ullTotalPhys;
 //Sets the physical file size for the specified file to the
current position of the file pointer.
 ma.len = (ULONGLONG)ms.ullTotalPhys;
 printf("File Size is:%f\n",(float)ma.len/(1024*1024));

 //uncomment later
 //SetFilePointerEx(hDumpFile, liDistanceToMove, NULL,
FILE_BEGIN);
 if (!SetEndOfFile(hDumpFile))
 {
 fprintf(stderr, " -> ERROR: Not enough room to store
memory dump\n");
 return ma.len;
 }
 //Move the file pointer back to the beginning of the file.
 liDistanceToMove.QuadPart = 0;
 SetFilePointerEx(hDumpFile, liDistanceToMove, NULL, FILE_BEGIN);

 return ma.len;
}

BOOLEAN
WriteMemAddr(
 IN HANDLE hDevice
)
{
 BOOLEAN result = TRUE;
 ULONG retLen = 16 ;
 printf("Writing Mem Addr to driver.\n");
 if(!WriteFile(hDevice, &ma, sizeof(memaddr), &retLen, NULL)){
 printf("ERROR: Write Mem Addr failed, %u\n",
GetLastError());
 result = FALSE;
 } else {
 printf("Mem Addr successfully written to driver!\n");
 }

 return result;
}

BOOLEAN
ReadRam(

 98

 IN HANDLE hDevice,
 IN HANDLE hDumpFile,
 IN ULONG blockSize
)
{
 ULONGLONG bytesToRead = blockSize,
 offset = ma.offset;
 ULONG blocksWritten = 0;

 BOOLEAN result = TRUE;
 bool loop = true;
 PUCHAR tempDataHolder = (PUCHAR)malloc(blockSize);
 BYTE zeros[TX_BLOCK_SIZE]= {0};
 int iterations = 0,
 goods = 0,
 bads = 0;

// while(loop)
 while((offset!=ma.len))
 {
 if(offset + bytesToRead >= ma.len){
 bytesToRead = ma.len - offset;
 loop = false;
 }
 offset += bytesToRead;
 printf("%d: (offset %u <",++iterations,offset);
 printf(" ma.len %u)", ma.len);
 printf(" == %d\n",(offset != ma.len));
 memset(tempDataHolder, 0, blockSize);
 if (!ReadFile (hDevice, // file to read
 tempDataHolder, // buffer to receive data
 blockSize, // number of bytes to read in total
 &blocksWritten, // number of bytes read
 NULL)) {
 bads++;
 printf ("READRAM: ReadFile failed: Error %d\n",
GetLastError());
 //result = FALSE;
 //goto Cleanup;

 } else {
 //printf("Bytes returned is :%d!\n", blocksWritten);
 //printf("ma.len is :%u!\n", ma.len);
 goods++;
 }
 BOOL writeSuccess = WriteFile(hDumpFile,
tempDataHolder,
 blockSize, &blocksWritten, NULL);
 //printf("Bytes written is :%d!\n", blocksWritten);
 if(!writeSuccess) {
 printf(" -> ERROR: WriteFile failed, %u\n",
GetLastError());
 result = FALSE;
 goto Cleanup;
 }

 99

 if(offset >= ma.len){
 printf("Completed with goods=%d, bads=%d!\n", goods,
bads);
 goto Cleanup;
 }
 }

Cleanup:

 if(hDumpFile)
 CloseHandle(hDumpFile);

 return result;
}

 100

memreader.inx
[Version]
Signature="$WINDOWS NT$"
Class=Sample
ClassGuid={78A1C341-4539-11d3-B88D-00C04FAD5171}
Provider=%MSFT%
DriverVer=03/20/2003,5.00.3788
CatalogFile=KmdfSamples.cat

[DestinationDirs]
DefaultDestDir = 12

; ================= Class section =====================

[ClassInstall32]
Addreg=SampleClassReg

[SampleClassReg]
HKR,,,0,%ClassName%
HKR,,Icon,,-5

[SourceDisksNames]
1 = %DiskId1%,,,""

[SourceDisksFiles]
memreader.sys = 1,,

;***
; MemReader Install Section
;***

[Manufacturer]
%StdMfg%=Standard,NT$ARCH$

; Following section is meant for Windows 2000 as it
; cannot parse decorated model sections
[Standard]
;
; Hw Id is root\MemReader
;
%MemReader.DeviceDesc%=MemReader_Device, root\MemReader

; Decorated model section take precedence over undecorated
; ones on XP and later.
[Standard.NT$ARCH$]
%MemReader.DeviceDesc%=MemReader_Device, root\MemReader

[MemReader_Device.NT]
CopyFiles=Drivers_Dir

[Drivers_Dir]
memreader.sys

 101

;-------------- Service installation
[MemReader_Device.NT.Services]
AddService = MemReader,%SPSVCINST_ASSOCSERVICE%, MemReader_Service_Inst

; -------------- MemReader driver install sections
[MemReader_Service_Inst]
DisplayName = %MemReader.SVCDESC%
ServiceType = 1 ; SERVICE_KERNEL_DRIVER
StartType = 3 ; SERVICE_DEMAND_START
ErrorControl = 1 ; SERVICE_ERROR_NORMAL
ServiceBinary = %12%\memreader.sys
LoadOrderGroup = Extended Base

;
;--- MemReader_Device Coinstaller installation ------
;

[DestinationDirs]
MemReader_Device_CoInstaller_CopyFiles = 11

[MemReader_Device.NT.CoInstallers]
AddReg=MemReader_Device_CoInstaller_AddReg
CopyFiles=MemReader_Device_CoInstaller_CopyFiles

[MemReader_Device_CoInstaller_AddReg]
HKR,,CoInstallers32,0x00010000,
"wdfcoinstaller01005.dll,WdfCoInstaller"

[MemReader_Device_CoInstaller_CopyFiles]
wdfcoinstaller01005.dll

[SourceDisksFiles]
wdfcoinstaller01005.dll=1 ; make sure the number matches with
SourceDisksNames

[MemReader_Device.NT.Wdf]
KmdfService = memreader, memreader_wdfsect
[MemReader_wdfsect]
KmdfLibraryVersion = 1.5

[Strings]
SPSVCINST_ASSOCSERVICE= 0x00000002
MSFT = "Microsoft"
StdMfg = "(Standard system devices)"
DiskId1 = "Memory Reader Installation Disk #1"
MemReader.DeviceDesc = "Memory Reader Service Driver"
MemReader.SVCDESC = "Memory Reader Service"
ClassName = "Tools"

 102

THIS PAGE INTENTIONALLY LEFT BLANK

 103

LIST OF REFERENCES

[1] J. Alex Halderman, Seth D. Schoen, Nadia Heninger, William Clarkson,

William Paul, Joseph A. Calandrino, Ariel J. Feldman, Jacob Appelbaum,

and Edward W. Felten, Lest We Remember: Cold Boot Attacks on

Encryption Keys, Proc. 2008 USENIX Security Symposium.

[2] Mariusz Burdach, Physical Memory Forensics, Black Hat 2006

[3] Timothy Vidas, The Acquisition and Analysis of Random Access Memory,

Journal of Digital Forensic Practice, Volume 1 Issue 4 December 2006.

[4] Jesse D. Kornblum, Exploiting the Rootkit Paradox with Windows

Memory Analysis, International Journal of Digital Evidence Fall 2006.

[5] Brian D. Carrier, Joe Grand, A Hardware-Based Memory Acquisition

Procedure for Digital Investigations, Digital Investigation Journal February

2004.

[6] Adam Boileau, Hit by a Bus: Physical Access Attacks with Firewire,

Ruxcon 2006.

[7] George Garner, Forensic Acquisition Utilities

http://www.gmgsystemsinc.com/fau/, date last accessed Nov 2008.

[8] Helix 3 – Incident Response, Computer Forensics, Electronic Discovery,

http://www.e-fense.com/helix/, date last accessed Nov 2008.

[9] Gerald J Popek, Robert P Goldberg, Formal Requirements for

Virtualizable Third Generation Architectures, Communications of the

ACM July 1974.

[10] VMware, http://www.vmware.com, date last accessed Nov 2008.

[11] 010 Editor, http://www.sweetscape.com/010editor/, SweetScape

software, date last accessed Nov 2008.

[12] Visual Binary Diff, http://www.cjmweb.net/vbindiff/, Christopher J.

Madsen, date last accessed Nov 2008.

[13] Microsoft Connect, https://connect.microsoft.com/, date last accessed

Nov 2008.

 104

[14] Windows Hardware Developer Central (WHDC),

http://www.microsoft.com/whdc/, date last accessed Nov 2008.

[15] ManTech International Corporation,

http://www.mantech.com/mantech.asp, date last accessed Nov 2008.

[16] ManTech Memory DD, http://www.mantech.com/msma/mdd.asp, date

last accessed Nov 2008.

[17] WHDC, User-Mode Driver Framework (UMDF),

http://www.microsoft.com/whdc/driver/wdf/UMDF.mspx, date last

accessed Nov 2008.

[18] WHDC, Kernel-Mode Driver Framework (KMDF),

http://www.microsoft.com/whdc/driver/wdf/KMDF.mspx, date last

accessed Nov 2008.

[19] MSDN, INF Add Service Directive, http://msdn.microsoft.com/en-

us/library/ms794559.aspx, date last accessed Nov 2008.

[20] MSDN, Create a Service Function, http://msdn.microsoft.com/en-

us/library/ms682450(VS.85).aspx, date last accessed Nov 200.

[21] MSDN, Providing a Driver Package, http://msdn.microsoft.com/en-

us/library/ms791680.aspx, date last accessed Nov 2008.

[22] Installing Debugging Tools for Windows 32-bit Version,

http://www.microsoft.com/whdc/devtools/debugging/installx86.mspx, date

last accessed Nov 2008.

[23] DebugView for Windows, http://technet.microsoft.com/en-

us/sysinternals/bb896647.aspx, date last accessed Nov 2008.

[24] MSDN, ZwOpenSection, http://msdn.microsoft.com/en-

us/library/ms804353.aspx, date last accessed Nov 2008.

[25] Microsoft Technet, Device\PhysicalMemory location Object,

http://technet.microsoft.com/en-us/library/cc787565.aspx, date last

accessed Nov 2008.

[26] MSDN, DbgPrint, http://msdn.microsoft.com/en-

us/library/ms792790.aspx, date last accessed Nov 2008.

 105

[27] Operating System Market Share,

http://marketshare.hitslink.com/report.aspx?qprid=8, date last accessed

Nov 2008.

[28] MSDN, ZwMapViewOfSection, http://msdn.microsoft.com/en-

us/library/ms804369.aspx, date last accessed Nov 2008.

[29] MSDN, Using NTSTATUS values, http://msdn.microsoft.com/en-

us/library/aa489609.aspx, date last accessed Nov 2008.

[30] NTSTATUS codes, http://nologs.com/ntstatus.html, date last accessed

Nov 2008.

[31] WHDC, Introduction to the Windows Driver Foundation,

http://www.microsoft.com/whdc/driver/wdf/wdf-intro.mspx, date last

accessed Nov 2008.

[32] Microsoft Developer Network, http://msdn.microsoft.com/en-

us/default.aspx, date last accessed Nov 2008.

[33] Microsoft Technet, Demystifying the ‘Blue Screen of Death’,

http://technet.microsoft.com/en-us/library/cc750081.aspx, date last

accessed Nov 2008.

[34] MSDN, Bug Check Codes, http://msdn.microsoft.com/en-

us/library/ms789516.aspx, date last accessed Nov 2008.

[35] Digital Signatures for Kernel Modules on Systems Running

Windows Vista,

http://www.microsoft.com/whdc/winlogo/drvsign/kmsigning.mspx, date

last accessed Nov 2008.

[36] Archictecture of the Kernel-Mode Driver Framework,

http://www.microsoft.com/whdc/driver/wdf/KMDF-arch.mspx, date last

accessed Nov 2008.

[37] MSDN, Creating an INF File for a File System Filter Driver,

http://msdn.microsoft.com/en-us/library/ms790727.aspx, date last

accessed Nov 2008.

 106

[38] MSDN, System Error Codes 90-499), http://msdn.microsoft.com/en-

us/library/ms681382(VS.85).aspx, date last accessed Nov 2008.

[39] WHDC, Windows Driver Kit (WDK) – Overview,

http://www.microsoft.com/whdc/devtools/wdk/default.mspx, date last

accessed Nov 2008.

[40] MSDN, Certificate Creation Tool (Makecert.exe),

http://msdn.microsoft.com/en-us/library/bfsktky3(VS.80).aspx, date last

accessed Nov 2008.

[41] WHDC, Microsoft Cross-certificates for Windows Vista Kernel Mode

Code Signing,

http://www.microsoft.com/whdc/winlogo/drvsign/crosscert.mspx, date last

accessed Nov 2008.

[42] MSDN, GlobalMemoryStatusEx Function, http://msdn.microsoft.com/en-

us/library/aa366589(VS.85).aspx, date last accessed Nov 2008.

[43] Forensics Wiki, Dd, http://www.forensicswiki.org/index.php?title=Dd, Paul

Rubin, Davod MacKenzie, Stuart Kemp, date last accessed Nov 2008.

[44] WHDC, Download Windows Symbol Package,

http://www.microsoft.com/whdc/devtools/debugging/symbolpkg.mspx,

date last accessed Nov 2008.

[45] Arne Vidstrum, Forensic Ram Dumping,

http://www.bandwidthco.com/whitepapers/compforensics/memory/

Forensic%20RAM%20Dumping.pdf, last accessed on Nov 2008.

[46] MSDN, Driver Entry, http://msdn.microsoft.com/en-

us/library/ms795702.aspx, last accessed on Nov 2008.

[47] MSDN, WDF_DRIVER_CONFIG_INIT, http://msdn.microsoft.com/en-

us/library/aa491341.aspx, last accessed on Nov 2008.

[48] MSDN, WdfDriverCreate, http://msdn.microsoft.com/en-

us/library/aa491318.aspx, last accessed on Nov 2008.

[49] MSDN, WdfDeviceCreate, http://msdn.microsoft.com/en-

us/library/aa491109.aspx, last accessed on Nov 2008.

 107

[50] MSDN, WdfDeviceCreateDeviceInterface, http://msdn.microsoft.com/en-

us/library/aa490963.aspx, last accessed on Nov 2008.

[51] MSDN, WdfIoQueueCreate, http://msdn.microsoft.com/en-

us/library/aa491614.aspx, last accessed on Nov 2008.

[52] MSDN, WdfRequestRetrieveOutputMemory,

http://msdn.microsoft.com/en-us/library/aa492080.aspx, last accessed on

Nov 2008.

[53] MSDN, WdfMemoryCopyFromBuffer, http://msdn.microsoft.com/en-

us/library/aa491569.aspx, last accessed on Nov 2008.

[54] MSDN, WdfRequestCompleteWithInformation,

http://msdn.microsoft.com/en-us/library/aa492029.aspx, last accessed on

Nov 2008.

[55] MSDN, WdfMemoryCopyToBuffer, http://msdn.microsoft.com/en-

us/library/aa491573.aspx, last accessed on Nov 2008.

[56] MSDN, WdfRequestRetrieveInputBuffer, http://msdn.microsoft.com/en-

us/library/aa492051.aspx, last accessed on Nov 2008.

[57] MSDN, Enabling Test-signing, http://msdn.microsoft.com/en-

us/library/aa906238.aspx, last accessed on Nov 2008.

[58] OSR Online, DDK Build – Visual Studio .CMD Procedure For Building

Drivers,

http://www.osronline.com/article.cfm?name=ddkbuild_v73r27.zip&id=43,

last accessed on Nov 2008.

[59] Hollis Technology Solutions, http://www.hollistech.com/, last accessed on

Nov 2008.

 108

THIS PAGE INTENTIONALLY LEFT BLANK

 109

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

3. Timothy Vidas
Naval Postgraduate School
Monterey, California

4. Dr. George Dinolt
Naval Postgraduate School
Monterey, California

5. Cheong Choong Wee Vincent
Naval Postgraduate School
Monterey, California

6. Professor Yeo Tat Soon, Director
Temasek Defence Systems Institute
National University of Singapore
Singapore

7. Tan Lai Poh (Ms), Assistant Manager
Temasek Defence Systems Institute
National University of Singapore
Singapore

