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Abstract 

 

In order to overcome the challenges that an anisotropic noise field poses for underwater 

target tracking, we conduct an onboard estimation of the horizontal noise directionality in 

the real-time processing suite of an autonomous underwater vehicle (AUV) towing a 

horizontal line array. The estimation of the noise directionality is a precursor to another 

adaptive behavior: optimizing tracking capability of a towed array by choosing a 

particular heading that minimizes the detection level in the target’s direction. In each 

distinct simulated anisotropic noise field, the AUV successfully calculates the optimal 

towed array headings based on the real-time estimation of the horizontal noise 

directionality. The findings reveal a clear advantage over the conventional broadside 

beam tracking method, with some limitations due predominantly to the noise field itself.  
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Chapter 1 

Introduction 
 

 

Anti-submarine warfare (ASW) has been a necessary military focus since the 

introduction of U-boats in the 1940’s. As with all military capabilities and strategies, ASW 

must reflect the advances made in the field in order to remain relevant. Namely, 

improvements in underwater warfare technology and strategy, in addition to the 

transition of small unmanned vehicles into the mainstream, call for a more capable 

defense.  In light of such advancements, it is clear that the development of underwater 

warfare techniques has most certainly outpaced the development of ASW. With terrorist 

related small-scale attacks in littoral areas being more prevalent in present day, it is 

important to develop a reliable method with which to defend against such attacks.  

 In this thesis we attempt to address such concerns by adding improved target 

tracking capabilities to the behavior library of an autonomous underwater vehicle (AUV) 

towing a horizontal sonar line array. 

 

1.1 Progression of ASW  

 

It is worthwhile to review the progression of ASW in order to fully appreciate its evolution 

over the past several decades. Analyzing ASW’s progress—or sometimes its lack 

thereof—reveals the necessity for continued growth and advancement in the field. 
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 1.1.1   Brief history of ASW 

 

The history of American ASW has a rollercoaster-like pattern. Figure 1-1 depicts the 

cyclic nature of the United States Navy’s readiness with respect to ASW from World War 

II (WWII) until present day [1]. 

 

 

Figure 1-1: Anti-submarine warfare historical performance [1]. This shows the 

rollercoaster-like successes and failures of American ASW. 

 

When the United States entered WWII in 1941, they made a significant effort in 

sonar research and development, which greatly improved the performance of active 

sonar systems, as well as the understanding of underwater acoustic propagation and 

detection theory [2]. In 1945, however, the Allies faced submarines equipped with 

snorkels. Radar trials against a snorkel-equipped submarine established “a 0.06 

probability of detection [3],” and clearly, such weak defenses were not acceptable. 

Unexpectedly, the ever-changing arena of underwater warfare brought about a new 

threat—the Soviet diesel submarine—which took center stage in ASW.  
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Soon after, a technological revolution occurred at the end of the 1960s: the 

introduction of digital signal processing. This led to the dramatic increase in capabilities 

and versatility of sonar systems, particularly as computer performance quickly evolved 

[2]. Such improvements, in addition to other research and experimentation, contributed 

to the partial success achieved during the Cuban missile crisis in 1962. The crisis 

provides one of the best operational examples of the United States Navy combined-force 

ASW capabilities that emerged from 1950s experimentation and development [3].  

In response to the United States Navy’s acoustic superiority during the 1960s 

and 1970s, the Soviets made noteworthy improvements such as a gradual reduction in 

submarine noise of 35 dB. By the mid-1990s, a significant portion of the (by then 

Russian) submarines was much quieter than it had been in the 1970s. Luckily, the end 

of the Cold War approached, and the fleet of quiet Russian submarines lost their 

imminent threat [3]. Nevertheless, conflicts at the end of the twentieth century with a 

maritime component such as the attack submarines of the Falklands War in 1982 or the 

mines of the Gulf War confirmed the importance of mastering sonar techniques to 

counter threats [2]. 

 Today, more than forty countries excluding the United States collectively have 

between three and four hundred submarines, including minisubs (under three hundred 

tons). Nearly 75% of these submarines are relatively modern (post-1970s) designs. 

Some of the vessels have weapons such as wake-homing antiship torpedoes and 

submerged-launch antiship cruise missiles, with ranges of over 200 km and speeds up 

to Mach 3.  Such capabilities present a formidable threat to American and allied surface 

units [3]. 

On a final unsettling note, minisubs, manned submersibles, and AUVs are 

becoming common vessels for threatening littoral zones. Some countries known to have 

such vehicles include Colombia, Iran, North Korea (the largest minisub force in the 

world), Pakistan, and South Korea. Drug cartels have used manned submersibles and 

minisubs to smuggle cocaine from ports in Colombia to ships at sea. North Korea has 

used these types of vehicles to insert agents into the South. The Tamil “Sea Tigers,” a 

terrorist group, has attempted twice to build minisubs. These are merely samples of the 

ever-present underwater dangers that threaten littoral zones [3].  
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The next generation of ASW surveillance systems—for the years beyond 2010—

has yet to be established, and based on the threats of today, has a demanding mission 

to fulfill. One promising approach to the problem is the distributed sensor field [3]. 

 

1.1.2  A future for ASW: PLUSNet 

 

A current, large scale research project incorporates numerous concepts for a powerful 

and successful ASW strategy. The project is entitled Persistent Littoral Undersea 

Surveillance Network—or PLUSNet—and encompasses the ideals of a distributed 

sensor network. PLUSNet’s primary objective is to “use a network of AUVs and other 

mobile and fixed sensors to adaptively and cooperatively detect and track moving 

underwater targets in a distributed littoral surveillance system (Figure 1-2) [4].” PLUSNet 

runs under the sponsorship of Tom Curtin of the Office of Naval Research, and principle 

investigators include Henrik Schmidt of MIT and William Kuperman of Scripps’ Marine 

Physics Laboratory. The program manager is Mitchell Shipley from Penn State, and the 

director is Marc Stewart. 

PLUSNet’s “big picture” can be depicted as a grid of multiple semi-autonomous 

controlled networks consisting of bottom mounted and mobile nodes. The system’s 

environmentally and tactically adaptive processing enhances detection, classification, 

localization, and tracking of quiet diesel electric submarines operating in shallow water. 

The network is able to autonomously detect a high level target source, track the source, 

and forward contact and track information between nodes and to the host ship or shore-

based component. Theoretically, enough networks placed in a grid and working 

collaboratively could provide ASW surveillance capability over an area on the order of 

104 square kilometers and potentially be sustainable for months or years. In addition, a 

system made up of AUVs is conceivably less vulnerable to threats such as mines and 

quiet diesel-electric submarines because the AUVs themselves are small and quiet [5]. 

 Currently, two Bluefin AUVs combine acoustic sensing capability with mobility, 

facilitating adaptive search behaviors under both fully autonomous and supervisory 

control. MIT employs Mission Oriented Operating Suite (MOOS) software to accomplish 

feats such as directing AUVs to track and conduct motion analysis on a potential target, 

to include applying collaborative behaviors between adjacent mobile sensors. For 
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example, one vehicle can detect the approach of an acoustic source. After formulating a 

preliminary track estimate, this first vehicle can communicate its estimate to the second 

vehicle not in contact with the target. The second vehicle can adaptively converge on, 

re-acquire, and classify the target. Factors such as avoiding obstacles, AUV energy 

state, cell sensor coverage requirements, and the need to maintain a functioning 

communications network constrain all AUV behaviors [5]. 

 

Overview of the PLUSNet Project

M. Shipley

Objective: Use a network of AUVs and other mobile/fixed sensors to adaptively and cooperatively 
detect and track moving underwater targets in a distributed littoral surveillance system.

Challenges:
• Physical constraints of ocean acoustic communication; 

low data rate and latency.
• Important to retain many processing and decision-

making tasks onboard the AUV. Some tasks which in 
other applications have a “human in the loop” must now 
be automated.

• Passive sonar detection and tracking
• Robust true target bearing estimation; must compensate 

for vehicle motion: AUVs often undergo significant 
pitch and yaw oscillations

• Multi-vehicle tracking in clutter:
(false alarms, misses, data associations)

Ghost Target

 

Figure 1-2: Overview of Project PLUSNet [4]. 

 

1.2 Thesis objective 

 

Detection and tracking theory is always evolving as old problems are solved and new 

ones arise. In order to deem a truly autonomous network as trustworthy, the AUVs 

themselves must be able to autonomously and adaptively respond to problematic 

situations. One of the existing challenges is tracking a target in an anisotropic noise field. 
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In order to overcome the hindrance to underwater target tracking that an anisotropic 

noise field introduces, we conduct an onboard estimation of the horizontal noise 

directionality in the real-time processing suite of an AUV towing a horizontal line array. 

We apply the methods presented in [6-8] to formulate the autonomous behavior that 

performs the noise directionality estimation. 

This estimation of the noise directionality is a precursor to another adaptive 

behavior: optimizing tracking capability of a towed array by choosing an array heading 

that minimizes the detection level in the target’s direction. Based on theories previously 

explored in the Appendix of [9], the AUV behavior utilizes the horizontal noise 

directionality that has already been estimated in order to determine the optimal towed 

array heading. 

We use a simulated acoustic environment, more thoroughly described in 

Appendix A, in order to explore the performance of these autonomous, adaptive 

behaviors. We simulate five distinct noise fields so as to assess the success of both 

behaviors in variable environments. In all of the cases, the AUV successfully calculates 

the optimal towed array headings based on the real-time estimations of the horizontal 

component of the three-dimensional noise directionalities. A thorough exploration of the 

effectiveness of utilizing an optimal towed array heading follows, and the findings 

strongly support the utility of applying these behaviors to a surveillance fleet of AUVs.  

 

1.3 Thesis organization 

 

This thesis will be presented in the following manner: first, Chapter 2 will describe the 

noise directionality estimation algorithm presented in [8]. Following, Chapter 3 will 

expand on the theory introduced in [9] that describes how to determine an optimal towed 

array heading based on the horizontal noise directionality. Chapters 4 and 5 will provide 

the software and hardware context in which the theories are applied. This includes 

equipment specifications as well as the network structure of the various components. 

Chapter 6 will follow, presenting simulation results beginning with the noise 

directionality estimation results from five simulated noise fields. The first simulated noise 

field is isotropic, in which no directional source is present. The second, called Case A, 

has a highly directional noise field generated by a narrowband source. The third, called 
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Case B, has a subtly directional noise field, also generated by a narrowband source. The 

fourth, called Case C, has a highly directional noise field generated by a narrowband 

source from a greater distance than in Cases A or B, allowing the waveguide to more 

significantly affect the noise propagation. The fifth, called Case D, has a highly 

directional noise field generated by a broadband source. Based on the noise 

directionality estimation for each of the cases, the optimal towed array headings are 

determined.   

Chapter 7 will evaluate the findings from the simulations and then put the results 

into the context of live experiments in order to assess the practicality of the algorithms in 

real-time and in real environments, specifically considering implementation of the 

autonomous behaviors into the PLUSNet (or any other autonomous distributed sensor 

network) vehicles. Finally, suggestions for future work will conclude this thesis.  
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Chapter 2 

Estimation of Noise Directionality 
 

 

2.1 Previous work 

 

The method developed in [6-8], later dubbed the WIT algorithm, provides an effective 

manner in which to estimate the horizontal noise directionality. First introduced in 1977, 

[6] differs from its contemporary methods [10-13] because it utilizes the noise 

directionality term itself for the estimation. The WIT algorithm functions using a sonar 

array of any geometry, to include a towed horizontal line array, which is often the 

cheapest and most practical type of array to use. The WIT algorithm in [6] produces a 

two-dimensional estimate of the pseudo-stationary noise field in the horizontal plane. 

The earliest version, however, lacks consideration of the vertical arrival structures of 

noise that are an inherent part of a three-dimensional environment.  Thus, [7] further 

expands the method in 1979 to include vertical arrivals of the noise field and arbitrary 

array pitch, yielding more precise but still two-dimensional results. Several experiments 

[9,14-16] test the WIT algorithm and confirm the technique’s capabilities. 
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2.2 Noise directionality estimation: WIT algorithm 

 

The WIT algorithm evolves into a three-dimensional estimate of the noise directionality in 

[8]. The algorithm employs an iterative technique and utilizes the array’s measurements 

from each of J headings, helping to resolve a conventional hydrophone line array’s left-

right ambiguity.  

Several assumptions about the ambient noise immediately simplify the algorithm 

calculations. If the total ambient noise is represented as: 

 

 ( , , ) ( , ( , , ) ( , , ),N t n t tθ θ θ θφ = φ) + ζ φ + ε φ  (1) 

 

where θ  is azimuth in spherical coordinates, φ  is elevation in spherical coordinates, and  

t is time, then ( , , )N tθ φ  is the total ambient noise; ( ,n θ φ)  is the pseudo-stationary  

background noise field directionality; ( , , )tθζ φ  is the time-dependent component of the 

noise due to the fluctuations in acoustic propagation, noise source movement, changes 

in noise source levels (i.e., transients); and ( , , )tθε φ is the error introduced in the 

measurements by the towing vehicle’s noise, array nonlinearities, flow noise, system 

faults, etc. Estimating ( ,n θ φ)  is the ultimate goal.  

We assume sufficient temporal averaging so that ( , , )tθζ φ  can be considered 

negligible. Similarly, we assume sufficient array grooming and appropriate error 

discrimination processing techniques so that ( , , )tθε φ can also be considered negligible. 

( ,n θ φ)  is therefore estimated using the set of beam output noise intensities (with power 

units), ri,j, measured by the ith beam while on the jth array heading with the following 

equation: 

 

 
2 2

, 0 0 2

1 1 1
( , , ) ( , )cos

2 2

T

i j i jr dt d N t b d
T

ππ

πθ θ θ
π −

= φ × − γ φ φ φ∫ ∫ ∫ , (2) 

 

where T is the measurement time interval, ( , )i jb θ − γ φ  is the ith beam power response  

pattern of I  beams, and jγ  is the jth array heading of J array headings.  With the  

aforementioned temporal averaging, array grooming, and error discrimination processing 

techniques, (2) reduces to: 
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2 2

, 0 2

1
1 ( , ) ( , )cos

2i j i jr d n b d
ππ

πθ θ θ
π −

≈ φ − γ φ φ φ.∫ ∫  (3) 

 

The beam responses are calculated in conical angle space, and then their 

magnitudes are squared in order to obtain the beam power responses. The beam power 

responses are approximations of broadband beamforming.  In order to approximate the 

broadband beam response, a narrowband beam response for a specific frequency is 

calculated at intervals over the given broadband frequency range. Finally, all of the 

narrowband beam responses are averaged together and normalized, representing a 

broadband beam response. The expression for each narrowband beam response [17] 

using the notation in [8] is 

 

 
1

( : ) ( ) ( )
H

T TB v v
N

β ββ β β β= �� ��
�� �� � �� � ��

, (4) 

 

where β
��

 is the conical angle, Tβ
��

 refers to the beams’ “look” directions, N is the number 

of hydrophones in the array, vβ
��
�

 is the array manifold vector, and H indicated the 

Hermetian transform of a vector or matrix. vβ
��
�

 breaks down further as follows: 
 

 

0

1

1

( )

T

T

T
N

j k p

j k p

jk p

e

ev

e

β β

−

−

−

−

 
 
 

=  
 
 
  

� ��

� ��

��

� ��

� ��

⋮
, (5) 

 

where k
�

 is the wavenumber for plane waves propagating in a locally homogeneous 

medium and is defined as 

 

 

sin cos
2 2

sin sin .

cos

k

θ φ
π πβ θ ϕ
λ λ

θ

 
 = − = −  
  

� ��
 (6) 
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Since a horizontal line array is the sonar instrument utilized in this thesis, only the 

cosθ component of β
��

 is relevant. This component represents the angular width of the 

conical beam that the array produces. Thus, the wavenumber used in the beamformer is 
 

 
2 2

cos ,x xk
π πβ θ
λ λ

= − = −  (7) 

 

where λ is c/f; and c is speed of sound in meters per second, and f is frequency in Hertz.  

Finally, the np
��

 term in (5) is the position vector for the array’s hydrophones. 

Since the towed array lies on the x-axis, we represent the hydrophone positions,
nxp , in 

the following way:  
 

 
1

,  0,1,..., 1.
2nx

N
p n d n N

− = − = − 
 

 (8) 

 

 There exists a complication due to the nature of this thesis’s applications: the 

calculated beam patterns are expressed in conical angle. The desired noise 

directionality estimate, however, requires that the mathematical representation of the 

towed array and its beam responses be three-dimensional since the anisotropic noise 

field depends on both the horizontal and vertical. The spherical coordinate system is 

ideal for such three-dimensional fields. Unfortunately, spherical coordinates are unable 

to uniquely represent the measured beam noise power, and thus, a discrepancy exists 

between the most practical coordinate system to utilize throughout the algorithm.  

Luckily, a relationship between the spherical and the conical coordinate systems 

can be expressed as follows (Figure 2-1) [7]: 

 

 

1

1

1

cos cos cos sin cos (cos cos )
cos ,

sin sin tan (sin / cos sin )

θ θ

θ

−

−

−

  φ α + φ  β =  
 × α φ φ   

 (9) 

 

making the transition between the conical coordinate system when calculating the beam 

patterns and the spherical coordinate system when estimating the noise directionality 
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feasible. The geometric relationship defined in (9) transforms the beam responses into a 

spherical coordinate representation for direct use in (3).  

Since the transformation from conical to spherical coordinates is computationally 

intensive, and thus time consuming, it is both possible and useful to calculate the three-

dimensional beam patterns a priori and save them for later use. As long as the array 

specifications and the beamforming method do not change, then the stored beam 

patterns in spherical coordinates are always applicable.   

 

 

Figure 2-1: Geometric relationship between spherical and conical coordinates [8]. The 

derivation of (9) is based on this geometric relationship. 
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In addition to the beam response patterns, the set of beam output noise 

intensities, ri,j, is necessary for running the WIT algorithm. In the case of this thesis, the 

values for ri,j are obtained by accessing the array’s published beam-time response (BTR) 

files recorded over time for every beam on each of six headings that form a hexagon. 

Beam output intensity values are only considered when the array is approximately 

straight in order to preserve computational power as well as maintain accuracy in the 

final results. Outputs are then converted to decibels using 

 

 , , dB 10log( ).i j i jR r=  (10) 

 

The result is an I x J matrix that must be stored for use in the iterative algorithm, where I 

is the total number of beams and J is the total number of headings.  

 To initiate the noise directionality estimation, we assume an arbitrary three-

dimensional noise field, the most straightforward and logical choice being an isotropic 

noise field ( 0ˆ ( , )n Cθ φ = ). This noise field is plugged into the following equation: 

 

 
2 2

, , 0 2

1
ˆ ˆ1 ( , ) ( , )cos

2i j k k i jr d n b d
ππ

πθ θ θ
π −

≈ φ − γ φ φ φ,∫ ∫  (11) 

 
 
where , ,î j kr  is the set of estimated beam output intensities. , ,î j kr  is transformed into  

decibels in the same manner shown in (10). The estimated intensities are compared to 

the measured intensities using (12), generating an error matrix. The intensities are 

subtracted in decibels to avoid diversion in the direction of negative intensities.  

 

 , , , , ,
ˆ

i j k i j i j kR R∆ = −  (12) 

 

The error is then immediately converted back to power units so that all following  

computations have physical meaning. Each , ,i j k∆  is divided by two for successive 

underrelaxation and then mapped to its corresponding ( , )i jb θ − γ φ . This accomplishes  

correct error distribution over all cells in the θ  and φ  domain.  
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A guarantee that the iterative algorithm will converge requires normalization, so 

we apply the conservation of energy to the error distributions. The distributed value of  

, ,i j k∆   integrated over its corresponding differential conical angle should equal the  

distributed value of , ,i j k∆  integrated over its differential azimuth and elevation angles, as 

depicted in (13):  
 

 
2 2

, , , ,0 0 2

1
( ) 1 ( , ) cos( ) .

4i j k i j i j k i jb d d b d
ππ π

πβ β θ θ γ φ φ φ
π −

∆ ⋅ = ∆ ⋅ − ⋅∫ ∫ ∫  (13) 

 

The next step is to modify ˆ ( , )kn θ φ  according to the calculated errors in order to 

obtain 1ˆ ( , )kn θ+ φ . This new estimate for the noise directionality is then plugged into (11), 

and the procedure is repeated until the , ,i j k∆  are less than the preset error threshold. 
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Chapter 3 

Determining Optimal Towed Array Heading 
 

 

One of the obstacles that complicates detecting and tracking underwater targets is 

anisotropic ambient noise. Classically, the broadside beam is preferred for tracking 

targets because of its superior angular resolution and high directivity (D), referred to as 

directivity index (DI) when converted to decibels [17]. This principle most certainly holds 

true in isotropic noise fields, but variation of ambient noise levels with azimuth introduces 

the possibility of better beam choices for tracking targets. An experiment presented in [9] 

explores this idea and shows promising results: the findings demonstrate that oftentimes 

in a horizontally directional noise field, sonar beams besides the default broadside beam 

provide superior tracking. 

In order to determine the best beam for tracking a target in a given location within 

a specific noise field, we attempt to minimize the detection level (DL) in the direction of 

the target. We therefore choose the array orientation that allows the greatest probability 

of detection with respect to minimum detection level (MDL). In terms of the likelihood of 

detection, a target located at a position so that its source level is equal to or greater than 

MDL has greater than a 50% probability of being detected.  

The mathematical representation of MDL is expressed in (14), where TL is 

transmission loss, DT is detection threshold, and NF is the noise field as shown in 

Equation (15). NL is the omni noise level, and ϕ  is the ship heading. 
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 MDL(r, ) = TL + DT - DI + NFθ  (14) 
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Of the components that comprise MDL, DI is one that can vary in a controlled way; that 

is to say, in an anisotropic noise field, the DI will change depending on the array 

orientation. Since minimizing MDL requires maximizing DI, the ultimate goal becomes to 

find the heading that corresponds to the maximum DI in a particular look direction. 

In a known horizontal noise directionality, DI must be computed for all possible 

towed array headings. This yields numerous DIs as functions of azimuth, and in turn, 

produces a range of DIs for each look direction that depends on the towed array’s 

heading. We compute DI using (17) [17], where lϕ  is the array heading.  
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DI essentially represents the maximum intensity (power per unit solid angle) 

divided by average intensity (averaged over the three dimensional noise field). The 

numerator is the power due to a signal arriving from a target that lies in a particular 

beam’s look direction. In other words, the numerator is the beam power response in the 

target’s direction; and since the beam power response is normalized, it equals one. The 

denominator represents the noise power at the array output due to anisotropic noise.  

Once the range of DIs have been calculated for a particular look direction, then 

we identify the maximum DI, along with its corresponding heading. This heading 

becomes the “optimal” one because it creates the MDL for that particular scenario, thus 

increasing the probability of successful target tracking. Care must be taken to avoid 

endfire, however, because of its inferior angular resolution. 
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Chapter 4 

Equipment Specifications 
 

 

4.1 The autonomous underwater vehicle 

 

The current AUV model used in PLUSNet experiments is the Bluefin-21 AUV.  Figure 4-

1 shows a schematic of the AUV, and Figure 4-2 shows the AUV as it is recovered from 

the water [18]. The Bluefin-21 is one of the smallest deep-water survey AUVs. It is 

operationally capable of performing successfully at a 200 m depth, but it can go much 

deeper [5]. The Bluefin-21 AUV is beneficial for use in PLUSNet experiments for several 

reasons: it is easy to handle and can quickly be turned around on deck so underwater 

time is maximized. Additionally, support vessels can carry and operate many Bluefin-21 

AUVs simultaneously in order to test multi-AUV operations [18]. 

  The Bluefin-21 AUV is approximately 4.6 m long, 0.53 m in diameter, and 

displaces approximately 340 kg. Part of its payload includes a conductivity, temperature, 

and depth sensor, a micro-modem for underwater acoustic communications, and a fixed 

combined RF (Freewave LAN) and GPS antenna mast. Scripps Marine Physical 

Laboratory designed a quiet tail-cone for the vehicle with a low-noise, direct-drive 

propulsor tuned for low-speed operation, improving low frequency acoustic setting [5]. 

The Bluefin-21 also has a unique, pressure tolerant lithium battery system which 

eliminates the need to open and reseal pressurized vessels [18]. This battery, which has 

an advertised 30 hour endurance, drives the ducted propeller, which pushes the vehicle 



 30

to a 3 knot cruising and 5 knot top speed [5]. Figures 4-3 and 4-4 [19] show the AUV’s 

performance while conducting a 60 degree turn. 

 

 

Figure 1-1: Schematic of Bluefin-21 AUV [18]. The total length of the vehicle when used 

for PLUSNet missions is approximately 4.6 m long (180 in.), making the payload about 

1.9 m (76 in.) long. The AUV displaces about 340 kg. 

 

 

Figure 4-2: Bluefin-21 AUV being recovered from the water [18]. 
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Figure 4-3: AUV heading during 60 degree turn [19]. 

 

 

Figure 4-4: AUV depth and speed during 60 degree turn [19]. The top line is depth, and 

the bottom line is speed. 
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4.2 The sonar array 

 

One of the sonar array most readily used in current experiments and modeled in the 

simulator is the Defense University Research Instrumentation Program (DURIP) sonar 

array [20]. The DURIP sonar array is a conventional hydrophone line array with a depth 

rating of 300 m. It has a total of 32 hydrophones with 30 m of acoustic aperture. Eleven 

of the hydrophones are spaced 0.75 m apart and nested in with the remaining 21 

hydrophones, which are spaced at 1.5 m. The hydrophones have an acoustic bandwidth 

of 100 to 1200 Hz and a sensitivity of -176 dB/V/µPa. They have a sensitivity tolerance 

of +/- 1 dB, and the system noise floor is less than sea state zero. Figure 4-5 

summarizes the array’s specifications.  

The DURIP array has compasses both at the forward and aft end of the array. 

Additionally, a pressure sensor is mounted just aft of the acoustic portion of the array. 

While the hydrophone channels are simultaneously sampled to 16 bit resolution at 

approximately 3 kHz, the heading and pressure are sampled at lower rates and merged 

with digital hydrophone samples. All of the data is then formatted into a serial data 

stream and sent via wire to the AUV. 

Inside the AUV’s payload are a Telemetry Interface Unit and a Data Logging 

Computer. The Telemetry Interface Unit formats serial-digital array data and sends them 

to a PC-104 data logging computer, which records the data to a hard disk. The hard disk 

has a capacity of approximately 72 hours of continuous recording. Simultaneously, data 

are broadcast via network to an onboard processing computer. The AUV regulates 

power to the array and data logging computer (24-32 Vdc). 
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Figure 4-5: DURIP array schematic [20]. Note that the acoustic portion of the array is 30 

m long. Also, note the fore- and aft-end compasses (designated as “Hdg 1” and “Hdg 2,” 

respectively), as well as the pressure sensor on the aft end (designated as “Pressure”). 
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Chapter 5 

Vehicle Network Structure 
 

 

Reliable communications between all involved nodes is vital to successful operations 

with an autonomous surveillance network. Operational communications with or among 

AUVs may occur on the surface, underwater or a combination of both. Depending on the 

location and status of the AUVs, there are several communications systems employed 

during operations. Communication between the host vessel and a surface node, which 

may include an AUV on the surface, is achieved via IP over radio. When underwater, 

communication between nodes is achieved by utilizing acoustic modems. Figure 5-1 [21] 

shows a schematic of the different communication methods. 

 In addition to reliable communication systems, a sound structure through which 

all participants in the autonomous network can access data and make decisions as a 

cohesive unit is necessary. For this, MOOS software is utilized to its fullest advantage.  

 

5.1 MOOS-IvP architecture and Helm-IvP 

 

MOOS is an open source software project for coordinating software processes running 

on an autonomous platform, typically under GNU/Linux [22]. More specifically, MOOS is 

an umbrella term for a set of libraries and applications designed to facilitate research in 

the mobile robotic domain. In Project PLUSNet, MOOS software provides an 

architecture that allows AUVs to detect, track, and classify potential targets as a 
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cooperative network. These missions require the application of collaborative behaviors 

between adjacent mobile sensors. Factors such as avoiding obstacles, AUV energy 

state, cell sensor coverage requirements, and the need to maintain a functioning 

communications network constrain the behaviors [5]. 

 As levels of autonomy escalate, the problem of effectively controlling underwater 

vehicles becomes increasingly difficult. Actions such as obstacle avoidance, adherence 

of the Rules of the Road, and cooperative moving are simultaneous objectives for 

vehicle behavior; and with so many objectives, it is difficult without the human mind to 

decide which objective takes priority. The response to this complex, behavior based 

system is a method for representing and solving multi-objective optimization problems 

suitable for controlling vehicles. This method, called Interval Programming (IvP), has 

been in development throughout the past few decades [23-26]. Figure 5-2 [27] compares 

the conventional control methods with behavior based control methods. 

 

 

Figure 5-1: Schematic of network communications [21]. Communication from the host 

vessel to any surface node is achieved via IP over radio. This figure shows a surface 

node to be a buoy or an AUV on the surface. Underwater communications are achieved 

via acoustic modem. 
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The AUVs in PLUSNet use the MOOS-IvP architecture—which consists of 

MOOS and the IvP Helm—for autonomous marine vehicle control. IvP Helm is a 

behavior based helm that runs as a single MOOS process and uses multi-objective 

optimization with the IvP model for behavior coordination [27-29]. A MOOS community 

contains processes that communicate through a database process called the MOOSDB, 

as shown in Figure 5-3 [30]. MOOS directs processes to execute their iterations at a 

specified frequency; and thus, it handles new mail on each iteration in a publish-and-

subscribe manner. The IvP Helm runs as the MOOS process pHelmIvP as seen in 

Figure 5-4 [29]. Each iteration of the helm contains the following steps [27]: (1) mail is 

read from the MOOSDB, (2) mail information is parsed and stored in a local buffer to be 

available to the behaviors, (3) the conditions required for behavior activity are evaluated 

for each behavior, (4) active behaviors produce an objective function if applicable, (5) 

the objective functions are resolved to produce an action which is (6) published to the 

MOOSDB for other MOOS processes handling lower-level vehicle control to consume. 

 

5.2 Autonomous vehicle behaviors 

  

Significant properties of autonomous vehicle behaviors are that the behaviors have state 

and are coordinated through multi-objective optimization. Thus, behaviors may influence 

each other between iterations. They generate and base their output on plans; and they 

can also run in sequences, in effect executing a plan [24-25,31]. 

  

World

actsense

Model
action 

selection

Behavior

World

Behavior

Behavior

sense act

 

 Figure 5-2: Conventional versus behavior based control [27]. 
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In this thesis, there is one specific behavior on which the execution of the WIT 

algorithm—or “plan”—depends: it is the Loiter behavior. Figures 5-5 and 5-6 [31] show 

specifications detailing the behavior. The Loiter behavior directs the AUV to orbit a fixed 

point. Given the central coordinates, the Loiter behavior enables the AUV to dynamically 

determine a list of waypoints to form the orbit. For PLUSNet, the number of waypoints in 

the Loiter behavior is six, but this number can potentially be changed. Other parameters 

include travelling clockwise or counterclockwise and vehicle speed. Once in the loiter 

pattern, the AUV is subject to decisions based on the Waypoint behavior [30]. 

 

MOOSDB
pHelmIvP

pTracker

iPWMControlleriGPSiMicroModem

pLogger

pNav pMOOSBridge

5 Hz 2 Hz

40 Hz

5 Hz10 Hz

20 Hz

8 Hz

4 Hz

 

Figure 5-3: MOOS community architecture [30]. The IvP Helm runs as a process called 

pHelmIvP in a MOOS community. MOOS may be composed of processes for data 

logging (pLogger), data fusion (pNav), actuation (iPWMController), sensing (iGPS), 

communication (pMOOSBridge, iMicroModem), and much more. All processes can run 

at different frequencies.  
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The Waypoint behavior is responsible for moving the sensor platform—the AUV 

in this case—from one point to another along the shortest path. The behavior is 

configured with a list of waypoints and produces objective functions that favorably rank 

actions with smaller detour distances along the shortest path to the next waypoint. The 

target vehicle uses this behavior during operation to form a constant velocity motion, for 

example, and multiple waypoints can be sequenced together to form platform motion 

along arbitrary polygons, such as the hexagon in PLUSNet experiments. The objective 

function for the Waypoint behavior is three-dimensional over course, speed, and time 

[30]. 

The behavior that this thesis will be attempting to amend is called the ArrayAngle 

behavior. The ArrayAngle behavior is responsible for holding a vehicle course such that  

 

MOOSDB

info_buffer

behavior

behavior

behavior

IvPSolver

IvPFunction

IvPFunction

IvPFunction

1

5
4

3

2

6

IvP Helm

Action

HelmEngine

 

Figure 5-4: Components of the IvP Helm and its iterations flow [27]. (1) Mail is read from 

the MOOSDB, (2) mail information is parsed and stored in a local buffer to be available 

to the behaviors, (3) the conditions required for behavior activity are evaluated for each 

behavior, (4) active behaviors produce an objective function if applicable, (5) the 

objective functions are resolved to produce an action which is (6) published to the 

MOOSDB for other MOOS processes handling lower-level vehicle control to consume. 



 39

sensor platforms with acoustic line arrays will have the array as close as possible to 

broadside with the target given the other constraints on vehicle motion. The objective 

function for this behavior is one-dimensional over course and bimodal, with the modes 

centered around the two possible course choices that keep the array oriented at 

broadside with respect to the target. The mode that is centered at the course closest to 

the vehicle’s current course is weighted in order to prevent frequent oscillation between 

the two modes [30]. 

Based on the results of this thesis, we will consider modifications to the current 

ArrayAngle behavior. Namely, the new behavior will be responsible for holding a vehicle 

course such that sensor platforms with acoustic line arrays will have the target in the 

array’s optimal beam based on MDL and maximum DI given the other constraints on 

vehicle motion. 

 

The Loiter Behavior

Purpose: Repeatedly traverse a given set of waypoints, gracefully handling missed vertices.
Automatically calculate trajectory re-entry when required.

polygon:
capture_radius:

speed:
non-monotonic_radius:

acquire_distance:
clockwise:

Parameters:
A set of points in the X-Y plane, comprising a convex polygon.
Distance from a point, within which arrival is declared. 
Desired speed of traversal.
Distance from a point, within which an increase in distance is treated as an arrival.
Distance from the polygon, outside of which the behavior is in “acquire mode”.
True if traversing clockwise.

polygon:
capture_radius:

non-monotonic_radius:
acquire_distance:

clockwise:

Example:
radial:50,60,40,6
10
15
15
true

ACQUIRE-MODE

ACQUIRE-MODE = 1

Vehicle objective function for 
achieving the next waypoint

NORMAL-MODE = 0

 
Figure 5-5: Loiter behavior specifications [31]. 
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The Loiter Behavior
(Acquire Vertex Policy - External Case)

Purpose: Repeatedly traverse a given set of waypoints, gracefully handling missed vertices.
Automatically calculate trajectory re-entry when required.

polygon:
capture_radius:

speed:
non-monotonic_radius:

acquire_distance:
clockwise:

Parameters:
A set of points in the X-Y plane, comprising a convex polygon.
Distance from a point, within which arrival is declared. 
Desired speed of traversal.
Distance from a point, within which an increase in distance is treated as an arrival.
Distance from the polygon, outside of which the behavior is in “acquire mode”.
True if traversing clockwise.

200 meters

v i v i+1

v i+2

v i+3

p

-90

θ i

0

+90

acquire_vertex = vi

where i = argmin(θi)
vi is viewable from p

p

v i

v i+1

Acquire Vertex Policy (External Case):

 
Figure 5-6: Loiter behavior specifications: Acquire Vertex Policy [31]. 
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Chapter 6 

Simulation Results 
 

 

Before reviewing the results, it is important to note that the beam outputs in the simulator 

are not normalized, so the analyses in this thesis are based on relative, not absolute, 

values. Quantitative analyses of absolute data values are not of primary concern for the 

purposes of this thesis; but the qualitative evaluation of one case relative to another is. 

As an aside, normalization of the BTR data requires consideration of the duration of 

each data set, the total bandwidth of the array, the number of elements in the array 

being utilized, etc. 

 

6.1 Horizontal noise directionality estimation 

 

Estimating the noise directionality in a simulated environment before doing so in real-

time during a live experiment is essential for assessing the effectiveness and accuracy 

of the WIT algorithm. We run the algorithm several times, each time with a different 

simulated ambient noise field in order to evaluate the algorithm’s performance in various 

scenarios. The simulator utilizes data from the live Monterey Bay 2006 PLUSNet 

experiment. Appendix A provides more in depth information addressing the specifics of 

the simulation environment.   

The first step necessary to run the WIT algorithm is to calculate the three-

dimensional beam power responses. For this thesis, the beam responses are calculated 
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with a one degree resolution using a conventional beamformer for twenty-seven beams 

linearly spaced in cosine space. In order to approximate the desired broadband beam 

response, we average many narrowband beam responses together; and the frequency 

bin size for each narrowband beam response is 1 Hz. The true bin size can be 

calculated by dividing the MOOS variables def_samplerate and def_fftlength, which 

yields 4000/4096 = 0.9766 Hz; thus validating 1 Hz as a sufficiently close approximation 

of the true frequency bin size. 

One concern that arises from digitally calculating the beampatterns is their 

inherently discrete nature. We consider smoothing the beam responses in order to 

minimize the discretization: adding more data points using interpolation or any other 

comparable method achieves resolution beyond one degree; but in doing so, 

computation times of ensuing equations greatly increase, along with the memory 

required to store the more finely resolved beampatterns. In light of the consequences, it 

is best to maintain the one degree resolution as a compromise between minimizing the 

discrete nature and maximizing the effectiveness of the beam responses as used in the 

WIT algorithm. 

Another matter to consider when calculating the beam responses is the 

underwater sound speed value used in the calculations, namely, in (7). The actual speed 

of sound is variable with range and depth, and can vary significantly throughout different 

geographical locations. In this thesis, we assume an average sound speed of 1480 m/s, 

which is an isothermal approximation of the actual Monterey Bay sound speed profile. 

Such an approximation is sufficient for assessing the WIT algorithm’s success.  

 Figure 6-1 displays four of the twenty-seven conventional beam power responses 

in cosine space. Figure 6-2 displays the same beams in a polar representation; and it is 

in this plot that the variable widths of the main lobes are most obviously visible. The 

endfire beams clearly have the widest main lobes, while the broadside beam has the 

narrowest. The width of the endfire beams make them undesirable for use in detecting 

and tracking a target since they introduces so much uncertainty with respect to the 

target’s azimuthal direction. 
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Figure 6-1: Beam power response in cosine space obtained using a conventional 

beamforming algorithm. 
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Figure 6-22: Beam power response in polar representation. Note the wide endfire 

beams’ main lobes as compared the broadside beam’s narrow main lobe. 
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Figure 6-3 displays conical angles mapped to their respective locations in 

spherical coordinates. The geometry depicted in Figure 2-1 and defined in (9) governs 

the relationship between the two coordinate systems. We obtain the three-dimensional 

beam power responses by mapping the two-dimensional beam power responses 

according to Figure 6-3. Note the symmetry in Figure 6-3, which is evidence of the 

conical shape of sonar beams. Figures 6-4, 6-5, and 6-6 display three-dimensional beam 

responses for the forward endfire, broadside, and aft endfire, respectively. The 

mainlobes and sidelobes of the beampatterns are visible in this figure, as is the discrete 

nature of the stored beam responses.  
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Figure 6-3: Conical angles mapped to spherical coordinates. Note the symmetry, which 

is evidence of the conical shape of sonar beams. 



 45

Azimuth (rad)

E
le

va
tio

n 
(r

ad
)

Forward Endfire

 

 

0 1 2 3 4 5 6

-1.5

-1

-0.5

0

0.5

1

1.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

Figure 6-4: Three-dimensional beam power response: Forward Endfire. 
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Figure 6-5: Three-dimensional beam power response: Broadside. 
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Figure 6-6: Three-dimensional beam power response: Aft Endfire. 

 

The transformation of the beam responses from conical angle to spherical 

coordinates is computationally intensive. Thus, the three-dimensional beam responses 

must be calculated a priori and stored in a library for later use, since calculating them in 

real-time is not feasible with the current available computational power. See Appendix 

B.1 to review the MATLAB code that computes the three-dimensional beams. 

After storing the three-dimensional beam power responses, the WIT algorithm 

can commence its noise directionality estimation. First, The MATLAB code in Appendix 

B.2 records the necessary data and pre-processes them for use in estimating the 

horizontal noise directionality. Then the code in Appendix B.3 actually runs the WIT 

algorithm, which—on an important note—can run in real-time, as the calculations 

involved in estimating the noise directionality do not have limiting computational 

demands. Further reductions in computation time also occur after translating the 

MATLAB code in Appendices B.2, B.3, and B.4 to a lower level code such as C++. 

Although the beam outputs are recorded in their entirety, the only data actually 

applied towards estimating the horizontal noise directionality are the beam outputs that 

occur while the sonar array is straight enough. Restricting the acceptable curvature of 
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the array helps preserve the integrity of the beam output data used in the WIT algorithm 

by eliminating the data that are too distorted to be reliable. In this thesis’s simulations, 

the array is considered “straight enough” when the hydrophones’ y-positions (left-right 

from the tow point) have a standard deviation less than 1 m and the z-positions (up-

down from the tow point) have a standard deviation less than 0.5 m. With a 30 m long 

acoustic aperture, 1 m is 3.33% and 0.5 m is 1.67% of the array length. In simulation, 

the array rarely approaches these curvature limits, indicating that the data are reliable. In 

actuality, however, the allowable curvature limit for an array is less than λ/10 to ensure 

uncompromised beamforming accuracy. For the sake of testing the robustness of the 

WIT algorithm in future live experiments, the curvature limits set in these simulations are 

more lenient.  

 Another detail to consider when defining the WIT algorithm parameters is the 

error threshold on which the accuracy of the final noise directionality estimate depends. 

Too large of a threshold grants excessive latitude in the possible azimuthal distribution of 

noise energy, while too small of a threshold might be cause for a divergent result. The 

error threshold for these simulations is 0.075, which is in the unnormalized power units. 

Since the original beam intensity outputs used to calculate the error are on the order of 

1012 and greater, the chosen error threshold is sufficiently stringent. It is important to 

remember that the error is originally calculated in decibels, as shown in (12), to avoid 

diversion in the direction of negative intensities. This quantity is then transformed back 

into power units and divided by two, and it becomes the value that determines whether 

the algorithm will continue on to perform another iteration, or terminate with a final noise 

directionality estimate. The error threshold amount may be somewhat arbitrary, as long 

as it is affords a practically accurate result in the final noise directionality estimate. 

Figure 6-7 shows the beam intensity outputs that the sonar measures in the 

simulated isotropic noise field; the results are corrected for the sonar array’s headings 

during the measurements. The beam outputs are as theoretically expected, with uniform 

noise levels despite array orientation. Figure 6-8 shows the resulting horizontal noise 

directionality estimate after applying the WIT algorithm to the beam intensity outputs 

shown in Figure 6-7. Though there are small variations in the noise levels due to the 

discrete nature of all the data, the horizontal noise directionality field is clearly isotropic.  
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For direct comparison with Figure 6-7, Figure 6-9 shows the beam intensity 

outputs that the sonar measures in the simulated noise field in Case A. Again, the 

results are corrected for the sonar array’s headings during the measurements. In Case 

A, a stationary, almost narrowband, source with center frequency 800 Hz and +/-10 Hz 
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Figure 6-7: Beam intensity outputs in absolute heading: Isotropic Case. Note the uniform 

responses, despite array orientation. 
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Figure 6-8: Estimated horizontal noise directionality: Isotropic Case. 

 

bandwidth is located 1000 m due south of the AUV’s central loitering coordinates, 

generating a powerful noise pressure level to simulate a highly directional noise field. 

Unlike Figure 6-7’s uniform beam response, Figure 6-9 displays some obvious peaks 

that are caused by the source in Case A. The waveguide disperses the energy radiating 

from the source; otherwise, we would expect a sharp peak in the direction of the source, 

and this would be a highly unrealistic result [32]. The levels of the beam intensity peaks 

in Figure 6-9 are between 15 dB and 20 dB more than the noise floor. After accounting 

for spreading, absorption, and other underwater physics, it is fitting then that the 

resulting horizontal noise directionality estimation should have maximum noise levels 

that exceed the noise floor by about 20 dB to 25 dB.  

Figure 6-10 shows the resulting horizontal noise directionality estimation for Case 

A after running the WIT algorithm. To better observe the effects of the source on the 

noise field, Figure 6-11 shows the same noise directionality rose with a reduced dynamic 

range, obtained by subtracting the noise floor from the horizontal noise directionality. In 

this “zeroed” figure, it is quite easy to see the sound pressure that the source generates. 

The figure also readily shows the effects of the waveguide on the directional source: 

though the source is located directly south of the loiter point, the maximum in the noise 
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field does not occur exactly at 180 degrees, but closely on either side of this point. There 

is noise spreading throughout the majority of the southern azimuths of the noise field. 

Such attributes are in accordance with the waveguide theory [32], thus suggesting 

success and a trustworthy degree of accuracy in the performance of the WIT algorithm. 

We run a second instance of the WIT algorithm in a simulated noise field called 

Case B. A source with a center frequency of 800 Hz, a +/-10 Hz bandwidth and 

located at the same depth as the AUV forms Case B’s directional noise field. Although 
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Figure 6-9: Beam intensity output in absolute heading: Case A. The peaks are due to the 

directional noise field created for Case A. 
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almost identical to the source in Case A, the source in Case B has a significantly 

lower pressure level; and therefore, the resulting horizontal noise directionality 

estimation has lower maximum noise levels with respect to the noise floor than in 

Case A. Figure 6-12 shows the horizontal noise directionality estimate for Case B, 

and Figure 6-13 shows the “zeroed” noise field with a reduced dynamic range. In 

Figure 6-13, it is evident that maxima in the noise field in Case B exceed the noise 

floor by only about 8 dB to 10 dB. Figure 6-13 also shows similar waveguide effects 

on the source’s noise energy as in Case A, further suggesting the reliability and 

accuracy of the WIT algorithm. 

A narrowband source as in Case A, but with a slightly lower pressure level, 

creates the simulated noise field in Case C. Additionally, the source is located 2000 

m south of the loiter point instead of 1000 m.  The increased distance enhances the 

effects of spreading, attenuation, and other waveguide physics on the source’s 

noise energy. Figure 6-14 shows the horizontal noise directionality estimate of 

Case C, and Figure 6-15 shows the “zeroed” noise field. The results for Case C 

demonstrate that with a source at a greater distance, the noise field becomes more 

narrowly directional, with less noise leakage to the northern azimuths. There is, 

however, greater loss in sound pressure levels, which is expected due to the 

greater travel distance. 

A broadband source creates the final simulated noise field, called Case D. 

The source in Case D is located 1000 m due south of the loiter point at the same 

depth as the AUV with a noise level equal to the source in Case C; and it had a 

center frequency of 890 Hz with a +/-50 Hz bandwidth. Figure 6-16 shows the 

horizontal noise directionality estimate for Case D, and Figure 6-17 shows the 

same estimate with a reduced dynamic range. The broadband source generates a 

noise directionality with a wider noise energy distribution than with a narrowband 

source. Additionally, the noise levels are relatively higher: even though the source 

in Case D has a lower pressure level than in Case A, noise field’s maxima are 

nearly the same as or greater than those in Case A. Along the same lines, the 

broadband source also generates more leakage into the northern azimuths and 

visibly undergoes more spreading. 
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Figure 6-10: Estimated horizontal noise directionality: Case A. Note the higher noise 

levels in the southern azimuths due to the narrowband source located 1000 m due south 

of the AUV’s central loitering coordinates.  
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Figure 6-11: Estimated horizontal noise directionality: Case A with reduced dynamic 

range. 
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Figure 6-12: Estimated horizontal noise directionality: Case B. 
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Figure 6-13: Estimated horizontal noise directionality: Case B with reduced dynamic 

range. 
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Figure 6-14: Estimated horizontal noise directionality: Case C 
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Figure 6-15: Estimated horizontal noise directionality: Case C with reduced dynamic 

range. 
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Figure 6-16: Estimated horizontal noise directionality: Case D 
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Figure 6-17: Estimated horizontal noise directionality: Case D with reduced dynamic 

range. 
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6.2 Optimal towed array heading 

 

When detecting and tracking targets, one of the major goals is to maximize the ratio of 

target noise to ambient noise in a particular look direction. In order to aid in this, the 

orientation of the sonar array with respect to the target should be such that the DL is 

minimized. Keeping in mind the definition of MDL, the objective is to therefore determine 

the greatest possible DI in the target’s direction by changing the heading orientation of 

the array, with the constraint of avoiding forward or aft endfire.  

The MATLAB code in Appendix B.4 computes the set of DIs of the array for 

every possible array orientation, using the estimated noise directionalities from Case A, 

Case B, Case C, and Case D. When a noise field is isotropic, the DI is the same for all 

array orientations. With the anisotropic noise fields, however, the DIs vary based on the 

array’s orientation, and it is this property that we exploit. Figure 6-18 depicts the DIs for 

various array headings in Case A’s horizontal noise directionality. Disregarding the 

peaks in DI generated by the endfire beams, Figure 6-18 reveals that different towed  
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Figure 6-18: DI vs. azimuth for various towed array headings: Case A. The sudden 

peaks correspond to endfire beams and are not considered when determining the 

optimal towed array heading. 
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array headings yield DIs that are clearly greater in specific azimuthal look directions. For 

instance, for a look direction of 90 degrees, an array heading of 45 degrees (dashed 

line) clearly provides the best DI. Furthermore, this DI maximum does not correspond to 

a broadside beam, but actually to the fifth beam back from forward endfire.  

  Figure 6-19 shows the DIs for various array headings in the noise directionality 

estimated in Case B. While the DIs from different array headings still vary among each 

other, the differences are less pronounced than they are in Case A. Figure 6-20 shows 

the DIs for various array headings in the noise field estimated in Case C. The results 

have characteristics that fall between those from Case A and Case B: Case C shows 

greater ranges between the DIs than Case B does, but smaller ranges than Case A. The 

DIs corresponding to Case D, however, show nearly as much variation as those in Case 

A, as depicted in Figure 6-21. We can trace the slightly smaller variations in Case D 

back to the smaller variations in the actual noise directionality estimate for Case D; 

although the horizontal noise directionality has greater maxima in Case D, the noise 

leakage and spreading is also greater.    
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Figure 6-19: DI vs. azimuth for various towed array headings: Case B 
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Figure 6-20: DI vs. azimuth for various towed array headings: Case C 

 

  5   10   15   20   25

30

210

60

240

90270

120

300

150

330

180

0

 

 

Array Gain for Various Array Headings
.                                    
.                                    

Array Gain (dB)

0 deg

45 deg

90 deg

135 deg

 
Figure 6-21: DI vs. azimuth for various towed array headings: Case D 
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Chapter 7 

Discussion  
 

 

Ultimately, the results of the simulation-based experiments presented in this thesis are 

promising: the WIT algorithm produces reliable estimates of horizontal noise 

directionality, and the optimal towed array heading improves target tracking capabilities; 

and both the noise directionality and the optimal towed array heading are determined 

quickly enough to be useful during real-time operation. The level of advantage that 

tracking a target via the optimal towed array heading method provides varies with the 

environment, however, and is an important consideration. A more in depth evaluation 

follows. 

 

7.1 Effectiveness of noise directionality estimation 

 

As expressed in the 1997 review by [33], many acousticians agree that the WIT 

algorithm is a reliable method for estimating the pseudo-stationary ambient noise field. 

The successful noise directionality estimates we obtain using the WIT algorithm in the 

simulator confirm the opinions in [33]. Each of the estimates correctly reflects acoustic 

propagation theory in its noise energy spread resulting from the source in its simulated 

noise field. The extensive studies on waveguide physics in [32] also help verify the 

accuracy with which the WIT algorithm estimates the noise directionality in the five 

distinct cases. 
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 Cases A, B, C, and D all have sources generating noise levels that essentially 

create a simulated anisotropic noise field. The different source characteristics provide 

grounds for comparison that help determine whether or not the WIT algorithm 

satisfactorily estimates the directional noise fields for later use to determine an optimal 

towed array heading. The final noise field estimates successfully reflect the variable 

source noise levels in each of the anisotropic cases, thus validating the WIT algorithm’s 

noise sensitivity: for instance, Case B has the weakest source, and as expected, its 

noise field’s directionality is the least exaggerated. Additionally, the results also show 

evidence of the different frequencies that generate the noise fields. Although the source 

level in Case D is lower than in Case A, the fact that it is a broadband source creates 

noise levels above the noise floor that are practically equal to those in Case A, in part 

due to lower attenuation effects over a larger frequency spread. Along the same lines, 

Case D shows more varied noise energy distribution, again evidence that it is a 

broadband source that is creating the noise field. Finally, Case C, in which the source is 

farthest away from the AUV’s central loitering coordinates, predictably shows the least 

amount of noise “leakage” into the northern azimuths.    

The review in [33] utilizes a polygon with eight sides—instead of the six used in 

the PLUSNet operations—for the “loiter pattern,” which may affect the quality of the 

results. Most likely, assuming navigational accuracy, a noise directionality estimate using 

an eight-sided polygon is more accurate than an estimate using a six-sided polygon. 

However, the version of the WIT algorithm reviewed in [33] is the older two-dimensional 

one; and therefore, a degree of superior performance can be attributed to the results in 

this thesis because the three-dimensional WIT algorithm considers the entire noise field 

in order to obtain more accurate results.   

Nevertheless, the findings in this thesis collectively help us conclude that the WIT 

algorithm generates sufficiently accurate noise directionality estimates for the ultimate 

goal of determining an optimal towed array heading. Furthermore, the WIT algorithm 

proves to be a practical and reliable method with which to create an autonomous 

behavior for an AUV within a network such as PLUSNet.  
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7.2 Effectiveness of determining optimal towed array 

heading 

 

Figures 7-1, 7-2, 7-3, and 7-4 are schematics using Case A’s noise directionality 

estimate that intuitively and qualitatively demonstrate the advantage that an optimal 

towed array heading orientation provides with respect to maximizing the DI (or 

minimizing the DL).  

Figure 7-1 shows the classical target tracking technique in which the target 

remains within the sights of the broadside beam for maximum angular resolution and for 

maximum DI when in an isotropic noise field. It is evident when studying the figure, 

however, that keeping the target at broadside in this particular noise field is far from 

desirable, as the ambiguous beam “sees” high noise levels. This noise may threaten to 

mask the target noise, and ultimately, may cause the tracking system to perform in a 

substandard manner or even fail. For a direct comparison, Figure 7-2 shows the same 

target location scenario, but this time the AUV tracks the target employing the optimal 

towed array heading method. In this case, the sonar array’s ambiguous beam “sees” a 

significantly lower noise level, thus producing a desirably high DI for the array in the 

target look direction.  Figures 7-3 and 7-4 are other target location scenarios in which the 

optimal towed array heading method is applied. In both of these cases, the ambiguous 

beam receives lower noise levels, and subsequently, the systems’ DIs increase.  

Evaluating each of the four anisotropic cases reveals more about the utility of a 

behavior that determines an optimal towed array heading for an AUV tracking a target 

within a network of autonomous vehicles. In Case A, the difference between the optimal 

towed array heading’s DI and the broadside DI tends to be most significant in the look 

directions with lower noise (Table I), which in this case is roughly north. This pattern is 

consistent with the findings in [9]. The pattern holds true for Cases B, C, and D as well 

(Tables II, III, IV). Such findings suggest that perhaps the technique of finding the 

optimal towed array heading is most effective in a noise field with a more significant 

difference between its maximum and minimum levels. For instance, Case A provides a 

noise field in which the difference between the maximum and noise floor levels is about 

20 dB. In Case A, the largest difference between the optimal and the broadside DI is 



 62

9.0338 dB (Table I), which is potentially significant advantage for target tracking. The 

minimum difference in Case A, however, is on the order of 0.01 dB, demonstrating that 

the technique does not always provide staggering improvements over the conventional 

broadside beam detection and tracking techniques.  

Case B—the simulated noise field generated by the weakest source—further 

emphasizes the futility of applying this algorithm without a noticeably directional noise 

field. Case B’s maximum DI advantage over the broadside DI is only 2.2301 dB (Table 

II), as compared to the maximum advantages in Cases A, C, and D. With results as 

subtle as those from Case B, it is questionable whether or not conducting this algorithm 

in real-time is worthwhile in environments without prominent directional properties. 

Cases C and D are more promising, with maximum advantages over the broadside DI of 

6.4792 dB and 8.2858 dB, respectively. The lower maximum advantage in Case C is 

easily predictable since the noise directionality field is less exaggerated than Case A’s. It 

is interesting to note, however, the value of the maximum DI advantage in Case D: the 

source level generating the noise field in Case D is 10 dB lower than in Case A, but the 

DI results show values quite close to that of Case A. A broadband source apparently 

improves the performance of the method. 

 Programming a behavior that autonomously determines an optimal towed array 

heading in real-time onboard an AUV is most certainly worthwhile. The degree of 

anisotropy must be considered, however, when assessing the effectiveness of the 

method: the more directional the noise field is, the more advantage this tracking method 

will provide, and vice versa. In addition, the method may be responsible for a loss in 

angular resolution. With a conventional beamformer, the broadside beam possesses the 

highest angular resolution, as it is the narrowest beam [17]. When an optimal towed 

array heading places the target in any beam’s sight other than broadside, a loss of 

angular resolution occurs. Depending on the desired target tracking applications, such a 

consequence may or may not matter; it is up to the user to decide.  
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TABLE I 
Optimal towed array heading data: Case A 

Target 
Bearing  
(Abs Deg) 

Beamno 
with  
Max DI 

Optimal  
Tow Heading  
(Abs Deg) 

Beamno 
with  
Min DI 

Max DI  
minus 
Broadside DI 

0 26 156/336 14 9.0338 

45 25 196/16 19 7.0153 

90 6 37/217 24 2.3954 

135 16 235/55 26 0.3661 

180 9 111/291 26 0.8467 

225 8 289/109 26 0.6301 

270 16 172/352 25 0.0472 

315 26 159/339 19 4.2278 

Note that the maximum advantage over broadside is 9.0338 dB. 

 
TABLE II 

Optimal towed array heading data: Case B 

Target 
Bearing 
(Abs Deg) 

Beamno  
with  
Max DI 

Optimal  
Tow Heading  
(Abs Deg) 

Beamno  
with  
Min DI 

Max DI  
minus 
Broadside DI 

0 2 26/206 14 2.2301 

45 3 16/196 18 1.8834 

90 7 32/212 24 0.4740 

135 11 57/237 26 0.2580 

180 10 253/73 26 0.6777 

225 9 294/114 25 0.5245 

270 15 176/356 25 0.0669 

315 26 159/339 19 0.6686 

Note that the maximum advantage over broadside is 2.2301 dB. 
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TABLE III 
Optimal towed array heading data: Case C 

Target 
Bearing 
(Abs Deg) 

Beamno  
with  
Max DI 

Optimal  
Tow Heading 
(Abs Deg) 

Beamno  
with  
Min DI 

Max DI  
minus 
Broadside DI 

0 26 155/235 15 6.4792 

45 2 18/198 21 4.7355 

90 6 38/218 25 1.8355 

135 10 208/28 26 0.4120 

180 8 116/296 26 1.1939 

225 8 290/110 26 0.7315 

270 12 190/10 23 0.3031 

315 26 159/239 18 2.6529 

Note that the maximum advantage over broadside is 6.4792 dB. 

 
TABLE IV 

Optimal towed array heading data: Case D 

Target 
Bearing 
(Abs Deg) 

Beamno  
with  
Max DI 

Optimal  
Tow Heading 
(Abs Deg) 

Beamno  
with  
Min DI 

Max DI  
minus 
Broadside DI 

0 26 156 15 8.2858 

45 3 16 21 6.9493 

90 6 36 24 2.8662 

135 11 213 26 0.6031 

180 9 113 26 1.3185 

225 6 276 26 1.0498 

270 12 189 23 0.2083 

315 26 159 18 4.8867 

Note that the maximum advantage over broadside is 8.2858 dB. 
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Figure 7-1: Target tracking using broadside beam. The rectangular bar in the middle 

represents a towed array. Note the high noise level at 180 degrees that the ambiguous 

beam will detect. This noise may threaten to mask the target while tracking. 
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Figure 7-2: Target tracking using optimal towed array heading: Target at 0 degrees. In 

this scenario, the target is in the same location as in Figure 7-1, but the optimal towed 

array heading is 156 degrees, putting the target in the sight of the 26th beam. With this 

orientation, the ambiguous beam sees a much lower noise level, allowing the target 

noise to stand out more prominently. 
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Figure 7-3: Target tracking using optimal tow heading: Target at 90 degrees. The optimal 

towed array heading in this scenario is 37 degrees, putting the target in sight of the sixth 

beam. The ambiguous beam sees very low noise levels. 
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Figure 7-4: Target tracking using optimal tow heading: Target at 45 degrees. The optimal 

towed array heading in this scenario is 196 degrees, putting the target in sight of the 25th 

beam. The ambiguous beam sees very low noise levels. 
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7.3 Theoretical versus practical application 

 

Successful implementation of either the WIT algorithm or determining an optimal towed 

array heading in a full scale experiment is most certainly not far off for a fleet of AUVs. It 

is important, however, to note that these algorithms may not always be of practical use. 

Principally, an evaluation of the operational environment is vital: there exist sites, such 

as some parts of the Norwegian Sea, which do not have stable horizontal noise 

directionalities. The instabilities may be due to transient fishing fleets or poor 

propagation conditions in the presence of both nearby and distant shipping lanes [33]. If 

the directional sources are transient with respect to the time required to estimate the 

noise directionality as well as the duration of the planned experiment, then those 

sources may not adversely affect the use of either algorithm. If, however, the directional 

sources have similar time scales with respect to the time required to estimate the noise 

directionality or the duration of the planned experiment, then the utility of both algorithms 

may be compromised. Such environments require knowledge of each and every 

foreground ship position and source level in order to conduct successful experiments 

similar to the ones described in this thesis. Barring this particular or any comparable type 

of environment, an AUV can successfully include the WIT algorithm and the optimal 

towed array heading method in its behavior suite.   

Another aspect to consider when evaluating the practicality of these algorithms in 

live experiments is that the WIT algorithm ideally calls for continuous data from a closed-

circuit path, namely, anything that approaches the perfect shape: a circle. In this thesis, 

the Loiter behavior pattern is a hexagon, and the heading of the array throughout the 

algorithm is approximated as the average heading while on each leg of the hexagon. In 

essence, the hexagon is an approximation for the circle. Perhaps, approximating the 

circle with a polygon greater than six sides would produce more detailed results. On the 

other hand, increasing the number of sides in the Loiter pattern might decrease the 

navigational accuracy. Furthermore, the array might never be straight enough with more 

waypoints to produce usable, undistorted data without greatly increasing the size of the 

polygon. The increase in waypoints might also reduce the AUV’s consistent ability to hit 

each waypoint, which is already a slight concern as current, wind, and other weather 

factors unpredictably affect the environment. It is difficult to say without live 
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experimentation what the optimal Loiter pattern shape is when considering what is best 

for the WIT algorithm in conjunction with what is best for the AUV’s other missions and 

the performance capabilities of the AUV. 

Yet another factor affecting the application of the algorithms in a live environment 

is that the equipment on the physical (versus virtual) array offers the following sensor 

information: heading of the first and last hydrophone, as well as the depths of the first 

and last hydrophones. This is significantly less information than is available in the 

simulator, which offers x-, y-, and z-coordinates for each and every hydrophone. In the 

simulator, therefore, the shape of the array is easily and reliably determined. If the array 

is too curved or significantly tilted, the data can be discarded. In real-time, however, the 

limited array position information may complicate the assessment of whether the array is 

straight enough for the data to be usable. 

The findings produced by running the WIT algorithm and the optimal towed array 

heading method are conclusive enough to confidently implement the algorithms as 

behaviors on an AUV. The behaviors may require slight alterations for use in live 

environments, but the theoretical basis and the robustness of each behavior is sound. 

Based on the excellent results of the simulations conducted for this thesis, and barring 

any unforeseen problems, effectuation of both algorithms on an AUV will improve target 

tracking in directional noise fields.    
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Chapter 8 

Conclusions and Recommendations 
 

In all simulated anisotropic noise fields, the AUV successfully calculates the optimal 

towed array headings based on the real-time estimations of the horizontal noise 

directionalities. A clear advantage over the conventional broadside beam tracking 

method is revealed, with some limitations due predominately to the noise field itself. 

Such behaviors can indeed be usefully applied to an AUV surveillance fleet. More testing 

of the method will reveal the best way in which to implement the theory in a live 

application. For instance, it may be more helpful to determine an optimal sector for 

towing the array instead of a single optimal heading to minimize the MDL.  

There are several other options that deserve future exploration. Chiefly, use of a 

Vector Sensor Array (VSA) would certainly eliminate some of the constraints that the 

WIT algorithm presents due to the use of a standard hydrophone array. Namely, 

implementation of a VSA eliminates the need for resolving left-right ambiguity since the 

VSA inherently has the capability to do so [34,35]. Another consideration that might 

prove to be useful would be to utilize the three-dimensional noise directionality 

estimation in its entirety. In this thesis, we only consider the horizontal noise 

directionality, although the full three-dimensional noise directionality is available. 

Perhaps giving more consideration to vertical noise field levels would enhance the 

success of the AUV’s ability to detect and track a target.  

This thesis ultimately demonstrates that the WIT algorithm provides a reliable 

way for an AUV towing a horizontal line array to estimate the noise directionality, and 
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based on the estimate, the AUV can determine an optimal towed array heading to 

improve target tracking. The findings of the optimal towed array heading method show a 

clear advantage over broadside beam target tracking in terms of minimizing the DL. In 

order to learn the full advantages that such a behavior may provide in live experiments, it 

will be necessary to provide scenarios to test the behavior and compare its tracking 

performance to its broadside beam counterpart.  
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Appendix A: Simulation Environment 

 
The PLUSNet simulator combines acoustic modeling, platform dynamics, and network 

communication and control. Before executing a live experiment, we link the physics-

based simulations to sensor simulations to help plan and analyze the actual 

oceanographic experiments. The simulated environment contains as many features as 

possible in order to emulate a live environment such as a propagation model, sound-

speed profile, bottom parameters, and bathymetry. Platforms are also simulated by 

modeling sensors on vehicles, vehicle dynamics, sonar array dynamics and capabilities, 

target location, and target characteristics. Experimental simulated results can include 

transmitted signals, received signals, detection and classification of targets, transmission 

loss, scattering, vehicle direction, vehicle velocity, etc. 

The simulator used for PLUSNet experiments utilizes a comprehensive sonar 

simulation toolbox which ties together a wide array of acoustic models, including 

acoustic propagation models, target scattering, ambient noise, and reverberation. This 

toolbox is called Synthetic Environment Acoustics Laboratory (SEALAB) ocean 

acoustics modeling and simulation [1].  

The propagation model used in the simulator is based on SACLANTCEN Normal 

Mode Acoustic Propagation Model (SNAP) [2], which is a normal mode propagation 

model developed at SACLANT Undersea Research Center. SNAP is designed to give a 

realistic treatment of the ocean environment, including arbitrary sound-speed profiles in 

both water column and bottom, compressional and shear wave attenuation, scattering at 

rough boundaries, and range dependence. A newer version of SNAP, called Coupled 

SACLANTCEN Normal Mode Acoustic Propagation Model (C-SNAP) [3], combined with 

exact Fourier decomposition of the azimuthal dependence of the scattered field, enables 

high-fidelity modeling of three-dimensional propagation in shallow water with complex 

bathymetry [4]. C-SNAP has been modified for implementation on UNIX platforms by 

Schmidt. 

 The simulation environment utilizes a version of the Kuperman-Ingenito noise 

model for the ambient noise [5,6]. The Kuperman-Ingenito noise model provides a wave 
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theory treatment of noise propagation in terms of continuous and discrete modes of the 

propagation channel. The original model [5] is valid only in range independent 

applications; however, the updated model presented in [6] includes range dependent 

propagation. 

The SEALAB acoustic simulation framework is linked with a real-time MOOS 

simulator, generating element-level time series using Green’s functions using the 

environmental model, C-SNAP. 
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Appendix B: MATLAB Code 

 
Following is the MATLAB code used to (1) generate the three-dimensional beampattern 

responses, (2) record the necessary beam outputs due to a simulated noise field, (3) 

process the data using the WIT algorithm; and, in turn, apply the results of the WIT 

algorithm to (4) find an optimal towed array heading for tracking a target. Each of these 

four sections are presented separately, accompanied by a description of how each step 

is accomplished.  

While MATLAB is sufficiently efficient in a simulation environment, it is not 

powerful enough for use in real-time with limited computational power. Lower level 

languages, such as C++, are much more efficient; and so transforming the MATLAB 

code in B.1, B.2, B.3, and B.4 into a lower level language is ideal for live applications. 

 

B.1  Calculating beampatterns in spherical coordinates 

 
This segment of MATLAB code does the following: 

 

1. Defines the number of hydrophones on the sonar array, the distance between them, 

and the number of beams for the beamformer. 

 

2. Defines the desired frequency range. 

 

3. Defines the particular beam being formed and calculates it using a conventional 

beamforming algorithm in conical angle. 

 

4. Relates conical angle to spherical coordinates. 
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5. Maps the beampattern values in conical angle to their corresponding locations in 

spherical coordinates, creating a three-dimensional beam pattern response. This step is 

broken down into two separate for  loops for computational efficiency. 

 

6. Normalizes and plots the beampatterns in the visible spectrum. 

 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Maria Parra-Orlandoni  
% Beam Response Pattern in Spherical Coordinates  
% Conventional beamformer for DURIP Array  
% Based on MB06 data  
% 2007  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 
clear all; close all;  

 
% azimuth - CW from x-axis (towards y-axis) 
theta = 0:pi/180:2*pi - pi/180;     
% vertical - up from horizontal  
phi = -pi + pi/180:pi/180:pi;        

 
H = 13;                      % # hydrophone elements  
I = 27;                      % # beams  
%I = def_beams;               % # beams defined in pBearings  

 
% if d > lambda, grating lobes appear in visible region  
d = 0.75;                  % distance between 1 kHz hydrophones (m)  
% d = 1.5;                    % distance between 500 Hz hydrophones (m)  

 
c = 1480;                  % average soundspeed, m/s  

 
% beam "1" = front endfire; beam "-1" = aft endfire  
u_T = linspace(1,-1,I);  
theta_T = acos(u_T);  

 
% tilt angle measured from x-axis in deg  
tilt = 0*pi/180;  

 
% position vector: assume COG of array is center, so sum(Pn) = 0  
h = 0:H - 1;  
Ph = (h - (H - 1)/2)*d;   % [1 x H]  

 
% def_centerfreq = 896;  
% def_bandwidth = 192;  
% bin_size = def_samplerate/def_fftlength;  
bin_size = 1;                % approximated beamsize  
f = 810:bin_size:982;        % Hz  
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% initialize values  
lambda = 0;  
k = zeros(1,360);  
v = zeros(H,360);  
k_T = zeros(1,I);  
v_T = zeros(H,I);  
w = zeros(H,I);  
B = zeros(I,360);  
C = zeros(360);  
r_a = zeros(360,360,180);  
r_b = zeros(360,360,180);  
b_a = zeros(360,360);  
b_b = zeros(360,360);  
b_temp = zeros(360,360,60);  
b = zeros(360);  

 
% beamnumber being calculated (1 through 27)  
bn = 14;                     

 
for kk = 1:length(f)  

 
lambda = c/f(kk);                   % wavelength      
k = -(2*pi/lambda)*cos(theta);      % wavenumber  

 
% manifold vector  
v = exp(j*(Ph'*k));                 % [H x 720]  

 
% steering  
for q = 1:I  

 
% target wavenumber  
k_T(q) = -(2*pi/lambda)*u_T(q);  
v_T(:,q) = exp(j*Ph'*k_T(q));    % [H x N]  
w = (1/H)*v_T;                   % [H x N]  

 
end  

 
% visible region: 0 < theta < pi  
B = w'*v;  

 
% Relation between conical and spherical coordinates  
for ii = 1:length(theta)  

for jj = 1:length(phi)  
 

C(ii,jj) = acos(cos(theta(ii))*cos(phi(jj))*cos(tilt) 
+sin(acos(cos(theta(ii))*cos(phi(jj))))*sin(tilt)*...  
sin(atan(sin(phi(ii))/cos(phi(ii))*sin(theta(ii)))));  

 
end  

end  
 

C = round(C*100)/100;  
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theta = round(theta*100)/100;  
phi = round(phi*100)/100;  

 
% find location of conical angles in spherical coordinate map  
% break up into 2 "for" loops to speed up computation  
for ii = 1:180  

 
% locate theta = C (1 matrix per theta value); multiply by 
% B at theta 
r_a(:,:,ii) = eq(theta(ii),C)*B(bn,ii);  
b_a = b_a + r_a(:,:,ii);  

 
end  

 
for ii = 1:180  

 
% locate theta = C (1 matrix per theta value); multiply by 
% B at theta 
r_b(:,:,ii) = eq(theta(ii + 180),C)*B(bn,ii + 180);  
b_b = b_b + r_b(:,:,ii);  

 
end  

 
b_temp(:,:,kk) = b_a + b_b;                     
b = b + b_old(:,:,kk);  

 
end  

 
% normalize and save only visible space  
b14 = b/max(max(b));  
b14 = b14(91:270,:);  
save b14  

 
figure(100)  
imagesc(theta,phi(91:270),abs(b14))  
colorbar  
xlabel('\theta (rad)'); ylabel('\phi (rad)');  
title({'Beampattern in Spherical Coordinates'; ['Beam # ',num2str(bn)]; 
['Tilt = ',num2str(tilt),' rad']});  
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B.2 Obtaining Data for Noise Directionality Estimation 

 
This segment of MALTAB code is merely an extension of small_uVis.m , written by Dr. 

Henrik Schmidt. The new additions to the small_uVis.m  code do the following: 

 

1. Call on the necessary MOOSDB variables. 

 

2. Loads the stored library of three-dimensional beam responses. 

 

3. Creates an iteration count variable (called kk  in the code). 

 

4. Determines whether sonar array has a less than 5 degree pitch. Also determines 

whether array is straight enough based on the standard deviation of hydrophone 

positions. 

 

5. Records published BTR data and records headings for each segment of loiter pattern 

hexagon. Each segment is delineated by variable Hits . 

 

6. Averages the headings for each segment of the loiter pattern hexagon. 

 

7. Separates the BTR data accordingly for each of the loiter pattern hexagon’s 

segments. 

 

8. Averages the BTR data over time.  

 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Henrik Schmidt, with additions written by Maria Parra-Orlandoni  
% Record data for estimation of horizontal noise directionality  
% Based on MB06 data  
% 2007  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
 
clear all;  
  
iMatlab('INIT','MOOSNAME','noise_dir','CONFIG_FILE','NoiseDir.moos')  
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iMatlab('MOOS_PAUSE',0.1);  
 
% MINUS'07 box  
xbmin = -500; xbmax = 4500;  
ybmin = -500; ybmax = 4500;  
  
v_id = NaN;  
node = 'Unknown';  
  
x = NaN;  
y = NaN;  
z = NaN;  
target_x = NaN;  
target_y = NaN;  
target_heading = NaN;  
target_speed = NaN;  
  
target_xpos = NaN;  
target_ypos = NaN;  
xb = NaN;  
yb = NaN;  
xo = NaN;  
yo = NaN;  
xp = NaN;  
yp = NaN;  
zp = NaN;  
bstate = NaN;  
newx = NaN;  
newy = NaN;  
head = NaN;  
rhead = NaN;  
towpX = NaN;  
towpY = NaN;  
towpZ = NaN;  
water_depth = NaN;  
got_arrayX = 0;  
got_arrayY = 0;  
got_arrayZ = 0;  
array_on = 0;  
time_old = 0;  
nhist = 100;  
ihist = 0;  
pstate = '         ';  
btrfile = ' ';  
nbeam = 0;  
nbtr = 0;  
frame = 0;  
mark = 'm.';  
msize = 5;  
newbtr = 0;  
mission_time = 0;  
start_time = 0;  
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frame_time = 0;  
ael_pitch = NaN;  
ael_heading = NaN;  
sample_freq = NaN;  
fft_length = NaN;  
loiter_index = NaN;  
loiter_acquire = NaN;  
target_heading = NaN;  
Hits = 0;  
  
loiter_report = '   ';  
  
II = 27;              % # beams  
JJ = 6;               % # headings - hydrophone array  
H = 13;             % # elements  
  
theta = 0:pi/180:2*pi - pi/180;         % azimuth (360)  
phi = -pi/2 + pi/180:pi/180:pi/2;       % vertical (180)  
c = cos(phi);                           % [1 x 180]  
  
stdX = 0; stdY = 0; stdZ = 0;  
r0 = [];  
r1 = [];  
r2 = [];  
r3 = [];  
r4 = [];  
r5 = [];  
q1 = zeros(II,JJ);  
heading_0 = 0; heading_1 = 0; heading_2 = 0;  
heading_3 = 0; heading_4 = 0; heading_5 = 0;  
h0_avg = 0; h1_avg = 0; h2_avg = 0;  
h3_avg = 0; h4_avg = 0; h5_avg = 0;  
b = [];  
b_int = [];  
rHat = zeros(II,JJ);  
del = zeros(II,JJ);  
b_err = [];  
error = zeros(length(phi),length(theta));  
err = [];  
n_horiz = zeros(1,length(theta));  
  
% noise directionality for ith beam in jth direction  
% discretized along azimuth (row) and vertical angle (column)  
% assume isotropic noise for zeroth iteration (initialization)  
n = ones(length(phi),length(theta));    % [180 x 360]  
  
% load spherical coordinate beampatterns  
load b_0_1KHZ  
  
kk = 0;  
  
mail=iMatlab('MOOS_MAIL_RX');  
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while(1)  
  
    %Keep track of time so we can iterate every .8 s  
    clockTime1 = clock; 
  
    % Extract message content  
    mail = iMatlab('MOOS_MAIL_RX');  
    messages = length(mail);  
  
    if messages == 0  
        continue;  
    end  
  
    for m = 1:messages  
  
        key = mail(m).KEY;  
        val = mail(m).DBL;  
        str = mail(m).STR;  
         
        switch key  
  
            case 'VEHICLE_ID'  
                v_id = floor(val);  
                if (v_id == 3)  
                    node = 'Unicorn';  
                else  
                    if (v_id == 4)  
                        node = 'Macrura';  
                    end  
                    node = 'Unknown';  
                end  
  
  
            case 'NAV_HEADING'  
                head = val;  
  
            case 'NAV_DEPTH'  
                z = val;  
  
            case 'NAV_X'  
                x = val;  
                newx = 1;  
  
            case 'NAV_Y'  
                y = val;  
                newy = 1;  
  
            case 'BATHY_Z'  
                water_depth = -val;  
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            case 'TOW_POS_X'  
                towpX = val;  
                tfl(1) = 1;  
  
            case 'TOW_POS_Y'  
                towpY = val;  
                tfl(2) = 1;  
  
            case 'TOW_POS_Z'  
                towpZ = val;  
                tfl(3) = 1;  
  
            case 'HYDROPHONE_X'  
                ac_arrayX = str;  
                got_arrayX = 1;  
  
            case 'HYDROPHONE_Y'  
                ac_arrayY = str;  
                got_arrayY = 1;  
  
            case 'HYDROPHONE_Z'  
                ac_arrayZ = str;  
                got_arrayZ = 1;  
  
            case 'TARGET_XPOS'  
                target_xpos = val;  
  
            case 'TARGET_YPOS'  
                target_ypos = val;  
  
            case 'TARGET_X'  
                target_x = val;  
  
            case 'TARGET_Y'  
                target_y = val;  
  
            case 'TARGET_HEADING'  
                target_heading = val;  
  
            case 'TARGET_SPEED'  
                target_speed = val;  
  
            case 'BEARING_STAT'  
                bStat = str;  
                bStat = sscanf(bStat,'node=%d,state=%d,bearing=%f,… 

xp=%f,yp=%f,beamno=%d,sigma=%f,time=%f');  
                 

    if(length(bStat) >= 6)  
  
                    Bearing1 = bStat(3);  
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                    Bstate = bStat(2); 
 
                end  
  
            case 'PROSECUTE_STATE'  
                pstate = str;  
  
            case 'AEL_PITCH'  
                ael_pitch = val;  
  
            case 'AEL_HEADING'  
                ael_heading = val;  
  
            case 'SAMPLE_FREQ'  
                sample_freq = val;  
  
            case 'FFT_LENGTH'  
                fft_length = val;  
  
            case 'LOITER_INDEX'  
                loiter_index = val;  
  
            case 'LOITER_ACQUIRE'  
                loiter_acquire = val;  
  
            case 'LOITER_REPORT'  
                loiter_report = str;  
                [Pt Dist Hits NM_Hits AQ_MODE] =  
      strread(loiter_report,...  
                    '%*s %d %*s %f %*s %d %*s %d %*s %s',…  
     'delimiter',':');  
  
            case 'TARGET_HEADING'  
                target_heading = val;  
      
            case 'BTR_DATA'  
                beams=str2num(str)';  
                %'  
                nbeam=length(beams)  
                nbtr=nbtr+1;  
                if (nbtr == 1)  
                    btr = beams;  
                else  
                    btr = [btr beams];  
                end  
                newbtr = 1;  
  
        end %"switch…"  
  
    end %"for m=1:messages..."  
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    gfc = figure(1);  
    if (newx + newy == 2)  
        newx = 0; newy = 0;  
        % set current time  
        moos_time = now;  
        if (start_time == 0)  
            start_time == moos_time;  
        else  
            mission_time = moos_time - start_time  
        end  
  
        % update auv position history  
        if (ihist < nhist)  
            ihist=ihist+1;  
            xhist(ihist) = x;  
            yhist(ihist) = y;  
            zhist(ihist) = z;  
        else  
            xhist(1:nhist-1) = xhist(2:nhist);  
            yhist(1:nhist-1) = yhist(2:nhist);  
            zhist(1:nhist-1) = zhist(2:nhist);  
            xhist(nhist) = x;  
            yhist(nhist) = y;  
            zhist(nhist) = z;  
        end 
 
        % Absolute position of the hydrophones of the towed array  
        if ((got_arrayX + got_arrayY + got_arrayZ) == 3)  
            arrayX = towpX + str2num(ac_arrayX);  
            arrayY = towpY + str2num(ac_arrayY);  
            arrayZ = -towpZ + str2num(ac_arrayZ);  
            xb1 = mean(arrayX);  
            yb1 = mean(arrayY);  
            array_on = 1;  
        else  
            xb1=xp;  
            yb1=yp;  
        end  
  
        %        figure(1);  
        subplot(3,2,[1 3]);  
        plot([xp+5*cos(rhead) xp+100*cos(rhead)],[yp+5*sin(rhead)…  
  yp+100*sin(rhead)],'w');  
        rhead = pi/2-head*pi/180;  
        plot([x+5*cos(rhead) x+100*cos(rhead)],[y+5*sin(rhead)… 
   y+100*sin(rhead)],'k');  
        if (array_on == 1)  
            h = plot(arrayX,arrayY,'b');  
            set(h,'Linewidth',2);  
        end  
        if (bstate > 1)  
            mark = 'r.';  
            h = plot(x,y,mark);  
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            msize = 3;  
            set(h,'MarkerSize',msize);  
            set(h,'Linewidth',2);  
        else  
            if (pstate(1:5) == 'PROSE')  
                mark = 'm.';  
                h = plot(x,y,mark);  
                msize = 3;  
                set(h,'MarkerSize',msize);  
                set(h,'Linewidth',2);  
            else  
                mark = 'm.';  
                h = plot(x,y,mark);  
                msize = 3;  
                set(h,'MarkerSize',msize);  
                set(h,'Linewidth',2);  
            end  
        end  
  
        xlabel('x');  
        ylabel('y');  
        h = title(node);  
        set(h,'FontSize',16);  
        axis([xbmin xbmax ybmin ybmax]);  
        grid on  
        hold on  
        if (bstate == 0)  
            plot(target_xpos, target_ypos, 'co')  
        else  
            plot(target_xpos, target_ypos, 'bo')  
        end  
         

  % Plot target track  
        H = plot(target_x, target_y, 'r.');  
        set(h,'Markersize',20);  
        thv_a = (90.0-target_heading)*pi/180.0;  
        thv_x = target_x+250*target_speed*cos(thv_a);  
        thv_y = target_y+250*target_speed*sin(thv_a);  
        h = plot([target_x thv_x],[target_y thv_y],'r');  
        set(h,'Linewidth',2);  
        h = plot([thv_x thv_x+150*cos(thv_a+160*pi/180)], ...  
            [thv_y thv_y+150*sin(thv_a+160*pi/180)],'r');  
        set(h,'Linewidth',2);  
        h = plot([thv_x thv_x+150*cos(thv_a-160*pi/180)], ...  
            [thv_y thv_y+150*sin(thv_a-160*pi/180)],'r');  
        set(h,'Linewidth',2);  
         
        if (bstate > 1)  
            plot([xo xb],[yo yb],'w');  
            xo = x + (xb - x)*0.05; yo = y + (yb - y)*0.05;  
            bear = (90 - Bearing1)*pi/180;  
            xb = x + 2000*cos(bear);  
            yb = y + 2000*sin(bear);  
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            plot([xo xb],[yo yb],'g');  
        else  
            if (bstate == 0)  
                plot([xo xb],[yo yb],'w');  
            end  
        end  
 

h = text(xbmin + 500,ybmax - 500,['Time = '…   
    num2str(mission_time) 's']); 

        h = text(xbmin + 100,ybmax - 300,datestr(now));  
        set(h,'FontSize',12);  
        set(h,'BackgroundColor','w');  
        drawnow  
  
        %    figure(2)  
        subplot(3,2,[6]);  
        hold off;  
        plot([x-125 x+125],[0 0],'b');  
        hold on  
        h = plot([x-125 x+125],[-water_depth -water_depth],'g');  
        set(h,'Linewidth',2);  
        plot(xhist,-zhist,'m');  
        h = plot(x,-z,mark);  
        set(h,'MarkerSize',20);  
        if (array_on == 1)  
            h = plot([x arrayX(1)],[-z -arrayZ(1)],'b');  
            h = plot(arrayX,-arrayZ,'b');  
            set(h,'Linewidth',3);  
        end  
        h = title(node);  
        set(h,'FontSize',16);  
        h = xlabel('x');  
        set(h,'FontSize',14);  
        h = ylabel('z');  
        set(h,'FontSize',14);  
        axis([ x-125 x+125 -100 10]);  
        grid on  
        drawnow  
  
        subplot(3,2,[5]);  
        hold off;  
        h = plot([x x+20*cos(rhead)],[y y+20*sin(rhead)],'k');  
        set(h,'Linewidth',2);  
        hold on  
        plot(xhist,yhist,'m');  
        h = plot(x,y,mark);  
        set(h,'MarkerSize',20);  
        if (array_on == 1)  
            h = plot(arrayX,arrayY,'b');  
            set(h,'Linewidth',3);  
            h = plot([x arrayX(1)],[y arrayY(1)],'b');  
        end  
        if (bstate > 1)  
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            bear = (90-Bearing1)*pi/180;  
            xb2 = xb1+100*cos(bear);  
            yb2 = yb1+100*sin(bear);  
            plot([xb1 xb2],[yb1 yb2],'g');  
        end  
        h = title(node);  
        set(h,'FontSize',16);  
        h = xlabel('x');  
        set(h,'FontSize',14);  
        h = ylabel('y');  
        set(h,'FontSize',14);  
        axis([ x-125 x+125 y-125 y+125]);  
        axis equal;  
        grid on  
        drawnow  
  
        xp = x; yp = y; zp = z;  
  
    end %"if newx+newy..."  
  
    if (nbtr > 0 & newbtr == 1)  
        %     figure(3)  
        subplot(3,2,[2 4]);  
  
        nrows = min(100,nbtr);  
        bmno = [1:nbeam];  
        abhm = acos(1.0-(bmno-1)/(nbeam-1)*2.0)*180.0/pi;  
        db = zeros(nbeam,100);  
        for ii = 1:nbeam  
            for jj = 1:100  
                db(ii,jj) = NaN;  
            end  
        end  
        if (nbtr > nrows)  
            btrno = [nbtr-nrows+1:nbtr]';  
            %'  
            db = dbp(btr(:,nbtr-nrows+1:nbtr));  
        else  
            btrno = [nbtr-100+1:nbtr]';  
            %'  
            db(:,100-nrows+1:100)=dbp(btr(:,nbtr-nrows+1:nbtr));  
        end  
        wavei(db',abhm,btrno);  
        %'  
        shading('interp');  
        axis ij;  
        h = xlabel('Bearing (deg)');  
        set(h,'Fontsize',14);  
        h = ylabel('Frame');  
        set(h,'Fontsize',14);  
        drawnow;  
  
        % make movies  
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        frame = frame+1;  
        M = getframe(gfc);  
        eval(['save frame_' num2str(frame) ' M']);  
        newbtr = 0;  
        frame_time = mission_time;  
    else  
        if ((nbtr == 0 & mission_time-frame_time)>= 4)  
            frame = frame+1;  
            M = getframe(gfc);  
            eval(['save frame_' num2str(frame) ' M']);  
            newbtr = 0;  
            frame_time = mission_time;  
        end  
  
    end %"if (nbtr > 0...)"  
  
    %------------------------------------------------------------------  
    % Noise Directionality Estimation: Obtain Necessary Data  
    %------------------------------------------------------------------  
    % measured beam response [i x j] from BTR files (relative heading)  
    % bmno --> beam number  
    % btrno --> file number  
    % db --> output in dB  
  
    % start recording AFTER 1st point  
    % stop recording after j = 6 different headings  
  
    if loiter_acquire == 0  
  
        % record if tilt <= 5 deg  
        if (Hits == 2) && (abs(ael_pitch) <= 5)  
  
            % Absolute position of the hydrophones of the towed array  
            % back from tow point  

arrayX = towpX + str2num(ac_arrayX);                 
% left/right of tow point  
arrayY = towpY + str2num(ac_arrayY);     
% up/down from tow point             
arrayZ = -towpZ + str2num(ac_arrayZ);    

  
            % standard deviation of hydrophone positions  
            detX = detrend(arrayX);  
            stdX = std(detX);  
            detY = detrend(arrayY);  
            stdY = std(detY);  
            stdZ = std(arrayZ);  
  
            % record only when array is straight-ish  
            if (stdY < 1) && (stdZ < 1)  
  
                % BTR file in dB  
                r0 = btr;  
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                heading_0(kk) = ael_heading;  
  
            end  
  
            sr0 = size(r0)  
  
        elseif (Hits == 3) && (abs(ael_pitch) <= 5)  
  
            % Absolute position of the hydrophones of the towed array  
            arrayX = towpX + str2num(ac_arrayX);  
            arrayY = towpY + str2num(ac_arrayY);  
            arrayZ = -towpZ + str2num(ac_arrayZ);  
  
            % standard deviation of hydrophone positions  
            detX = detrend(arrayX);  
            stdX = std(detX);  
            detY = detrend(arrayY);  
            stdY = std(detY);  
            stdZ = std(arrayZ);  
  
            if (stdY < 1) && (stdZ < 1)  
  
                % BTR file in dB  
                r1 = btr;  
                heading_1(kk) = ael_heading;  
  
            end  
  
            sr1 = size(r1)  
  
        elseif (Hits == 4) && (abs(ael_pitch) <= 5)  
  
            % Absolute position of the hydrophones of the towed array  
            arrayX = towpX + str2num(ac_arrayX);  
            arrayY = towpY + str2num(ac_arrayY);  
            arrayZ = -towpZ + str2num(ac_arrayZ);  
  
            % standard deviation of hydrophone positions  
            detX = detrend(arrayX);  
            stdX = std(detX);  
            detY = detrend(arrayY);  
            stdY = std(detY);  
            stdZ = std(arrayZ);  
  
            if (stdY < 1) && (stdZ < 1)  
  
                % BTR file in dB  
                r2 = btr;  
                heading_2(kk) = ael_heading;  
  
            end  
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            sr2 = size(r2)  
  
        elseif (Hits == 5) && (abs(ael_pitch) <= 5)  
  
            % Absolute position of the hydrophones of the towed array  
            arrayX = towpX + str2num(ac_arrayX);  
            arrayY = towpY + str2num(ac_arrayY);  
            arrayZ = -towpZ + str2num(ac_arrayZ);  
  
            % standard deviation of hydrophone positions  
            detX = detrend(arrayX);  
            stdX = std(detX);  
            detY = detrend(arrayY);  
            stdY = std(detY);  
            stdZ = std(arrayZ);  
  
            if (stdY < 1) && (stdZ < 1)  
  
                % BTR file in dB  
                r3 = btr;  
                heading_3(kk) = ael_heading;  
  
            end  
  
            sr3 = size(r3)  
  
        elseif (Hits == 6) && (abs(ael_pitch) <= 5)  
  
            % Absolute position of the hydrophones of the towed array  
            arrayX = towpX + str2num(ac_arrayX);  
            arrayY = towpY + str2num(ac_arrayY);  
            arrayZ = -towpZ + str2num(ac_arrayZ);  
  
            % standard deviation of hydrophone positions  
            detX = detrend(arrayX);  
            stdX = std(detX);  
            detY = detrend(arrayY);  
            stdY = std(detY);  
            stdZ = std(arrayZ);  
  
            if (stdY < 1) && (stdZ < 1)  
  
                % BTR file in dB  
                r4 = btr;  
                heading_4(kk) = ael_heading;  
  
            end  
  
            sr4 = size(r4)  
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        elseif (Hits == 7) && (abs(ael_pitch) <= 5)  
  
            % Absolute position of the hydrophones of the towed array  
            arrayX = towpX + str2num(ac_arrayX);  
            arrayY = towpY + str2num(ac_arrayY);  
            arrayZ = -towpZ + str2num(ac_arrayZ);  
  
            % standard deviation of hydrophone positions  
            detX = detrend(arrayX);  
            stdX = std(detX);  
            detY = detrend(arrayY);  
            stdY = std(detY);  
            stdZ = std(arrayZ);  
  
            if (stdY < 1) && (stdZ < 1)  
  
                % BTR file in dB  
                r5 = btr;  
                heading_5(kk) = ael_heading;  
  
            end  
  
            sr5 = size(r5)  
  
        end % "if (Hits == ..."  
  
    elseif loiter_acquire == 1  
  
        l_a = 1;  
  
    end % "if loiter_acquire..."  
  
    %------------------------------------------------------------------  
    % Clean up the data for processing  
    %------------------------------------------------------------------  
      
    if (Hits >= 8)  
  
        % get rid of zeros in heading records  
        i0 = find(heading_0);  
        i1 = find(heading_1);  
        i2 = find(heading_2);  
        i3 = find(heading_3);  
        i4 = find(heading_4);  
        i5 = find(heading_5);  
  
        heading_0 = heading_0(i0);  
        heading_1 = heading_1(i1);  
        heading_2 = heading_2(i2);  
        heading_3 = heading_3(i3);  
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        heading_4 = heading_4(i4);  
        heading_5 = heading_5(i5);  
  
        % time avg, round to nearest degree while on each side of hex  
        for i0 = 1:length(heading_0) - 1  
            if abs(heading_0(i0 + 1) - heading_0(i0)) > 270  
                for j0 = 1:length(heading_0)  
                    if (heading_0(j0) >= 0) && (heading_0(j0) < 90)  
  
                        heading_0(j0) = heading_0(j0) + 360;  
  
                    end  
                end  
            end  
        end  
  
        h0_avg = round(mean(heading_0));  
  
        if h0_avg > 360  
  
            h0_avg = h0_avg - 360  
  
        end  
  
        for i1 = 1:length(heading_1) - 1  
            if abs(heading_1(i1 + 1) - heading_1(i1)) > 270  
                for j1 = 1:length(heading_1)  
                    if (heading_1(j1) >= 0) && (heading_1(j1) < 90)  
  
                        heading_1(j1) = heading_1(j1) + 360;  
  
                    end  
                end  
            end  
        end  
  
        h1_avg = round(mean(heading_1));  
  
        if h1_avg > 360  
  
            h1_avg = h1_avg - 360  
  
        end  
  
        for i2 = 1:length(heading_2) - 1  
            if abs(heading_2(i2 + 1) - heading_2(i2)) > 270  
                for j2 = 1:length(heading_2)  
                    if (heading_2(j2) >= 0) && (heading_2(j2) < 90)  
  
                        heading_2(j2) = heading_2(j2) + 360;  



 100

  
                    end  
                end  
            end  
        end  
  
        h2_avg = round(mean(heading_2));  
  
        if h2_avg > 360  
  
            h2_avg = h2_avg - 360  
  
        end  
  
        for i3 = 1:length(heading_3) - 1  
            if abs(heading_3(i3 + 1) - heading_3(i3)) > 270  
                for j3 = 1:length(heading_3)  
                    if (heading_3(j3) >= 0) && (heading_3(j3) < 90)  
  
                        heading_3(j3) = heading_3(j3) + 360;  
  
                    end  
                end  
            end  
        end  
  
        h3_avg = round(mean(heading_3));  
  
        if h3_avg > 360  
  
            h3_avg = h3_avg - 360  
  
        end  
  
        for i4 = 1:length(heading_4) - 1  
            if abs(heading_4(i4 + 1) - heading_4(i4)) > 270  
                for j4 = 1:length(heading_4)  
                    if (heading_4(j4) >= 0) && (heading_4(j4) < 90)  
  
                        heading_4(j4) = heading_4(j4) + 360;  
  
                    end  
                end  
            end  
        end  
  
        h4_avg = round(mean(heading_4));  
  
        if h4_avg > 360  
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            h4_avg = h4_avg - 360  
  
        end  
  
        for i5 = 1:length(heading_5) - 1  
            if abs(heading_5(i5 + 1) - heading_5(i5)) > 270  
                for j5 = 1:length(heading_5)  
                    if (heading_5(j5) >= 0) && (heading_5(j5) < 90)  
  
                        heading_5(j5) = heading_5(j5) + 360;  
  
                    end  
                end  
            end  
        end  
  
        h5_avg = round(mean(heading_5));  
  
        if h5_avg > 360  
  
            h5_avg = h5_avg - 360  
  
        end  
  
        % put beampatterns in relative angle  
        b1 = circshift(b_0_1KHz,[0 h0_avg 0]);  
        b2 = circshift(b_0_1KHz,[0 h1_avg 0]);  
        b3 = circshift(b_0_1KHz,[0 h2_avg 0]);  
        b4 = circshift(b_0_1KHz,[0 h3_avg 0]);  
        b5 = circshift(b_0_1KHz,[0 h4_avg 0]);  
        b6 = circshift(b_0_1KHz,[0 h5_avg 0]);  
  
        b = cat(4,b1,b2,b3,b4,b5,b6);  
        sb = size(b)  
  
        % separate BTR files according to leg of hexagon  
        r0 = r0(:,sr0(2)-10:sr0(2)); srp0 = size(r0)  
        r1 = r1(:,sr0(2)+1:sr1(2)); srp1 = size(r1)  
        r2 = r2(:,sr1(2)+1:sr2(2)); srp2 = size(r2)  
        r3 = r3(:,sr2(2)+1:sr3(2)); srp3 = size(r3)  
        r4 = r4(:,sr3(2)+1:sr4(2)); srp4 = size(r4)  
        r5 = r5(:,sr4(2)+1:sr5(2)); srp5 = size(r5)  
  
        % avg beam response power  
        r0 = mean(r0,2);  
        r1 = mean(r1,2);  
        r2 = mean(r2,2);  
        r3 = mean(r3,2);  
        r4 = mean(r4,2);  
        r5 = mean(r5,2);  
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        % [i x j]  
        q1 = [r0 r1 r2 r3 r4 r5];  
  
        save q1  
        
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
        % Here, run "algorithm" code, and then "TowOpt" code       
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
    end %"if Hits..."  
  
    kk = kk + 1;  
  
end %"while length(mail)"  
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B.3  Estimating horizontal noise directionality 

 
This segment of MATLAB code does the following: 

 

1. Loads the estimated noise fields calculated previously using the WIT algorithm. This 

would be an unnecessary when the entire process was done in real-time, for the data 

would be utilized immediately after calculation. 

 

2. Loads the stored library of three-dimensional beam responses as well the library of 

two-dimensional beam responses. 

 

3. Computes the DI for each beam for all sonar headings to one degree of accuracy. 

This includes correcting the resulting DI functions so that they are in absolute heading. 

 

4. Adjusts all beampatterns so that they are in absolute coordinates. 

 

5. Calculates the estimated beam output noise intensities. Then it finds the error 

between the estimate and the measured values. 

 

6. Maps the error to their corresponding spherical coordinate domain. 

7. Normalizes the distributed error map based on energy conservation. 

 

8. Adds the corresponding error to the estimated noise field and repeats step 5 through 

step 8 until the error falls below the desired threshold.  

 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Estimate Noise Directionality based on WIT algorithm  
% Maria Parra-Orlandoni  
% 2007  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 
clear all; close all;  

 
II = 27;                % # beams  
JJ = 6;                 % # headings - hydrophone array  
H = 13;                % # elements  
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theta = 0:pi/180:2*pi-pi/180;       % azimuth (360)  
phi = -pi/2+pi/180:pi/180:pi/2;     % vertical (180)  
dtheta = [diff(theta) pi/180];  
dtheta2D = ones(length(phi),length(theta))*(pi/180);  
dphi = [diff(phi) pi/180];  
dphi2D = ones(length(phi),length(theta))*(pi/180);  

 
c = cos(phi);                        % [1 x 180]  

 
nq = ones(length(phi),length(theta));    % [180 x 360]  
Nq = zeros(length(phi),length(theta));  

 
% load spherical coordinate beampatterns  
load('b_0_1KHZ')  
load('B_1D')  

 
% load Beam Intensity Outputs obtained from AUV in Loiter Pattern  
load('q')                    % Case A  
mean_q = mean(mean(q));  

 
% put 2D beampattern in relative angle  
% circshift based on average headings computed in noise_dir.m named:  
% h0_avg,h1_avg,h2_avg,h3_avg,h4_avg,h5avg  

 
% Case A  
b1q = circshift(b_0_1KHz,[0 68 0]);  
b2q = circshift(b_0_1KHz,[0 107 0]);  
b3q = circshift(b_0_1KHz,[0 179 0]);  
b4q = circshift(b_0_1KHz,[0 248 0]);  
b5q = circshift(b_0_1KHz,[0 290 0]);  
b6q = circshift(b_0_1KHz,[0 5 0]);  

 
bq = cat(4,b1q,b2q,b3q,b4q,b5q,b6q);  
bq_power = abs(bq).*abs(bq);  
 
% 1D beampatterns  
B1q = circshift(B,[0 68]);  
B2q = circshift(B,[0 107]);  
B3q = circshift(B,[0 179]);  
B4q = circshift(B,[0 248]);  
B5q = circshift(B,[0 290]);  
B6q = circshift(B,[0 5]);  

 
Bq_cat = cat(3,B1q,B2q,B3q,B4q,B5q,B6q);  
Bq_power = abs(Bq_cat).*abs(Bq_cat);  

 
%------------------------------------------------------------------  
% initialize algorithm element values  
% beam power integrated over all azimuth and all vertical angles  
% each rHat(i,j) is [1 x 1]; rHat will be [I x J]  
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% Case A  
delq = ones(II,JJ)*100;  
delq_meas = ones(II,JJ)*100;  
qHat = zeros(II,JJ);  
DELq = ones(II,JJ)*100;  
QHAT = zeros(II,JJ);  

 
% while error for any cell is greater than threshold, continue  
while (abs(max(max(delq_meas))) >= 0.5)  

 
errorQ = zeros(length(phi),length(theta));  

 
for i1 = 1:II  

for j1 = 1:JJ  
 

bq_int = squeeze(bq_power(:,:,i1,j1));  
qHat(i1,j1) = (1/(4*pi))*sum(sum(bq_int.*nq… 

  .*dtheta2D.*dphi2D,2).*c',1);  
 

end  
end  
 

% error between estimated and measured beam power: [i x j]  
qDB = dbp(q);               % beam power output in dB  
QHAT = dbp(qHat);           % beam power output estimate in dB  
DELq = (qDB - QHAT);        % error in dB  
delq_meas = 10.^(DELq/10);  % error in power     
delq = delq_meas/2;         % successive underrelaxation  
 

%map errors to corresponding theta-phi cells  
for ii = 1:II  

for jj = 1:JJ  
 

errQ_1D = Bq_power(ii,:,jj)*delq(ii,jj);  
intQ_1D = sum(errQ_1D.*dtheta);  
errQ_2D = bq_power(:,:,ii,jj)*delq(ii,jj);  
intQ_2D = (1/(4*pi))*sum(sum(errQ_2D… 

    .*dtheta2D.*dphi2D,2).*c',1);  
% energy preservation  
intQ_norm = intQ_1D/intQ_2D;  
errQ_2D_norm = errQ_2D*intQ_norm;  
errorQ = errorQ + errQ_2D_norm;  

 
end  

end  
 

nq = nq + errorQ;  
Nq = dbp(nq);  
 

Nq_horiz = Nq(90,:);  
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figure(1)  
polar(theta,Nq_horiz)  
title('Horizontal Noise Directionality, dB')  
drawnow  
 

end %"while max..."  
 

figure(2)  
Ndiff = Nq_horiz - Nr_horiz;  
polar(theta,Ndiff)  
title('Anisotropic minus Isotropic Noise Directionality')  

 
% Plots of beam power outputs  

 
qDB_plot(:,1) = circshift(qDB(:,1),19);  
qDB_plot(:,2) = circshift(qDB(:,2),10);  
qDB_plot(:,3) = circshift(qDB(:,3),1);  
qDB_plot(:,4) = circshift(qDB(:,4),19);  
qDB_plot(:,5) = circshift(qDB(:,5),10);  
qDB_plot(:,6) = circshift(qDB(:,6),0);  
 
figure(3)  
subplot(3,2,1);plot(qDB_plot(:,1));axis([1 27 120 160]);grid on  
subplot(3,2,2);plot(qDB_plot(:,2));axis([1 27 120 160]);grid on  
subplot(3,2,3);plot(qDB_plot(:,3));axis([1 27 120 160]);grid on  
ylabel('Power (dB)');  
subplot(3,2,4);plot(qDB_plot(:,4));axis([1 27 120 160]);grid on  
subplot(3,2,5);plot(qDB_plot(:,5));axis([1 27 120 160]);grid on  
xlabel('Beamnumber');  
subplot(3,2,6);plot(qDB_plot(:,6));axis([1 27 120 160]);grid on  
xlabel('Beamnumber');  

 
figure(4) 
subplot(3,2,1);plot(qDB(:,1));axis([1 27 120 160]);grid on  
subplot(3,2,2);plot(qDB(:,2));axis([1 27 120 160]);grid on  
subplot(3,2,3);plot(qDB(:,3));axis([1 27 120 160]);grid on  
ylabel('Power (dB)');  
subplot(3,2,4);plot(qDB(:,4));axis([1 27 120 160]);grid on  
subplot(3,2,5);plot(qDB(:,5));axis([1 27 120 160]);grid on  
xlabel('Beamnumber');  
subplot(3,2,6);plot(qDB(:,6));axis([1 27 120 160]);grid on  
xlabel('Beamnumber');  
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B.4 Determining optimal towed array heading 

 
This segment of MATLAB code does the following: 

 

1. Loads the estimated noise fields calculated previously using the WIT algorithm. This 

would be an unnecessary when the entire process was done in real-time, for the data 

would be utilized immediately after calculation. 

 

2. Loads the stored library of three-dimensional beam responses. 

 

3. Computes the DI for each beam for all sonar headings to one degree of accuracy. 

This includes correcting the resulting DI functions so that they are in absolute heading. 

 

4. Determines a target heading, and based on that, eliminated the use of any endfire 

beams for detecting and tracking. 

 

5. Determines the heading that produces the maximum DI in the look direction of the 

target. 

 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Optimize Tow Direction based on Horizontal Noise Directionality  
% Maria Parra-Orlandoni  
% 2007  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 
clear all; close all;  

 
% load estimated noise field: Case A  
load('nq')                      % [180 x 360]  
nq_norm = nq/(max(max(nq)));     % normalize noise field  

 
% load spherical coordinate beampatterns  
load('b_0_1KHZ')                 % [180 x 360 x 27]  
b_power = abs(b_0_1KHz).*abs(b_0_1KHz);  

 
II = 27;                         % # beams  

 
% beam "1" = front endfire; beam "-1" = aft endfire  
u_T = linspace(1,-1,II);  
theta_T = acos(u_T);  
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theta = 0:pi/180:2*pi-pi/180;    % azimuth  
phi = 0+pi/180:pi/180:pi;        % vertical angle  
dtheta2D = ones(length(phi),length(theta))*(pi/180);  
dphi2D = ones(length(phi),length(theta))*(pi/180);  
s = sin(phi');                   % [180 x 1]  

 
% compute directivity for each beam and each look direction  
for ii = 1:II  

for look = 1:360  
 

b = circshift(b_power(:,:,ii),[0 (look-1) 0]);  
% Directivity in anisotropic noise  
DI_temp(:,:,look,ii) = 1/((1/4*pi)*sum(sum(b.*nq_norm… 

     .*dtheta2D.*dphi2D,2).*s,1));  
 

end  
end  

 
DI_beam = squeeze(DI_temp);  

 
% interpolate to switch from beamnumber domain to angle domain  
for u = 1:360  

 
DI_ang(u,:) = interp(DI_beam(u,:),20);       

 
end 
 
DI_ang = DI_ang(:,1:3:540);  

 
% full 360 degree function  
DI_ang2 = fliplr(DI_ang);  
DI_ang_power = cat(2,DI_ang,DI_ang2);  

 
DI_ang_dB = dbp(DI_ang_power);  

 
% put in absolute coordinates based on heading  
for jj = 1:360  

 
DI_ang_dB(jj,:) = circshift(DI_ang_dB(jj,:),[0 (jj-1)]);  

 
end  

 
% plot DIs for various headings  
figure(1)  
polar(theta,DI_ang_dB(1,:),'b')  
hold on; grid on  
polar(theta,DI_ang_dB(46,:),'r')  
polar(theta,DI_ang_dB(91,:),'c')  
polar(theta,DI_ang_dB(136,:),'m')  
legend('0 deg','45 deg','90 deg','135 deg')  
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title('Directivity Index for Various Array Headings')  
ylabel('Directivity Index (dB)')  
% flips polar coordinates to desired orientation  
%view(28.65*pi,-24*pi)   

 
% for a specific target  
%target_angle = round(target_angle);      % from MOOSDB  
target_angle = 345;      %deg, between 0 and 359  

 
theta_deg = 1:360;  
DI_tgt = [DI_ang_dB(:,(target_angle + 1)) theta_deg'];  
 
% avoid endfire  
if (target_angle >= 0) && (target_angle <= 23)  

 
DI_tgt = DI_tgt([(target_angle + 25):(target_angle + 157) 
     (target_angle + 205):(target_angle + 337)],:); 
 

elseif (target_angle >= 24) && (target_angle <= 155)  
 

DI_tgt = DI_tgt([1:(target_angle - 23) (target_angle + 25): 
   (target_angle + 157) (target_angle + 205):(360)],:);  

 
elseif (target_angle >= 156) && (target_angle <= 203)  
 

DI_tgt = DI_tgt([(target_angle - 155):(target_angle - 23) 
     (target_angle + 25):(target_angle + 157)],:);  

 
elseif (target_angle >= 204) && (target_angle <= 335)  
 

DI_tgt = DI_tgt([1:(target_angle - 203) (target_angle – 155): 
   (target_angle - 23) (target_angle + 25):(360)],:); 

 
elseif (target_angle >= 336) && (target_angle <= 359) 
 

DI_tgt = DI_tgt([(target_angle - 335):(target_angle - 203)  
   (target_angle - 155):(target_angle - 23)],:);  

 
end  

 
[DImax,max_dir] = max(DI_tgt(:,1));  

 
% determine optimal tow direction  
OptTow = theta_deg(DI_tgt(max_dir,2)) - 1  
OptTow_rad = OptTow*pi/180;  
DImax 




