Hydrophobic Nanoroughened Surfaces from Processable POSS PFCB Polymer Composites (Preprint)

Scott T. Iacono, Stephen M. Budy, and Dennis W. Smith, Jr. (Clemson Univ.); Joseph M. Mabry (AFRL/RZSM)

AFRL/RZSM
9 Antares Road
Edwards AFB CA 93524-7401

Air Force Research Laboratory (AFMC)
AFRL/RZS
5 Pollux Drive
Edwards AFB CA 93524-7048

Approved for public release; distribution unlimited (PA #08379A)

For submission to the journal Science.

The first preparation of processable, semi-fluorinated PFCB aryl ether polymers possessing covalently bound pendant POSS cages is reported. Theses copolymers exhibit increased hydrophobicity attributed to the surface migration of the nanometer-sized POSS aggregates, producing nanoroughness that mimics surface features of the lotus leaf.
Hydrophobic Nanoroughened Surfaces from Processable POSS PFCB Polymer Composites

Scott T. Iacono,† Stephen M. Budy,† Joseph M. Mabry,‡ Dennis W. Smith, Jr. *,†

†Department of Chemistry and Center for Optical Materials Science and Engineering Technologies (COMSET), Advanced Materials Research Laboratory, Clemson University, Clemson, SC 29634
‡Air Force Research Laboratory, Propulsion Directorate, 10 East Saturn Blvd, Edwards Air Force Base, CA 93524

RECEIVED DATE (to be automatically inserted after your manuscript is accepted if required according to the journal that you are submitting your paper to)

* To whom correspondence should be addressed. Tel: + 1 864 656 1160. E-mail: dwsmith@clemson.edu
† Clemson University
‡ Air Force Research Laboratory

The first preparation of processable, semi-fluorinated PFCB aryl ether polymers possessing covalently bound pendant POSS cages is reported. Theses copolymers exhibit increased hydrophobicity attributed to the surface migration of the nanometer-sized POSS aggregates, producing nanoroughness that mimics surface features of the lotus leaf.

Keywords: PFCB Polymers, Polyhedral oligomeric silsesquioxanes, Hydrophobicity, Nanoroughness
There remains great interest in the fabrication of low surface energy materials that mimic biological systems possessing high degrees of ultrahydrophobicity. In particular, many plant species such as the lotus leaf exhibit a peculiar self-cleaning phenomenon resulting from micron-sized nodes decorated on the surface, which induce water beading. These water beads are naturally repelled from the surface, removing any foreign debris with them. There are many noteworthy examples of coatings that successfully produce artificial ultrahydrophobic lotus leaf-like surfaces; examples include self-assembly and chemical deposition of low surface energy molecules, lithographic patterning of micron-sized ordered arrays, and surface etching. The caveat of the aforementioned examples is they produce materials that either require aggressive post chemical and/or thermal surface treatments, use of expensive starting materials, or necessitate the need for limitedly accessible lithography methods. As such, there still exists a need to efficiently produce hydrophobic materials amenable for large scale production.

Fluoropolymers continue to be of global significance for a broad range of advanced material applications. They are chemically inert, thermally robust, and possess low surface energies. Because they are intrinsically highly crystalline, they present costly processing challenges. On the other hand, perfluorocyclobutyl (PFCB) aryl ether polymers are an emerging class of next-generation processable, amorphous semi-fluorinated polymers. PFCB aryl ether polymer systems possess tunable refractive indices, controllable glass transition temperatures, and are thermally robust. As a consequence, they are of particular interest in a multitude of material applications including high performance optics.
polymer light-emitting diodes (PLEDs), electro-optics, atomic oxygen resistant coatings, and proton exchange membranes (PEMs) for fuel cells.

Polyhedral oligomeric silsesquioxanes (POSS) are thermally robust, discreetly nano-sized building blocks for the development of high performance materials in aerospace as well as commercial markets. Numerous examples show that POSS can be either blended or covalently linked into a matrix polymer. These materials produce hybrid “ceramic-like” composites improving bulk properties including glass transition temperature, mechanical strength, thermal and chemical resistance, and ease of processing.

In this work, we show the first example of processable, semi-fluorinated PFCB aryl ether polymers covalently bound to pendant POSS cages (Scheme 1). The composites are easily prepared in nearly quantitative recovery and demonstrate increased hydrophobicity comparable to that of commercial Teflon®. The hydrophobicity is attributed to the surface migration of the nanometer-sized POSS aggregates, producing nanoroughness that mimicks surface features of the lotus leaf.

Scheme 1. Preparation of POSS PFCB hybrid copolymers (1-co-3 and 2-co-3) via thermal polymerization of POSS monomers (1 and 2) with monomer 3. Hydrophobic surfaces are produced from the hybrid copolymers films as a result of POSS surface migration producing nanoroughness in addition to their hydrophobic alkyl content.
POSS functionalized monomers 1 (R = cyclopentyl, Cp) and 2 (R = iso-butyl, i-Bu) were prepared by an efficient condensation of commercial POSS alcohols with 4,4'-bis(4-trifluorovinyloxy)biphenyl(methyl)chlorosilane previously reported by Smith et al. using a metal–halogen exchange methodology.27,28 The monomers were isolated with a high degree of purity confirmed by NMR (1H, 19F, 13C, and 29Si), ATR-FTIR, GPC, and elemental combustion analysis (see Supporting Information). Homopolymer (poly3) and copolymers (1-co-3 and 2-co-3) were prepared from the respective monomers by bulk polymerization at 190 °C producing POSS PFCB aryl ether copolymers. Selected polymer properties are shown in Table 1.

Table 1. Selected Properties of Polymers.
All copolymers prepared showed similar molecular weight distribution compared to the PFCB aryl ether homopolymer via the step-growth polymerization. Polymer conversions were monitored using 19F NMR and GPC analysis (Figure 1). 19F NMR of copolymer 2-co-3 with 20 wt% POSS showed the resulting multiplet -130.0–-135.5 ppm of the PFCB aryl ether ring from the thermal cyclodimerization with no evidence of residual trifluorovinyl aryl ether peaks of monomer 2. These are typically represented by an AMX pattern resulting in three doublet of doublets at -119.5 ppm (cis-Ar-O-CF=CF$_2$), -126.4 ppm ($trans$-Ar-O-CF=CF$_2$), and -133.8 ppm (Ar-O-CF=CF$_2$). Copolymer 1-co-3 functionalized with cyclopentyl groups showed the highest polydispersity, likely due to the insolubility of the polymer. In addition, no POSS PFCB aryl ether macrocycles were observed via the intramolecular cyclodimerization of monomers (1 or 2) from GPC analysis.
Figure 1. 19F NMR spectrum and GPC trace comparison showing the conversion of POSS monomer 2 (top) to 20 wt% POSS PFCB copolymer 2-co-3 (bottom).

Differential scanning calorimetry (DSC) indicated a plasticizing effect observed by the lowering of glass transition temperature (T_g) upon incorporation of POSS. The decrease was most notable for copolymers with iso-butyl groups ($R = t$-Bu) and further increased with higher POSS loadings. POSS incorporation typically increases the T_g of polymer systems retarding chain mobility. However, the observed decrease could be a result of POSS incompatibility with the fluoropolymer matrix essentially acting as molecular ball bearings. POSS PFCB aryl ether homopolymers were also prepared by thermal polymerization with monomers 1 and 2, producing poly1 and poly2 with an average of five POSS molecules in each chain segment ($n = 5$). These were used to prepare block copolymers (2-b-3) by thermal polymerization with monomer 3. The block polymers showed an increase in T_g demonstrating the POSS block segments hinder chain mobility. Furthermore, the block copolymers 2-b-3 showed an increase in the thermal decomposition temperature observed from thermal gravimetric analysis (TGA) compared with copolymers 1-co-3 and 2-co-3. Interestingly, the block copolymers showed a 50 °C increase in decomposition temperature in air compared with nitrogen in excess of 500 °C.

Copolymers with up to 20 wt% iso-butyl functionalized POSS produced optically transparent, semi-flexible films. POSS loadings greater than 20 wt% produced polymers that were difficult to solution
process. All the examples shown here can be solution processed either as spin cast films (SCF) or drop cast films (DCF) using common organics solvents such as THF or cyclopentanone.

The films were studied using electron microscopy. Scanning electron microscopy (SEM) showed no evidence of micron-sized POSS aggregation. However, transmission electron microscopy (TEM) analysis (Figure 2) revealed nanometer-sized POSS clusters with varying sizes ranging 5–20 nm as confirmed by energy dispersive X-ray (EDX) analysis. The observation also shows the discreetly-sized POSS cage aggregates are well dispersed within the PFCB aryl ether matrix. These nanometer POSS aggregates attribute to the surface roughening of the film surface (vide infra).

![Figure 2. Images of 20 wt% POSS PFCB copolymer composite 2-co-3 at different magnifications exposing nanometer sized POSS aggregates, shown as dark shapes in TEM micrographs.](image)

The hydrophobicity of the copolymer films functionalized with iso-butyl POSS were tested using water drop shape analysis and measured for the corresponding water contact angle (Figure 3). The relationship of contact angle and surface energy is governed by Young’s equation which relates interfacial tensions among the surface to the liquid and gas phases of water. Furthermore, it is well known that surface roughness imparts increased hydrophobicity of a material as demonstrated by Cassie and Wenzel. Compared with the homopolymer poly3, copolymer 2-co-3 showed an increase in water contact angle with increasing POSS content. The highest increase in water repellency was 16% for 20 wt% POSS copolymer 2-co-3 with an average contact angle of 104.7° compared with homopolymer poly3 that averaged 91.3°. Furthermore, block copolymer 2-b-3 also showed a similar increase in water repellency compared with that of copolymer 2-co-3. It was shown using 3D white light optical profilometry, the degree of surface roughness correlates with increased water contact
angles. Figure 4 shows the visual comparison of homopolymer poly3 with that of copolymer composite 2-co-3. Profilometery analysis reveals significant surface roughening of the POSS copolymer 2-co-3 compared with homopolymer poly3 with an average surface roughness (r.m.s.) of 4.20 nm and 0.36 nm, respectively. The average size of the surface protrusions were measured as the peak-to-valley ratio and were 38 nm for 2-co-3 and 17 nm for poly3. In all cases, composites prepared by the drop cast film (DCF) method showed a slightly higher average surface roughness as high as 1.3 nm compared with the smoother spin cast films (SCF). More importantly, incorporation of the POSS nanofillers increases the surface roughness up to 12–19 times compared to that of the homopolymer films. Block copolymers (2-b-3) that were prepared by spin casting showed the highest surface roughness. As a further comparison, 20 wt% of fully-condensed iso-butyl8T8 POSS was solvent blended into poly3 and spin cast as a film. The resulting film’s water contact angle was 15% lower than compared with PFCB homopolymer poly3. The surface roughness was not obtained because the blend produces a white opaque, heterogeneous film and cannot be measured by optical profilometry. However, upon visual inspection, a porous substrate with irreproducible film morphologies was observed suggesting incompatibility of iso-butyl POSS in the semi-fluorinated PFCB aryl ether matrix results in decreased water repellency.

![Figure 3. Water contact angle and surface roughness (r.m.s) measurements of polymers.](image)

It has recently been shown that POSS covalently bound into polyurethanes improves dewetting, due to the increase in the nanometer surface roughness as well as hydrophobic alkyl groups on the POSS
Furthermore, the existence of nanoroughness has been shown to theoretically and experimentally contribute analogous hydrophobic behaviour similar to that caused by the micron-relief texture of the lotus leaf. However, as it is pointed out, the impact of the coined ‘lotus effect’ is due to microstructuring and produces a large change in hydrophobicity due to macroscopic interaction of the water and surface. Depending on the lotus leaf species, water contact angles have been experimentally measured and vary to as low as 28° and as high as 160°. On the other hand, the observation of nanostructuring has a subtle increase in water repellency due to surface molecular perturbation of the water droplet.

![3D surface projections of poly3 (a) and copolymer 2-co-3 (b) obtained from white light optical profilometry.](image)

Figure 4. 3D surface projections of poly3 (a) and copolymer 2-co-3 (b) obtained from white light optical profilometry.

We show that our results are consistent with this observation in that the surface roughening due to the presence of nanometer-sized surface migration of POSS molecules attributes to increasing the hydrophobicity. The POSS cages essentially serve as a vehicle for introducing aggregation in addition to incorporating hydrophobic alkyl character from the silsesquioxane cubes. Nanostructural ordering of POSS has been shown to produce controlled growth of lamellae with a defined lateral length. The hydrophobicity can be further influenced by the substitution of the alkyl substituents on the POSS cages.
with fluorinated alkyl chains. Such an intuitive design has been demonstrated with 3,3,3-trifluoropropyl groups on POSS encapped poly(methylmethacrylates)37 and is the subject of our ongoing investigations.

In summary, we have prepared solution processable POSS pendant PFCB aryl ether copolymers and block copolymers that produce nanometer-sized surface roughness when cast as films. Our findings show POSS incorporation into PFCB aryl ether polymers has improved the hydrophobicity and is now comparable to various grades of commercial fluoropolymers including DuPont’s Teflon® and Teflon®-AF with water contact angles of 100° and 105°, respectively.38,39 More so, we find the ability to easily process these POSS functionalized fluoropolymers makes them particularly attractive for a broad range of manufacturing techniques for hydrophobic material applications including fibers, coatings, and bulk components. The forethought of utilizing our ability to artificially fabricate nanostructures combined with microstructuring could afford a potentially new class of materials possessing unique liquid discriminating surface properties not exclusive to just water, but also industrial solvents, hazardous biological waste, microorganisms, and also for antifouling.

Acknowledgement. STI and DWS thank the National Science Foundation (NSF) and Defense Advanced Research Projects Agency (DARPA) for financial support. JMM acknowledges partial support from the Air Force Office of Scientific Research (AFOSR). We thank S. Gaylord and Dr. Kathleen Richardson (CU) for optical profilometry. Dr. JoAn Hudson is acknowledged for microscopy support through the Electron Microscope (EM) facility at CU. STI gratefully acknowledges the United States Air Force Institute of Technology Civilian Institutions program for sponsorship. We also thank Tetramer Technologies, L.L.C. for generous donation of starting materials. DWS is a Cottrell Scholar of the Research Corporation.

Supporting Information Available: Experimental details and characterization of all new compounds. This material is available free of charge via the Internet at http//pubs.acs.org.

References and Notes.

