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Abstract

We propose a novel method for alleviating the stringent CFL condition imposed by
the sound speed in simulating inviscid compressible flow with shocks, contacts and
rarefactions. Our method is based on the pressure evolution equation, so it works
for arbitrary equations of state, chemical species etc, and is derived in a straight-
forward manner. Similar methods have been proposed in the literature, but the
equations they are based on and the details of the methods differ significantly.
Notably our method leads to a standard Poisson equation similar to what one
would solve for incompressible flow, but has an identity term more similar to a
diffusion equation. In the limit as the sound speed goes to infinity, one obtains
the Poisson equation for incompressible flow. This makes the method suitable for
two-way coupling between compressible and incompressible flows and fully implicit
solid-fluid coupling, although both of these applications are left to future work. We
present a number of examples to illustrate the quality and behavior of the method
in both one and two spatial dimensions, and show that for a low Mach number test
case we can use a CFL number of 300 (whereas previous work was only able to use
a CFL number of 3 on the same example).

1 Introduction

In this paper, we focus on highly nonlinear compressible flows with shocks,
contacts and rarefactions, for example the Sod shock tube. Traditionally these
types of problems are solved with explicit time integration (for example Runga-
Kutta methods, ENO, WENO etc, see e.g. [10,11,5]). Although these methods
produce high quality results, small time steps are required in order to enforce
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the CFL condition of information moving only one grid cell per time step.
While this is understandable for very high Mach number flow where |u|, |u−c|
and |u + c| are all of similar magnitude, it is too restrictive for flows where
c may be much larger than |u|. Moreover some flow fields might have both
high Mach number regions where shock waves are of interest as well as low
Mach number regions where the material velocities are important. In this case,
a large number of time steps are required if one is interested in the motion
of the fluid particles over an appreciable distance in the low Mach number
regions. Thus, it can be quite useful to have methods that avoid the stringent
CFL time step restriction imposed by the acoustic waves and instead use only
the material velocity CFL restriction (albeit one would expect some loss of
quality because of the implicit treatment of the acoustic waves).

To alleviate the stringent CFL restriction, [6] proposed both a non-conservative
and a conservative scheme. Their non-conservative scheme builds on the predictor-
corrector type scheme of [16] to derive an elliptic pressure equation quite sim-
ilar to ours, but for an adiabatic fluid. Our method is similar in spirit to
[6,13–15] where we divide the calculation into two parts: advection and non-
advection. The advection terms are treated with explicit time integration, and
thus the CFL restriction on the material velocity remains. Whereas one can
use a standard method such as ENO in solving the advection terms, we found
that when coupled to an implicit solution of the pressure equations (that is
inherently central-differenced) the standard ENO method sometimes leads to
spurious oscillatory behavior. Thus we designed a new ENO method geared
towards a MAC grid discretization of the data, making it more similar to
incompressible flow. We call this MAC-ENO or MENO. The remaining non-
advection terms are solved using an implicit equation for the pressure using
a standard MAC grid type formulation. Since the MAC grid is dual in both
velocity and pressure (noting that the MAC grid pressure needs to live at cell
faces for flux based methods), one needs to interpolate data back and forth.

We base the derivation of our method on the pressure evolution equation as
discussed in [2], thus making it valid for general equations of state, arbitrary
chemical species etc. Thus, our derivation has less assumptions and is a bit
more straight forward than previous work, especially that based on precon-
ditioners. Also, our method is fully conservative and thus shocks are tracked
at the right speed. We present a number of traditional examples for highly
non-linear compressible flows including the Sod shock tube, interacting blast
waves, and two dimensional flow past a step. We also demonstrate that the
method works well for low Mach number flow, taking the example of [7] where
the authors obtain reasonable results with a CFL number of 3. Notably, our
method allows a CFL number of 300 (two orders of magnitude more).
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2 Numerical Method

Let us consider the one dimensional Euler equations,
ρ

ρu

E


t

+


ρu

ρu2 + p

Eu + pu


x

= 0

with ρ being the density, u the velocity, E the total energy and p the pressure.
The flux term can be separated into an advection part and a non-advection
part,

F1(U) =


ρu

ρu2

Eu

 , F2(U) =


0

p

pu

 . (1)

We first compute the advection part with Jacobian

J =


0 1 0

−u2 2u 0

−Eu
ρ

E
ρ

u

 .

All the Jacobian’s eigenvalues are equal to u, and it is rank deficient with left
eigenvectors of (u,−1, 0) and (E/ρ, 0,−1) and right eigenvectors of (1, u, 0)T

and (0, 0, 1)T . Since all the characteristic velocities are identical, we can apply
component wise upwinding to F1(U) without having to transform into the
characteristic variables first (as in [4]). Moreover, this advection part only
requires a time step restriction based on u.

2.1 Implicit Pressure Update

The multi-dimensional Euler equations are

ρ

ρu

ρv

ρw

E


t

+



ρu

ρu2

ρuv

ρuw

Eu


x

+



ρv

ρuv

ρv2

ρvw

Ev


y

+



ρw

ρuw

ρvw

ρw2

Ew


z

+


0

∇p

∇ · (p~u)

 = 0.
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, where ~u = (u, v, w) are the velocities. Here we have advection components
in each of the 3 spatial dimensions, and they can be handled as outlined
previously in a dimension by dimension fashion as in [11].

We apply a time splitting as is typical in incompressible flow formulations, first
updating the advection terms to obtain an intermediate value of the conserved
variables (ρ)∗, (ρu)∗, and E∗, and afterward correct these to time tn+1 using the
pressure. Since the pressure does not affect the continuity equation ρn+1 = ρ∗.
The non advection momentum and energy updates are

(ρ~u)n+1 − (ρ~u)∗

∆t
= −∇p (2)

and
En+1 − E∗

∆t
= −∇ · (pu). (3)

As in [2], we can use the Euler equations to derive the pressure evolution
equation,

pt + ~u · ∇p = −ρc2∇ · ~u. (4)

Taking motivation from standard incompressible flow solvers, we fix ∇ · ~u to
be at time n + 1 through the time step, making an O(∆t) error.

pt + ~u · ∇p = −ρc2∇ · ~un+1. (5)

Dividing equation (2) by ρn+1, and noting that ρ? = ρn+1, gives

~un+1 = ~u? −∆t
∇p

ρn+1
(6)

, and following a typical derivation of incompressible flow we take the diver-
gence of equation (6) to obtain

∇ · ~un+1 = ∇ · ~u? −∆t∇ ·
(
∇p

ρn+1

)
(7)

Substituting this into equation (5) gives

pt + ~u · ∇p = −ρc2∇ · ~u? + ρc2∆t∇ ·
(
∇p

ρn+1

)
, (8)

which is an advection-diffusion equation with source term. Discretizing the ~u ·
∇p advection term explicitly, using a forward Euler time step, and defining the
diffusive pressure at time tn+1 as is typical for backward Euler discretization,
gives after rearrangement

pn+1−ρn(c2)n∆t2∇·
(
∇pn+1

ρn+1

)
= (pn − (~un · ∇pn)∆t)−ρn(c2)n∆t∇·~u?. (9)
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Note we have discretized ρc2 at time tn. This equation can be further simplified
by using the advection equation for pressure,

pa − pn

∆t
+ ~un · ∇pn = 0

to obtain
pa = pn − (~un · ∇pn)∆t,

where pa is an advected pressure which can be computed using HJ ENO [9]
or semi-Lagrangian advection [1]. Substituting in equation (9) we obtain

pn+1 − ρn(c2)n∆t2∇ ·
(
∇pn+1

ρn+1

)
= pa − ρn(c2)n∆t∇ · ~u?. (10)

We discretize this equation at cell centers, which is typical for advection-
diffusion equations, and thus need to define velocities at cell faces for ∇ · ~u?.
Consider two adjacent grid cells one centered at Xi and one centered at Xi+1.

Fig. 1.

We divide these into four regions Ci,L, Ci,R, Ci+1,L, Ci+1,R, where (Ci,R∪Ci+1,L)
represents a dual cell (see figure 1). Then equation (2) for Ci,R is

(ρu)n+1
i,R − (ρu)∗i,R

∆t
= −

pn+1
i+1/2 − pn+1

i

∆x/2
. (11)

Similarly for Ci+1,L we have

(ρu)n+1
i+1,L − (ρu)∗i+1,L

∆t
= −

pn+1
i+1 − pn+1

i+1/2

∆x/2
. (12)

Adding these equations together and dividing by (ρi + ρi+1) yields

ûn+1
i+1/2 − û∗i+1/2

∆t
= −pn+1

i+1 − pn+1
i

∆xρ̂n+1
, (13)

where ûi+1/2 =
(ρu)i,R+(ρu)i+1,L

ρi+ρi+1
= (ρu)i+(ρu)i+1

ρi+ρi+1
can be thought of as a density-

weighted face velocity, and ρ̂i+1/2 = ρi+ρi+1

2
is the cell face density. Note that
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we currently use (ρu)i,R = (ρu)i and (ρu)i+1,L = (ρu)i+1, although higher order
approximations could be used. Using this discretization on equation (10) yields[

I + ρn(c2)n∆t2GT

(
1

ρ̂n+1
G

)]
pn+1 = pa + ρn(c2)n∆tGT ~̂u?, (14)

where G is our gradient discretization and−GT is our divergence discretization
and the hat variables are defined as above. This is solved to obtain pn+1 at
cell centers.

It is interesting to note that this derivation does not require an ideal gas
assumption, and hence should be general enough to work with any equation
of state (even multi-species flow [2]).

2.2 Updating Momentum and Energy

To obtain the correct shock speeds we need the pressure at cell faces for
equations (2) and (3), and the velocity at cell faces for equation (3). Applying
conservation of momentum to the control volumes Ci,R and Ci+1,L (see figure 1)
gives

Dui,R/Dt = (pi − pi+1/2)/(∆xρi,R/2)

and
Dui+1,L/Dt = (pi+1/2 − pi+1)/(∆xρi+1,L/2).

The constraint that the interface remain in contact implies that Dui,R/Dt =
Dui+1,L/Dt, which can be used with the aforementioned equations to solve for
the pressure at the flux location Xi+1/2 as

pi+1/2 =
pi+1ρi + piρi+1

ρi+1 + ρi

. (15)

For solid wall boundaries, we reflect the pressure and density values as usual,
and then use equation (15). The cell face velocity is computed via equa-
tion (13), and pi+1/2ûi+1/2 is used in equation (3).

3 Time Step Restriction

The eigenvalues of the Jacobian of the advection part of the flux are all u.
Since we solve the acoustic component implicitly, we no longer have a severe
time step restriction determined by the speed of sound c, and all that remains
is to find an estimate for the maximum value of |u| throughout the time step.
Simply using un is not enough, since e.g. Sod shock tube starts out with an
initial velocity identically zero and thus un would imply an infinite ∆t. To
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alleviate this, we add a term that estimates the change in velocity over a time
step similar to what was done in [8]. This requires consideration of ∇p

ρ
, which

we include, in our estimate of the velocity at the end of the time step to get(
|un|max+

|px|
ρ

∆t

∆x

)
and the CFL condition becomes

∆t

 |un|max + |px|
ρ

∆t

∆x

 ≤ 1 (16)

which is quadratic in ∆t with solutions

−|un|max −
√
|un|2max + 4 |px|

ρ
∆x

2|px|/ρ
≤ ∆t ≤

−|un|max +
√
|un|2max + 4 |px|

ρ
∆x

2|px|/ρ
.

As the lower limit is always non positive and ∆t ≥ 0, we only need enforce
the upper bound. As px → 0, both the numerator and denominator vanish
and thus we obtain a more convenient time step restriction by replacing the
2nd ∆t in equation (16) with this upper bound to obtain

∆t

 |u
n|max +

−|un|max+

√
|un|2max+4

|px|
ρ

∆x

2

∆x

 ≤ 1,

and our final CFL condition becomes

∆t

2

 |un|max

∆x
+

√√√√( |un|max

∆x

)2

+ 4
|px|
ρ∆x

 ≤ 1. (17)

Note that this is not linear in ∆x, but as ∆x → 0 we obtain a more typical
CFL condition ∆t < ∆x

|un|max
.

4 Modified ENO Scheme

When using a traditional ENO methods for the advection part of our equa-
tions (as in [11]), we obtained excessive spurious oscillations. This seems to
be related to our dual cell center and MAC grid formulation, thus we de-
vice a new ENO scheme which better utilizes that dual formulation. We call
this Mach-ENO or MENO. The main idea is to replace the advection velocity
with the MAC grid value defined at the flux in question, i.e. û. The lowest
level of the divided difference table is typically constructed with the physical
fluxes, i.e. ρu, ρu2 and Eu for F1(U) in equation (1). A dissipation term is
added for the local and global Lax-Friedrichs versions. Consider constructing
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 0.2

 0.4

 0.6

 0.8

 0  0.2  0.4  0.6  0.8  1

(a) Standard ENO-LLF

 0

 0.2

 0.4

 0.6

 0.8

 0  0.2  0.4  0.6  0.8  1

(b) MENO-LLF

Fig. 2. Sod shock tube problem at t = .15s. Left: Standard ENO-LLF using 401 grid
points (green) and 1601 grid points (red). Right: The base 1601 grid points solution
is the same as in the left figure, but the coarse grid calculation (with 401 grid points)
is done with the new MENO scheme. Both simulations were done with explicit time
stepping and a full characteristic decomposition in order to demonstrate that the
new ENO schemes performs similar to the old one when one is not using our new
implicit discretization of the pressure.

an ENO approximation for the flux at Xi+1/2. Locally, we would use a divided
difference table with base values corresponding to the physical fluxes plus or
minus the appropriate dissipation. Our modification is to replace ρjuj, ρjuj

2,
and Ejuj with ρjûi+1/2, ρjujûi+1/2, and Ejûi+1/2 leaving the dissipation terms
unaltered. Note that ûi+1/2 is fixed throughout the divided difference table
similar to the way one fixes the dissipation coefficient.

Figure 2 compares our new MENO scheme to the standard scheme from [11]
for standard Sod Shock tube. For this problem the results are fairly similar,
but for other test cases the MENO scheme performed much better and in
fact the standard ENO scheme was not successful in producing any solution
whatsoever for figure 10 in our examples section.

5 Numerical Results

We use third order TVD Runge-Kutta [10] for all our examples. We use two
variations of the third order TVD Runge-Kutta scheme in all of our examples.
The first is to perform Runge-Kutta on just the advection part, F1(U), with
only one final implicit solve for F2(U). The second variation is to carry out
both F1(U) and F2(U) for each Runge-Kutta stage although this has three
times the computational cost as far as the implicit solution of F2(U) is con-

8



cerned. However better numerical results are obtained using the implicit solve
within each stage of the Runge-Kutta cycle (see figure 3), and thus that is the
scheme employed throughout the rest of the example section, unless otherwise
mentioned.

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0  0.2  0.4  0.6  0.8  1

(a) One implicit solve

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0  0.2  0.4  0.6  0.8  1

(b) Three implicit solves

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0  0.2  0.4  0.6  0.8  1

(c) One implicit solve

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0  0.2  0.4  0.6  0.8  1

(d) Three implicit solves

Fig. 3. Numerical results comparing placing the implicit solve either inside each
Runge-Kutta stage (b and d) or once after a full three stage Runge-Kutta cycle
(a and c). The top two figures show the results for a Sod shock tube problem at
t = .15s, the bottom two figures show the results for a strong shock tube problem
at t = 2.5 × 10−6s. Density is shown in all figures. Note the spurious overshoots
when the implicit solve is not included in the Runge-Kutta cycle (left two figures).
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5.1 One dimensional Validation

For the one dimensional tests, we use a computational domain of [0, 1], 401
grid points, and also plot a baseline solution using 1601 grid points in the
standard fully explicit ENO method as in [11]. A second order ENO was used
along with the CFL number of .5.

5.1.1 Sod Shock Tube

Our first test case is a standard Sod shock tube with initial conditions of

(ρ(x, 0), u(x, 0), p(x, 0)) =

(1, 0, 1) if x ≤ .5,

(.125, 0, .1) if x > .5.

Our results are shown in Figure 4, which indicate well resolved shock, rar-
efaction and contact solutions. Since our method is conservative, we get the
correct shock speeds.

5.1.2 Lax’s Shock Tube

Lax’s shock tube is similar in nature to Sod shock tube, except that the initial
condition has a discontinuity in the velocity.

(ρ(x, 0), u(x, 0), p(x, 0)) =

(.445, .698, 3.528) if x ≤ .5,

(.5, 0, .571) if x > .5.

Our results are shown in Figure 5.

5.1.3 Strong Shock Tube

The Strong shock tube problem poses initial conditions that generates a su-
personic shock.

(ρ(x, 0), u(x, 0), p(x, 0)) =

(1, 0, 1010) if x ≤ .5,

(.125, 0, .1) if x > .5.

Our results are shown in Figure 6. However the scheme admits some oscilla-
tions near the rarefaction wave. Note that the main advantage of the proposed
method is to take target time steps irrespective of the sound speed values, one
could use the usual ENO scheme for high Mach number flows (or high Mach
number regions of the flow – if asynchronous timestepping is used).
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(a) Density
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(c) Pressure
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(d) Internal Energy

Fig. 4. Numerical Results of the Sod shock tube problem at t = .15s. The explicit
baseline solution is plotted in red, and the solution from our method is plotted in
dotted green.

5.1.4 Mach 3 Shock Test

The initial conditions for the Mach 3 shock test are:

(ρ(x, 0), u(x, 0), p(x, 0)) =

(3.857, .92, 1.333) if x ≤ .5,

(1, 3.55, 1) if x > .5.

Our results are shown in Figure 7. As above we do note some oscillations near
the rarefaction wave.
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(a) Density
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(b) Velocity
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(c) Pressure
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(d) Internal Energy

Fig. 5. Numerical Results of the Lax’s shock tube problem at t = .12s. The explicit
baseline solution is plotted in red, and the solution from our method is plotted in
dotted green.

5.1.5 High mach flow test

The initial conditions for the High mach flow test are:

(ρ(x, 0), u(x, 0), p(x, 0)) =

(10, 2000, 500) if x ≤ .5,

(20, 0, 500) if x > .5.

As noted in [7] the Mach number in this test can reach as high as 240. Our
results are shown in Figure 8.

12



 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0  0.2  0.4  0.6  0.8  1

(a) Density

 0
 20000
 40000
 60000
 80000

 100000
 120000

 0  0.2  0.4  0.6  0.8  1

(b) Velocity

 0

 2e+09

 4e+09

 6e+09

 8e+09

 1e+10

 0  0.2  0.4  0.6  0.8  1

(c) Pressure

 0

 5e+09

 1e+10

 1.5e+10

 2e+10

 2.5e+10

 0  0.2  0.4  0.6  0.8  1

(d) Internal Energy

Fig. 6. Numerical Results of the strong shock tube problem at t = 2.5 × 10−6s.
The explicit baseline solution is plotted in red, and the solution from our method
is plotted in dotted green.

5.1.6 Interaction of blast waves

Here we present a test of two interacting blast waves. This problem was intro-
duced by [12] and involves multiple strong shock waves. The initial conditions
for the test are:

(ρ(x, 0), u(x, 0), p(x, 0)) =


(1, 0, 103) if 0 ≤ x < .1,

(1, 0, 10−2) if .1 ≤ x < .9,

(1, 0, 102) if .9 ≤ x ≤ 1.

We also have solid wall boundary conditions at x = 0 and x = 1. Our results
are shown in Figure 9 which shows that we achieve very accurate results.
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Fig. 7. Numerical Results of the Mach 3 shock tube problem at t = .09s. The explicit
baseline solution is plotted in red, and the solution from our method is plotted in
dotted green.

5.1.7 Two Symmetric Rarefaction Waves

In this test there are two rarefaction waves going in opposite directions from
the center of the domain. This causes very low density regions near the center
of the domain. The initial conditions for the test are:

(ρ(x, 0), u(x, 0), p(x, 0)) =

(1,−2, .4) if x ≤ .5,

(1, 2, .4) if x > .5.

Our results are shown in Figure 10. Our results are comparable to that of [7]
and [13]. Note that there is an unphysical pulse in the internal energy field
near the low pressure region, caused by overheating (see e.g. [3]).
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Fig. 8. Numerical Results of the High Mach shock tube problem at t = 1.75×10−4s.
The explicit baseline solution is plotted in red, and the solution from our method
is plotted in dotted green.

5.1.8 Smooth Flow Test (Mach Zero Limit)

The initial conditions for the zero mach limit test are given by:

u(x, 0) = 0

p(x, 0) = p0 + εp1(x)

p1(x) = 60 cos(2πx) + 100 sin(4πx)

ρ(x, 0) =

(
p(x, 0)

p0

) 1
γ

ρ0

Where ρ0 = 1, p0 = 109, and ε = 103. Since the flow is smooth and there are
no shocks in this test, we have used a single implicit solve per time step. This
test is dominated by acoustic waves (as observed in [7]). We can take time
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Fig. 9. Numerical Results of the interacting blasts shock tube problem at t = .038s.
The explicit baseline solution is plotted in red, and the solution from our method
is plotted in dotted green.

steps as large as is permitted by our CFL condition in equation (17). This
permits time steps three orders of magnitude greater than those permitted
by sound-speed based CFL. However, as with all implicit schemes, taking too
large a time step can lead to inaccurate results. Thus, in order to get sufficient
accuracy, we clamp our time step to be a fixed multiple of the explicit time
step. In figure 11 we use 3 times the explicit time step and show convergence
via grid resolution. In a second suit of tests we show that we can increase
the grid resolution without the need for refining the time step. The timing
results for this experiment are available in Table 13 where ∆t remains fixed
as the grid resolution goes up as high as 320, 000 gird cells. At that point the
effective sound speed CFL is 300. Numerical results are plotted in figure 12
and Table 13 summarizes the results. In particular whereas the newly proposed
implicit method permits a fixed time step all the way up to 320, 000 grid points
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Fig. 10. Numerical Results of the symmetric rarefaction shock tube problem at
t = .15s. The explicit baseline solution is plotted in red, and the solution from our
method is plotted in dotted green.

allowing the wall clock simulation time to scale approximately linear to the
size of the problem, the explicit simulation time grows quadratically even
becoming impractical at 320, 000 grid points.

5.2 Flow Past a Step Test

Our first two dimensional experiment is similar to the one described in [3].
We assume an ideal gas with γ = 1.4. The test domain is 3 units long and 1
unit wide, with a .2 unit high step which is located .6 units from the left hand
side of the tunnel. The initial conditions are ρ = 1.4, p = 1 and u = 3 and
v = 0 everywhere in the domain. We apply an inflow boundary condition on
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Fig. 11. Numerical results comparing the pressure in smooth flow test at 200, 400,
800, 1600, and 3200 grid cells with an effective sound speed based CFL number 3
at t = 1.5 × 10−5s. The red curve is the explicit simulation run at 3200 grid cells
with a CFL number .5.

the left hand side of the domain, and an outflow boundary condition on the
right hand side of the domain. A reflective solid wall boundary condition is
applied for the top and bottom boundaries of the domain. We show numerical
results at t = 4s on a grid of resolution 120x40 in figure 14.

5.3 Circular Shock Test

The circular shock test has an initial condition prescribed as

(ρ, u, v, p) =

(1, 0, 0, 1) if r ≤ .4

(.125, 0, 0, .1) if r > .4
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Fig. 12. Numerical results showing pressure in smooth flow test at 3200, 32000 and
320000 grid cells. We used an effective sound speed based CFL number of 3, 30 and
300 respectively at t = 1.5 × 10−5s. Since ∆t stays constant, the solution remains
relatively unchanged even as we get huge time step gains.

Grid Effective ∆t Wall clock time Wall clock time

Resolution sound speed (Implicit) (Explicit)

CFL

3200 3 5.01e-08 63.41s 511.67s

32000 30 5.01-08 810.03s 60498.49s

320000 300 5.01e-08 9976.58s Impractical

Fig. 13. Timing results for smooth flow test, with ∆t approximately constant. The
wall clock times are shown for simulations till t = 5× 10−5s.

where r =
√

x2 + y2. Numerical results are shown in figure 15. The same
test was shown in [14]. Our results indicate well resolved shock and contact
solutions along with correct speed shock calculations.
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Fig. 14. Numerical results showing the Schlerian plots of density for the flow past a
step test on a grid of size 120x40 at t = 4s.

(a) Density (b) Pressure

Fig. 15. Numerical results for the circular shock test on a grid of size 100x100 at
t = .25s.

6 Conclusions and Future Work

We have presented a method for alleviating the stringent CFL condition im-
posed by the sound speed in highly non-linear compressible flow simulations.
A fractional step procedure combined with the pressure evolution equation
is used. The method works for arbitrary equations of state; and in the limit
as the sound speed goes to infinity, it yields the Poisson equation for incom-
pressible flow. We also presented a Mach-ENO or MENO scheme which better
utilizes a dual cell center and MAC grid formulation. The numerical exper-
iments on various benchmark problems for one and two dimensions indicate
that our semi-implicit method obtains well resolved shock, rarefaction and
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contact solutions. Since our method is conservative, we also obtain correct
shock speeds. The smooth flow example illustrates the ability of our method
to take significantly large time steps for low Mach number flows as compared
to explicit methods. In future work we plan to extend our approach to handle
two-way coupling between compressible and incompressible flows, as well as
fully implicit solid-fluid coupling.
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A Boundary Conditions

Figure 14 requires the handling of inflow and outflow boundary conditions.
We define Uout to be the outgoing state and Uin to be the ingoing state. The
outgoing state, Uout, is obtained by simple extrapolation whereas the ingoing
state, Uin, is obtained by attenuating Uout towards specified far-field values.
After defining Uout via extrapolation, we average the primitive variables to
cell flux on the boundary of the domain, and use those values to compute a
characteristic decomposition. If the pth characteristic field indicates ingoing
information, then when applying the ENO scheme in this characteristic field
we use Uin for the ghost node values. Otherwise Uout is used. Note for higher
order schemes boundary values will be needed for fluxes on the interior of the
domain as well, and we choose the ghost nodes (as Uin or Uout) in the same
fashion.

Our ingoing state, Uin, is calculated as follows. Our ingoing state, Uin, is ob-
tained by attenuating the extrapolated state, Uout, towards a given far field
state, Ufar. This is accomplished by multiplying Uout with each of the left
eigenvectors, attenuating if the eigenvalue in that characteristic field indicates
an ingoing wave, and then multiplying by the right eigenvector. Defining the
scalar characteristic information in each field as ξp = LpUout, we would atten-
uate ξp towards ξp

far using the analytic solution of the ODE

dξ/dt = K(ξ − ξfar)
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for time step ∆t using initial data of ξ = ξout. We used an attenuation coeffi-
cient of K = −.5 in our examples.
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