
Improving Integrated Operation in the
Joint Integrated Mission Model (JIMM) and the

Simulated Warfare Environment Data Transfer (SWEDAT) Protocol.

David W. Mutschler
NAVAIR Air Combat Environment Test and Evaluation Facility (ACETEF)

Code 5421, Bldg 2109, Suite 115
48150 Shaw Rd, Unit 5

Patuxent River, MD 20670
Email: david.mutschler@navy.mil

Phone: 301-342-6837
Fax: 301-342-6381

Abstract
The Simulated Warfare Environment Data Transfer (SWEDAT) is a shared memory
interface currently managed by the Joint Integrated Mission Model (JIMM). It allows
integrated operation of resources whereby the JIMM threat environment, stimulators,
virtual cockpits, systems under test, and other agents are combined within the same
simulation exercise. The Air Combat Environment Test and Evaluation Facility
(ACETEF), the Joint Strike Fighter (JSF) Program, and other agencies use it extensively
for both constructive analyses and real-time installed system test. Since its creation,
JIMM and SWEDAT have been enhanced to improve capability and performance. More
recent improvements include message queues, alternative coordinate systems, and
dynamic simulated system control. This paper will describe the SWEDAT architecture,
recent improvements, and planned efforts to further performance.

JIMM and SWEDAT
The Joint Integrated Mission Model (JIMM) is a general-purpose mission-level discrete-
event simulator [Lat05]. The NAVAIR Air Combat Environment Test and Evaluation
Facility (ACETEF), the Joint Strike Fighter (JSF) program, and many other efforts
employ it for constructive analyses, training, and installed system test. JIMM is currently
supported on Windows (2000 and XP), Linux, Silicon Graphics, and Solaris computer
systems.

Systems in JIMM are explicitly represented. However, they are not modeled using
detailed physics. Instead, each system operates in an “effects-based” manner. This
simplifies internal calculations and permits thousands of platforms and component
systems to interoperate while still maintaining real-time operation.

Thinking logic is controlled within JIMM players. Information used by this logic is
based on perceptions. A perception is the specific data one player has about a platform.
The only sources of this data are initialization, sensing, or communication. Hence, the
perception’s data need not reflect “ground-truth” and can be both out of date and
incorrect.

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
2005 2. REPORT TYPE

3. DATES COVERED
 00-00-2005 to 00-00-2005

4. TITLE AND SUBTITLE
Improving Integrated Operation in the Joint Integrated Mission Model
(JIMM) and the Simulated Warfare Environment Data Transfer
(SWEDAT) Protocol

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
NAVAIR Air Combat Environment Test and Evaluation Facility
(ACETEF),Code 5421, Bldg 2109, Suite 115,48150 Shaw Rd, Unit
5,Patuxent River,MD,20670

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
Modeling and Simulation Conference, 2005 Dec 12-15, Las Cruces, NM

14. ABSTRACT
The Simulated Warfare Environment Data Transfer (SWEDAT) is a shared memory interface currently
managed by the Joint Integrated Mission Model (JIMM). It allows integrated operation of resources
whereby the JIMM threat environment, stimulators virtual cockpits, systems under test, and other agents
are combined within the same simulation exercise. The Air Combat Environment Test and Evaluation
Facility (ACETEF), the Joint Strike Fighter (JSF) Program, and other agencies use it extensively for both
constructive analyses and real-time installed system test. Since its creation JIMM and SWEDAT have been
enhanced to improve capability and performance. More recent improvements include message queues,
alternative coordinate systems, and dynamic simulated system control. This paper will describe the
SWEDAT architecture recent improvements, and planned efforts to further performance.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

16

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

A player also controls resources. These resources are encapsulated within systems that
can be distributed onto different platforms at different locations. There are eight different
system types: Sensor Receivers, Sensor Transmitters, Communication Receivers,
Communication Transmitters, Weapons, Disruptors (Jammers), Movers, and Thinkers. A
platform can have any number of systems with the exception that a platform can have no
more than one mover system.

Figure 1 – JIMM Player Construction

JIMM works with other simulation tools via a shared-memory protocol known as
Simulated Warfare Environment Data Transfer (SWEDAT). The shared memory can be
either internal to the computer or can be distributed via reflective shared memory. In
either case, processes assessing this shared memory (including JIMM) are known as
“assets”.

The SWEDAT protocol requires that one asset act as the “master model”. The master
model initializes the shared memory and configures it for use by the other assets. It also
controls the memory and allocates it as needed to other assets. In this manner, the master
model ensures that the integrity of the shared memory map is maintained. Normally,
JIMM serves as the master model. It receives instructions about other assets via an input
file known as the “Configuration Data Base” (CDB) and organizes the shared memory
accordingly.

Some assets may passively view the JIMM simulation. However, JIMM allows other
assets to assume control of specific systems. Hence, via interaction through SWEDAT,
the asset can act and react as if it were working in the JIMM virtual environment. Also,
an asset need not control all of the systems of a platform. One asset could control its
weapons, another asset could control its mover system, and JIMM could control the
remainder. Commonly, if the number of systems controlled is small compared to the
remainder of the simulation and if those systems are part of a test or analysis, then JIMM

PLAYER

PLATFORMs Perceptions

Sensor
Receivers

Sensor
Transmitters

Communication
Transmitters

Communication
Receivers

Weapons

Mover

Thinkers

Disruptors

is also said to provide the “threat environment” and operate as the “threat environment
generator”.

Some assets are standalone and interoperate with other assets solely via SWEDAT.
However, many assets are actually interfaces. An interface (I/F) is a process that
interacts with the shared memory and another process via some other protocol. This
other process can be a viewer, a stimulator or another simulation. In addition, the other
protocol can be a direct method such as a process specific shared memory or a distributed
environment such as the Distributed Interoperable Simulation (DIS) or the High Level
Architecture (HLA).

Figure 2 – Integrated Operation via SWEDAT

Multiple Coordinate Systems
SWEDAT currently supports two sets of coordinate systems. Each coordinate system is
also supported by JIMM.

The first coordinate system is based on a flat tangential plane with a scenario center at
some point on the earth. The ‘X’-coordinate roughly corresponds to ‘east’; the ‘Y’-
coordinate roughly corresponds to ‘north’; and the ‘Z’-coordinate is up. By default,
JIMM employs an orthogonal projection between the earth and the flat surface but can
also be directed to use a transverse-mercator projection as well.

The other coordinate system places the origin at the center of the earth [TRW02b]. The
‘X’-coordinate intersects the earth at the equator and at zero degrees longitude; the ‘Y’-
coordinate intersects the earth at the equator and the prime meridian; and the ‘Z’-
coordinate in through the poles. This latter coordinate system is also known as “Earth-
Centered Earth-Fixed” (ECEF). This coordinate system is assumed to be independent of
the model of the earth (spherical or ellipsoidal).

Versions of SWEDAT
Within the JIMM community, there are some naming issues regarding SWEDAT.
SWEDAT was once implemented using a version of shared memory known as “Multiport

Configuration
Data Base

(CDB)

JIMM
(Master Model)

SWEDAT

I/F

Viewer

I/F

HLA

Virtual Cockpit

Radar Stimulator
Data

Capture File

Other Sims

Memory”. Hence, the term ‘MPM’ had previously been used instead of SWEDAT and
can still be seen in the JIMM instruction set.

In addition, SWEDAT is also known as the JIMM Shared Memory Interface (JSMI).
This is how it is referenced in the JIMM Documentation. However, the term JSMI is no
longer preferred by some individuals because of plans to allow other models and
simulators to act as the “master model”.

Lastly, there are currently three supported versions of the shared memory map used
within SWEDAT.
1. A version with 32-bit floating-point precision that is backward compatible to all

interfaces written for JIMM 2.2 and previous versions.
2. A version with 64-bit floating-point precision employed when greater accuracy is

required such as when used the ECEF coordinate system. Members in SWEDAT
data structures were rearranged to avoid problems with padding and to ensure
alignment. This version was written for JIMM 2.3.

3. A version with 32-bit floating-point precision where the order of members in
SWEDAT data structures match the 64-bit version.

During JIMM 2.3 and later, the term “SWEDAT” was used to specifically indicate the
older version of the shared memory map. However, unless other specified, topics in this
paper are pertinent to all supported versions of SWEDAT.

The JIMMLIB Library and Example Interfaces
In addition to the simulation model, the JIMM distribution also contains a ‘C’-language
library for use by asset interfaces. This library contains numerous procedures for
purposes such as initialization, identifying controlled systems, finding asset specific
information, SWEDAT memory access, procedures pertaining to the creation, access, and
sending of dispatches.

The JIMM distribution also provides several dozen example interfaces. These include
interfaces for DIS and HLA environments as well as assets specific to many commonly
known asset types.

A current effort is to transparently expand the library by adding C++ language capability
while allowing use of the same library for ‘C’-language interfaces [Bal95]. This effort
also includes software to automatically convert floating-point and integer representations
to a common format as well as the ability to transmit SWEDAT information via a
distributed network. Another effort to provide SWEDAT information via MPI has also
been reported [Jones05].

Systems controlled by assets
Specific instructions about the functions in the systems controlled by assets are provided
in JIMM through the Configuration Data Base (CDB). The CDB is a text file with
instructions that include identification of assets, how they communicate, and initialization
information.

Instructions specific to an existing player are roughly divided into three types: stimuli,
decisions, and responses. Stimuli are dispatches from JIMM to the asset. Decisions are
instructions as to which systems and which system functions the asset will control.
Lastly, responses are dispatches from the asset back to JIMM.

In the following example (Figure 3), the asset will control some parts of the
“vis_fighter_a/c” platform in the “71 vis_fighter” player. The specific platform must be
identified since a player may have multiple platforms. From the STIMULI instructions,
the asset will be informed whenever the fighter creates a new player and whenever it
attempts to sense another player. From the DECISIONS, the asset will control movement
(including when it crashes), weapon firing, and the changing of its signature (how well it
is seen by other sensors). Other systems and functions will be controlled by JIMM.
Lastly via RESPONSES, the asset will provide position and orientation (e.g.
MANUEVER) information about the platform back to JIMM.

More recently, there has also been significant work in JIMM and SWEDAT to change the
control of a system during a simulation run and also to dynamically change whether
output is provided to an asset. This capability is also known as “dynamic asset
allocation” [Mut02]. To assume control of a system (in whole or in part), an asset need
only send a specific dispatch identifying the system and any specific system functions.

ASSET: 30 MFS
 EXISTING-PLAYER 71 vis_fighter PLATFORM 1 vis_fighter_a/c
 STIMULI:
 CORRELATED-FIRING/BIRTH-ANNOUNCEMENT 3 BUFFERS
 PLATFORM-UNDER-TEST-IDENTITY $ only pertinent if
 $ SYSTEM-UNDER-TEST is set.
 SENSOR-CHANCE-STATUS FOR-THE SNR-RCVR 118 vis_optical-t_rx
 SENSOR-CHANCE-STATUS FOR-THE SNR-RCVR 119 infrared-x_rx
 DECISIONS:
 REACTIVE-MOVEMENT
 CRASH-CALCULATIONS
 LETHAL-ENGAGE-QUEUE-ADD
 THE 116 vis_dumb_bomb WEAPON
 FOR ALL TARGETS
 END LETHAL-ENGAGE-QUEUE-ADD
 LETHAL-ENGAGE-FIRING-START
 THE 116 vis_dumb_bomb WEAPON
 FOR ALL TARGETS
 END LETHAL-ENGAGE-FIRING-START
 DYNAMIC-SIGNATURE-CHANGES
 THE 15 vis_fighter_ele ELEMENT
 END DYNAMIC-SIGNATURE-CHANGES
 RESPONSES:
 MANEUVER
 DECISION-TO-FIRE 2 BUFFERS
 THE 116 vis_dumb_bomb
 END EXISTING-PLAYER
END ASSET
Figure 3 – CDB Instructions for a Single Player Asset

Position, Orientation, and State Information
Position and orientation (P&O) information is exchanged between JIMM and assets
through specific blocks of shared memory. JIMM (acting as master model) creates a
specific block in shared memory for each player, platform, and for the sensor systems,
communication systems, disruptors, and weapon systems. Player and system blocks do
contains some specific state information. However, since platforms are limited to one
mover system, the position and orientation information is provided via the platform
block.

When JIMM provides P&O information, it obtains the position, velocity, orientation,
acceleration for a given simulation time. It then echoes this information (including the
simulation time of the update) into the platform block. The asset samples this block and
then uses the information as suits its needs. In a similar manner, when another asset
controls the platform movement, the asset will provide the information and JIMM will
sample and update its information on a periodic basis.

In the earliest versions of SWEDAT, there was an attempt to better ensure that the entire
block of data corresponded to the specified time. In other words, the block would be
written in an atomic fashion. A field was added to the platform block and initialized to
zero. Assets reading the block would wait until the field was non-negative, increment the
field count, read the data, and then decrement the count. Assets writing the block would
wait until the field was zero, decrement the count, update the information, and then
increment the count.

However, this attempt at coordination was abandoned. First, it did not fully provide
mutual exclusion since there was still a possibility that one asset could be reading the
data at the same time another asset was writing. Hence, the method’s designation in the
documentation is a misnomer. In addition, significant time was lost while one asset
waited for another asset to free the block. A method using coroutines could have been
implemented where ‘ownership’ of the block is transferred between assets. This would
have solved the mutual exclusion problem but would not have solved the performance
issues. In short, it was determined that the loss in performance was not worth as much as
the assurance that the block corresponded to the specified update time - especially given
the low probability that a reading asset and writing asset would access the block
simultaneously. This probability is further reduced with the convention that the update
time provided in the block is always the last data element modified. Lastly, in the rare
case where that does occur, it is assumed that the update time is sufficiently frequent that
the error of using ‘older’ data as part of an update is acceptable.

Even so, it is still assumed that the individual data items (i.e. integers and real numbers)
are written atomically. This can be an issue in cases where the underlying hardware for
reflective shared memory assumes that variables are no more than 32 bits in size and the
use of the 64-bit shared memory map is desired.

Another issue that has arisen in JIMM is how “spread out” the update instructions should
be. Initially, the update was executed for each instruction. However, if the instruction

pertained to a large number of platforms, then the time to execute the instruction could be
large and this would cause periodic slowdowns in the performance of the simulation. To
handle this problem, an event was created for each player. Furthermore, after
initialization, the simulation time of the first update events was uniformly distributed
given the update period. Hence, the processing of asset positions is now more evenly
distributed.

P&O Updates from JIMM to Assets
Providing P&O information from JIMM to shared memory is a straightforward process.
At simulation start, an event is created for each update. During event execution, the P&O
information is obtained and echoed. A future event is then created given the defined
update period.

Information should only be updated if it changes. If it doesn’t change, then only the
update time in the block is changed. This reduces performance overhead.

Another attempt to reduce cost was to allow the user to specify whether certain
information was required. For example, JIMM will provide orientation as both forward
and up vectors as well as roll, pitch, and yaw. If all assets in the exercise do not need to
read the specific information, there is no need for JIMM to report it. Thereby, CDB
instructions exist to inform JIMM not to provide the unneeded information. An example
is provided below (where in JIMM, end of line comments are provided using the ‘$’
character).

$
$ The following specifications determine how orientation of platforms
$ is sent to the assets from JIMM.
$
$ SEND-BOTH-VECTORS/ANGLES
 SEND-ROLL/PITCH/HEADING
Figure 4 – Instructions to Reduce Output Provided by JIMM

The period by which JIMM provides P&O information is also specified in the CDB.
JIMM can also “smooth” its output of acceleration and orientation rates by averaging
them with the values a small previous and the expected values a small time ahead. This
modification of function is provided via the word “SMOOTHED” in the update
instructions. An example of this instruction set is below. The “huge_bomber” and
“sar_drone” are players in the scenario.

 UPDATE-MPM
 BY-TYPE huge_bomber EVERY 1.0 (SEC)
 BY-TYPE sar_drone SMOOTHED EVERY 2.0 (SEC)
 ALL-OTHERS EVERY 2.0 (SEC)
 END UPDATE-MPM

Figure 5 – Update Instructions for Data from JIMM

A major issue with JIMM updates is the effect of interpolation between updates. In many
cases (especially when the updates are several seconds apart), the position subsequently
reported by JIMM may not correspond with the position dead reckoned by the asset. This

can be a problem especially in assets providing visual displays. A common phenomenon
is for platforms to “jitter” on the display as they are updated.

Methods to limit the impact of jitter including “smoothing” the output given the different
between the current displayed and the current reported position and orientation. In
addition, the update rate can also be increased. For the future, plans exist to provide
information pertaining to the next future path waypoint via a dispatch. Routines will be
made available in JIMMLIB to interpolate the exact position in the JIMM simulation
given a specific time.

Another problem manifests itself when the number of platforms in the scenario becomes
large. Inspecting each every platform block and determining the reported location can be
costly. However, a common method of avoiding this cost is to add a sensor to the
platform specification. The sensor operates at the pertinent range and is programmed to
only examine platforms of interest. A SENSOR-CHANGE-STATUS stimulus dispatch
can then be sent to the asset. This dispatch will indicate when a platform becomes visible
and when it is immediately out of range. Each for this immediate dispatch, no other
dispatches occur when the platform is not visible. In this manner, JIMM can filter the
platform information for the asset.

P&O Updates from Assets to JIMM
Reading P&O information from assets into JIMM has a set of issues that corresponds
roughly with sending the data out from JIMM. However, one issue that is not addressed
is when JIMM should consider the updated information. When provided by an asset,
each P&O update for JIMM can be a costly operation. Therefore, it is highly desirable to
minimize the updates as much as possible.

To minimize updates, JIMM currently provides thresholds for distance and angles. A
distance threshold is the distance between the expected and reported positions given an
update. In a similar manner, angle threshold is the difference between the expected
orientation angles for roll, pitch, or yaw and the corresponding reported angles. If either
threshold is exceeded, the JIMM updates the position and orientation within the
simulation.

Distance threshold can also be specified as a percentage. In this case, JIMM divides the
difference in distance by the distance between the location given at the last asset update
and the current location. This value is then compared against the value in the CDB
instructions.

 MOTION-UPDATES-FROM-MPM
 BY-PLAYER 71 vis_fighter EVERY 1.0 (SEC)
 USING POSITION-THRESHOLD 2.0 PERCENT
 AND ANGLE-THRESHOLD 1.5 DEG
 END MOTION-UPDATES-FROM-MPM
Figure 6 – CDB Instructions for Updates from an Asset to JIMM

In handling updates from assets, JIMM does make some simplifications. First, it assumes
that updates are point-to-point and not curved in arcs. In other words, the platform’s path

can be expressed as a series of line segments. Furthermore, when JIMM receives an
update, it avoids reaching the end of the platform’s path by dead reckoning the path as a
straight line to the edge of the scenario.

Figure 7 – Paths Generated Given Updates to JIMM

JIMM also assumes that the position reported by the asset is truthful and must be updated
immediately. This causes a problem with “past history” since the path represented in
JIMM will be updated and a location as previously noted for in a time in the past may not
remain the same. This will have an effect on the scenario. For example, a sensing may
have occurred on the projected path that would not have occurred on the path after it was
adjusted. This effect is especially visible for platforms during turns and when the period
between updates is sufficiently large. In most cases however, the expected error is
assumed to be sufficiently small.

Thresholds can contribute to the scope of this error since the time of the last update was
either the initial time or the time the threshold was last exceeded. Hence, the interval of
time of altered “past history” could be large especially when platforms controlled by
assets traveled in straight lines. However, modifications in JIMM to reduce the scope of
the path change to the point where the last update would have occurred also reduces the
magnitude of the potential error

Figure 8 – Effects of Path Changes in JIMM due to Asset Position Updates

Another problem arose due to problems with different terrain maps. In some cases where
different representations of terrain are used, an asset may assume a position is above the

Path Flown
in Asset

Path Seen
in JIMM

Updates

Path w. Last
Threshold
Change

Path w. Last
Update Time

Update Times

Old Path

New Path

ground where JIMM would assume it is below the ground. To handle this problem, an
option was added so that an asset could “clamp” the platform to the ground and where
reported altitude was assumed to “Above Ground Level” (AGL) as opposed to above the
“Mean Sea Level” (MSL).

JIMM currently also has a limited capability to specify paths via the next waypoint. In
this approach, JIMM will still control the movement of the platform and will provide
specific location information via the platform block in the SWEDAT shared memory.
However, the asset will specify the next path waypoint via a dispatch. When the dispatch
is received, JIMM will adjust the path accordingly. This adjustment will include
adjustments for turns, accelerations, and other factors.

JIMM Dispatches
In addition to position and orientation information, JIMM and assets can also exchange
information via dispatches. Dispatches are provided via “mailboxes” that may be thought
of as a unidirectional channel. Mailboxes are automatically established by JIMM (when
acting as the master model) from itself to each other asset and also from each asset back
to itself. Instructions also exist in the CDB to allow users to establish additional
mailboxes between other pairs of assets.

JIMM Dispatches are communicated via two general methods: Dispatch Lists and
Queues. The method used by a mailbox is specified in JIMM though the CDB
instructions. The dispatch list method is the default.

Dispatch types are distinguished by a unique integer known as the action code and in
general, have a defined size and structure. When instantiated, the shared memory
associated with the dispatch is known as a “template”. When a dispatch is to be read by
the mailbox recipient, the action code is positive. When read, the action code is set to its
negative inverse. This indicates that the associated memory may be reused.

Dispatch Lists
The dispatch list is the older method of asset communication via SWEDAT and many
interfaces (including examples) still employ the method. A dispatch list is actually a list
of templates. Receiving assets move from the head of the list to the tail of the list and
inspect each of the action codes. If the action code is positive, it reads the information
and reverses its sign.

Figure 9 – Dispatch List Structure

Mailbox

Dispatch
Template

Dispatch
Template

Dispatch
Template

Dispatch
Template

Dispatch
Template

When using dispatch lists, the dispatch templates must be created by JIMM during
initialization or during runtime. A special dispatch template is provided on all dispatch
lists for the request of additional templates. Assets search their list for this template, fill
in the appropriate information, and then set the action code. JIMM will receive the
message, create the template, and send a specific message in reply. This message will
contain the address of the new message template.

The use of dispatch lists has a number of problems.
1. When there is a lot of communication, the number of templates the asset must

continually inspect will be large and thus, can also have a large performance cost.
2. A dispatch that is only used once will have a performance impact throughout the

course of the simulation run.
3. A large number of templates can consume a large amount of shared memory that

cannot be safely reused.
4. The requirement to have JIMM create the template can introduce significant delays in

interface processing.
5. There is no guarantee that dispatches will be received in the same order that they are

sent.
6. Dispatches in mailboxes between different assets (other than JIMM) are restricted to

using predefined templates.

There have some attempts to mitigate some of the problems. Some assets will restrict the
number of templates inspected to a specified number. However, this introduces
additional delays in dispatch delivery. Interfaces can also obtain templates in anticipation
of later use. However, this will certainly impact space and may impact performance.
Lastly, assets may impose their own ordering scheme and delay dispatch delivery until
such ordering can be determined.

Dispatch Queues
Given the problems with dispatch lists, an alternative approach using circular queues was
developed. A circular queue is an array. New dispatches are first written in the
beginning of the array and subsequent dispatches are written in order. When the end of
the array is reached, the dispatch will instead be written back at the array beginning.
Dispatches are divided into separate blocks. These blocks are assumed to be contiguous
and hence, if part of the block would exceed the array size, the whole block is instead
written from the array beginning. By default, the size of the queue is set at 10240
integers but can be explicitly set by an asset.

In SWEDAT, queues also possess a “read” index controlled by the receiving asset and a
“write” index controlled by the sending asset. The “read” index indicates the boundary
of dispatch data read by the asset. In turn, the “write” index indicates the boundary of
data “written” by the sending asset.

To send a message, the sending asset first determines the dispatch’s size and then using
the “write” index, checks to see if the new dispatch would overwrite data not yet read by
the receiving asset. If space in the queue is available, the sending asset then constructs a

template within the queue memory immediately after the position indicated by the write
index. This template will have a negative action code. If space is not available, then the
sending asset must postpone the sending of the dispatch, discard the dispatch, or
otherwise handle it. Procedures are available in JIMMLIB to assist in creating the
templates. Once the template is created, the “write” index of the queue is advanced to the
end of the dispatch. The sending asset then fills in the information in the dispatch and
lastly, sets the action code to its positive value.

Figure 10 – Dispatch Queues

To receive a message, the receiving asset inspects the “read” index. If the “read” index is
not equal to the “write” index, then a new dispatch has been created. The receiving asset
then inspects the new dispatch’s action code to see if it is positive. If so, then the
receiving asset retrieves the information and then advances the “read” index to the end of
the dispatch. Many assets will also set the dispatch’s action code back to its negative
value but this is not required when using queues.

Using queues avoids many of the problems with dispatch lists.
1. Comparing the “read” and “write” indices easily determines the availability of new

templates.
2. Other dispatches can reutilized space used by read dispatches once the queue “wraps

around”.
3. The amount of shared memory dedicated to dispatches is fixed.
4. Assets create their own dispatch template without intervention by JIMM.
5. Messages will always be received in the same order they were sent.
6. Dispatches sent between different assets are not restricted to templates recognized by

JIMM. In fact, they may use whatever template format they deem suitable.
7. Dispatches need not be a fixed size but only have to observe the limits inherent in the

queue.

The implementation of queues however has not been without its difficulties. The main
issue has been what to do when the queue fills up. In the initial implementation, JIMM
would report the problem and then stop execution. However, this was not a satisfactory
solution. Another implemented approach was to discard dispatches if a problem would
result. However, this solution was not satisfactory because it gave older (and perhaps no
longer necessary) dispatches a higher priority. Furthermore, there was no way to judge
the relative importance of the dispatches lost versus dispatches retained. Another
implemented approach was to double the size of the queue.

Mailbox

Read Index Write Index

The last and most current approach is for JIMM to save dispatches on an “overflow”
queue. This queue stows the dispatches in system memory in a first-in-first-out (FIFO)
order. When memory in the queue is freed, dispatches from the overflow queue are
written in. Newer dispatches are added to the overflow queue in cases where it is still not
empty. In any case, should queue overflow be a problem, the recommended practice is
still to increase the size of the queue if possible or ensure that the receiving assets reads
its mail more frequently.

Dispatch Timing
With respect to timing, JIMM sends its dispatches as soon as they are generated.
However, it will only inspect its incoming dispatches on a periodic basis or when it is
waiting for wall clock time to “catch up” to its simulation game time. The time of this
period between reading dispatches was initially fixed at 100 milliseconds. However, this
period is now programmable via the CDB.

In addition, JIMM is currently restricted to reading one message per inspection. It is
expected that this limit will be retained should dispatch lists be employed. However, in
the newer versions of JIMM, dispatches are now transformed into events. This
transformation requires much less immediate processing than handling the dispatches
directly. Hence, coupled with the use of dispatch queues, multiple dispatches may more
easily be processed within a single inspection.

Time Synchronization
During real-time operation, it was initially assumed that each asset could employ its own
clock and that any skew that might result would be acceptable. If tighter synchronization
were required, than assets would employ the time echoed by JIMM into SWEDAT.
Hence, assets would not project system performance into a time later than the simulation
game time.

Clocks in JIMM can be either external or internal. The internal clock is the system clock
in the computer on which JIMM executes. The external clock is from another source and
the time is then echoed by a utility into a specific location in SWEDAT. JIMM then
coordinates the scenario using the echoed information as the time source.

Figure 11 – External Time in JIMM

Outside
Clock

Clock
Interface Clock Time

JIMM Game Time

Asset #1

Asset #2

Other approaches have also been used for time synchronization. For example, a time-
grant approach has been developed for use in HLA exercises [TRW03]. In another
approach, JIMM will inspect the time reported by assets and only proceed if the
difference between the current game time and the earliest reported game time is less than
a specified interval [Mut05b].

Clock Flywheel Problem
One of the major issues that have arisen is how to handle cases where JIMM does not
meet its real-time deadline. One simple method is for JIMM to work as fast as possible
in processing events to have the simulation game time catch up to the wall clock. The
problem is that should this catching up be required repeatedly, the simulation will slow
down, rapidly speed up, slow down, and then rapidly speed up again. This is undesirable
behavior for many assets – especially visual systems. This problem is otherwise known
as the “flywheel” problem.

Another approach has been to cap the maximum speedup to a preset value. This allows
the simulation to catch up smoothly and gradually. At one time, the maximum speedup
was hard-code to 2.5%. However, the maximum time can now be programmed directly
by the user [TRW02]. Unfortunately, this behavior is not ideal for assets where time
synchronization is more information (as when interface send electronic stimulation to an
aircraft during a test). In fact, the former behavior with the rapid speedup is preferred for
some exercises.

Hence, since neither approach is best for all cases, the current implementation allows the
user to determine the approach employed.

Conclusion
This paper has discussed the Joint Integrated Mission Model (JIMM) and the Simulated
Warfare Environment Data Transfer (SWEDAT) protocol. Problems with dispatch
mechanism, position and orientation updates, and clock synchronization have been
discussed. Work to expand and improve SWEDAT operation continues.

Further information on JIMM and SWEDAT may be obtained from the JIMM Model
Management Office (JMMO) at <jmmo@navy.mil>.

Acknowledgements
JIMM is the result of a lot of hard work by many people and many individuals
contributed to the solutions discussed in this paper. The author apologizes for any
omissions that may be made in these acknowledgements.

Peter Lattimore and others at Bosque Technologies originally developed the Simulated
Warfare Environment Generator (SWEG). SWEDAT was originally implemented for
SWEG and was carried forward when SWEG became the initial baseline for JIMM.

Jon Anderson provided the initial implementation for queues, the initial implementation
for dynamic asset allocation, and the modification to update paths generated by updates
from assets to the last update time.

Doug Pickeral provided the initial handling of queue overflows. Ross Jones of TRW
developed the queue doubling solution. William Brooks provided the basic
implementation of the overflow queue. Stuart Baldwin also implemented overflow
buffers for SWEDAT. Blair Kitchen adapted this approach for the final implementation
in JIMM.

The flywheel problem was identified and named by Phil Landweer. An option to initially
switch between the gradual and rapid speedup approach was implemented by Jon
Anderson. Ross Jones, Alex Zimmerman, and others from TRW (now Northrop
Grumman Mission Systems (NGMS)) in Albuquerque NM provided the current solution
using run speed control.

The author also acknowledges Ron Chesley and Ross Jones for their review and
comments provided on drafts of this paper.

Current JMMO staff includes Natasha Bailey, Stuart Baldwin, Michael Chapman, Ron
Chesley, Ralph Gibson, Alex Harper, Blair Kitchen, and Maritza Miller.

References
[Bal05] Baldwin, Stuart. “Shared Memory Interface Likability Engineering (SMILE)”.

JIMM Users Group, Rosslyn VA, May 2005. Available from the JMMO at
<jmmo@navy.mil>

[Jones05] Jones, Ross. “JSMI Information via MPI”, To be presented at the JIMM Users

Group (JUG), Nov 2005. To be available via the JMMO at <jmmo@navy.mil>.

[Lat05] Lattimore, Peter et al. “JIMM Users Guide Volume One”. Available via the

JIMMO at <jmmo@navy.mil>

[Mut02] Mutschler, David. “JIMM Design Document for Dynamic Asset Allocation”.

2002. Available via the JMMO at <jmmo@navy.mil>.

 [Mut05b] Mutschler, David. “Master/Client Feasibility Study”. Available via the

JMMO at <jmmo@navy.mil>

[TRW02] TRW Systems Inc. “JIMM Design Document -- Run Speed Control”. June,

2002. Available via the JMMO at <jmmo@navy.mil>

[TRW02b] TRW Systems Inc. “JIMM Design Document for Implementing the WGS-84

Earth Model”. May 2002. Available via the JMMO at <jmmo@navy.mil>

[TRW03] TRW Systems Inc. “JIMM Design Document for Implementing Time
Management, Revision 1”. April 2003. Available via the JMMO at
<jmmo@navy.mil>

Biography
The Naval Air Systems Command (NAVAIR) has employed David Mutschler in
Modeling and Simulation (M&S) for over twenty years. He is currently working in the
NAVAIR Battlespace Modeling and Simulation Division (Code 5.4.2) in Patuxent River,
MD. Highlights in his career including acting as the Technical Lead for the Single
Acoustic Signal Processor (SASP) Trainer (SAT) Upgrade for versions 4.0, 4.1, and 4.1.1
and acting as the Principal Investigator for “Parallelization of the Joint Integrated Mission
Model Using Cautious Optimistic Control” for the High Performance Computing
Modernization Program Office (HPCMPO). He received his doctorate in Computer and
Information Science from Temple University in 1998. His current research interests
include Parallel Discrete Event Simulation, Distributed Systems, Modeling and
Simulation, and Software Engineering. He is also an Assistant Professor at the Florida
Institute of Technology (FIT) School of Extended Graduate Studies (SEGS). He is a
member of ITEA, SMS International, IEEE, IEEE/CS, and ACM, and ACM/SIGSIM.

