
 1

Shared Memory Architecture and Explored Alternatives for Interoperability
Technical Session: Collaborative Simulation and Testing

Dr.rer.nat. Gary E. Lohman

Naval Air Systems Command (NAVAIR)
Integrated Battlespace Simulation and Test (IBST) Dept.

Air Combat Environment Test & Evaluation Facility (ACETEF)
48150 Shaw Rd. Bldg 2109, S115, Patuxent River, MD 20670

301-757-1161 (Phone), 301-342-6381 (FAX)
gary.lohman@navy.mil

David W. Mutschler, Ph.D.

Naval Air Systems Command (NAVAIR)
Integrated Battlespace Simulation and Test (IBST) Dept.

Air Combat Environment Test & Evaluation Facility (ACETEF)
22367 Cedar Point Rd. Bldg 2185, Rm. 2260-B4, Patuxent River, MD 20670

301-342-6837 (Phone), 301-342-2366 (FAX)
david.mutschler@navy.mil

1 Interoperability and ACETEF

The Air Combat Environment Test & Evaluation Facility (ACETEF) is a major
component of the Naval Air Systems Command (NAVAIR) Integrated Battlespace
Simulation and Test (IBST) Department. The IBST Department is a collection of
geographically distributed yet integrated test facilities and many diverse activities all
designed to provide effective, affordable and repeatable test & evaluation (T&E)
capabilities for a variety of naval aircraft, weapon systems, and other platforms. IBST
includes facilities in both the Naval Air Warfare Center Weapons Division (NAWCWD)
and the Naval Air Warfare Center Aircraft Division (NAWCAD). Major Installed
Systems Test Facilities (ISTFs) within NAWCWD include the Radar Reflectivity
Laboratory (RRL) in Pt. Mugu, CA, as well as the Integrated Battlespace Arena (IBAR)
and the Missile Engagement Simulation Arena (MESA) in China Lake, CA. Major test
facilities within NAWCAD include the Surface/Aviation Interoperability Laboratory
(SAIL), the Manned Flight Simulator (MFS), and the Air Combat Environment Test &
Evaluation Facility (ACETEF) at Patuxent River, MD. Other activities within IBST
include Electromagnetic Environmental Effects (E3) facilities, NAVAIR High
Performance Computing (HPC) Centers, and the NAVAIR Research, Development, Test,
and Evaluation (RDT&E) network domain [YM07].

The ACETEF concept reaches back to the 1970’s with the convergence of the F/A-18
Hornet, the AV-8B Harrier, and the SH-60B Sea Hawk programs at the Naval Air Test
Center, as it was then known. The first operations paradigm was “Fly-Analyze-Fix.” By
the early 1990’s this operations paradigm had shifted to “Simulate-Stimulate-Analyze &
Fix-Fly” [OCD97]. A key enabler in this paradigm is simulation, which is the “goal-
directed experimentation with dynamic models, i.e., models with time-dependent
behavior” [Ore02]. ACETEF extends the simulation concept to encompass a “coherent

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
2007 2. REPORT TYPE

3. DATES COVERED
 00-00-2007 to 00-00-2007

4. TITLE AND SUBTITLE
Shared Memory Architecture and Explored Alternatives for
Interoperability Technical Session: Collaborative Simulation and Testing

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Air Systems Command (NAVAIR,Integrated Battlespace
Simulation and Test (IBST) Dept.,48150 Shaw Rd. Bldg 2109,
S115,Patuxent River,MD,20670

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
ITEA 2007 Modeling & Simulation Conference, Las Cruces, NM, Dec. 10?13, 2007

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

35

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

 2

environment” in which other dynamic functional components ranging from man-and
equipment-in-the-loop to simulation and stimulation assets can be “immersed” and
interact. In this integrated environment of immersed dynamic systems, emergent effects
can be observed and analyzed so that the whole of ACTEF can actually be greater than
the sum of its parts. At a physical level, ACETEF is a collection of laboratories and
facilities that includes two anechoic chambers (the Advanced System Integration
Laboratory (ASIL) and the smaller Aircraft Anechoic Test Facility (AATF)), the Warfare
Simulation Lab, the Threat Air Defense Lab (TADL), the Communication, Navigation,
and Identification (CNI) lab, the Electronic Warfare Integrated Systems Test Laboratory
(EWISTL), and the Electro Optic Infrared (EOIR) Laboratory. While these laboratories
maintain their ability to operate independently, at the deeper logical level their specific
shared interoperable architecture facilitates integration in a tightly-coupled real-time
manner. The Manned Flight Simulator (MFS) is also able to interact with ACETEF in
this real-time, integrated operational mode.

Since ACETEF’s inception, the evolution of modern warfighting doctrine has put
increasing operational importance and even dependence on complex interactions. The
emergent effects that were side-effects in the past are rapidly becoming the mainstays of
“edge entities,” capable of conducting highly responsive military missions [Alb03]. The
ACETEF concept in supporting such highly complex integrated T & E activities is more
relevant today than ever. At the heart of the ACTEF concept is a particular form of
interoperability that engenders coherency of interactions, consistency of data modeling
and synchronization of distributed actions. Whereas IEEE defines interoperability
broadly as “the ability of two or more systems or components to exchange information
and to use the information that has been exchanged” [IEEE90], ACETEF’s
interoperability is based on concurrency. Concurrency is a property of systems in which
several computational processes are executing at the same time, and interacting with each
other [ROS97].

EOIR

WSL

MFSEWISTL

ASIL

AATF TADL

AATF

SAIL

JIMM

EOIR

WSL

MFSEWISTL

ASIL

AATF TADL

AATF

SAIL

JIMM

Figure 1 – ACETEF Functional Basis.

The ACETEF functional basis as depicted in Figure 1, provides the motivational
backdrop for the ensuing discussion regarding shared memory and alternatives from the
perspective of leveraging different concurrency models.

2 Concurrency – A closer Look

Concurrency is one of those quintessential challenges of interoperation with respect to
information processing systems. Concurrency applies to all levels of interaction within a

 3

computing environment from hardware and the operating system to the functional
applications, which is the level of interest with respect to ACETEF interoperability.

For simplicity sake, application concurrency can be taken as the execution of multiple
interacting computational tasks implemented as separate processes. The functional
perspective of application-level concurrency involves the implementation of a
concurrency model that includes an inter-process communication (IPC) method with a
coherence protocol, a data consistency model and a synchronization mechanism.

Application 2
fn1(x)

Application 3
fn2(x)

Application 1
x
fn3(fn1(x), fn2(x))

Inter-Process Communication

Coherence Protocol

Data Consistency Model

Synchronization Mechanism

Figure 2 – Motivating the challenge of application concurrency - application1 provides the seed value
x for fn1 and fn2 that can be executed more-or-less in parallel in applications 2 and 3 respectively.
Application 1 relies on these functional results as the arguments of its own function.

The simple situation depicted in Figure 2 already illustrates the need for some degree of
coherence, consistency and synchronization at the level of the concurrent applications’
interacting functions. There must also be an understanding atomicity across the
applications, namely those actions that are indivisible, because the concurrency model
must address these core issues at the appropriate atomic level. From the ACETEF
perspective, atomicity can become a highly complex issue on its own merit. The
individual models behind the simulations and stimulators as well as the dynamic
interactions with human interfaces and instrumentation can exist at different levels of
detail. The individual levels of detail are related in the sense of physical causality, such
that patterns of conjoined or sequential events at one level will reflect events at a higher
level of abstraction. In a practical sense, if the functional components do not share a
common level of detail, then the atomic abstraction will impact the coherence,
consistency and synchronization details of the concurrency model.

Concurrency is more than just a data protocol. Data-level protocols like Distributed
Interactive Simulation (DIS) put the primary focus on the data formatting and passing
aspect of sharing and not the concurrent interaction of processes actually sharing the
information. This provides a lowest-common-denominator basis for data consistency, but
does little with respect to coherence and synchronization. By contrast the High Level
Architecture (HLA) protocol facilitates data sharing along the lines of a Federate Object
Model (FOM), which enables data sharing within a commonly agreed upon data-context.
This higher-level data consistency model adds some coherence and synchronization
potential. The Test and Training Enabling Architecture (TENA), which is based on the
Common Object Request Broker Architecture (CORBA) concept, goes beyond the mere
data passing aspect to include the methods and marshalling instructions necessary for

 4

concurrently mediating process interactions involving the data at a functional level. These
three common modeling and simulation (M&S) data protocols represent vastly different
forms of interoperability from a concurrency point of view.

Concurrency is also more than just the choice of IPC. Although IPC methods come in
many different technical and OS-specific forms, in an abstract application functional
sense it boils down to a “sharing” of something such as a file, a block in memory, a
connection for passing messages, or an environment for passing signals or control
instructions. Consequently, two classes of explicit inter-process communications can be
readily identified. On one hand, there is the file and memory sharing, which typically
involves some kind of locking-based protocol as in the shared-memory concurrency
model. On the other hand, passing messages, signals and instructions through a shared
connection or environment typically involves some kind of process calculi or actor
concurrency model. In thread discussions, these two classes are often succinctly
described as “variable sharing” or “message passing.”

In its original form, shared memory was both an efficient IPC method and a concurrency
model. As an IPC method, once the memory is mapped into the address space of the
process sharing the memory region, memory management functions aside, the data is
efficiently passed between processes without executing data calls through the kernel.
Today, the use of shared memory as an IPC may be disguised under many different
application programming interfaces (API), but most modern implementations on
Windows, UNIX and Linux platforms actually employ some kind of file memory
mapping as the actual explicit inter-communication mechanism. As a concurrency model,
shared memory involves a straightforward coherence protocol of the form: locking
memory; manipulating shared memory followed by freeing memory. Consistency and
synchronization are then maintained by simply imposing basic rules governing the
requesting and order of shared memory accesses by the individual processes. While the
details of the coherence protocol and consistency model change with memory mapped
files, the basic “locking” effect at the shared variable level is still preserved behind the
API, so that the coherence model is essentially the same in outward appearance.

While the shared memory concurrency model is simple and in many respects elegant to
the point of being virtually transparent to the user, this also speaks to the level of
atomicity involved. For example, if two applications have functionally identical
variables, then those variables can be efficiently “shared” through the shared memory
concurrency model quite effectively. Now consider the danger in shared memory if a
process crashes while manipulating the “critical region” of memory, or if it locks too
frequently. In the case of fine-grain sharing, consider the effect of a “deadlock” where
two processes hold “hostage” the portion of memory that each other is waiting for. Such
low-level “exceptions” might actually be easily resolvable at a higher task-level of
understanding. Unfortunately, at the atomicity of the concurrency model employed, these
situations may be inherently ambiguous. If the atomicity of the process interaction is at a
higher functional level so as to include data structures, control methods and even program
objects, then the intrinsic support of a more complex concurrency model may be
required.

 5

Message passing IPCs fundamentally offer greater flexibility for supporting a broader
class of concurrency models at both the variable-level and beyond. Furthermore, message
passing IPCs provide an important basis for extending the concept of concurrency across
processes running on multiple and possibly disparate compute platforms as in a
networked environment. The proliferation of high-bandwidth standards-based networks
combined with easy-to-program abstractions such as sockets, makes the message passing
paradigm in distributed systems generally appealing, but we must keep in mind the fact
that concurrency is more than the IPC chosen as the means of implementation.

As a point in case, consider Distributed Shared Memory (DSM). DSM implemented at
the operating system level can be thought of as extensions of the underlying virtual
memory architecture and as such is completely transparent to the applications, but is also
particular to a small family of operating systems and generally require that all compute
platforms be running the same OS across a specific network backbone. If the OS does not
support DSM natively, which most do not, then the distributed shared memory concept
must be created by (1) preserving locally the shared memory look and feel (i.e.
appropriate API “disguise”) and (2) enforcing globally the shared memory concurrency
model. This is typically achieved by using some form of a message passing IPC. As a
notional DSM implementation, consider a local process that would normally interact with
another local process through shared memory. The process now interacts through local
shared memory with a proxy that is the DSM local client. The DSM clients share a
message-passing connection at the core of their infrastructure. The IPC implementation in
this case supports a process algebra that extends the local shared memory concurrency
model to the other clients (e.g. locking one; locks all) as well as mediates and
synchronizes the data manipulations across the clients for a net reflective data effect.
Whether the DSM implementation is software based using standard networking hardware
and protocols like TCP/IP, or employs proprietary hardware and firmware to offload the
process-algebra and communications processing, the effect of a shared memory
concurrency model remains.

While shared memory represents the low-end of the concurrency model spectrum of
complexity, the Common Object Request Broker Architecture (CORBA) concept
represents a considerably higher degree of supportable concurrency complexity.
Fundamentally based on a message passing paradigm across standard computer networks,
CORBA is a formal standard defined by the Object Management Group (OMG) for
enabling software components written in various computer languages and running on
multiple computers to operate concurrently. CORBA capitalizes on the object oriented
(OO) nature of most modern languages and their use of objects in order to enable
interaction through the sharing of objects. Objects embody not only the data but also the
encapsulation of methods for manipulating the data in a functionally consistent context.
In particular, CORBA uses an interface definition language (IDL) to define the objects
and services in a language-independent manner. When compiled using the IDL, a client
side stub-code, and a server side skeleton-code are created (Figure 3).

 6

(client process)
main()

(client process)
main()

(server process)
main()

(server process)
main()

object reference

stub code

object reference

stub code

object reference

stub code

object reference

stub code

object
implementation

skeleton code

object
implementation

skeleton code

object
implementation

skeleton code

object
implementation

skeleton code

object request
broker (ORB)

object request
broker (ORB)

object request
broker (ORB)

object request
broker (ORB)

network
Figure 3 – The CORBA concept supports by design concurrency as well as interoperability.

When a client makes a call to a remote object, the stub provides the interface or proxy to
the remote object along with the marshalling instructions for the client’s object resource
broker (ORB). The skeleton provides the server’s ORB with the means to interpret the
client’s method and the un-marshalling instructions. On return response from the remote
object, the roles are essentially reversed. Application level concurrency lies in the
particular methods and marshalling instructions, which can be designed around various
concurrency models. CORBA’s growth as a concurrent programming middleware from
the mid 1990’s on was marked by sometimes even more rapid development and
commercial acceptance of JAVA and Enterprise Java Beans (EJB). For the purpose of
discussion this it is worth noting that even in 2007 these approaches continue to compete
so that the only clear point may be simply that the final chapter of the quest for such
high-end flexible, language and platform independent concurrent middleware is yet to be
written.

3 Concurrency Evolution at ACETEF

In the early 1990’s when ACETEF was architecting its integrated, concurrent operating
capabilities, comparatively slow processors, low bandwidths and severely limited
dynamic memory narrowed the concurrent processing options to shared memory, both
locally and distributed using proprietary hardware. Using the simulation concept for the
concurrent environment basis, the ACETEF architects took a warfare model of the same
family as the TAC Suppressor and made some specific, yet very profound alterations.
The model’s game engine was based on a semantic network. Such engines work on the
principle that any event, like the movement of a game entity, changes certain parts of the
network and triggers a predicate logic traversal of the network to determine the response
of the entity and all other entities, which in turn gets reflected back in the network in
preparation for the next event. The significance of this kind of logic-engine architecture is
that if certain parts of the semantic network were made externally accessible, then the
behaviors in addition to the triggering events could be driven externally. ACETEF’s key
alteration of the model was in fact to make parts of the network externally accessible
through a shared memory interface as well as add simulation control and contingency
behaviors [Lat95]. By providing for its own memory management through the model’s
control, the interface could serve as a coordination protocol for the functionally organized
memory blocks. This interface-protocol became known as Simulated Warfare
Environment Data Transfer (SWEDAT). Certain SWEDAT shared memory blocks
correspond to entity position and orientation (both actual and perceived), emissions,

 7

scenario configuration data, timing and coordination. Other blocks, however, correspond
to low-level model-specific mailboxes where battlespace interactions with entities as well
as entity behaviors can be shared. In this way, data can be shared at the “variable-
sharing” level within a shared memory concurrency model, while actual interactions take
place within the model at higher battlespace-relevant levels of atomicity with the effects
reflected back to the lower SWEDAT level. The net effect is a stimulus-decision-
response (SDR) interaction between entities within the model and their outside world
counterparts (Figure 4).

Figure 4 – The shared memory based SWEDAT interaction paradigm allows the model to act as a
virtual world and mediate a stimulus-decision-response concurrent connection between external
devices and their virtual counterparts.

This creates a profound concurrent computing capability by enabling the model to
function as a kind of “virtual world hosting entities” whose behaviors could be
concurrently driven by external devices such as models, stimulators and man-machine
interfaces. Since each external entity within this construct “sees” the “reflection” of the
entity in the virtual world, including each other’s effects without explicitly “knowing”
about each other, a highly effective agent-based integration paradigm for concurrently
operating external devices is achieved. While the low level “variable-sharing” data
atomicity through SWEDAT can demand considerable effort with a steep learning curve
for creating, debugging, operating and maintaining external interfaces, the effective SDR
interaction addresses concurrency at the higher-level of battlespace interactions, which
defines the atomicity of the overall concurrency model in effect.

The SWEDAT protocol continues to be very important for ACETEF integrated
operations, and it is still based on shared memory (including DSM). The descendant of
the originally modified model, known today as the Joint Integrated Mission Model
(JIMM), continues to control those blocks of the shared memory that are specific to
external, concurrent control [Lat07]. In the post “AI Winter,” as some have called it, it is

 8

ironic to see the number of new agent-based and semantic network driven model
concepts arising today, while the agent-based roots of successful models like JIMM have
been virtually forgotten [LS07] In addition to supporting real-time integrated exercises
involving direct stimulation of aircraft systems under test with emitted energy, SWEDAT
can also link ACETEF into distributed exercises via interfaces using DIS, HLA, the
TENA, and other methods (Figure 5). Furthermore, these methods can also operate
simultaneously with each other or with laboratory interfaces as required. Multiple copies
of JIMM can also operate directly through SWEDAT [Mut05]. In addition, this allows
simulators such as the Joint Semi-Automated Forces (JSAF) simulator or the Enhanced
Air Defense Simulator (EADSIM) to provide all or part of the threat environment during
exercises [IBST07].

MFSRRL

ASIL

TADL

HLA

JIMM

SWEDATMESA
DIS

TENAOther
Sites

Other
SitesSWEDAT

Other
Labs

JIMM

JIMM

JSAF
Figure 5 – Notional Integrated Exercise with Distributed Sites

Over the past few years, components of an interface library have evolved using an object-
oriented construction to extend interactions beyond SWEDAT [MA06]. In this approach,
methods employed to access SWEDAT data are kept in a derived class. However, actual
SWEDAT interaction is maintained in a base class. Since much of the SWEDAT data
does correspond to information found in protocols like DIS, HLA and TENA, this library
can be extended to handle other protocols through a plug-in architecture that continues to
evolve as depicted in Figure 6.

ACTEF
Stimulators

JIMM
SWEDAT I/F

I/F

MFS

EOIR
ACETEF
Interface
Library Linked Base Class

Threat
Generator

(e.g. NGTS,
JSAF, etc.)

HLA
Plug-in

DIS
Plug-in

TENA
Plug-in

I/F ???
···

Figure 6 – Current state of the ACETEF architecture

The data interchange structure and management control still relies on SWEDAT under
JIMM control. Two proposals have been submitted to fully separate SWEDAT control
from JIMM [Mut03], [Mut04a]. While this would take SWEDAT and the shared memory
management out of the JIMM model, the net effective SDR concurrency paradigm
provided by using JIMM as a kind of virtual world would no longer be intrinsic. This
means that data is being interchanged in the runtime environment, but the true

 9

concurrency burden, i.e. coherency, consistency and synchronization, gets left largely to
the assumed concurrent operating capabilities of the interconnected components.

The SWEDAT and interface library are predicated locally on a shared memory data
model so that the current implementation relies heavily on a costly distributed reflective
shared memory architecture involving proprietary hardware, drivers and infrastructure.
Several efforts have been undertaken to replace the DSM with message passing protocols
across stands-based networks [Bal05a], [Mut04b], [Jon05], but these do not change the
fundamental shared-memory architecture at the core of SWEDAT itself. For example, the
Shared Memory Interface Likability Engineering (SMILE) effort involved fundamental
changes to both JIMM and SWEDAT in order to replace the DSM with message-passing.
As a JIMM modification, this effort promoted automatic conversion of indices (given
data offsets) referencing SWEDAT data to pointers and pertinent automatic conversion of
“endian” data (Figure 7). From the SWEDAT perspective, this effort promoted the
transfer of data over a standard network via an object request broker.

JIMM
SWEDAT

via
CORBA

I/F

I/F

MFS

IRSS
JIMM

SWEDAT
via

CORBA

I/F

I/F

MFS

IRSS

Figure 7 – Notional Exercise using JIMM and SMILE with Manned Flight and the IR stimulator.

The initial prototype that was built on IBM PCs and Linux was successful and as efficient
as the legacy implementation [Bal05a]. Despite this success, the prototype
implementation did not interoperate on all officially JIMM supported computer platforms
and posed certain technical compatibility issues that kept it from being incorporated in
the current JIMM distribution [Bal05b]. A similar effort funded by the Northrop
Grumman Corporation (NGC) focused on employing SWEDAT via the Message Passing
Interface (MPI) [Jon05]. MPI is a language-independent communications protocol
common in parallel computing for interoperating between processes distributed over a
network. The implementation was successful, though it was shown to have some time
lags when compared against direct shared memory. Both of these efforts essentially
extend the existing shared memory by adding a message passing protocol.

There is, however, a proposal for actually replacing the current shared memory protocol
with a message-passing protocol. Between JIMM’s semantic network known as the
general array and the current shared memory implementation of SWEDAT is an internal
dispatch system that coordinates instructions for changing array items and the sentence-
like responses of the predicate logic coming from the model. Consequently, the
dispatches currently employed within SWEDAT as well as common updates such as
position and orientation of platforms could be encapsulated as messages and sent over a
network directly and thus replace the SWEDAT protocol with a native message passing
implementation. Furthermore, the implementation in JIMM could leverage JIMM’s
multi-threaded architecture [Mut04b]. Unfortunately, this has only been proposed and not
actually implemented, although recent work to improve accuracy of position and

 10

orientation for interfaced systems and reduce network traffic [Mut07] could facilitate this
effort.

4 An Alternative Perspective

An alternative approach is not simply a shared memory replacement addressing ACETEF
data interchange, because it must address the end-to-end concurrency of physical
battlespace interactions, i.e. the net effect of the shared memory SWEDAT with the
JIMM virtual world notion as previously discussed.

Figure 8 – The road to an alternative perspective. The concurrent environment is reflected in a
concurrent physical representation and a concurrent nomological interpretation for dynamic systems
representing a “real world.”

Consider that the ACETEF “real world” consists of dynamic systems of different types
that must concurrently interoperate, as in Figure 8. The concurrent environment is
marked by coherence of interaction, data consistency and event synchronicity.
Individually, each dynamic system could be viewed as being part of a larger concurrent
physical representation. The physical intersect will have physical entities within a
physical environment that are both definable by various static and dynamic properties.
The entities exist in space and thus have physical location as a common (often dynamic)
property. The temporal-bounded interactions of entities with each other and with their
local environment will be reflected in the time-evolution of the affected dynamic
properties. The level of detail of the dynamic systems will typically differ as each
provides its own functionally-oriented perspective of the physical representation. These
differing levels of detail are not independent, but rather are abstractions of one another
with respect to underlying cause and effect relations, i.e. physical laws. Within the
context of time and space, this nomological relatedness manifests itself in anticipatory
patterns of conjoined and sequenced events so that a plausible inference exists for
concurrently interpreting features in the physical representation between levels of
abstraction [Hum55]. This concurrent nomological interpretation in conjunction with the

 11

concurrent physical representation provides a basis for mediating concurrency between
the dynamic systems through a common physical intersect.

A first opportunity to explore this concept presented itself in a 2005 project sponsored to
take a given tactical situation and compare the effects of employing two different
communications paradigms across certain mission profiles. The comparison reduced to
two salient, operationally significant questions: (1) Does the “to-be” communications
paradigm shorten the kill chain as compared to the “as-is” paradigm? (2) Does the “to-
be” communications paradigm improve the Common Operational Tactical Picture
(COTP) over that of the “as-is” paradigm? The desire was to “see” the data products as
runtime visualizations of the kill-chain formation (logical graphs) and the tactical picture
degree of commonality (statistical charts).

Figure 9 – Distributed agents concurrently sharing data services centered on a nomological data
schema.

The challenge was to concurrently capture data from multiple sources; analytically
processes the data for different causal features in parallel and map select identified
features to multiple visual presentations on-the-fly. As shown in Figure 9, a concurrent
TCP/IP based runtime environment centered on shared data services and a physical,
nomological data schema was created along with agents for data capture, feature
abstraction, and feature visualization. In this case, JIMM simulations were used to model
the “as-is” and “to-be” situations. Consequently, two capture agents were employed to
map both a priori scenario data and runtime event data into the data and metadata
structure of the nomological schema for the synchronized simulations. The one side of
the capture agent is necessarily specific to the data source, while the other side largely
depends on the more generalized nomological data structure services. The physical
features relevant for assessing kill-chain and COTP are at a higher level of abstraction. A
generalized, model-driven causality correlation core was constructed so that identical
feature abstraction agents could be deployed with different causality patterns.
Consequently, two agents were used in this case, one for abstracting kill-chain related
features and one for abstracting COTP-related features. The mode of data visualization
determines the data structure, e.g. a scengraph for scene rendering, tables for chart data,
and node-edge graphs for logical data representations. In this case, two agents

 12

corresponding to chart presentation and logical graph presentation were created. While
the one side of each agent facilitated selecting features for presentation and mapping the
features from the nomological structure to the particular data visualization structure, the
other side of the agent mediated the data passing to a particular rendering library.

Drawing on the success of this initial effort [LB06], an even more generalized, higher
performance system for integrated analytical purposes is currently under development.
This current effort involves several noteworthy architectural features. First, a very
flexible and efficient concurrent environment is created using the Tool Command
Language (Tcl). Tcl is a growing language that was born in the early 1990’s as a
functional programming extension to the declarative C/C++ programming language. In
functional programming languages one describes what to do in an imperative
environment as opposed to how to do it in a declarative environment. Like its more
famous functional programming ancestor LISP, Tcl is list-centric. In fact, Tcl has highly
evolved lists, array and string processing capabilities including regular expressions and
substitutions. Intended as an extension of C, these core capabilities are highly optimized
for near byte-code level efficiencies. Furthermore, Tcl is remarkably platform-
independent and can be either natively embedded within a C application or run
independently with the ability to call linked libraries. Automatic memory management
and a lack of pointers make Tcl very robust and highly compatible when embedded.

The Remote Procedure Call (RPC) script is a mere few-dozen lines of optimized code
that allows command strings to be executed on a remote interpreter with the completion
code and result being returned locally in the same way as if the command string had been
executed locally (Figure 10).

eval {cmdstring…}
» <code> <result>

client server

server:eval {cmdstring…}

» <code> <result>

eval {cmdstring…}

eval {cmdstring…}
» <code> <result>

client:eval {cmdstring…}

» <code> <result>

eval {cmdstring…}

TCP/IP Connection

Figure 10 – Remote Procedure Call (RPC) service running on Tcl interpreters across TCP/IP
provides an efficient basis for higher-order concurrent processing services.

A second architectural feature is the use of a modern In-Memory Database System
(IMDS). The IMDS is the general-purpose descendant of the embedded database that
take advantage of the large memory and very fast CPUs of today’s computing platforms.
In most respects, IMDS operate like embedded databases in that they are typically an
integral part of the application they serve so that the database code is executed only when
invoked by the application. The database’s code may be in-line with the application code
or called through linked libraries. In particular the Metakit database is currently being
explored because it can be natively embedded in both C code and Tcl interpreters. In fact,
the Tclkit release of Tcl uses Metakit internally as the real-time virtual file system. The
Metakit database also employs a reduced, yet highly efficient instructional set that avoids
the overhead of a full query language while still maintaining the necessary data

 13

consistency and flexibility of searching, sorting and selecting expected of a database
engine. Unlike traditional databases that operate through transactions to the database file,
usually through some caching mechanism that is all part in parcel of its data consistency
model, the IMDS operates on a more direct data-in-memory model. Consequently, it
typically requires fewer, simpler processes by eliminating or greatly simplifying the
concepts of caching, data transfer, transaction processing, synchronization and rollback
without loss of consistency. Furthermore, instead of a transaction-oriented data file, a
Metakit repository can operate purely in-memory or be linked to file that is a more direct
reflection of the data-in-memory, which makes operations like commits and loads
tremendously fast and efficient.

When combined with the RPC service, the IMDS allows the creation of a reflective
shared embedded database service with a few-dozen additional lines of functional
programming code. In particular, the server establishes an in-memory database for each
database service that it hosts. Each database at the server-side is linked to a file so that
persistence is ensured. When a client connects and invokes the database service, its own
embedded database is started in a pure in-memory mode and a data load of the data in the
server’s database for that service is downloaded. In actuality, the remote call service at
this point takes special advantage of the fact that its communications exist in a slave
interpreter as well as the ability to define code on-the-fly in an interpreter environment.
In particular, the server uses the remote call service to set up another, special binary
connection using the same physical connection for passing and loading the database data
and structure on the client in low-level, binary form with extreme efficiency. It then
destroys the special connection on both sides when the loading is complete without
impacting the remote call service.

An application in which the client interpreter is embedded can now make database calls
for creating, reading, updating and deleting both data and structure in addition to the
efficient searching, sorting and selecting that databases are known for. If the call does not
change the data or structure, then the call is executed by the embedded database locally.
However if the call would result in a data or structure change, then the underlying remote
call service, upon which the database service is constructed, passes the database
command with any arguments to the server where it is first executed by the server’s
embedded database. The server then uses the same underlying remote call service to
remotely execute the database command on all of the subscribing clients’ embedded
databases. By design, the server remotely executes the database command on the
originating client’s embedded database last. In this very simple way, the client knows that
when it sees the change, then everyone already sees the same change!

Additionally, the database service provides a special connect/disconnect procedure for
the underlying remote call service to invoke on connect/disconnect events as part of the
overall coherency and consistency control at the database service level. When the
database’s own consistency model is combined with this simple yet effective coherency
protocol, the resulting concurrency model now addresses the atomicity of data-in-
structure as opposed to mere data. Since the database schema in this case reflects the

 14

physical features and nomological interpretation basis, the effective concurrency model
can be managed at the appropriate battlespace interaction level.

ApplicationApplication

In-Memory
Database
In-Memory
Database

Shared
Embedded
Database

array set/
unset call

db set/
select

Tcl Interpreter
(Client)

pass {db command}

to server

Tcl Interpreter
(Server)

forward {d
b command}

to clients

ApplicationApplication

Shared
Embedded
Database

db get/
select

Tcl Interpreter
(Client)

array set/ unset
effect seen

1. First program establishes in-
memory database service through
the server with possible data.

2. Second program “connects” to the
server and subscribes to the
database service, which causes a
replication of the in-memory
database data of the first program
into its own in-memory database.

3. When either program changes data
in its in-memory database, the
changes are distributed to the
other program’s in-memory
database.

Database file
on disk.
Database file
on disk.

Figure 11 – Reflective, shared in-memory database system services embedded within the Tcl
interpreter and running on top of the RPC service enables concurrent sharing of data within the
context of its database structure.

When the interpreter is embedded within a compiled application, a shared array variable
between the interpreter and the compiled program can be a very effective data sharing
metaphor. As an interpreter, Tcl uses late-binding so that variables are untyped and thus
easy to share. It also has a full runtime state engine with event loops that can be used
efficiently to trace variable manipulations and procedure executions. In this case, runtime
variable traces allow the application to directly set/unset array elements while
automatically propagating these changes to the underlying database service, which in turn
uses the even deeper-seated remote call service to reflect any changes to the server and
beyond. This overall reflective, embedded database concept is depicted in Figure 11.

On top of the database services are constructed the nomological abstraction services that
apply patterns of conjoined events and event sequences to identify instances that translate
into events and corresponding physical features at appropriate levels of abstraction. For
such linguistic-inspired translations, the highly efficient internal list, array and string
processing capabilities of the runtime Tcl environment prove advantageous. Furthermore,
since all the services are modular, the resulting system becomes a service-of-services
construct. For example, the database services act essentially as though all data is local.
The underlying RPC services handles where the call is actually executed.

Finally, the essential nomological and physical feature database queries can be
generalized if there were a protocol-independent common transactional language as an
intermediate language for passing both data and meta-data in and out of the physical,
nomological database (Figure 12).

 15

Figure 12 – The source-specific runtime and meta-data translation and nomological database
transaction components of the data source interaction agent currently in development.

This intermediate language should be lightweight, but able to represent rich-linguistic
structure; it should be easily machine parsed by C-family languages yet still have a
human readable form; it should be readily adaptable to the informational content of a
broad range of runtime/dynamic systems data protocols; and it must be able to handle
both runtime event information as well as nomological meta-data information. In this
perspective, JSON (JavaScript Object Notation) makes for a good data interchange
language candidate currently under investigation. JSON is a standard text format that is
completely language independent but uses conventions that are familiar to the C-family
of languages. A particular challenge with the data source interaction agent stems from the
fact that many data protocols only address or stress the runtime event/state data, which
leaves the meta-data an unresolved source-specific issue.

Should this new system prove equally successful, the expansion to provide full bi-
directional concurrent operation of dynamic systems can then be explored. If successful,
this might eventually offer an alternative to the SWEDAT-JIMM architecture currently
used to concurrently integrate ACETEF activities.

5 The Bigger Picture

Service-Oriented Architecture (SOA) is an architectural style that treats business
functionality as modular, interacting services in an on-demand environment. Because the
services exist in this imperative environment, SOA adds yet another dimension to
understanding concurrency. The ACETEF claimants individually represent business
activities.

 16

application middleware

EOIR

WSL

MFSEWISTL

ASIL

AATF TADL

AATF

SAIL

JIMM

Processes, Roles, Resources
(Applications)

workflow middleware

Svc Svc
M&S Services

orchestration

choreography

Service Provider / BrokerRequestor

Discovery publish
seek

interact

Svc

(programming in-the-large)

(programming in-the-small)

M&S Activities

Figure 13 – A generalized SOA perspective of ACTEF.

These activities are actualized by the concurrent applications that interact through the
sharing of processes, resources and roles. The concurrency aspect discussed thus far with
both the SWEDAT/JIMM and the alternative RPC/nomological database approach
represent application-level middleware. This is the lower side of the concurrent
environment where the application interactions are “choreographed.” On the higher side
of the concurrent environment is where the specific configuration of activities
represented by the applications are “orchestrated” to form customer-level M&S based
T&E services. This gives rise to the concept of workflow-level middleware of the
concurrent environment. Figure 13 shows these two middleware perspectives. In an
overly simplistic manner, this is similar to the distinction between simulation control and
facility executive. Both perspectives involve the configuration, execution and
synchronization of processes within the concurrent environment. These two perspectives
were originally described as programming in-the-small and programming in-the-large
respectively [DRK76], and today provide the supporting architecture beneath the service
broker, requestor and discovery notions of the SOA business design pattern and
distributed business approach.

The bigger SOA picture of ACETEF implies that the application-level middleware of the
concurrent environment, which has been the primary focus of this paper, be combined
with the workflow-level middleware of ACETEF’s activities. With products such as
Starship, TENA is attempting to address these programming-in-the-large services. Within
ACETEF, the locally developed ARIES facility executive provides complementary
services at this level as well. ARIES is actually an acronym meaning Automated
Resources Initialization, Execution & Synchronization, which describes its major
functions. It was designed around the facility configuration and executive management
functions necessary to support integrated testing processes, analogous to the I>C
specification of the mid-1990’s [IGT96]. Similar to Window-NT’s Hardware Abstraction

 17

Layer (HAL), ARIES created a kind of Systems Abstraction Layer (SAL) by leveraging
three basic concepts:

• Network of Workstations (NOW) Concept - A computer is a computer is a
computer.

• Macro Parallel Virtual Machine (MPVM) Concept - A process is a software-
based, I/O-bound activity involving initialization, execution and synchronization.

• Hardware, software, arguments and files can be co-managed as dependencies in
support of a process concept and create corresponding services – correspondence
with the major I>C functions.

The business argument behind the ARIES concept is rooted in the concept of capabilities
management whereby the infrastructure can be commoditized so that greater investment
of effort can be placed with the activities most directly related to the business product
development – inversion of the IT investment pyramid (Figure 14) [LB04]. The ARIES
executive was actually used in the delivered version of the comparative analysis system
that was described in the previous section to give a “media player” look and feel for
selecting TACSIT variations by clicking options in a matrix or a drop-down menu and
running the system with simple start and stop buttons – as on a media player.

Figure 14 – The ARIES facility/test executive services for configuring and running integrated test
events provides a systems abstraction layer that facilitates an inversion of the IT investment
pyramid… greater investment at the customer data products level.

Some criticisms of SOA are based on the assumption that SOA is just another term for
Web Services, which in turn implies the addition of XML parsing and composition

 18

overhead, for example. Certainly the concepts explored in this paper demonstrate
otherwise. In fact, the SOA concept only implies a concurrent environment, of which the
Web with the browser as a basic interpreter is a highly proliferated point in case. A
concurrent environment created with interpreters and a basic RPC service is an
alternative jumping-off point for creating an SOA, just as the alternative perspective
described in the previous section using Tcl interpreters. Given the highly optimized and
embeddable nature of the Tcl interpreters, this basic architecture with distributed
procedure, file and databases services could possibly form a basis for other SOAs or even
the programming in-the-large perspective of workflow-middleware. In any case, these are
topics beyond the immediate scope of this paper deserving of possible further
consideration and exploration.

6 Conclusions

When the operating paradigm is “Simulate-Stimulate-Analyze & Fix-Fly,” real-time,
concurrent computing is going to be the order of the day. The ability to combine
interoperability with concurrency both defines and distinguishes ACETEF and its
stakeholders. As new systems are conceived to address modern warfighting doctrine, the
need for applying this paradigm along the entire life-cycle spectrum from drawing board
to operational support of these systems puts ACETEF’s capabilities in the spotlight.

ACETEF’s concurrency model is not merely about shared memory, but rather the
combination of elemental entity data and event transactions, whose interchange fit a
shared memory model reasonably efficiently, combined with the effective stimulus-
decision-response interaction between the external world and reflected entities in a virtual
JIMM world. While the learning curve for this approach can be steep, it has successfully
supported environments with thousands of entities.

Since ACETEF’s original design and implementation, TENA has evolved as a CORBA-
based protocol that is fundamentally able to address concurrency. Despite complaints of
CORBA’s overhead, a recent Joint Command, Control, Communications, Computers,
Intelligence, Surveillance, and Reconnaissance (JC4ISR) Interoperability Test and
Evaluation Capability (InterTEC) exercise that ACETEF participated in demonstrated
successful execution of environments with hundreds of entities. It is worth noting that the
alternative approach suggested in this paper represents a degree of complexity that should
be somewhere between the very simple shared memory and the very complex CORBA.
As such, it is hoped that it shares the lightweight efficiency of the simple with sufficient
flexibility of the complex to serve as a broadly applicable and viable middleware for
concurrent application interaction. While this approach is currently focused on creating a
common analytical environment for producing integrated data products reflecting the
entire battlespace scenario, it may eventually be extendable to a full ACETEF
middleware solution.

 19

7 Acknowledgments

The authors would like to thank Jon Anderson, Stu Baldwin, Michael Chapman, Ross
Jones, Leroy Mrozowski and Marc Briere for their contribution to this paper in the form
of thoughts, reviews and comments.

References

[YM07] Young, Stu; Markowich, Amy; et al. “Integrated Battlespace Simulation & Test

Strategic Plan”. Integrated Battlespace Simulation and Test (IBST) Department
(Code 5.4), Patuxent River, MD. 2007.

[OCD97] Air Combat Environment Test & Evaluation Facility Operations Concept
Document, Simulation & Stimulation Division, Naval Air Warfare Center –
Aircraft Division, May 1997.

[Ore02] Ören, T. Growing Importance of Modelling and Simulation: Professional and
Ethical Implications, Invited Plenary Paper, Proceedings of the ICSC'2002 - The
5th Conference on System Simulation and Scientific Computing (Part of the
Asian Simulation Conference).

[Alb03] Alberts, D. S., “Hayes, R. E. Power to the Edge Command... Control... in the
Information Age,” Command and Control Research Program (CCRP) Publication
Series, www.dodccrp.org (2003).

[IEEE90] Institute of Electrical and Electronics Engineers. IEEE Standard Computer
Dictionary: A Compilation of IEEE Standard Computer Glossaries. New York,
NY: 1990.

[Ros97] Roscoe, A. W. (1997). The Theory and Practice of Concurrency. Prentice Hall.
ISBN 0-13-674409-5.

[Lat95] Lattimore, Peter et al. “SWEG Users Guide”. Air Combat Environment Test &
Evaluation Facility (ACETEF), Patuxent River MD. 1995

[Lat07] Lattimore, Peter et al. “JIMM 3.0 Users Guide”. JIMM Model Management
Office (JMMO). Integrated Battlespace Simulation and Test (IBST) Department
(Code 5.4), Patuxent River, MD. 2007

[LS07] Lohman, Gary E., Schaff, Josef, “Back to the Future with JIMM”, JIMM Users
Group Conference, June 2007, Solomons, Maryland. Available via the JIMM
Model Management Office (JMMO).

[Mut05] Mutschler, David W. “Master / Client Feasibility Study”. Available via the
JIMM Model Management Office (JMMO), Integrated Battlespace Simulation
and Test (IBST) Department (Code 5.4) at <jmmo@navy.mil>.

[IBST07] “Facility Overview Simulation and Stimulation”. Integrated Battlespace
Simulation & Test (IBST) Department (Code 5.4), Patuxent River, MD. 2007.

[MA06] Mrozowski, Leroy & Anderson, Jon et al. “ACETEF Plug-in Design Notes”.
Integrated Battlespace Simulation and Test (IBST) Department, Battlespace
Modeling & Simulation Division (Code 5.4.2). Patuxent River, MD. 2006

 20

[Mut03] Mutschler, David W. “The ACETEF Reflective Shared Memory Server v2”.
Air Combat Environment Test & Evaluation Facility”. Patuxent River MD.
2003.

[Mut04a] Mutschler, David W. “Institute for HPC Real-Time Combat Environment
Simulation Applications (RCESA)”. Air Combat Environment Test & Evaluation
Facility. Patuxent River MD. 2004.

[Mut04b] Mutschler, David W. “Thoughts on JIMM and Clusters”. JIMM Users Group,
Nov. 2004. Available via the JIMM Model Management Office (JMMO),
Integrated Battlespace Simulation and Test (IBST) Department (Code 5.4) at
<jmmo@navy.mil>.

[Bal05a] Baldwin, Stu. “Shared Memory Interface Likability Engineering (SMILE)”.
JIMM Users Group, Rosslyn VA, May 2005. Available via the JIMM Model
Management Office (JMMO), Integrated Battlespace Simulation and Test (IBST)
Department (Code 5.4) at <jmmo@navy.mil>.

[Bal05b] Baldwin, Stu. “Merging JIMMlib Including Feasibility over Internet”. JIMM
Users Group, Nov 2005. Available via the JIMM Model Management Office
(JMMO), Integrated Battlespace Simulation and Test (IBST) Department (Code
5.4) at <jmmo@navy.mil>.

[Jon05] Jones, Ross E. “Application of Message Passing Interface (MPI) to JIMM”.
JIMM Users Group, Nov. 2005. Available via the JIMM Model Management
Office (JMMO), Integrated Battlespace Simulation and Test (IBST) Department
(Code 5.4) at <jmmo@navy.mil>.

[Mut07] Mutschler, David W. “Employing Path Information to Improve Accuracy in
Distributed Simulations”. Simulation Interoperability Workshop, Orlando FL,
September 2007 (07F-SIW-033)

[Hum55] David Hume, “An Abstract of A Treatise of Human Nature”, in An Inquiry
Concerning Human Understanding, Bobbs-Merril, New York, 1955.

[LB06] Lohman, Gary & Briere, Mark. “Comparative Analysis in Runtime” JIMM
Users Group, Sept. 2006. Available via the JIMM Model Management Office
(JMMO), Integrated Battlespace Simulation and Test (IBST) Department (Code
5.4) at <jmmo@navy.mil>.

[DRK76] Frank DeRemer, Hans Kron, “Programming-in-the-Large Versus
Programming-in-the-Small,” IEEE Trans. on Soft. Eng. 2(2) 1976.

[IGT96] “Configuration, Data, and Facility Management Specification”, Infrastructure
and Generic Test Capability (I>C), Air Force Flight Test Center (AFFTC) at
Edwards Air Force Base, Calif. 1996/97.

[LB04] Lohman, Gary E., Briere, Marc R. “Architecting for T&E Capabilities
Management”, Annual ITEA Symposium in conjunction with Army Test Week,
Huntsville, Alabama (2004).

Biographies

GARY LOHMAN currently serves as Chief Scientist for AMEWAS Inc. Since 1993,
Dr. Lohman has supported DoD as both civil servant and contractor across a myriad of
information system, knowledge management, communications, modeling and simulation

 21

and warfare analysis projects. Prior to this, Dr. Lohman’s focus was research in
massively parallel optical image processing, optical computing and holographic
interferometric non-destructional testing. He was also involved in the design and
construction of optical interconnection networks and the technical optical design of
extremely long-baseline Fourier optical processing systems for the exploitation of both
electro-optical spatial light modulators and non-linear optical crystals. He received his
doctorate in theoretical and experimental physics with a minor in physics education from
the Friedrich-Alexander Universität in Erlangen, Germany. While working in Germany,
Dr. Lohman was part of the Modular Erweiterbare Multiprozessor-System (MEMSY)
SFB-182 German supercomputing project and the EEC sponsored multi-national
ESPRIT-II project New Architectures for Optical Processing in Industrial Applications
(NAOPIA).

DAVID W. MUTSCHLER has worked as a computer engineer for the Naval Air
Systems Command (NAVAIR) for twenty-two years. He has worked at ACETEF in
support of JIMM and its predecessor SWEG for twelve of those years. He served as the
JIMM Model Manager from June 2004 to February 2006. He obtained his Ph.D. in
Computer and Information Science from Temple University in 1998 and is an Associate
Professor in the Florida Institute of Technology University College.

Shared Memory Architecture
and Explored Alternatives for Interoperability

Dr.rer.natDr.rer.nat. Gary E. . Gary E. LohmanLohman

David W. David W. MutschlerMutschler, Ph.D., Ph.D.

Modeling & Simulation in the T&E Environment

Las Cruces, New Mexico

Tuesday, 11 Dec 07

The Organizational Architecture

The Air Combat Environment Test & Evaluation Facility
(ACETEF) is a major component of the Naval Air Systems
Command (NAVAIR) Integrated Battlespace Simulation and
Test (IBST) Department…

Highly
interconnected
capabilities
spanning the
spectrum of
ground testing
for aircraft and
aircraft systems.

Highly
interconnected
capabilities
spanning the
spectrum of
ground testing
for aircraft and
aircraft systems.

The ACETEF Concept

ACETEF’s Paradigm - “Simulate-Stimulate-Analyze & Fix-Fly”
ACETEF’s Interoperability - Based on concurrency at a
functional battlespace level.

THREAT TARGET TARGET

Functional Battlespace

EOIR

WSL

MFSEWISTL

ASIL

AATF TADL

AATF

SAIL

JIMM

M&S Activities

M&S Facilities

The whole
can become
greater than
the sum of its
parts!

The whole
can become
greater than
the sum of its
parts!

“Π vs. Σ”

Application Concurrency

Application concurrency implies some degree of…
Inter-Process Communication (Interconnectivity)
Coherence Protocol
Data Consistency Model
Synchronization Mechanism

Visua
l

Targ
et

Info

Manned
Flight

Simulato
r V-22
Cockpit

and
Chaff/Fl

are
Control

2

3

6

Visua
l

Targ
et

Info

Manned
Flight

Simulato
r V-22
Cockpit

and
Chaff/Fl

are
Control

2

3

6

Modeled EW Capability

EW Test BenchEW Test Bench

Man-in-the-Loop

Machine-in-the-Loop

Simulation/
Stimulation-in-

the-Loop

Concurrent Physical Representation
• Entities (identity, location, static & dynamic properties)
• Conditions (static & dynamic environmental relations)
• Reflections in dynamic properties of temporal-bound

interactions of entities with each other and their local
environment.

Concurrent Nomological Interpretation
• Features at different levels of detail can be plausibly inferred

through expected patterns of physical causality... e.g.
abstraction via the conjoining & sequencing of events

Application 2
fn1(x)

Application 3
fn2(x)

Application 1
x
fn3(fn1(x), fn2(x))

Concurrency is a real
challenge when the
dynamic systems
function at differing
levels of abstraction!

Concurrency is a real
challenge when the
dynamic systems
function at differing
levels of abstraction!

Situation » Required Degree of Concurrency

Historically in T&E, the degree of “coherence” could be greatly
constrained by reducing the range of dynamic interactions and
focusing more on the SUT’s reaction vice full interaction.
BUT… shift to dynamic control & re-planning OPS driven by
multi-INT interactions facilitated by multi-mission / multi-INT /
multi-interconnected platforms significantly ups this ante.

“more Π
than Σ”

“more Σ
than Π”

Complexity

In a complex
environment, there

exists an
opportunistic

region conducive
to adaptation

between the multi-
stable and the

chaotic unstable
regions… the
sweet spot!

In a complex
environment, there

exists an
opportunistic

region conducive
to adaptation

between the multi-
stable and the

chaotic unstable
regions… the
sweet spot!

Traditional ACETEF Architecture

Concurrency has meaning at the functional level - e.g. at battlespace
interactions between the dynamic systems.

Real dynamic systems operate at different levels of detail.
Need nomologically consistent interpretation/transaction of data & events.

ACETEF uses a semantic-model as a virtual-world, agent-based form
of middleware.

Concurrency is
not about the
environment
model, data
protocol or

shared memory
per se, but rather
their combined
net SDR effect!

Shared
Memory

External Device
(Model, Stimulator,
Human Interface)

Stimulus – Decision – Response

*Simulated Warfare Environment Data Transfer Protocol

*

Shared Memory Architecture Challenges

Shared memory is both an inter-process communication (IPC)
method and a simple concurrency model at the low level of
variable-sharing » Two Basic Challenges

Concurrency at the “variable-passing” level is not the same as battlespace
functional level concurrency – interface logic can be non-trivial.
Distributed dynamic systems means distributed shared memory (DSM)
infrastructure – can be costly and proprietary.

Current implementation
employs:

• An interface library with
a linked base class to
facilitate the necessary
interface logic.

• A plug-in architecture to
facilitate interfacing with
DIS, HLA and TENA.

• Proprietary DSM
infrastructure for direct
interfacing.

ACETEF
Stimulators

JIMM I/F

I/F

MFS

EOIR
ACETEF
Interface
Library Linked Base Class

Threat
Generator

(e.g. NGTS,
JSAF, etc.)

HLA
Plug-in

DIS
Plug-in

TENA
Plug-in

I/F ???
···

(Distributed) Shared Memory Environment

SWEDAT

Beyond the DSM Infrastructure…

Off-the-shelf processing speeds and
network bandwidths have rendered
message-passing IPCs commonplace
– especially given their comparative
ease-of-use and ubiquity.
Efforts have been undertaken to
replace the DSM IPC with more
modern message-passing IPCs…

Shared Memory Interface Likability
Engineering (SMILE)

Sponsor-funded effort - SWEDAT via a
Message Passing Interface (MPI)

JIMM
SWEDAT

via
CORBA

I/F

I/F

MFS

EOIR

(client process)
main()

(server
process)

main()

object reference

stub code

object
implementation

skeleton code

object request
broker (ORB)

object request
broker (ORB)

network

JIMM

SWEDAT

I/F

I/F

ESAMS
Dispatcher

Motion
Model

MPI

Interface
MPI

ACETEF
Stimulators

JIMM I/F

I/F

MFS

EOIR
ACETEF
Interface
Library Linked Base Class

Threat
Generator

(e.g. NGTS,
JSAF, etc.)

HLA
Plug-in

DIS
Plug-in

TENA
Plug-in

I/F ???
···

(Distributed) Shared Memory Environment

SWEDAT

Beyond the Shared Memory Architecture

The shared memory +
SWEDAT + environment
model co-determine
ACETEF concurrency.
A “new” architecture must…

Provide equivalent nomological
interpreting between the
dynamic systems.
Address the fact that runtime
data & control does not alone
provide the full nomological
relatedness understanding.
Not exclude alternative data
protocols & technical
approaches – given the range
of possible L-V-C dynamic
systems.

Runtime data interchange
protocols and middleware
technology are necessary
but not sufficient to ensure
the desired concurrency.

A “Nomological Interpreter”
Within a Services-Oriented Architecture

Comparative analysis project illustrates potential alternative...
Required runtime insight of kill-chain evolution and commonality of the COTP – the
what & why in addition to the basic who and where.
Runtime data + a priori metadata combined in a generalized physical
representation of features within a nomological framework of relatedness.
TCP/IP, Agent-Based, rule-driven runtime abstraction of features provides
interpreting between levels of abstraction… building the visual data products.

Nomological

Interpretation

Comms

TACSIT
‘as is’ BSN BSN / MANET

High
Threat
CAS

ASuW Low
Threat
CAS

Urban
CAS

Time
Sensitive

Strike

Comms

TACSIT
‘as is’ BSN BSN / MANET

High
Threat
CAS

ASuW Low
Threat
CAS

Urban
CAS

Time
Sensitive

Strike

Orchestration of Analytical Activities
Choreography of Agent Interactions

Orchestration of Analytical Activities
Choreography of Agent Interactions

ACETEF
Stimulators

JIMM I/F

I/F

MFS

EOIR
ACETEF
Interface
Library Linked Base Class

Threat
Generator

(e.g. NGTS,
JSAF, etc.)

HLA
Plug-in

DIS
Plug-in

TENA
Plug-in

I/F ???
···

(Distributed) Shared Memory Environment

SWEDAT

The Conceptual Basis

Focus on solving the enduring information management challenges at
a functional level…

The dynamic systems “see” their
relevant level of abstraction in
the physical feature space…

The enduring aspect of
the nomological

interpreter concept is the
functional understanding

of the information
management requirement
– translation, transaction

& abstraction.

The enduring aspect of
the nomological

interpreter concept is the
functional understanding

of the information
management requirement
– translation, transaction

& abstraction.

The Technical Enabling Environment

RPC infrastructure across easily embedded, high-functioning byte-
code compiling interpreters, e.g. efficient, general-purpose functional
programming environments (list, array, string processing…).
Distributed, interactive services… reflective variable sharing, reflective
embedded database sharing, file sharing, efficient transactional object
notation…

Platform-independent
middleware services
necessary to support
both low- and high-

level information
processing demands.

Platform-independent
middleware services
necessary to support
both low- and high-

level information
processing demands.

Application 2
fn1(x)

Application 3
fn2(x)

Application 1
x
fn3(fn1(x), fn2(x))

Applications at different
business functional levels.

Ability to Support a Larger SOA Perspective…

Business Services – the end-to-end capabilities perspective of discovering,
requesting and producing relevant, useful M&S products.
Orchestration Services – initialization, execution, synchronization &
management of M&S activities.
Choreography Services – concurrent integration of the dynamic systems and
analytical tools behind the M&S activities.

application middleware

EOIR

WSL

MFSEWISTL

ASIL

AATF TADL

AATF

SAIL

JIMM

Processes, Roles, Resources
(Applications)

workflow middleware

Svc Svc
M&S Services

orchestration

choreography

Service Provider / BrokerRequestor

Discovery publish
seek

interact

Svc

(programming in-the-large)

(programming in-the-small)

M&S Activities

Conclusions

These are exciting times!
The “Simulate-Stimulate-Analyze & Fix-Fly” operating paradigm is
increasingly relevant with emerging systems and warfighting doctrine.
The “immersion in a coherent environment” concurrency model that
defines and distinguishes ACETEF is a critical capability.
The on-going architectural endeavors to discover alternatives to the
shared-memory based architecture at ACETEF are providing valuable
opportunities…

Back-to-Basics look at the enduring information management
challenges as related to dynamic systems, concurrency and physical
causality.
Re-thinking of middleware concepts in light of emerging and maturing
technologies as well as the larger SOA context.

“If you do what you’ve always done, you’ll get what you’ve always gotten.”

-anonymous

	Shared
	Shared_Memory_Architecture&Explored_Alternatives_Lohman_pres.pdf

