Award Number: DAMD17-03-1-0375

TITLE: Modifiers of the Efficacy of Risk-Reducing Salpingo-Oophorectomy for the Prevention of Breast and Ovarian Cancer in Carriers of BRCA1 and BRCA2 Mutations

PRINCIPAL INVESTIGATOR: Noah D. Kauff, M.D.

CONTRACTING ORGANIZATION: Sloan-Kettering Institute for Cancer Research
New York, NY 10021

REPORT DATE: May 2008

TYPE OF REPORT: Annual Summary

PREPARED FOR: U.S. Army Medical Research and Materiel Command
Fort Detrick, Maryland 21702-5012

DISTRIBUTION STATEMENT: Approved for Public Release;
Distribution Unlimited

The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy or decision unless so designated by other documentation.
1. REPORT DATE 01-05-2008
2. REPORT TYPE Annual Summary
3. DATES COVERED 1 May 2003 – 30 Apr 2008

4. TITLE AND SUBTITLE
Modifiers of the Efficacy of Risk-Reducing Salpingo-Oophorectomy for the Prevention of Breast and Ovarian Cancer in Carriers of BRCA1 and BRCA2 Mutations

5. AUTHOR(S)
Noah D. Kauff, M.D.
Email: kauffn@mskcc.org

6. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Sloan-Kettering Institute for Cancer Research
New York, NY 10021

7. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
U.S. Army Medical Research and Materiel Command
Fort Detrick, Maryland 21702-5012

10. SPONSOR/MONITOR'S ACRONYM(S)
USAMRMC

11. SPONSOR/MONITOR'S REPORT NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for Public Release; Distribution Unlimited

14. ABSTRACT
The principle investigator was funded via a Physician-Scientist Training Award to participate in a comprehensive training plan to foster the transition to independent clinical breast cancer researcher. This plan included: 1) conduct of a prospective study examining modifiers of the efficacy of risk-reducing salpingo-oophorectomy (RRSO) for the prevention of breast and ovarian cancer in carriers of BRCA mutations; and 2) participation in a structured training program in research methodology, biostatistics, molecular biology, and ethics. Progress from 5/1/2007 – 4/30/2008 includes: a) Publication of the first prospective data examining the efficacy of RRSO for the prevention of BRCA-associated breast and gynecologic cancer when BRCA2 mutation carriers are examined separately from BRCA1 mutation carriers.(Kauff ND, et al. J Clin Oncol 2008;26:1331-7); b) Continuation of training in genetic epidemiology, outcomes analysis, and conduct of clinical research, through formal mentoring and participation in the laboratory meetings of Kenneth Offit, MD, MPH; c) Submission as Co-PI of a grant application to the Breast Cancer Alliance to model the risk for 2nd primary breast cancer in individuals with BRCA-negative familial breast cancer; and d) Submission as Co-PI a SPORE project application to evaluate the role of BRCA dysfunction in primary and secondary prevention of epithelial ovarian cancer.

15. SUBJECT TERMS
BRCA1, BRCA2, Breast Cancer, Ovarian Cancer, Prophylactic Surgery

16. SECURITY CLASSIFICATION OF:
19. NAME OF RESPONSIBLE PERSON
a. REPORT U
b. ABSTRACT U
c. THIS PAGE U

17. LIMITATION OF ABSTRACT UU
18. NUMBER OF PAGES 19
19a. USAMRMC
19b. TELEPHONE NUMBER (include area code)
Introduction

The principle investigator was funded from May 1, 2003 to April 30, 2008 by the Department of Defense Breast Cancer Research Program via a Physician-Scientist Training Award (PTSA) to participate in a comprehensive training plan designed to assist the principal investigator in making the transition from junior faculty member to independent clinical breast cancer researcher. There were two chief components of the plan. The first component was the conduct of a prospective research study entitled, "Modifiers of the Efficacy of Risk-Reducing Salpingo-Oophorectomy for the Prevention of Breast and Ovarian Cancer in Carriers of BRCA1 and BRCA2 Mutations," under the direction and mentorship of Kenneth Offit, MD, MPH. The second component of the comprehensive training plan was for the principal investigator to participate in didactic coursework and structured training in research methodology, biostatistics, methods of molecular biology, and ethics of clinical research. This progress report will summarize progress and accomplishments made as well as difficulties and challenges encountered during the fifth and final year of this award that ran from May 1, 2007 through April 30, 2008.

1) Progress on Research Project Component of Award

The principal investigator in concert with a multidisciplinary team at Memorial Sloan-Kettering Cancer Center (MSKCC) reported the first prospective evaluation of the role of salpingo-oophorectomy in reducing the risk of both breast cancers and BRCA-related gynecologic (ovarian, fallopian tube, and primary peritoneal) cancers in carriers of BRCA1 and BRCA2 mutations. In that study, we demonstrated that risk-reducing salpingo-oophorectomy (RRSO) was associated with a decreased combined incidence of breast and BRCA-related gynecologic cancer. While these results were encouraging, there were important limitations in that preliminary data that needed to be addressed to allow better tailoring of risk reduction strategies for women at inherited risk secondary to a mutation in either BRCA1 or BRCA2.

In order to address some of these issues, with the assistance of the PSTA, we have been conducting a prospective study to address the following three specific aims: #1) determine the degree of protection conferred by RRSO for the prevention of subsequent breast and BRCA-related gynecologic cancer in a) carriers of BRCA1 mutations and b) carriers of BRCA2 mutations; #2) determine the effect of RRSO on cancer-specific mortality in carriers of BRCA1 and BRCA2 mutations; and #3) determine the effect in carriers of BRCA mutations of RRSO on the incidence of a) subsequent breast cancer and b) subsequent BRCA-related gynecologic cancer.

The study plan was to ascertain women with a BRCA1 or a BRCA2 mutation, who have undergone genetic counseling at MSKCC, and who had not undergone bilateral oophorectomy prior to the time of receipt of genetic test results. Uptake of RRSO or use of ovarian surveillance would then be determined for study participants by a combination of annual questionnaire, telephone contact, and medical record review. The time to cancer or time to cancer-specific mortality would be analyzed for each of the specific aims using Kaplan-Meier analysis and a Cox proportion hazards model. Total planned accrual was 452 participants with ovarian tissue at risk and 348 participants with both breast and ovarian tissue at risk. Actual accrual (through April 30, 2007) was 507 participants with ovarian tissue at risk and 431 with both breast and ovarian tissue at risk, exceeding planned accrual by 12% and 24% respectively.

While we exceeded our target accrual, we chose to further increase the power of study by initiating a collaboration with Dr. Timothy Rebbeck of the University of Pennsylvania and the Prevention and Observation of Surgical Endpoints (PROSE) study group. In this collaboration,
we combined our updated prospective follow-up data with data obtained from a similar prospective follow-up study being conducted at 10 North American and European centers. This collaboration resulted in the ascertainment of a total 1079 BRCA mutation carriers in which a mean of 40 months of prospective follow-up was available. In the May 2007 annual summary, we described the results of preliminary data analysis on this cohort, which we presented as an oral presentation at the 2006 Meeting of the American Society of Clinical Oncology. Since the time of the last annual report, we have completed analysis on this data set and have published these findings in the March 10, 2008 edition of the Journal of Clinical Oncology. (Kauff ND et al. J Clin Oncol 2008; 26:1331-7. Reprint is attached in the appendix.)

Specific components of the statement of work for June 2007 – May 2008 relevant to the research component of the training award:

a) June 2006 - May 2006: Final data analysis and preparation of manuscripts based on research outlined in the original statement of work.

This component of the statement of work was conducted as scheduled and resulted in the publication a manuscript in Journal of Clinical Oncology addressing specific aims #1 and #3 of the original research proposal. Of note, this manuscript was released on-line ahead of print, and concomitant with publication, the editors of the Journal featured the article in a news release.

Aim #2 of the original proposal was to address the impact of RRSO on cancer-specific mortality in carriers of BRCA1 and BRCA2 mutations. While this aim was not completed during the performance period of this grant, work on this aim is continuing. Pursuant to this, the principal investigator plans to submit a peer-reviewed application in the coming year to query the National Death Index to obtain information on mortality on study participants lost to follow-up, as this information is vital if we wish to appropriately address the question raised in this aim.

b) Additional work relevant to the research component of the award not specifically outlined in the original statement of work.

Over the last year, the principal investigator has made continued progress on becoming an independent breast and gynecologic cancer researcher. In May 2008, I submitted an application as co-PI of one the four research projects in MSKCC’s application for a SPORE grant in Ovarian Cancer. In this project we are proposing examine the role of BRCA dysfunction in primary and secondary prevention of epithelial ovarian cancer. This application is scheduled for initial review in October 2008.

Additionally, in collaboration with Elisa Port MD, of MSKCC’s breast surgical service, I submitted an application for an Exceptional Project Grant from the Breast Cancer Alliance to model the risk for 2nd primary breast cancer in individuals with BRCA-negative familial breast cancer. Of note, the research design of this project is directly based on methodologies developed and refined in the course of carrying out the studies supported by the DOD Physician Scientist Training Award.

2) Progress of Didactic Training Component of Award

Part of the time freed by the PSTA was also to be used by the Principal Investigator to participate in formal coursework and training in research methodology, biostatistics, methods of
molecular biology, and ethics of clinical research. Specifics accomplishments relevant to this award are detailed below.

Specific components of the statement of work for June 2007 – May 2008 relevant to the didactic and practical training component of the training award:

a) June 2007 - May 2008: Participation in Weekly Meeting of the Diagnostic Molecular Genetics Laboratory at MSKCC.

The principal investigator continued to be an active participant in these meetings. It was in these meetings in which new research ideas, such as those that led to the grant applications described above, were developed.

3) Specific Research Findings Supported by This Award

Published results from our multi-center collaboration prospectively evaluating the efficacy of risk-reducing salpingo-oophorectomy (RRSO) for the prevention of BRCA-associated breast and gynecologic cancer when carriers are stratified by mutation status.

In last year’s progress report, we described preliminary findings from our collaboration with investigators from the University of Pennsylvania (Rebbeck TR, Domchek S) and the PROSE study group addressing impact of RRSO on subsequent breast cancer risk when BRCA2 mutation carriers were evaluated separately from BRCA1 mutation carriers. In the past year, we refined and finalized this analysis and published the results in the March 10, 2008 edition of the Journal of Clinical Oncology. These results are summarized below.

Briefly, although RRSO has been widely adopted as a key component of breast and gynecologic cancer risk-reduction for women with BRCA1 and BRCA2 mutations, no prospective study to date has evaluated the efficacy of RRSO for the prevention of breast and BRCA-associated gynecologic (ovarian, fallopian tube or primary peritoneal) cancer when BRCA2 mutation carriers are analyzed separately from BRCA1 mutation carriers. This is an issue of considerable import given that 17-39% of all BRCA mutation carriers have a mutation in BRCA2. In order to address this issue, we identified 1079 women greater than 30 years of age, with ovaries in-situ and a deleterious BRCA1 or BRCA2 mutation who were enrolled on prospective follow-up studies at one of eleven centers from 11/1/1994 to 12/1/2004. After women self-selected RRSO or observation, we obtained follow-up information through 11/30/2005 by questionnaire and medical record review. The effect of RRSO on time to diagnosis of breast or BRCA-associated gynecologic cancer was analyzed using a Cox proportional-hazards model.

During 3 years of follow-up, we were able to show that RRSO was associated with an 85% reduction in BRCA1-associated gynecologic cancer risk and a 72% reduction in BRCA2-associated breast cancer risk (Tables 1 and 2). While protection against BRCA1-associated breast cancer and BRCA2-associated gynecologic cancer was suggested, neither effect reached statistical significance.
Table 1. Hazard Ratio for the Development of BRCA-associated Gynecologic Cancer following RRSO

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>Women Electing RRSO</th>
<th>Mean FU (mths)</th>
<th>Women Electing Surveillance</th>
<th>Mean FU (mths)</th>
<th>Gyn Cancers after RRSO</th>
<th>Mean FU (mths)</th>
<th>Gyn Cancers during Surveillance</th>
<th>Hazard Ratio</th>
<th>95% Confidence Interval</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>BRCA1 and BRCA2</td>
<td>792</td>
<td>509</td>
<td>40.3</td>
<td>3</td>
<td>283</td>
<td>3</td>
<td>37.6</td>
<td>12</td>
<td>0.12</td>
<td>0.03 – 0.41</td>
<td>0.001</td>
</tr>
<tr>
<td>BRCA1</td>
<td>498</td>
<td>325</td>
<td>41.1</td>
<td>3</td>
<td>173</td>
<td>3</td>
<td>40.1</td>
<td>10</td>
<td>0.15</td>
<td>0.04 – 0.56</td>
<td>0.005</td>
</tr>
<tr>
<td>BRCA2</td>
<td>294</td>
<td>184</td>
<td>39.0</td>
<td>0</td>
<td>110</td>
<td>0</td>
<td>33.7</td>
<td>2</td>
<td>0.00</td>
<td>Not Estimable</td>
<td></td>
</tr>
</tbody>
</table>

These results suggest that the protection conferred by RRSO against breast and gynecologic cancers may differ between carriers of BRCA1 and BRCA2 mutations and that further studies evaluating the efficacy of risk-reduction strategies in BRCA mutation carriers should stratify by the specific gene mutated.

Additionally, in an exploratory analysis, it appeared as though RRSO was profoundly protective against ER-positive breast cancer but RRSO did not appear to confer protection against ER-negative disease. (Table 3) If these results are confirmed, it could have profound implications for breast cancer risk-reduction strategies in women with BRCA1 or BRCA2 mutations.

Table 2. Hazard Ratio for the Development of BRCA-associated Breast Cancer following RRSO

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>Women Electing RRSO</th>
<th>Mean FU (mths)</th>
<th>Breast Cancers after RRSO</th>
<th>Mean FU (mths)</th>
<th>Women Electing Surveillance</th>
<th>Mean FU (mths)</th>
<th>Breast Cancers during Surveillance</th>
<th>Hazard Ratio</th>
<th>95% Confidence Interval</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>BRCA1 and BRCA2</td>
<td>597</td>
<td>303</td>
<td>36.4</td>
<td>19</td>
<td>294</td>
<td>33.2</td>
<td>28</td>
<td>0.53</td>
<td>0.29 – 0.96</td>
<td>0.036</td>
<td></td>
</tr>
<tr>
<td>BRCA1</td>
<td>368</td>
<td>190</td>
<td>36.3</td>
<td>15</td>
<td>178</td>
<td>34.0</td>
<td>19</td>
<td>0.61</td>
<td>0.30 – 1.22</td>
<td>0.16</td>
<td></td>
</tr>
<tr>
<td>BRCA2</td>
<td>229</td>
<td>113</td>
<td>36.6</td>
<td>4</td>
<td>116</td>
<td>31.9</td>
<td>9</td>
<td>0.28</td>
<td>0.08 – 0.92</td>
<td>0.036</td>
<td></td>
</tr>
</tbody>
</table>

Table 3. Hazard Ratio for the Development of Invasive ER-Positive and ER-Negative Breast Cancer following RRSO

<table>
<thead>
<tr>
<th></th>
<th>ER-Positive Invasive Breast Cancer</th>
<th>ER-Negative Invasive Breast Cancer</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>Events</td>
</tr>
<tr>
<td>RRSO</td>
<td>300</td>
<td>2</td>
</tr>
<tr>
<td>Surveillance</td>
<td>284</td>
<td>7</td>
</tr>
</tbody>
</table>
Key Research Accomplishments

- Published the first prospective data demonstrating that RRSO is protective against breast cancer in women with BRCA2 mutations.

- Published results suggesting that RRSO may not be effective in the prevention of ER-negative breast cancer in women with BRCA1 or BRCA2 mutations.

Reportable Outcomes

With assistance from the Physician Scientist Training Award:

- Submitted a grant application to model the risk for 2nd primary breast cancer in individuals with BRCA-negative familial breast cancer to the Breast Cancer Alliance.

- Submitted an application to study the role of BRCA dysfunction in primary and secondary prevention of epithelial ovarian cancer as a component of a SPORE application from MSKCC.

Conclusions

With continued support of the PTSA, the principle investigator continues to make the transition to becoming an independent clinical breast and gynecologic cancer researcher. As evidence of this, the principal investigator has successfully obtained NIH peer-reviewed funding and has published over 38 peer-reviewed publications (including thirteen first author reports) in Journals such as the Journal of the National Cancer Institute, the Journal of Clinical Oncology, Cancer, JAMA and the New England Journal of Medicine. (See attached biosketch.) Additionally, the principal investigator is continuing to be a national and international leader as evidenced by his appointments to the Editorial Board of the Journal of Clinical Oncology, the Cancer Prevention and Control Committee of the Gynecologic Oncology Group, the Education Committee of the Society of Gynecologic Oncologists, and the Genetics Committee of the American College of Obstetricians and Gynecologists. Lastly, with the career development assistance provided by the Physician Scientist Training Award, my accomplishments have been recognized at my home institution, and I have been recommended for promotion to Associate Member.
Risk-Reducing Salpingo-Oophorectomy for the Prevention of BRCA1- and BRCA2-Associated Breast and Gynecologic Cancer: A Multicenter, Prospective Study

ABSTRACT

Purpose
Risk-reducing salpingo-oophorectomy (RRSO) has been widely adopted as a key component of breast and gynecologic cancer risk-reduction for women with BRCA1 and BRCA2 mutations. Despite 17% to 39% of all BRCA mutation carriers having a mutation in BRCA2, no prospective study to date has evaluated the efficacy of RRSO for the prevention of breast and BRCA2-associated gynecologic (ovarian, fallopian tube or primary peritoneal) cancer when BRCA2 mutation carriers are analyzed separately from BRCA1 mutation carriers.

Patients and Methods
A total of 1,079 women 30 years of age and older with ovaries in situ and a deleterious BRCA1 or BRCA2 mutation were enrolled onto prospective follow-up studies at one of 11 centers from November 1, 1994 to December 1, 2004. Women self-selected RRSO or observation. Follow-up information through November 30, 2005, was collected by questionnaire and medical record review. The effect of RRSO on time to diagnosis of breast or BRCA2-associated gynecologic cancer was analyzed using a Cox proportional-hazards model.

Results
During 3-year follow-up, RRSO was associated with an 85% reduction in BRCA1-associated gynecologic cancer risk (hazard ratio [HR] = 0.15; 95% CI, 0.04 to 0.56) and a 72% reduction in BRCA2-associated breast cancer risk (HR = 0.28; 95% CI, 0.08 to 0.92). While protection against BRCA1-associated breast cancer (HR = 0.61; 95% CI, 0.30 to 1.22) and BRCA2-associated gynecologic cancer (HR = 0.00; 95% CI, not estimable) was suggested, neither effect reached statistical significance.

Conclusion
The protection conferred by RRSO against breast and gynecologic cancers may differ between carriers of BRCA1 and BRCA2 mutations. Further studies evaluating the efficacy of risk-reduction strategies in BRCA mutation carriers should stratify by the specific gene mutated.

INTRODUCTION

In 2002, two large series demonstrating efficacy of risk-reducing salpingo-oophorectomy (RRSO) for the prevention of both breast and BRCA-associated gynecologic (ovarian, fallopian tube and primary peritoneal) cancers were published.1,2 Although these and subsequent reports,3-8 have provided strong evidence that RRSO is highly protective against BRCA-associated cancers, almost all reports to date have examined the risk-reduction conferred by RRSO only when carriers of BRCA1 and BRCA2 mutations were evaluated together, or have limited their analysis to carriers of BRCA1 mutations alone. However, 17% to 39% of all BRCA mutation carriers have a mutation in BRCA2,1,2,4,7 and considerable evidence exists that carriers of BRCA2 mutations have different risks from those of carriers of BRCA1 mutations. Although the lifetime risk of breast cancer is similar for both BRCA1 and BRCA2 mutation carriers and approaches 56% to 84% by age 70,9,12 substantial differences exist in the breast cancer phenotype seen. Only 10% to 24% of BRCA1-associated breast cancers are estrogen-receptor (ER) positive, whereas 65% to 79% of BRCA2-associated...
breast cancers are positive for this receptor. BRCA1-associated breast cancers also appear to have a characteristic gene expression profile that differs from that seen in BRCA2-associated breast cancers. Although there are fewer differences in the phenotype of BRCA1-associated gynecologic cancers compared with BRCA2-associated gynecologic cancers, the lifetime risk of gynecologic cancer differs substantially between carriers of these two genes, with 36% to 46% of BRCA1 mutation carriers developing BRCA-associated gynecologic cancer by age 70 years compared with 10% to 27% of BRCA2 mutation carriers.

Despite the limited data evaluating the efficacy of RRSO in women with BRCA2 mutations alone, RRSO has been widely adopted as a cornerstone of breast and ovarian cancer risk-reduction in women with both BRCA1 and BRCA2 mutations. To address the appropriateness of this uniform approach and to provide critical information for women with BRCA2 mutations considering this procedure, we have pooled the updated data sets of two of the largest cohorts of women with BRCA mutations in which prospective follow-up data are available to provide what are, to our knowledge, the first prospective estimates of the efficacy of RRSO for the prevention of subsequent breast and BRCA-associated gynecologic cancers when carriers of BRCA2 mutations are evaluated separately from carriers of BRCA1 mutations.

PATIENTS AND METHODS

From November 1, 1994, through December 1, 2004, 1,079 women were prospectively enrolled onto ongoing follow-up studies at either Memorial Sloan-Kettering Cancer Center (MSKCC; New York, NY) or one of 10 academic referral centers participating in the Prevention and Observation of Surgical Endpoints (PROSE) study group. To be eligible for study inclusion, participants had to: (a) have a documented deleterious mutation in BRCA1 or BRCA2; (b) have at least one ovary in situ at time of genetic testing; (c) have no personal history of BRCA-associated gynecologic cancer before genetic testing; and (d) be older than 30 years of age at the time of genetic testing because participation in ovarian cancer risk-reduction strategies is not generally recommended prior to this age. Participants with a personal history of breast cancer without evidence of distant metastatic disease at time of genetic testing were eligible for enrollment. Follow-up through November 30, 2005, was obtained via local center protocol and utilized a combination of mailed questionnaire, telephone contact, and medical record review. All study procedures were reviewed and approved by the relevant local institutional review boards. Additional details of the study designs for both the MSKCC and PROSE cohorts have been published previously.

Participants were included in the RRSO cohort if they had bilateral salpingo-oophorectomy for reasons other than known or suspected cancer after the receipt of genetic test results. The surveillance group included all women with mutations who did not elect to undergo RRSO. Although the specific method of gynecologic surveillance was not specified by protocol and there is no strategy that is known to reduce mortality from gynecologic cancers, carriers of BRCA1 and BRCA2 mutations have been recommended to undergo ovarian cancer screening with a combination of transvaginal ultrasound and serum CA-125 as part of usual care since 1997.

For women in the surveillance group, the duration of follow-up was calculated from the date of receipt of genetic test results to the date of diagnosis of new breast or BRCA-associated gynecologic cancer, the date of last contact, or the date of death. If a participant initially elected surveillance was diagnosed with a new breast cancer and subsequently underwent RRSO, they were included in the surveillance cohort for breast cancer end points and in the RRSO cohort (with follow-up beginning at time of RRSO) for gynecologic end points. Women who had a therapeutic oophorectomy because of abnormalities found during screening for ovarian cancer were included in the surveillance group, with their follow-up data censored at time of oophorectomy. For all analyses, breast cancer was defined as invasive cancer of any histologic subtype or ductal carcinoma in situ (DCIS). Gynecologic cancer was defined as invasive epithelial carcinoma of the ovary, fallopian tube, or peritoneum. Other types of breast neoplasia (eg, lobular carcinoma in situ) or gynecologic neoplasia (eg, ovarian tumors of low malignant potential, nonepithelial ovarian tumors and tumors of the uterine corpus or cervix) were not counted as events in our analysis.

Participants with bilateral breast cancer or who underwent a risk-reducing mastectomy before genetic testing were excluded from the evaluation of breast cancer end points. For participants with a history of unilateral breast cancer before genetic test results, only the contralateral breast was considered to be at risk. Participants were censored for breast cancer outcomes at time of post-results breast cancer or risk-reducing mastectomy.

To limit biases caused by inclusion of prevalent cancers, 15 participants (13 BRCA1 mutation carriers; two BRCA2 mutation carriers) undergoing RRSO who had an unsuspected occult gynecologic cancer diagnosed at time of risk-reducing surgery were excluded from the analysis of cancer end points. Additionally, 20 participants with breast cancer and four participants with BRCA-associated gynecologic cancer diagnosed within 6 months of receipt of genetic test results or RRSO were also excluded. To minimize the possibility that exclusion of these prevalent cancers would introduce a survival bias, we excluded 154 participants without a new cancer diagnosis who had less than 6 months of follow-up from receipt of genetic test results or RRSO.

Ninety-four participants from Creighton University (Omaha, NE) and Fox Chase Cancer Center (Philadelphia, PA) were included in a recent report from the Hereditary Ovarian Cancer Clinical Study Group evaluating the impact of salpingo-oophorectomy on gynecologic cancers in women with BRCA mutations. Therefore, to prevent duplicate reporting, these 94 participants were excluded from the current analysis of gynecologic cancer end points and included in only the analysis of impact of RRSO on subsequent breast cancer. Lastly, because the primary goal of this study was to analyze the impact of RRSO on carriers of BRCA1 and BRCA2 mutations independently, four participants with mutations in both BRCA1 and BRCA2 were excluded.

After applying these exclusions, we identified 792 participants followed up for a mean of 39 months for gynecologic cancer events, and 597 participants followed up for a mean of 35 months for breast cancer events. Baseline demographics of the study cohorts are summarized in Tables 1 and 2.

Demographic variables were compared using t tests for continuous variables and the Fisher's exact test for discrete variables. A Cox proportional-hazards model adjusted for demographic variables significantly different between the RRSO and surveillance cohorts (age at start of follow-up, parity, personal history of breast cancer, and history of prior use of hormone replacement therapy) was used to determine the hazard ratios (HRs) for breast cancer or BRCA-related gynecologic cancer after RRSO. For analyses in which carriers of BRCA1 and BRCA2 mutations were examined together, the locus of mutation was also used as a covariate in the analysis. Statistical analyses were performed on SPSS (version 13.0; SPSS Inc, Chicago, IL) and STATA (version 8; StataCorp, College Station, TX). All reported P values are two sided.

RESULTS

Gynecologic Cancer

Of the 498 BRCA1 mutation carriers and the 294 BRCA2 mutation carriers assessable for gynecologic cancer end points, 325 BRCA1 mutation carriers (65%) and 184 BRCA2 (63%) mutation carriers underwent RRSO a median of 5.5 and 4.1 months, respectively, after receiving genetic test results. During 38 months of follow-up, 12 BRCA-associated gynecologic cancers were diagnosed a median of 37
months after ascertainment in the 283 women undergoing surveillance. This compared with three peritoneal cancers being diagnosed a median of 16 months after RRSO during 40 months of follow-up in the 509 women electing RRSO (HR = 0.12; 95% CI, 0.03 to 0.41; \(P \leq .001 \; \text{Table 3} \)).

Limiting the analysis to women with BRCA1 mutations, 10 gynecologic cancers were diagnosed in 173 BRCA1 mutation carriers electing surveillance. This compared with three primary peritoneal cancers developing in the 325 BRCA1 mutation carriers electing RRSO (HR = 0.15; 95% CI, 0.04 to 0.56; \(P = .005 \)).

In the 294 participants with BRCA2 mutations, two BRCA-associated gynecologic cancers developed in the 110 women electing surveillance during 34 months follow-up. No peritoneal cancers were observed during 39 months of follow-up in the 184

<table>
<thead>
<tr>
<th>Table 1. Demographics of Participants With Ovarian Tissue at Risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Characteristic</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>No.</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>Age at start of follow-up, years</td>
</tr>
<tr>
<td>Mean</td>
</tr>
<tr>
<td>Median</td>
</tr>
<tr>
<td>Range</td>
</tr>
<tr>
<td>Mutations</td>
</tr>
<tr>
<td>BRCA1</td>
</tr>
<tr>
<td>BRCA2</td>
</tr>
<tr>
<td>Parous</td>
</tr>
<tr>
<td>Prior oral contraceptive use</td>
</tr>
<tr>
<td>Prior hormone replacement use</td>
</tr>
<tr>
<td>Personal history of breast cancer</td>
</tr>
<tr>
<td>Time to RRSO, months</td>
</tr>
<tr>
<td>Mean</td>
</tr>
<tr>
<td>Median</td>
</tr>
<tr>
<td>Range</td>
</tr>
<tr>
<td>Follow-up, months</td>
</tr>
<tr>
<td>Mean</td>
</tr>
<tr>
<td>Median</td>
</tr>
<tr>
<td>Range</td>
</tr>
</tbody>
</table>

Abbreviation: RRSO, risk-reducing salpingo-oophorectomy.

<table>
<thead>
<tr>
<th>Table 2. Demographics of Participants With Both Breast and Ovarian Tissue at Risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Characteristic</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>No.</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>Age at start of follow-up, years</td>
</tr>
<tr>
<td>Mean</td>
</tr>
<tr>
<td>Median</td>
</tr>
<tr>
<td>Range</td>
</tr>
<tr>
<td>Mutations</td>
</tr>
<tr>
<td>BRCA1</td>
</tr>
<tr>
<td>BRCA2</td>
</tr>
<tr>
<td>Parous</td>
</tr>
<tr>
<td>Prior oral contraceptive use</td>
</tr>
<tr>
<td>Prior hormone replacement use</td>
</tr>
<tr>
<td>Personal history of breast cancer</td>
</tr>
<tr>
<td>Time to RRSO, months</td>
</tr>
<tr>
<td>Mean</td>
</tr>
<tr>
<td>Median</td>
</tr>
<tr>
<td>Range</td>
</tr>
<tr>
<td>Follow-up, months</td>
</tr>
<tr>
<td>Mean</td>
</tr>
<tr>
<td>Median</td>
</tr>
<tr>
<td>Range</td>
</tr>
</tbody>
</table>
Kauff et al

women with BRCA2 mutations electing RRSO (HR = 0.00; 95% CI, not estimable).

Breast Cancer

Of 597 participants assessable for breast cancer end points, 303 underwent RRSO a median of 4.6 months after receiving genetic test results. During 33 months follow-up, 28 breast cancers (18 invasive, seven DCIS, three pathology unavailable) were diagnosed a median of 23 months after ascertainment in the 294 women electing surveillance. This compared with 19 breast cancers (16 invasive, three DCIS) being diagnosed a median of 23 months after RRSO during 36 months follow-up in the 303 women electing RRSO (HR = 0.53; 95% CI, 0.29 to 0.96; P = .036; Table 4).

Limiting the analysis to the 368 BRCA1 mutations carriers in the cohort, 190 underwent RRSO a median of 5.0 months after receipt of genetic test results. Nineteen of 178 participants electing surveillance developed a new breast cancer. This compared with 15 breast cancers in 190 women electing RRSO (HR = 0.61; 95% CI, 0.30 to 1.22; P = .16).

When the 229 BRCA2 mutation carriers were examined, 113 underwent RRSO a median of 4.0 months from receipt of genetic test results. Nine breast cancers developed in the 116 women electing surveillance versus four breast cancers in the 113 women electing RRSO. (HR = 0.28; 95% CI, 0.08 to 0.92; P = .036).

Pathology reports were available on 44 (94%) of 47 breast cancers diagnosed during follow-up. To examine possible reasons for the apparent difference in the magnitude of breast cancer risk-reduction between carriers of BRCA1 mutations and carriers of BRCA2 mutations, several exploratory analyses were conducted. When invasive and noninvasive breast cancers were examined independently, RRSO appeared to be more protective against noninvasive breast cancer (HR = 0.32; 95% CI, 0.08 to 1.25; P = .10) than invasive breast cancer (HR = 0.73; 95% CI, 0.37 to 1.45; P = .37) When the 34 known invasive cancers were examined, RRSO appeared to be protective against ER-positive invasive breast cancer (HR = 0.22; 95% CI, 0.05 to 1.05; P = .058), but not ER-negative invasive breast cancer (HR = 1.10; 95% CI, 0.48 to 2.51; P = .82; Table 5).

The current report represents, to our knowledge, the first prospective study to evaluate the impact of RRSO on BRCA-associated breast and gynecologic cancer risk when carriers of BRCA2 mutations are evaluated separately from carriers of BRCA1 mutations. In this series, RRSO was associated with significant protection against BRCA1-associated gynecologic cancer and BRCA2-associated breast cancer. Although protection against BRCA1-associated breast cancers and BRCA2-associated gynecologic cancers was suggested, neither of these effects reached statistical significance.

In the only two retrospective studies reporting the impact of RRSO on breast cancer risk in BRCA2 mutation carriers separately from BRCA1 mutation carriers, RRSO was not associated with a significant reduction in total BRCA2-associated breast cancer risk (odds ratio [OR] = 0.57; 95% CI, 0.28 to 1.15; P = .11) or contralateral BRCA2-associated cancer risk (HR = 0.75; 95% CI, 0.16 to 3.48; P = .72). A likely reason for the difference in our results and these studies is the potential for survival bias being introduced by their ascertainment strategies. In other studies that have evaluated the impact of ovarian hormone modification, via tamoxifen, on BRCA2-associated breast cancer risk, there has been a consistent suggestion of benefit of tamoxifen use in BRCA2 mutation carriers. Although the current study did not conclude that RRSO was associated with a statistically significant risk-reduction against BRCA1-associated breast cancer, an effect comparable to what has been seen in prior studies evaluating BRCA1 mutation carriers alone was suggested. Given this consistent effect across studies and the preponderance of ER-negative breast cancer seen in BRCA1 mutation

| Table 3. Hazard Ratio for the Development of BRCA-Associated Gynecologic Cancer After RRSO |
Mutation	No. of Patients	No. of Women Electing RRSO	Mean FU (months)	No. of Gynecologic Cancers After RRSO	No. of Women Electing Surveillance	Mean FU (months)	No. of Gynecologic Cancers During Surveillance	Hazard Ratio	95% CI	P
BRCA1 and BRCA2	792	509	40.3	3	283	37.6	12	0.12	0.03 to 0.41	.001
BRCA1	498	325	41.1	3	173	40.1	10	0.15	0.04 to 0.56	.005
BRCA2	294	184	39.0	0	110	33.7	2	0.00	Not estimable	

Abbreviations: RRSO, risk-reducing salpingo-oophorectomy; FU, follow-up.

| Table 4. Hazard Ratio for the Development of BRCA-Associated Breast Cancer After RRSO |
Mutation	No. of Patients	No. of Women Electing RRSO	Mean FU (months)	No. of Breast Cancers After RRSO	No. of Women Electing Surveillance	Mean FU (months)	No. of Breast Cancers During Surveillance	Hazard Ratio	95% CI	P
BRCA1 and BRCA2	597	303	36.4	19	294	33.2	28	0.53	0.29 to 0.96	.036
BRCA1	368	190	36.3	16	178	34.0	19	0.61	0.30 to 1.22	.16
BRCA2	229	113	36.6	4	118	31.9	9	0.28	0.08 to 0.92	.036

Abbreviations: RRSO, risk-reducing salpingo-oophorectomy; FU, follow-up.
carriers, several authors have hypothesized that ovarian hormone ablation might influence the tumorigenesis of BRCA-associated, ER-negative breast cancer.3,28,30,31 In the current report, however, RRSO appeared to be protective against ER-positive but not ER-negative disease, calling this hypothesis into question. Although this analysis was limited by the small number of events in each group, these results are consistent with other studies evaluating selective ER modulators and aromatase inhibitors for the prevention of subsequent breast cancer in women without known BRCA mutations.32-34

Our results confirm that RRSO is associated with substantial protection against BRCA1-associated gynecologic cancer. The relatively low incidence of BRCA2-associated gynecologic cancers in the cohort (two in the surveillance cohort, zero in the RRSO cohort) limits conclusions regarding the impact of RRSO on the risk of subsequent BRCA2-associated gynecologic cancers. The low absolute number of BRCA2-associated gynecologic cancers, however, may have important implications for women comparing the relative risks and benefits of specific gynecologic cancer risk-reduction strategies.

The current report has a number of limitations. Although the ideal study design to evaluate the efficacy of RRSO for the prevention of subsequent breast and gynecologic cancer would be a prospective randomized trial, such a trial would almost certainly not be feasible for a risk-reducing surgical intervention. As reviewed by Klaren,26 the prospective cohort design used here has the least potential for substantial bias, but is still subject to potential detection or lead-time bias. To minimize the possibility of a detection bias, participants with cancer diagnosed within the first 6 months after genetic testing or RRSO were excluded from the analysis. If these participants and all women with less than 6 months of follow-up are included in the analysis, the inferences were not changed for any of our analyses. RRSO remained protective against BRCA1-associated gynecologic cancer (HR = 0.11; 95% CI, 0.03 to 0.39; P = .001) and BRCA2-associated breast cancer (HR = 0.27; 95% CI, 0.09 to 0.75; P = .013). Although a protection against BRCA1-associated breast cancer was again suggested, this result still did not achieve statistical significance (HR = 0.68; 95% CI, 0.38 to 1.22; P = .19). Similarly, to prevent duplicate publication, 94 participants from Creighton University and Fox Chase Cancer Center included in a recent report from Finch et al27 were excluded from the analysis of gynecologic cancer end points. If these participants are included, the protection conferred by RRSO against BRCA1-associated gynecologic cancer in BRCA1 and BRCA2 mutation carriers combined (HR = 0.11; 95% CI, 0.03 to 0.37; P < .001) and BRCA1 mutation carriers alone (HR = 0.13; 95% CI, 0.04 to 0.46; P = .002) remains essentially unchanged.

Although a personal history of breast cancer at time of accrual was treated as a covariate in the Cox proportional-hazards model, it is possible that inclusion of participants with a prior history of breast cancer still introduced a potential bias into the analyses. Limiting the analyses to participants without a personal history of breast cancer at time of accrual, RRSO appeared to confer a similar magnitude of protection against a first breast cancer in both the 220 BRCA1 mutation carriers without prior breast cancer (HR = 0.49; 95% CI, 0.15 to 1.53; P = .22) and the 125 BRCA2 mutation carriers without prior breast cancer (HR = 0.27; 95% CI, 0.05 to 1.48; P = .13), as was seen in the entire cohort. It is also possible that the biologic effects of other demographic variables significantly different between the RRSO and surveillance groups (ie, age at study entry, parity, and history of prior hormone replacement) might not have been entirely corrected for by treating these as covariates in the analyses. Further exploration of this issue awaits the result of prospective studies large enough to match participants for these potentially important differences.

The exploratory analysis examining the impact of RRSO on subsequent ER-positive and ER-negative breast cancer is limited by small numbers, lack of central pathology review, and missing histology and ER status on three of the breast cancers diagnosed during follow-up. Additionally, given the relatively short follow-up, it is possible that a component of the decrease in ER-positive breast cancer risk was caused by treatment of preexisting tumors in this subgroup, whereas prevention of ER-negative breast cancer requires ovarian hormone ablation earlier in the process of tumorigenesis. Given these limitations, the apparent differential impact of RRSO on ER-positive versus ER-negative disease should be viewed as hypothesis generating and awaits confirmation in further prospective studies.

The present report provides strong confirmation that RRSO remains the most effective risk-reduction strategy for the prevention of BRCA1-associated gynecologic cancer. Although protection against BRCA2-associated gynecologic cancer was only suggested, it is possible, given that 76% of BRCA2-associated ovarian cancers are diagnosed at age older than 60,35 that our cohort of BRCA2 mutation carriers, with a median age of 46 years, was not yet old enough to demonstrate a significant protection against BRCA2-associated gynecologic cancer. Even given this limitation, until more effective ovarian cancer surveillance is available, RRSO should be discussed with all carriers of BRCA mutations who have completed childbearing and have entered the risk period for gynecologic cancers. Although RRSO will likely remain an important method for reducing the risk of ER-positive breast cancer in women with mutations in BRCA1 or BRCA2, its role in concert with other ovarian hormone manipulations such as tamoxifen, raloxifene, and the aromatase inhibitors remains to be elucidated. Prevention of ER-negative breast cancer remains a challenge. The optimal

Table 5. Hazard Ratio for the Development of Invasive ER-Positive and ER-Negative Breast Cancer After RRSO

<table>
<thead>
<tr>
<th>Technique</th>
<th>No. of Patients</th>
<th>ER-Positive Invasive Breast Cancer</th>
<th>ER-Negative Invasive Breast Cancer</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Events</td>
<td>Hazard Ratio</td>
<td>95% CI</td>
</tr>
<tr>
<td>RRSO</td>
<td>300</td>
<td>2</td>
<td>0.22</td>
</tr>
<tr>
<td>Surveillance</td>
<td>284</td>
<td>7</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Abbreviations: ER, estrogen receptor; RRSO, risk-reducing salpingo-oophorectomy.
strategy for reducing the risk of this important cancer in carriers of both BRCA1 and BRCA2 mutations will emerge from future prospective studies stratified according to genetic linkage to one or the other of these related, but distinct, cancer susceptibility syndromes.

AUTHORS’ DISCLOSURES OF POTENTIAL CONFLICTS OF INTEREST

Although all authors completed the disclosure declaration, the following author(s) indicated a financial or other interest that is relevant to the subject matter under consideration in this article. Certain relationships marked with a "U" are those for which no compensation was received; those relationships marked with a "C" were compensated. For a detailed description of the disclosure categories, or for more information about ASCO’s conflict of interest policy, please refer to the Author Disclosure Declaration and the Disclosures of Potential Conflicts of Interest section in Information for Contributors.

Employment or Leadership Position: None Consultant or Advisory Role: Noah D. Kauff, Wyeth (C); Judy E. Garber, Myriad Genetics (C)

Stock Ownership: None Honorary: Judy E. Garber, Myriad Genetics

Research Funding: None Expert Testimony: Noah D. Kauff, Wyeth (C)

Other Remuneration: Rosalind A. Eeles, AstraZeneca

AUTHOR CONTRIBUTIONS

Conception and design: Noah D. Kauff, Susan M. Domchek, Tara M. Friebel, Kenneth Offit, Timothy R. Rebbeck

REFERENCES

Financial support: Noah D. Kauff, Susan M. Domchek, Paul Sabbatini, Richard R. Barakat, Clifford Hudis, Larry Norton, Kenneth Offit, Timothy R. Rebbeck

Administrative support: Paul Sabbatini, Richard R. Barakat, Clifford Hudis, Larry Norton, Kenneth Offit, Timothy R. Rebbeck

Provision of study materials or patients: Noah D. Kauff, Susan M. Domchek, Tara M. Friebel, Mark E. Robson, Johanna Lee, Judy E. Garber, Claudine Isaacs, D. Gareth Evans, Henry Lynch, Rosalind A. Eeles, Susan L. Neuhausen, Mary B. Daly, Ellen Matloff, Joanne L. Blum, Kenneth Offit, Timothy R. Rebbeck

Information downloaded from jco.ascopubs.org and provided by MEMORIAL SLOAN KETTERING on March 7, 2008 from 140.163.254.130. Copyright © 2008 by the American Society of Clinical Oncology. All rights reserved.

Acknowledgment

The Acknowledgment is included in the full-text version of this article, available online at www.jco.org. It is not included in the PDF version (via Adobe® Reader®).
NAME: Noah D. Kauff, M.D.

POSITION TITLE: Assistant Attending Physician
Clinical Genetics Service, Dept. of Medicine
Gynecology Service, Dept. of Surgery

EDUCATION/TRAINING (Begin with baccalaureate or other initial professional education, such as nursing, and include postdoctoral training.)

<table>
<thead>
<tr>
<th>INSTITUTION AND LOCATION</th>
<th>DEGREE (if applicable)</th>
<th>YEAR(s)</th>
<th>FIELD OF STUDY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amherst College, Amherst, MA</td>
<td>B.A. cum laude</td>
<td>1986</td>
<td>Chemistry and Political Science</td>
</tr>
<tr>
<td>University of Pennsylvania School of Medicine, Philadelphia, PA</td>
<td>M.D.</td>
<td>1993</td>
<td>Medicine</td>
</tr>
</tbody>
</table>

RESEARCH AND PROFESSIONAL EXPERIENCE: Concluding with present position, list, in chronological order, previous employment, experience, and honors. Include present membership on any Federal Government public advisory committee. List, in chronological order, the titles, all authors, and complete references to all publications during the past three years and to representative earlier publications pertinent to this application.

PROFESSIONAL EXPERIENCE

1993-1995 Intern/Resident in Obstetrics and Gynecology
Tufts University New England Medical Center, Boston, MA

1995-1997 Resident in Obstetrics and Gynecology,
New York Medical College, New York, NY

1997-1998 Co-Executive Chief Resident in Obstetrics and Gynecology
New York Medical College, New York, NY

1998-2000 Attending Obstetrician/Gynecologist,
Director – Hereditary Breast and Ovarian Cancer Screening Program
Women’s Health Care Associates, Newton, NJ

2000-2002 Fellow in Clinical Genetics
Memorial Sloan-Kettering Cancer Center/New York Presbyterian Hospital, New York, NY

2002-Present Clinical Assistant (2002-2004) / Assistant Member (2004-Present)
Memorial Sloan-Kettering Cancer Center, New York, NY

Clinical Genetics Service, Department of Medicine
Gynecology Service, Department of Surgery
Memorial Hospital for Cancer and Allied Diseases, New York, NY

2006-Present Director, Ovarian Cancer Screening and Prevention Program
Gynecology Service, Department of Surgery
Memorial Hospital for Cancer and Allied Diseases, New York, NY

HONORS

1989-93 John Woodruff Simpson Fellow in Medicine, Univ. of Pennsylvania School of Medicine, Phila., PA
Mar 1997 Felix Rutledge Fellow in Gynecologic Oncology, MD Anderson Cancer Center, Houston TX
May 2001 American Society of Clinical Oncology Merit Award, San Francisco, CA
May 2002 American Society of Clinical Oncology Merit Award, Orlando, FL
June 2002 Nergesh Tejani Award for Research/Academic Excellence, New York Medical College, Valhalla, NY

OTHER EXPERIENCE AND PROFESSIONAL MEMBERSHIPS

Dec 2005-Present Gynecologic Oncology Group, Cancer Prevention and Control Committee
Jan 2007-Present Editorial Board, Journal of Clinical Oncology
Mar 2007-Present Society of Gynecologic Oncologists, Education Committee
May 2008-Present American College of Obstetricians and Gynecologists, Committee on Genetics
SELECTED PUBLICATIONS (in chronological order)
(Publications selected from 38 peer-reviewed publications)

RESEARCH SUPPORT:

Ongoing Research Support

1) R03 CA119265-01 Kauff (PI) 9/28/2005 – 8/31/2008

NIH/National Cancer Institute

Structural, Computational and Epidemiologic Analyses of BRCA2 Missense Mutations

The major goal of this project is to conduct a combined structural, computational and epidemiologic analysis of frequently reported BRCA2 missense mutations to elucidate their clinical significance.

Role: Principal Investigator

2) Alfred and Hope Goldstein Foundation Kauff (PI) 7/1/2007 – 8/31/2009

Clinical Significance of Germline Genetic Changes in Ovarian Cancer

The major goal of this project is to evaluate prognostic and therapeutic implications of germline genetic changes in patients with epithelial ovarian cancer with a goal towards developing targeted therapies.

Role: Principal Investigator

Genetic Modifiers of BRCA Penetrance for Ovarian Cancer

The major goal of this project is to use high throughput genotyping and linkage disequilibrium to identify genetic loci that modify the penetrance of ovarian cancer in carriers of BRCA1 mutations.

Role: Co-Investigator
Completed Research Support

1) DAMD17-03-1-0375 Kauff (PI) 5/1/2003 – 4/30/2008
Department of Defense Breast Cancer Research Program

Modifiers of the Efficacy of Risk-Reducing Salpingo-Oophorectomy for the Prevention of Breast and Ovarian Cancer in Carriers of BRCA1 and BRCA2 Mutations

The major goal of this project was to prospectively analyze the impact of genetic and environmental modifiers to the protection conferred by risk-reducing salpingo-oophorectomy for the prevention of breast and BRCA-related gynecologic cancer in carriers of BRCA1 and BRCA2 mutations.

Role: Principal Investigator

2) R01 CA79572 Winawer (PI) 4/1/2003 – 3/31/2008
NIH / National Cancer Institute

Screening Colonoscopy Feasibility Trial

The National Colonoscopy Study is a multi-center randomized controlled trial of 3500 participants assessing the acceptability of colonoscopy screening and the yield of neoplastic findings in the general population with colonoscopy compared to an annual program of fecal occult blood testing.

Role: Chair of Genetics Review Committee (5% Effort)

Byrne Fund Institutional Research Grant

Genetic Epidemiologic and Structural Analysis of BRCA2 Variants of Uncertain Significance

The major goal of this project was to explore the feasibility of conducting a genetic epidemiologic and structural analysis of BRCA2 missense mutations to elucidate their clinical significance.

Role: Principal Investigator

4) Society of Memorial Sloan-Kettering Cancer Center Kauff (PI) 10/1/2003 – 9/30/2004
Prevention Control and Population Research Program Pilot Grant

Impact of Genetic Counseling and Testing in Non-BRCA Associated Hereditary Breast Cancer

The major goal of this project was to assess the impact of genetic counseling and testing on screening behavior in BRCA-negative hereditary breast cancer families.

Role: Principal Investigator