

AFRL-RI-RS-TR-2008-289
Final Technical Report
November 2008

CASTOR: WIDELY DISTRIBUTED SCALABLE
INFOSPACES

Cornell University

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

STINFO COPY

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

ROME RESEARCH SITE
ROME, NEW YORK

NOTICE AND SIGNATURE PAGE

Using Government drawings, specifications, or other data included in this document for
any purpose other than Government procurement does not in any way obligate the U.S.
Government. The fact that the Government formulated or supplied the drawings,
specifications, or other data does not license the holder or any other person or
corporation; or convey any rights or permission to manufacture, use, or sell any patented
invention that may relate to them.

This report was cleared for public release by the 88th ABW, Wright-Patterson AFB
Public Affairs Office and is available to the general public, including foreign nationals.
Copies may be obtained from the Defense Technical Information Center (DTIC)
(http://www.dtic.mil).

AFRL-RI-RS-TR-2008-289 HAS BEEN REVIEWED AND IS APPROVED FOR
PUBLICATION IN ACCORDANCE WITH ASSIGNED DISTRIBUTION
STATEMENT.

FOR THE DIRECTOR:

 /s/ /s/

GENNADY STASKEVICH JAMES W. CUSACK, Chief
Work Unit Manager Information Systems Division
 Information Directorate

This report is published in the interest of scientific and technical information exchange, and its
publication does not constitute the Government’s approval or disapproval of its ideas or findings.

http://www.dtic.mil

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection
of information, including suggestions for reducing this burden to Washington Headquarters Service, Directorate for Information Operations and Reports,
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget,
Paperwork Reduction Project (0704-0188) Washington, DC 20503.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

NOV 2008
2. REPORT TYPE

Final
3. DATES COVERED (From - To)

Feb 06 – Sep 08
4. TITLE AND SUBTITLE

CASTOR: WIDELY DISTRIBUTED SCALABLE INFOSPACES

5a. CONTRACT NUMBER
FA8750-06-2-0060

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER
62702F

6. AUTHOR(S)

Ken Birman

5d. PROJECT NUMBER
ICED

5e. TASK NUMBER
06

5f. WORK UNIT NUMBER
04

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Cornell University
373 Pine Tree Road
Ithaca, NY 14853

8. PERFORMING ORGANIZATION
REPORT NUMBER

 N/A

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

AFRL/RISB
525 Brooks Rd.
Rome NY 13441-4505

10. SPONSOR/MONITOR'S ACRONYM(S)
 N/A

11. SPONSORING/MONITORING
AGENCY REPORT NUMBER
AFRL-RI-RS-TR-2008-289

12. DISTRIBUTION AVAILABILITY STATEMENT
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. PA# 88ABW-2008-0920

13. SUPPLEMENTARY NOTES

14. ABSTRACT
The Cornell University Castor project was funded over a two-year period to create new technical options aimed at demanding event-
notification settings. Applications of this type are common in warfighting and other DoD settings but currently are limited by
inadequate scalability, reliability and poor performance.
Castor accomplished all goals originally stated in the SOW and in fact went beyond expectations. The team delivered a wide range
of cutting-edge solutions, some of which are finding rapid uptake by major AF technology vendors. Our work has received keen
interest from the very highest levels of industry, including CTO-level staff at the Air Force itself as well as Intel, Microsoft,
Amazon, Red Hat, Cisco and we are collaborating closely with these and other vendors, including IBM and Raytheon. The final
status report summarizes accomplishments and includes copies of some of the major publications by our group. Much of the
software we developed is available for download from Cornell, as is a video demonstration of the Live Objects technology, which
was briefed to the AF CTO, Mr. Kent Werner, in Spring 2008.
15. SUBJECT TERMS
Datacenters, Data Integrity, Distributed Systems, Event Notification, Multicast, Publish-Subscribe, Group Communication,
Replication, Total Ordering.

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

UU

18. NUMBER
OF PAGES

227

19a. NAME OF RESPONSIBLE PERSON
Gennady R. Staskevich

a. REPORT
U

b. ABSTRACT
U

c. THIS PAGE
U

19b. TELEPHONE NUMBER (Include area code)
N/A

 Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.18

TABLE OF CONTENTS

PROGRESS REPORT

PROGRESS AGAINST PLANNED OBJECTIVES ..1

TECHNICAL REPORT

TECHNICAL ACCOMPLISHMENTS..4
RICOCHET ..5

 QUICKSILVER SCALABLE MULTICAST (QSM) ...6
 LIVE OBJECTS..7
 MAELSTROM ...8
 SMOKE AND MIRRORS FILE SYSTEM ..9
 TEMPEST ...10
 DR MULTICAST...11
 ANTIQUITY...12
 FIREFLIES...13
 NIGHTWATCH ..14

PUBLICATIONS

FULL PUBLICATIONS LIST ...15
 REFERENCED PUBLICATIONS

 RICOCHET: LATERAL ERROR CORRECTION FOR TIME-CRITICAL MULTICAST18
 PLATO: PREDICTIVE LATENCY-AWARE TOTAL ORDERING ..32
 QUICKSILVER SCALABLE MULTICAST (QSM)...53
 EXTENSIBLE ARCHITECTURE FOR HIGH-PERFORMANCE, SCALABLE, RELIABLE PUBLISH-
 SUBSCRIBE EVENTING AND NOTIFICATION...63
 PROGRAMMING WITH LIVE DISTRIBUTED OBJECTS ...104
 MAELSTROM: TRANSPARENT ERROR CORRECTION FOR LAMBDA NETWORKS131
 TEMPEST: SOFT STATE REPLICATION IN THE SERVICE TIER ...146
 DR MULTICAST: RX FOR DATACENTER COMMUNICATION SCALABILITY156
 ANTIQUITY: EXPLOITING A SECURE LOG FOR WIDE-ARE DISTRIBUTED STORAGE162
 FIREFLIES: SCALABLE SUPPORT FOR INTRUSION-TOLERANT OVERLAY NETWORKS176
 SECURESTREAM: AN INTRUSION-TOLERANT PROTOCOL FOR LIVE-STREAMING DISSEMINATION ...187
 ENFORCING FAIRNESS IN A LIVE-STREAMING SYSTEM ..211

LIST OF FIGURES

CASTOR PROJECT ..1

 i

Progress against Planned Objectives

Enable nimble apps that react fast as conditions evolve

Slash cost of building and operating scalable systems

Robust solutions “take a licking and keep on ticking”

Benefits to the War Fighter

Technical Challenges

Quicksilver multicast
Typed endpoints:
Pub-sub (WS-Notification)

Ricochet multicast:
Support DDS API
Enhance QoS options

Tempest system

Quicksilver: Maintaining stability in huge deployments
running near network limits when a disruption occurs
Ricochet: Using knowledge about real-time needs and
behaviors to optimize decision making
Tempest: Support for applications with large numbers of
independently replicated components

Support quality-of-service enabled event notification
for large-scale, demanding networked applications
operating under stressful conditions

Solution must fit seamlessly with GIG/NCES and SOA
platforms favored by Air Force technology offices

Building three powerful software platforms:

• Quicksilver: Ultra-high throughput in LAN settings

• Ricochet: Slashing real-time delay in services
replicated to run on clusters

• Tempest: Automated building replicated services

Coordination
Of Multiple UAVs

Dynamic Mission
Replanning

Feedback &
Control

Image Processing
& Tracking

Coordination
Of Multiple UAVs

Dynamic Mission
Replanning

Feedback &
Control

Image Processing
& Tracking

Cornell: Castor Project

R&D Effort Description

Planned code drops FY06 FY07

This final report overviews the Castor project, funded by AFRL and performed at Cornell
University under the direction of Professor Kenneth P. Birman.

The original quad-chart associated with the SOW for the effort is reproduced above. Note that
Castor was originally proposed as a 2 year effort running in FY 06 and FY 07. The ultimate
effort was a bit longer and started later than was originally intended and finished only in
September of 2008 (FY 08); the timeline is thus inaccurate. However, despite the shift in
timeline, all objectives for the effort were fully achieved. Indeed, not only did we accomplish
our SOW objectives, but we actually pushed beyond the originally stated goals, achieving major
advances in several areas that relate directly to our planned effort, but go beyond what was
initially expected.

As can be appreciated from the quad chart, the Castor effort had three primary sub-efforts:
Quicksilver, Ricochet and Tempest. Each resulted in numerous publications, many in
prestigious venues and winning best-paper awards or other recognition in several cases. Our

1

work gained tremendous visibility in industry, attracting not just interest from such companies as
IBM, Red Hat, Microsoft, Intel and Cisco, but also more measurable signs of impact. For
example, Cornell is negotiating to contribute the Ricochet technology to the open-source Red
Hat Linux community under a no-fee license. Microsoft, Cisco and Intel became so interested in
our Quicksilver and Live Objects work that both companies briefed their CTOs, and we are now
receiving funding from Cisco and Intel to encourage continued work on this topic. This work
was also briefed to the CIO and CTO of the Air Force, and there has been talk of showing it to
the Secretary of the Air Force in conjunction with a possible future “demos day” being discussed
by the CIO’s office. Thus, our work is gaining the kind of high-level attention that translates to
real influence over time.

Castor also helped us strengthen our dialog with both AFRL, the AF CIO’s office, AFOSR, and
even other government agencies including OSD/DDS&T, NSF, DARPA and Treasury. The
visibility Castor helped us achieve gave us credibility, and we used that to organize workshops
and provide other forms of consulting expertise to these organizations. Castor even helped us
shape the AF-TRUST “PRET”, funded by AFOSR under the supervision of Bob Bonneau, in
ways that focused on AFRL needs as we came to understand them through our studies and dialog
with AFRL partners.

We’ve also enjoyed a vigorous and fruitful dialog with the standards communities in our areas,
notably the Web Services community and the Autonomic Computing community. A proposal of
ours for an enhanced Web Services eventing standard has received strong support from key
players within the industry, and was published in the International Journal of Web Services and
Systems.

The majority of this report will be fairly technical, although because we’ve included the actual
papers published by the team, we won’t drill down to the point of reproducing material that
appears in the appendices. However, before doing so, we offer an executive summary of
accomplishments under the project:

• Our Ricochet event notification protocols [NSDI 2007] achieve two to three orders of
magnitude latency improvement in mission-critical event notification scenarios. This is
the technology that the Linux community now hopes to standardize as the basis for a new
generation of scalable, reliable, ultra-fast event notification in Linux data centers.

• Maelstrom, a spin-off from Ricochet, offers a powerful new option for
interconnecting data centers over WAN links, including WAN links that have high
delay-throughput products and experience some packet loss. Such links traditionally
bedevil TCP users, who see performance collapse. Maelstrom [NSDI 2008] is totally
transparent, requiring no application changes of any kind at all, and demonstrates
dramatic performance improvements. Indeed, WAN links can often be completely
hidden from applications.

• The Smoke and Mirrors File System, also a spin-off from our work on Ricochet and
Maelstrom, shows that when these kinds of solutions are available, one can build high-
performance scalable cluster file systems that can be mirrored transparently in real-time
with no performance impact at all even when WAN latencies become very large.

2

• Our Quicksilver Scalable Multicast protocol, QSM, is setting performance and
scalability records for supporting publish-subscribe applications in enterprise LAN
settings that may include tens of thousands of applications. QSM won a best paper award
at NCA 2008 and has drawn the attention of IBM. QSM technology now seems likely to
play a big role in IBM’s next generation Distributed Communications System for Web
Services (DCS for WebSphere).

• We’re very excited about our work on Live Objects [ECOOP 2008], a promising new
"edge" computing concept that facilitates creation and exchange of rich, dynamic content
in collaborative settings. Using popular web standards that extend the Microsoft and
Linux web services platforms, live objects permit users to create live applications as
mashups that combine content from various sources (such as images, videos, maps,
weather forecasts, locations of vehicles or participants, etc). The overall goal is to
support a range of applications that would include collaboration, medical consultations,
gaming, and social networking. A tremendous number of military applications can be
identified: the ability to quickly assemble applications by pulling information from
anywhere, anytime, has long been a major goal for military information systems.

• Tempest [DSN 2008], our technology for automating the creation of scalable, robust
Web Services, is inspiring work on a new generation of tools by vendors in which the
difficult and error-prone steps of replicating data and control will be automated and
standardized.

These highlights are just a glimpse of the research output of the group, which was extremely
productive during the funding period. In the remainder of our report, we limit our focus to the
work directly funded by AFRL under the Castor SOW. However, we do include copies of
papers on some of the other work that occurred at Cornell during the same period and were able
to achieve more by leveraging the Castor work, such as Fireflies, SecureStream, Nightwatch,
Antiquity, Dr. Multicast and other systems.

AFRL encourages cross-cutting collaboration among funded organizations. In our case, we
formed strong ties to the AFRL-sponsored team at Vanderbilt, headed by Doug Schmidt, the
inventor who created the ACE/TAO Corba ORB and helped define the DDS standard for data
dissemination in multicast settings. Schmidt’s group is renowned for its emphasis on real-time
applications, and by teaming with him and his effort, Cornell has leveraged their expertise
without needing to create a duplicative and hence inefficient structure.

Other notable accomplishments include:

• Birman provided consulting help to the Air Force and to AFRL on many occasions. Most
recently, these included organizing the Workshop on Managing Risks of Homogeneity,
conducted at request of the AF-CIO, and running the RAPID study of DMO platforms
and their communication needs.

• Birman also assisted the AF, AFOSR, DARPA, OSD/DDS&T, NSF, the White House
OSTP, DHS and Treasury, from time to time, with policy workshops, targeted studies,
and general advising on critical infrastructure protection challenges.

• Birman and Van Renesse delivered more than a dozen keynote talks, invited symposia,
and similarly prestigious presentations. These occurred in diverse settings including
major conferences, smaller workshops, commercial meetings organized by Microsoft,

3

Cisco, Intel and others, and even international University lectureships in settings such as
Israel and India. This type of connection has all sorts of unexpected benefits. For
example, though his visit to India (to present work on Live Objects), Birman entered into
a dialog with the Infosys Corporation that ultimately led to sponsorship by that company
of the new ACM-Infosys Prize, which rewards work by young researchers of a level that
could eventually lead to Turing Awards or Nobel Prizes. Infosys also helped convince
Amazon to underwrite a major increase in the payout of the Turing Award itself.

• Birman was program-committee chair for SOSP 2005, and Van Renesse was PC chair for
OSDI 2008. Team members also participated on a great many other program
committees.

• Team members took faculty positions at the Air Force Institute of Technology
(Hopkinson) and the Navy Graduate School (Adina Crainiceanu). Hakim
Weatherspoon, an African American graduate student, completed a post-doc with the
team at Cornell and has now accepted an Assistant Professor position in that department.
Dr. Dan Freedman, an Army Intelligence officer who sought a Cornell PhD in physical
modeling is now following in Weatherspoon’s footsteps, joining the group as a post-doc,
with the goal of pursuing an eventual career in research on topics of importance to the Air
Force and the US government.

• Several graduate students completed their PhDs and all took positions in the United
States with companies or in teaching/research settings.

 Technical Accomplishments: Details

We now offer a somewhat more technical summary. As noted earlier, we are including copies of
the many published papers that document our effort in detail, giving protocols, proofs,
experimental findings, and written to achieve a high professional communication standard. It is
not our goal to simply duplicate that content here. Instead, for each of our major
accomplishments and some of the more important spin-off activities, we include a page in a
standardized form that describes:

1. The AF context in which the problem arose.
2. The approach we adopted.
3. The accomplishments documented in our papers and embodied in our software.
4. Potential impact for the warflighter.
5. Expected technology transition path.

As noted, we limit this section to work directly funded under the Castor program.

4

RICOCHET

The AF context in which the problem arose. Increasingly many computing systems are
adopting an event-notification design paradigm, in which object oriented components (such as
GIG-compatible web services, CORBA services, J2EE services, etc) interact over event streams
(often using publish-subscribe APIs). Event streams can be slow and may not scale particularly
well, especially in demanding settings such as large data centers operating under stress and
experiencing failures. An event notification protocol is needed for time-critical applications
where low-latency and reliability are vital.

The approach we adopted. Ricochet invents a new lateral error correction approach in which
receivers help one-another out. The scheme employs an XOR-based code that operates across
multiple event streams in a way that detects and repairs loss as much as three orders of
magnitude faster than in more standard COTS-based products. Ricochet was tested by a red-
team supplied by DARPA and “won” the test.

The accomplishments documented in our papers and embodied in our software. The
Ricochet protocol is such a dramatic advance that it attracted the attention of the Red Hat CTO,
Carl Trieloff, who proposed that the Cornell work become the centerpiece of a proposed new
Linux standard for scalable event notification in enterprise data centers (cloud computing
systems). Work is now underway to integrate Ricochet into Red Hat Linux. We note that Red
Hat is a major vendor to the Air Force and military.

Potential impact for the warflighter. Many weapons systems operate by having one
component detect threats, another computing incoming tracks, and a third target the response (for
example, by firing on an incoming missile). In such systems, the delays associated with event
notification are the key factor in determining response time and hence effectiveness of the
defense. Similar needs exist when a warship or aircraft sustains damage and must reconfigure to
maintain vital functionality. Ricochet slashes delays and hence enables a new generation of
faster, more responsive, more robust solutions. The benefits extend to other settings too,
including medical systems (both military ones and civilian systems), financial systems,
intelligence applications, etc.

Expected technology transition path. We are very pleased by the dialog with Red Hat, but are
also exploring other options. Vanderbilt has adopted Ricochet as a component of their DDS
platform, and is exploring applications in settings of importance to the Air Force and Navy in
partnership with Raytheon. Microsoft has hired one of the main Ricochet developers, Mahesh
Balakrishnan, who will explore applications within Windows Vista and future platforms. The
Cornell work itself is public domain, open source, with no license fees.

Main Publications:
Ricochet: Lateral Error Correction for Time-Critical Multicast. Mahesh Balakrishnan, Ken
Birman, Amar Phanishayee, and Stefan Pleisch. Proc NSDI 2007 (Cambridge, MA; April 2007).

PLATO:Predictive Latency-Aware Total Ordering. Mahesh Balakrishnan, Ken Birman, and
Amar Phanishayee. In Proceedings of the SRDS 2006: (Leeds, UK. October 2006.)

5

http://www.cs.cornell.edu/projects/quicksilver/public_pdfs/ricochet-camera.pdf
http://www.cs.cornell.edu/projects/quicksilver/public_pdfs/plato.pdf

QUICKSILVER SCALABLE MULTICAST (QSM)

The AF context in which the problem arose. Like Ricochet, QSM aims at improved support
for event-stream applications. Ricochet focuses on time-critical needs and works by incurring
overhead (as much as 20%) to slash latency. Quicksilver focuses on situations where throughput
and scalability are the key goals, especially at extremely high data rates.

The approach we adopted. QSM employs a unique new hierarchical protocol in which a system
is organized into a tree of “domains”, within which peers (data receivers) help one-another
recover lost packets so that the sender can blast data rapidly using an unreliable UDP multicast.

The accomplishments documented in our papers and embodied in our software. The QSM
protocols are setting performance and scalability records and represent a dramatic advance
relative to prior work. Our NCA 2008 paper won a best-paper award, and IBM is now working
with Cornell to understand how QSM concepts can be migrated into their next generation
distributed communication system for Web Sphere, DCS. The Web Services (GIG) standards
community has been working with us to flesh out potential enhancements to WS-EVENTING
and WS-NOTIFICATION based on our work.

Potential impact for the warflighter. QSM achieves extremely fast and robust data delivery
under conditions that cripple many of the more common COTS protocols. Under settings when
other solutions would collapse, QSM remains stable and hence the applications depending upon
it remain healthy.

Expected technology transition path. Our dialog with IBM is well advanced, but Microsoft
has also shown interest in this work.

Main Publications:

QuickSilver Scalable Multicast (QSM). Krzysztof Ostrowski, Ken Birman, Danny Dolev. 7th
IEEE International Symposium on Network Computing and Applications (IEEE NCA 2008).
Cambridge, MA. July 2008. Best paper award.

Extensible Architecture for High-Performance, Scalable, Reliable Publish-Subscribe Eventing
and Notification. Krzysztof Ostrowski, Ken Birman, and Danny Dolev. International Journal of
Web Services Research. Volume 4, Number 4, Pgs 15-58. October-December 2007.

6

LIVE OBJECTS

The AF context in which the problem arose. It is extremely difficult to implement
collaboration, planning, or rapid-response applications today. As a result, when a team in the
field needs a new form of planning or collaboration tool, years can elapse between conception of
the tool and delivery of a solution. Our Live Objects technology is a breakthrough that slashes
these delays. The approach enables a simple drag-and-drop methodology for building
applications much as one creates a powerpoint slide. Usually, no programming skills are needed
– just drag-and-drop. The solution can then be shared by exchanging files. Live Objects build
on and leverage GIG-based (web services) standards.

The approach we adopted. Live Objects are an exciting new "edge" computing concept that
facilitates creation and exchange of rich, dynamic content in collaborative settings. Using web
standards based on the same Microsoft and Linux web services platforms favored by the Air
Force for its standard system deployments, live objects permit users to create live applications as
mashups that combine content from various sources (such as images, videos, maps, weather
forecasts, locations of vehicles or participants, etc). The experience is a bit like what Tom
Cruise does in the movie Minority Report, when he assembles a crime-fighting “tool” by
gesturing and pulling content from various sources. The applications can then be shared, and all
users of any single live application share the identical content and updates in real-time.

The accomplishments documented in our papers and embodied in our software. In 2007 we
completed an initial implementation of Live Objects [ECOOP 2008] and developed a demo that
illustrates creation of a search-and-rescue application based on the technology. Microsoft, Cisco
and Intel became so interested in our Quicksilver and Live Objects work that both companies
briefed their CTOs, and we are now receiving funding from Cisco and Intel to encourage
continued work on this topic. This work was also briefed to the CIO and CTO of the Air Force,
and there has been talk of showing it to the Secretary of the Air Force in conjunction with a
possible future “demos day” being discussed by the CIO’s office. Thus, our work is gaining the
kind of high-level attention that translates to real influence over time.

Potential impact for the warflighter. Live Objects realize a dream of anytime, anywhere
information access and seamless application development in which the military has made an
enormous investment. By making it possible for non-experts to create applications without
writing new code and to share them using email or web pages, the solution breaks a huge barrier
to rapid application creation and deployment. The strongly typed component interfaces reduce
the risk of errors: our platform detects compatibility and security issues at design time.

Expected technology transition path. There are many possible technology transition options,
but at this early stage, we view the work as more of an R&D prototype.

Main Publications:
Programming with Live Distributed Objects. Krzysztof Ostrowski, Ken Birman, Danny Dolev,
and Jong Hoon Ahnn. 22nd European Conference on Object-Oriented Programming (ECOOP
2008). Cyprus. July 2008. Video of our demo available at http://quicksilver.cs.cornell.edu.

7

http://quicksilver.cs.cornell.edu

MAELSTROM

The AF context in which the problem arose. When we connect applications to data centers
located far away, even over the fastest WAN links (40 Gbit optical), some data loss is inevitable
and high latencies are a fact of life. TCP collapses in such settings, hence data moves at a crawl,
causing applications to fail. The individual or application in the field is unable to download
needed data, even though the bandwidth is available.

The approach we adopted. Maelstrom uses a variant of the Ricochet protocol to achieve
completely transparent TCP acceleration on WAN links. In effect, we can place a kind of
appliance on each end of the network and TCP will “magically” run at full link speeds.
Maelstrom does this using a new forward-error correction scheme that runs at incredibly high
speeds with low costs, and allows lost packets to be recovered on the destination side of the link.
When TCP would normally need to request retransmission of data from the sender, Maelstrom
instead recovers the lost data instantly, hence TCP never chokes back. No changes are needed to
applications: the scheme is completely transparent.

The accomplishments documented in our papers and embodied in our software. The
Maelstrom concept, as published in NSDI 2008, caught the attention of Cisco, which is helping
us continue to develop our solution and to test it in realistic WAN settings.

Potential impact for the warflighter. The dream of anytime, anywhere information access has
been incredibly hard to implement in military networks, which often suffer packet loss and long
latencies. If Maelstrom can be deployed widely, it represents an inexpensive work-around that
could dramatically change the end-user experience of a client trying to access remote services, a
very frustrating and slow process today.

Expected technology transition path. Our hope is that Cisco might adopt Maelstrom into a
product line. Cornell is making the technology available in a public-domain, no-fee, open source
form and we already have many potential users, mostly in the financial sector.

Main Publications:

Maelstrom: Transparent Error Correction for Lambda Networks. Mahesh Balakrishnan, Tudor
Marian, Ken Birman, Hakim Weatherspoon, Einar Vollset. USENIX Symposium on Networked
System Design and Implementation (NSDI 08). April 2008.

8

SMOKE AND MIRRORS FILE SYSTEM

The AF context in which the problem arose. Maelstrom focuses on communication over
WAN links, but of course many applications don’t really use TCP directly. The other major
model is file sharing: applications access files directly over a link, or share files. The same brick
wall that makes communication over WAN networks so hard today also shows up in file based
applications, which tend to perform very poorly under such conditions.

The approach we adopted. We implemented a new cluster-based file system that runs over
Maelstrom. Called the “Smoke and Mirrors File System” (SMFS), this technology provides
continuous active mirroring of file updates over Maelstrom, using a new concept that we call
“network sync.” One key idea is that because Maelstrom achieves data loss rates even lower
than that of commercial disks, one can “sync” data to the optical link by waiting until the FEC
packets are underway, without needing remote acknowledgement from the remote storage
system. For most purposes, network sync is adequate, and the performance benefit is dramatic.
A second idea was to combine network sync with a log-structured file system: by doing so,
writes can be “concentrated” at the head of the log, creating a data stream nicely matched to the
performance and reliability properties of Maelstrom.

The accomplishments documented in our papers and embodied in our software. Maelstrom
exhibits no performance loss at all when operating on WAN links, irrespective of the link
latency. Papers on this are just now being completed, but the financial community is already
excited by the work and Birman was asked to give an invited talk at the annual Napa meeting of
the Financial Services Technology Consortium, FSTC, a group of more than 100 major banks
and financial companies. SMFS offers a potential way to reduce the risk of a catastrophic
disruption of the financial system in the event of a WMD event in a major financial center like
New York: with SMFS, data can be mirrored continuously at a safe distance.

Potential impact for the warflighter. Like Maelstrom, the warfighter benefits by having better
access to vital data with dramatically reduced delays. SMFS eliminates a frustrating obstacle to
information sharing and information-based decision making.

Expected technology transition path. It is probably too soon to speculate about transition paths
here, but Cisco has shown very strong interest in this work and is providing some funding to
encourage continued effort in the area.

Main Publications:

In preparation

9

TEMPEST

The AF context in which the problem arose. As the reader of this report will have noticed,
Cornell’s work often exploits highly complex, technically subtle mechanisms. Using the
resulting tools in applications may not always be easy, and this is reflected in a theme of our
work: we created Live Objects to make it easy to incorporate live data into applications, we
created SMFS to show how Maelstrom could be used by a real file system. Tempest helps the
developer create web services (GIG) applications that exploit Ricochet for data replication.

The approach we adopted. The developer starts by building a non-replicated web service in a
standard manner, using a vendor-supplied tool such as the application builder technology
provided by Microsoft in their Indigo platform for Windows Vista. Tempest then automatically
introduces replication, fault-tolerance and self-management logic in a transparent, simple way.

The accomplishments documented in our papers and embodied in our software. Tempest
was presented at DSN 2008 and we are making the software available for free download.

Potential impact for the warflighter. Reduced cost of development for new web services, and
simpler, more automated ways of introducing robustness, could reduce expense for the Air Force
and create a more nimble, responsive vendor community.

Expected technology transition path. Tempest was created to show the community how easy it
can be to introduce replication and robustness within the GIG model. Our work is really
intended to encourage imitation and in so doing, to move the “bar” so that vendors will no longer
be able to insist that creating scalable applications is a complex, secret, and expensive art. Only
time will confirm or refute this perspective.

Main Publications:
Tempest: Soft State Replication in the Service Tier. Tudor Marian, Mahesh Balakrishnan, Ken
Birman, Robbert van Renesse. Accepted to DSN-DCSS 2008: 38th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks, Anchorage, AL. June 24-27,
2008

10

DR MULTICAST

The AF context in which the problem arose. Many kinds of “legacy” applications have
underlying communication patterns based on multicast. Yet the hardware multicast mechanism,
IPMC, is viewed as a very risky technology in systems that run on large-scale, heavily loaded
data centers. The issue is that IPMC, when scaled up, can cause performance problems in the
data center routers and network interface cards. Worse, some applications work perfectly well in
smaller configurations, but become destabilized in large ones and behave chaotically, disrupting
the entire data center.

The approach we adopted. With Dr. Multicast (the MCMD), we introduce a completely
transparent module that intercepts IPMC operations and, under control of an acceptable use
policy set by the operator, maps them to the most appropriate action. An application can be
blacklisted from using IPMC, in which case multicast is done via UDP on a point-to-point basis.
The MCMD can also do an optimized assignment under which limited numbers of IPMC groups
are made available, and are assigned to the uses that will benefit most. Work continues on this
project, which will eventually explore other sorts of mappings, for example by replacing IPMC
calls with Ricochet or Quicksilver Scalable Multicast.

The accomplishments documented in our papers and embodied in our software. We have a
working prototype and will report on it at HotNets 2008. A more complete version is being
finished now and we’re targeting NSDI 2008 for a paper.

Potential impact for the warflighter. IPMC is key to scalability in systems such as the DoD’s
DMO applications, which support training and scenario evaluation by scalable simulation. Yet
data center operators fear the technology. By taming IPMC and giving operators the ability to
quickly fix problems if they do arise, the MCMD allows us to reintroduce IPMC in settings
where applications were being forced to use costly alternatives such as point-to-point
communication or even overlays. We gain better performance and scalability, simplicity, and
better administrative control. Moreover, a situation in which IPMC could effectively disrupt
entire data centers is eliminated.

Expected technology transition path. IBM is helping us with this work, and the Linux Red
Hat community is extremely interested in this work. We are hoping to see the MCMD follow a
path similar to the one used for Ricochet.

Main Publications:
Dr. Multicast: Rx for Datacenter Communication Scalability. Ymir Vigfusson, Hussam Abu-
Libdeh, Mahesh Balakrishnan, Ken Birman, Yoav Tock. HotNets VII: Seventh ACM Workshop
on Hot Topics in Networks. October 6-7, 2008. Calgary, Canada.

11

ANTIQUITY

Antiquity is the first of several activities that leveraged Castor funding, but was not funded
“primarily” by the Castor effort (primary funding was from NSF). At the request of Dr. Hillman,
PM for Castor, we include brief mention of the work because it benefitted from Castor.

The AF context in which the problem arose. In many military systems, data must be stored
and shared among machines that are challenged by very difficult mobility and connectivity
issues, causing the systems to experience frequent disconnections and failures. Antiquity is a
new file system developed by Hakim Weatherspoon, who joined the team as a post-doc in 2006
and is now a Cornell faculty member. The goal was to demonstrate robust file storage under
the most challenging conditions imaginable.

The approach we adopted. Hakim employs a sophisticated form of “Byzantine Agreement” in
conjunction with a new kind of “log structured” file system of his own implementation to
replicate file data in a robust way. If replicas are lost or damaged, Antiquity automatically and
transparently repairs the lost data and regenerates missing replicas.

The accomplishments documented in our papers and embodied in our software. Hakim’s
Eurosys paper [Eurosys 2006] reports on a remarkable experiment in which file availability was
maintained in a PlanetLab experimental setup subject to extreme levels of churn: machines came
and went every few minutes, and more than 1/3 failed outright during the experiment. File
integrity was maintained continuously and availability was restored rapidly when file replication
dropped below the minimum because of failures.

Potential impact for the warflighter. Hakim presented his work at AFRL in summer of 2007,
at a workshop. There was great interest in the solution. Attendees indicated that a technology of
this sort would be of huge value in AF settings involving mobile platforms with challenging
connectivity and communications scenarios.

Expected technology transition path. Antiquity is available as an open-source solution, but we
see the primary “story” here as one of educating vendors by showing them a way to solve this
problem that really works well under conditions of extreme churn.

Main Publications:
Antiquity: exploiting a secure log for wide-area distributed storage. Hakim Weatherspoon,
Patrick Eaton, Byung-Gon Chun, John Kubiatowicz EuroSys 2006, Leuven, Belgium, April
2006.

12

FIREFLIES

Fireflies is another project that leveraged Castor funding, but was not funded “primarily” by the
Castor effort (primary funding was from NSF and Intel). We report on it for completeness.

The AF context in which the problem arose. Many distributed systems depend upon some
form of monitoring infrastructure that serves as a “scaffold” over which the system itself runs.
Yet the automation of this scaffold creation task is often weak, hence systems often require a
great deal of manual configuration. Needed are more automated configuration tools.

The approach we adopted. Fireflies is an effort to automate the self-configuration of many
kinds of distributed systems by creating a self-organizing “overlay” that not only structures itself,
but also repairs itself if damaged and can even resist attacks using Byzantine Agreement. The
approach is very general and can support all sorts of complex distributed applications, and
indeed we used it as a tool in building our own NightWatch system, described below.

The accomplishments documented in our papers and embodied in our software. A paper
on the Fireflies system was presented at Eurosys 2006. Fireflies was fully implemented and
evaluated extensively under a wide range of fault patterns.

Potential impact for the warflighter. Solutions like Fireflies are needed to show vendors
methods for automating system configuration. Lacking them, too many applications break when
one tries to use them in an unexpected or challenging environment. While Fireflies itself is more
of a proof of concept, it works and the approach is carefully documented and supported by
source code that vendors can obtain from us on request. We see it as teaching tool, showing the
industry that we don’t need to accept the current situation. Systems can be made self-
configuring even under extremely difficult conditions.

Expected technology transition path. We are hoping that industry products will adopt some of
the ideas demonstrated by the Fireflies effort.

Main Publications:

Fireflies: Scalable Support for Intrusion-Tolerant Overlay Networks. Robbert van Renesse and
Havard Johansen. EuroSys 2006, Leuven, Belgium, April 2006.

13

NIGHTWATCH

NightWatch also leveraged Castor funding, but was not funded “primarily” by the Castor effort
(primary funding was from Microsoft and NSF). Again, we report on it for completeness.

The AF context in which the problem arose. Delivery of video and audio streams is probably
the single most common need in military networks. Yet such streams are often disrupted in
tactical environments where connectivity can be challenging and participants are highly mobile.
But there is also need for such a system to monitor its own behavior, so as to adapt itself if some
participant begins to misbehave, for example by slowing down or exhibiting high error rates.

The approach we adopted. Given a robust scaffold such as the one implemented by Fireflies,
one can use it to implement robust applications. We used Fireflies to implement a streaming
media delivery system (Secure Stream [JCC 07]), and then built Nightwatch, a supervisory
control system that monitors the underlying video delivery application and adaptively adjusts
parameters so that if a participating node falls behind or begins to malfunction, the disruption is
limited and very local. Nightwatch embodies a more general concept for self-monitoring and
adaptation with potential applications in a wide range of distributed systems, including web
services that provide other forms of data.

The accomplishments documented in our papers and embodied in our software. The
system was implemented and evaluated, and we published on the work in several venues. Maya
Haridisan, the PhD student who did this work, has now joined Microsoft Research in Silicon
Valley and will continue to work on robust media delivery applications and related topics.

Potential impact for the warflighter. Nightwatch offer the promise of greatly enhanced
delivery of streaming media to soldiers in the field and to others working with mobile platforms
under challenging communications conditions.

Expected technology transition path. We are hoping that industry products will adopt some of
the ideas demonstrated by the Nightwatch effort.

Main Publications:

SecureStream: An Intrusion-Tolerant Protocol for Live-Streaming Dissemination. Maya
Haridasan, Robbert van Renesse. Journal of Computer Communications. Special issue on
Foundation of Peer-to-Peer Computing. Elsevier. 2007.

Enforcing Fairness in a Live-Streaming System. Maya Haridasan, Ingrid Jansch-Porto, Robbert
van Renesse. Multimedia Computing and Networking (MMCN 2008), San Jose, CA.

14

Full Publications List

2008

Dr. Multicast: Rx for Datacenter Communication Scalability. Ymir Vigfusson, Hussam Abu-Libdeh, Mahesh
Balakrishnan, Ken Birman, Yoav Tock. HotNets VII: Seventh ACM Workshop on Hot Topics in Networks.
October 6-7, 2008. Calgary, Canada.
Bosco: One-Step Byzantine Aysnchronous Consensus. Yee Jiun Song, Robbert van Renesse. The 22nd
International Symposium on Distributed Computing (DISC 2008), Arcachon, France, September, 2008.
QuickSilver Scalable Multicast (QSM). Krzysztof Ostrowski, Ken Birman, Danny Dolev. 7th IEEE International
Symposium on Network Computing and Applications (IEEE NCA 2008). Cambridge, MA. July 2008.
Programming with Live Distributed Objects. Krzysztof Ostrowski, Ken Birman, Danny Dolev, and Jong Hoon
Ahnn. 22nd European Conference on Object-Oriented Programming (ECOOP 2008). Cyprus. July 2008.
Supporting Timeliness and Reliability via DDS and Ricochet. Joe Hoffert, Douglas Schmidt, Mahesh
Balakrishnan, Ken Birman. OMG Workshop on Distributed Object Computing for Real-time and Embedded
Systems. July 2008, Washington DC.
SENSTRAC: scalable querying of sensor networks from mobile platforms using tracking-style queries.
Stefan Pleisch and Ken Birman. Int. Journal Sensor Networks, Vol. 3, No. 4, 2008. pp. 266 - 280
Nysiad: Practical Protocol Transformation to Tolerate Byzantine Failures. Chi Ho, Robbert van Renesse, Mark
Bickford, and Danny Dolev. USENIX Symposium on Networked System Design and Implementation (NSDI 08).
San Francisco, CA. April 2008.
Gossip-based Distribution Estimation in Peer-to-Peer Networks. Maya Haridasan, Robbert van Renesse To
Appear in Proceedings of The 7th International Workshop on Peer-to-Peer Systems (IPTPS '08). Tampa Bay, FL.
February 25-26, 2008.
Tempest: Soft State Replication in the Service Tier. Tudor Marian, Mahesh Balakrishnan, Ken Birman, Robbert
van Renesse. Accepted to DSN-DCSS 2008: 38th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks, Anchorage, AL. June 24-27, 2008
The Building Blocks of Consensus. Yee Jiun Song, Robbert van Renesse, Fred B. Schneider, Danny Dolev. 9th
International Conference on Distributed Computing and Networking (ICDCN '08), Kolkata, India. January, 2008.
Enforcing Fairness in a Live-Streaming System. Maya Haridasan, Ingrid Jansch-Porto, Robbert van Renesse.
Multimedia Computing and Networking (MMCN 2008), San Jose, CA.
Maelstrom: Transparent Error Correction for Lambda Networks. Mahesh Balakrishnan, Tudor Marian, Ken
Birman, Hakim Weatherspoon, Einar Vollset. USENIX Symposium on Networked System Design and
Implementation (NSDI 08). April 2008.

2007

Sliver: A Fast Distributed Slicing Algorithm. Vincent Gramoli, Ymir Vigfusson, Ken Birman, Anne-Marie
Kermarrec, Robbert van Renesse. Technical Report. December 2007
SecureStream: An Intrusion-Tolerant Protocol for Live-Streaming Dissemination. Maya Haridasan, Robbert
van Renesse. Journal of Computer Communications. Special issue on Foundation of Peer-to-Peer Computing.
Elsevier.
Declarative Reliable Multi-Party Protocols Krzysztof Ostrowski, Ken Birman, Danny Dolev. Cornell University
Technical Report (TR2007-2088). April, 2007.
Implementing High-Performance Multicast in a Managed Environment Krzysztof Ostrowski, Ken Birman,
Danny Dolev. Cornell University Technical Report (TR2007-2088). April, 2007.
Exploiting Gossip for Self-Management in Scalable Event Notification Systems. Ken Birman, Anne-Marie

15

http://www.cs.cornell.edu/projects/quicksilver/public_pdfs/52180438.pdf
http://www.cs.cornell.edu/projects/quicksilver/public_pdfs/nca.pdf
http://www.cs.cornell.edu/projects/quicksilver/public_pdfs/liveobjects_ecoop2008_lncs5142.pdf
http://www.cs.cornell.edu/projects/quicksilver/public_pdfs/05_Pleisch.pdf
http://www.cs.cornell.edu/projects/quicksilver/public_pdfs/iptps2008.pdf
http://www.cs.cornell.edu/%7Etudorm/publications/tempest.pdf
http://www.cs.cornell.edu/projects/quicksilver/public_pdfs/icdcn.pdf
http://www.cs.cornell.edu/projects/quicksilver/public_pdfs/mmcn.pdf
http://www.cs.cornell.edu/%7Emahesh/publications/docs/maelstromnsdi.pdf
http://www.cs.cornell.edu/projects/quicksilver/public_pdfs/sliver_final.pdf
http://www.cs.cornell.edu/projects/quicksilver/public_pdfs/QPF-TR2007-2088.pdf
http://www.cs.cornell.edu/projects/quicksilver/public_pdfs/QSM-TR2007-2087.pdf
http://www.cs.cornell.edu/projects/quicksilver/public_pdfs/DEPSA-07-v5.pdf

Kermarrec, Krzysztof Ostrowski, Marin Bertier, Danny Dolev, Robbert Van Renesse. Distributed Event Processing
Systems and Architecture Workshop (DEPSA). June 2007.
Live Distributed Objects: Enabling the Active Web Krzysztof Ostrowski, Ken Birman, Danny Dolev. To
Appear in IEEE Internet Computing. Nov/Dec 2007.
Optimizing Power Consumption in Large Scale Storage Systems. Lakshmi Ganesh, Hakim Weatherspoon,
Mahesh Balakrishnan and Ken Birman. To Appear in Proceedings of the 11th Workshop on Hot Topics in
Operating Systems (HotOS XI). San Diego, CA. May 7-9, 2007.
Ricochet: Lateral Error Correction for Time-Critical Multicast. Mahesh Balakrishnan, Ken Birman, Amar
Phanishayee, and Stefan Pleisch. To Appear in Proceedings of the 4th USENIX Symposium on Networked Systems
Design & Implementation (NSDI 07). Cambridge, MA. April 2007.
Active and Passive Techniques for Group Size Estimation in Large-Scale and Dynamic Distributed Systems.
Dionysios Kostoulas, Dimitrios Psaltoulis, Indranil Gupta, Ken Birman, Al Demers. To Appear in the Journal of
Systems and Software, 2007.
Scalable Multicast Platforms for a New Generation of Robust Distributed Applications. Ken Birman, Mahesh
Balakrishnan, Danny Dolev, Tudor Marian, Krzysztof Ostrowski, Amar Phanishayee. To Appear in Proceedings of
the Second IEEE/Create-Net/ICST International Conference on Communication System software and Middleware
(COMSWARE). Bangalore, India. January 7-12, 2007.
Extensible Architecture for High-Performance, Scalable, Reliable Publish-Subscribe Eventing and
Notification. Krzysztof Ostrowski, Ken Birman, and Danny Dolev. To Appear in the International Journal of Web
Services Research. Volume 4, Number 4, Pgs 15-58. October-December 2007.
SENSTRAC: Scalable Querying of SENSor Networks from Mobile Platforms Using TRACking-Style
Queries. Stefan Pleisch and Ken Birman. To Appear in International Journal of Sensor Networks (IJSNet). 2007

2006

Scalable Publish-Subscribe in a Managed Framework. Krzysztof Ostrowski, Ken Birman. Cornell Technical
Report (TR2007-2086). October, 2006.
The QuickSilver Properties Framework. Krzysztof Ostrowski, Ken Birman, Danny Dolev. Abstract, presented at
the OSDI’06 poster session, Seattle, WA, November 2006.
A Scalable Services Architecture. Tudor Marian, Ken Birman, and Robbert van Renesse. To appear in
Proceedings of the IEEE Symposium on Reliable Distributed Systems (SRDS 2006). Leeds, UK. October 2006.
Defense Against Intrusion in a Live Streaming Multicast System. Maya Haridasan, Robbert van Renesse. In Proceedings of
the 6th IEEE International Conference on Peer-to-Peer Computing (P2P2006), Cambridge, UK, September 2006.
Properties Framework and Typed Endpoints for Scalable Group Communication. Krzysztof Ostrowski, Ken
Birman, Danny Dolev. Cornell University Technical Report TR2006-2062 (July, 2006).
Scalable Group Communication System for Scalable Trust. Krzysztof Ostrowski, Ken Birman. In Proceedings
of The First ACM Workshop on Scalable Trusted Computing (ACM STC 2006). Fairfax, VA. November 3, 2006.
PLATO:Predictive Latency-Aware Total Ordering. Mahesh Balakrishnan, Ken Birman, and Amar
Phanishayee. In Proceedings of the SRDS 2006: 25th IEEE Symposium on Reliable Distributed Systems, Leeds,
UK. October 2006.
Cognitive Adaptive Radio Teams. Richard Lau, Stephanie Demers, Yibei Ling, Bruce Siegell, Einar Vollset, Ken
Birman, Robbert vanRenesse, Howie Shrobe, Jonathan Bachrach, Lester Foster. To Appear in Proceedings of the
2006 International Workshop on Wireless Ad-hoc and Sensor Networks, (IWWAN 2006). New York, NY. June
2006.
Network-Aware Adaptation Techniques for Mobile File Systems. Benjamin Atkin, Ken Birman. In Proceedings
of the The 5th IEEE International Symposium on Network Computing and Applications (IEEE NCA06).
Cambridge, MA. June 2006.

16

http://www.cs.cornell.edu/projects/quicksilver/public_pdfs/Birman-Spotlight-Live-Objects-Submitted.pdf
http://www.cs.cornell.edu/projects/quicksilver/public_pdfs/lfs07.pdf
http://www.cs.cornell.edu/projects/quicksilver/public_pdfs/ricochet-camera.pdf
http://www.cs.cornell.edu/projects/quicksilver/public_pdfs/comsware06-V2.pdf
http://www.cs.cornell.edu/projects/quicksilver/public_pdfs/JWSR.pdf
http://www.cs.cornell.edu/projects/quicksilver/public_pdfs/JWSR.pdf
http://www.cs.cornell.edu/projects/quicksilver/public_pdfs/SENSTRAC_Journal.pdf
http://www.cs.cornell.edu/projects/quicksilver/public_pdfs/SENSTRAC_Journal.pdf
http://www.cs.cornell.edu/projects/quicksilver/public_pdfs/QSM-TR2007-2086.pdf
http://www.usenix.org/events/osdi06/posters/ostrowski.pdf
http://www.cs.cornell.edu/projects/quicksilver/public_pdfs/marian-Scalable-Services-srds06.pdf
http://www.cs.cornell.edu/projects/quicksilver/public_pdfs/secureStreamPaper.pdf
http://www.cs.cornell.edu/projects/quicksilver/public_pdfs/PropertiesFx.pdf
http://www.cs.cornell.edu/projects/quicksilver/public_pdfs/stc19-ostrowski.pdf
http://www.cs.cornell.edu/projects/quicksilver/public_pdfs/plato.pdf
http://www.cs.cornell.edu/projects/quicksilver/public_pdfs/IWWAN2006%20paper%20on%20CART%205-26-2006.pdf
http://www.cs.cornell.edu/projects/quicksilver/public_pdfs/mafs.pdf

QuickSilver Scalable Multicast. Krzysztof Ostrowski, Ken Birman, and Amar Phanishayee. Cornell University
Technical Report TR2006-2063 (April, 2006).
Reliable Multicast for Time-Critical Systems. Mahesh Balakrishnan and Ken Birman. In Proceedings of the First
IEEE Workshop on Applied Software Reliability (WASR 2006), Philadelphia, PA. June 2006.
How the Hidden Hand Shapes the Market for Software Reliability. Ken Birman, Coimbatore Chandersekaran,
Danny Dolev, and Robbert van Renesse. In Proceedings of the First IEEE Workshop on Applied Software
Reliability, Philadelphia, PA. June 2006.
Extensible Web Services Architecture for Notification in Large-Scale Systems. Krzysztof Ostrowski and Ken
Birman. In Proceedings of the 2006 IEEE International Conference on Web Services (ICWS 2006). Chicago, IL,
September 2006.
A general algebra and implementation for monitoring event streams. A. Demers, J. Gehrke, M. Hong, M.
Riedewald, and W. White. Technical report, Cornell University, 2005
Towards Expressive Publish/Subscribe Systems. Alan Demers, Johannes Gehrke, Mingsheng Hong, Mirek
Riedewald, and Walker White. In Proceedings of the 10th International Conference on Extending Database
Technology (EDBT 2006), Munich, Germany, March 2006.
Chunkyspread: Multi-tree Unstructured End System Multicast. Vidhyashankar Venkataraman, Paul Francis.
IPTPS 2006, February 2006
On Heterogeneous Overlay Construction and Random Node Selection in Unstructured P2P Networks. Vivek
Vishnumurthy, Paul Francis. IEEE INFOCOM 2006, April 2006
The Untrustworthy Services Revolution. Ken Birman. IEEE Computer (ISSN 0018-9162). Vol.39 No.2, Pgs. 98-
100. February 2006.
Navigating in the Storm: Using Astrolabe to Adaptively Configure Web Services and Their Clients. Ken
Birman, Robbert van Renesse, and Werner Vogels. Cluster Computing Special Issue: Autonomic Computing.
(ISSN 1386-7857 (Paper) 1573-7543 (Online)). Volume 9, Number 2. Pgs. 127-139. April 2006.
Mistral: Efficient Flooding in Mobile Ad-hoc Networks. S. Pleisch, M. Balakrishnan, K. Birman, and R. van
Renesse. In Proceedings of the Seventh ACM International Symposium on Mobile Ad Hoc Networking and
Computing (ACM MobiHoc 2006). Florence, Italy May 2006.
Autonomic Computing - A System-Wide Perspective. Robbert van Renesse and Kenneth P. Birman.
"Autonomic Computing: Concepts, Infrastructure, and Applications". Pgs. 35-48. ed. Manish Parashar and Salim
Hariri, CRC press, January 2006.
SENSTRAC: Scalable Querying of SENSor Networks from Mobile Platforms Using TRACking-Style
Queries. Stefan Pleisch and Ken Birman. To Appear in Proceedings of The Third IEEE International Conference
on Mobile Ad-hoc and Sensor Systems. Vancouver, Canada. October 9-12, 2006.
Fireflies: Scalable Support for Intrusion-Tolerant Overlay Networks. Robbert van Renesse and Havard
Johansen. EuroSys 2006, Leuven, Belgium, April 2006.

17

http://www.cs.cornell.edu/projects/quicksilver/public_pdfs/QSM-2006.pdf
http://www.cs.cornell.edu/projects/quicksilver/public_pdfs/timecriticalfinal.pdf
http://www.cs.cornell.edu/projects/quicksilver/public_pdfs/MarketFailure.pdf
http://www.cs.cornell.edu/projects/quicksilver/public_pdfs/ostrowski-notification.pdf
http://techreports.library.cornell.edu/
http://www.cs.cornell.edu/%7Emirek/papers/2006-EDBT-Cayuga.pdf
http://www.cs.cornell.edu/%7Evidya/iptps06.pdf
http://www.cs.cornell.edu/%7Evivi/RandSelection.pdf
http://csdl2.computer.org/persagen/DLAbsToc.jsp?resourcePath=/dl/mags/co/&toc=comp/mags/co/2006/02/r2toc.xml&DOI=10.1109/MC.2006.73
http://dx.doi.org/10.1007/s10586-006-7559-z
http://www.cs.cornell.edu/projects/quicksilver/public_pdfs/stefan_mobihoc.pdf
http://www.cs.cornell.edu/projects/quicksilver/public_pdfs/standalone.pdf
http://www.cs.cornell.edu/projects/quicksilver/public_pdfs/pleischSenstrac.pdf
http://www.cs.cornell.edu/projects/quicksilver/public_pdfs/pleischSenstrac.pdf
http://www.cs.cornell.edu/home/rvr/papers/Fireflies.pdf

Ricochet: Lateral Error Correction for Time-Critical Multicast

Mahesh Balakrishnan†, Ken Birman†, Amar Phanishayee‡, Stefan Pleisch†

†Cornell University and ‡Carnegie Mellon University
{mahesh,ken,pleisch}@cs.cornell.edu, amarp+@cs.cmu.edu

Abstract
Ricochet is a low-latency reliable multicast protocol de-
signed for time-critical clustered applications. It uses IP
Multicast to transmit data and recovers from packet loss in
end-hosts using Lateral Error Correction (LEC), a novel
repair mechanism in which XORs are exchanged be-
tween receivers and combined across overlapping groups.
In datacenters and clusters, application needs frequently
dictate large numbers of fine-grained overlapping multi-
cast groups. Existing multicast reliability schemes scale
poorly in such settings, providing latency of packet recov-
ery that depends inversely on the data rate within a single
group: the lower the data rate, the longer it takes to re-
cover lost packets. LEC is insensitive to the rate of data in
any one group and allows each node to split its bandwidth
between hundreds to thousands of fine-grained multicast
groups without sacrificing timely packet recovery. As a
result, Ricochet provides developers with a scalable, reli-
able and fast multicast primitive to layer under high-level
abstractions such as publish-subscribe, group communi-
cation and replicated service/object infrastructures. We
evaluate Ricochet on a 64-node cluster with up to 1024
groups per node: under various loss rates, it recovers al-
most all packets using LEC in tens of milliseconds and the
remainder with reactive traffic within 200 milliseconds.

1 Introduction
Clusters and datacenters play an increasingly important
role in the contemporary computing spectrum, providing
back-end computing and storage for a wide range of appli-
cations. The modern datacenter is typically composed of
hundreds to thousands of inexpensive commodity blade-
servers, networked via fast, dedicated interconnects. The
software stack running on a single blade-server is a brew
of off-the-shelf software: commercial operating systems,
proprietary middleware, managed run-time environments
and virtual machines, all standardized to reduce complex-
ity and mitigate maintenance costs.

The last decade has seen the migration of time-critical
applications to commodity clusters. Application domains
ranging from computational finance to air-traffic control
and military communication have been driven by scala-
bility and cost concerns to abandon traditional real-time

environments for COTS datacenters. In the process, they
give up conservative - and arguably unnecessary - guaran-
tees of real-time performance for the promise of massive
scalability and multiple nines of timely availability, all at
a fraction of the running cost. Delivering on this promise
within expanding and increasingly complex datacenters is
a non-trivial task, and a wealth of commercial technology
has emerged to support clustered applications.

At the heart of commercial datacenter software is reli-
able multicast — used by publish-subscribe and data dis-
tribution layers [5, 7] to spread data through clusters at
high speeds, by clustered application servers [1, 4, 3] to
communicate state, updates and heartbeats between server
instances, and by distributed caching infrastructures [2, 6]
to rapidly update cached data. The multicast technology
used in contemporary industrial products is derivative of
protocols developed by academic researchers over the last
two decades, aimed at scaling metrics like throughput or
latency across dimensions as varied as group size [10, 17],
numbers of senders [9], node and network heterogeneity
[12], or geographical and routing distance [18, 21]. How-
ever, these protocols were primarily designed to extend
the reach of multicast to massive networks; they are not
optimized for the failure modes of datacenters and may
be unstable, inefficient and ineffective when retrofitted to
clustered settings. Crucially, they are not designed to cope
with the unique scalability demands of time-critical fault-
tolerant applications.

We posit that a vital dimension of scalability for clus-
tered applications is the number of groups in the system.
All the uses of multicast mentioned above induce large
numbers of overlapping groups. For example, a compu-
tational finance calculator that uses a topic-based pub-sub
system to subscribe to a fraction of the equities on the
stock market will end up belonging in many multicast
groups. Multiple such applications within a datacenter
- each subscribing to different sets of equities - can re-
sult in arbitrary patterns of group overlap. Similarly, data
caching or replication at fine granularity can result in a
single node hosting many data items. Replication driven
by high-level objectives such as locality, load-balancing
or fault-tolerance can lead to distinct overlapping replica
sets - and hence, multicast groups - for each item.

In this paper, we propose Ricochet, a time-critical re-

18

mailto:amarp+@cs.cmu.edu

liable multicast protocol designed to perform well in the
multicast patterns induced by clustered applications. Ric-
ochet uses IP Multicast [15] to transmit data and recov-
ers lost packets using Lateral Error Correction (LEC), a
novel error correction mechanism in which XOR repair
packets are probabilistically exchanged between receivers
and combined across overlapping multicast groups. The
latency of loss recovery in LEC depends inversely on the
aggregate rate of data in the system, rather than the rate in
any one group. It performs equally well in any arbitrary
configuration and cardinality of group overlap, allowing
Ricochet to scale to massive numbers of groups while re-
taining the best characteristics of state-of-the-art multicast
technology: even distribution of responsibility among re-
ceivers, insensitivity to group size, stable proactive over-
head and graceful degradation of performance in the face
of increasing loss rates.

1.1 Contributions

• We argue that a critical dimension of scalability
for multicast in clustered settings is the number of
groups in the system.

• We show that existing reliable multicast protocols
have recovery latency characteristics that are in-
versely dependent on the data rate in a group, and
do not perform well when each node is in many low-
rate multicast groups.

• We propose Lateral Error Correction, a new reliabil-
ity mechanism that allows packet recovery latency to
be independent of per-group data rate by intelligently
combining the repair traffic of multiple groups. We
describe the design and implementation of Ricochet,
a reliable multicast protocol that uses LEC to achieve
massive scalability in the number of groups in the
system.

• We extensively evaluate the Ricochet implementa-
tion on a 64-node cluster, showing that it performs
well with different loss rates, tolerates bursty loss
patterns, and is relatively insensitive to grouping pat-
terns and overlaps - providing recovery character-
istics that degrade gracefully with the number of
groups in the system, as well as other conventional
dimensions of scalability.

2 System Model
We consider patterns of multicast usage where each node
is in many different groups of small to medium size (10 to
50 nodes). Following the IP Multicast model, a group is
defined as a set of receivers for multicast data, and senders
do not have to belong to the group to send to it. We ex-
pect each node to receive data from a large set of distinct
senders, across all the groups it belongs to.

Where does Loss occur in a Datacenter? Datacenter
networks have flat routing structures with no more than
two or three hops on any end-to-end path. They are typi-
cally over-provisioned and of high quality, and packet loss
in the network is almost non-existent. In contrast, dat-
acenter end-hosts are inexpensive and easily overloaded;
even with high-capacity network interfaces, the commod-
ity OS often drops packets due to buffer overflows caused
by traffic spikes or high-priority threads occupying the
CPU. Hence, our loss model is one of short packet bursts
dropped at the end-host receivers at varying loss rates.

Figure 1 strongly indicates that loss in a datacenter is
(a) bursty and (b) independent across end-hosts. In this
experiment, a receiver r1 joins two multicast groups A
and B, and another receiver r2 in the same switching seg-
ment joins only group A. From a sender located multiple
switches away on the network, we send per-second data
bursts of around 25 1KB packets to group A and simul-
taneously send a burst of 0-50 packets to group B, and
measure packet loss at both receivers. We ran this experi-
ment on two networks: a 64-node cluster at Cornell with
1.3 Ghz receivers and the Emulab testbed at Utah with 2
Ghz receivers, all nodes running Linux 2.6.12.

The top graphs in Figure 1 show the traffic bursts and
loss bursts at receiver r1, and the bottom graphs show the
same information for r2. We can see that r1 gets over-
loaded and drops packets in bursts of size 1-30 packets,
whereas r2 does not drop any packets — importantly,
around 30% of the packets dropped by r1 are in group
A, which is common to both receivers. Hence, loss is
both bursty and independent across nodes. Together, these
graphs indicate strongly that loss occurs due to buffer
overflows at receiver r1.

The example in Figure 1 is simplistic - each incoming
burst of traffic arrives at the receiver within a small num-
ber of milliseconds - but conveys a powerful message: it
is very easy to trigger significant bursty loss at datacenter
end-hosts. The receivers in these experiments were run-
ning empty and draining packets continuously out of the
kernel, with zero contention for the CPU or the network,
whereas the settings of interest to us involve time-critical,
possibly CPU-intensive applications running on top of the
communication stack.

Further, we expect multi-group settings to intrinsically
exhibit bursty incoming traffic of the kind emulated in this
experiment — each node in the system receives data from
multiple senders in multiple groups and it is likely that
the inter-arrival time of data packets at a node will vary
widely, even if the traffic rate at one sender or group is
steady. In some cases, burstiness of traffic could also oc-
cur due to time-critical application behavior - for exam-
ple, imagine an update in the value of a stock quote trig-
gering off activity in several system components, which
then multicast information to a replicated central data-

19

 0

 20

 40

 60

 80

 100

1801601401201008060

bu
rs

t l
en

gt
h

(p
ac

ke
ts

) receiver r1: loss bursts in A and B
receiver r1: data bursts in A and B

 0

 20

 40

 60

 80

 100

1801601401201008060

bu
rs

t l
en

gt
h

(p
ac

ke
ts

)

time in seconds

receiver r2: loss bursts in A
receiver r2: data bursts in A

 0

 20

 40

 60

 80

 100

1801601401201008060

bu
rs

t l
en

gt
h

(p
ac

ke
ts

) receiver r1: loss bursts in A and B
receiver r1: data bursts in A and B

 0

 20

 40

 60

 80

 100

1801601401201008060

bu
rs

t l
en

gt
h

(p
ac

ke
ts

)

time in seconds

receiver r2: loss bursts in A
receiver r2: data bursts in A

(a) Cornell 64-node Cluster (b) Utah Emulab Testbed

Figure 1: Datacenter Loss is bursty and uncorrelated across nodes: receiver r1 (top) joins groups A and B and exhibits
bursty loss, whereas receiver r2 (bottom) joins only group A and experiences zero loss.

store. If we assume that each time-critical component
processes the update within a few hundred microseconds,
and that inter-node socket-to-socket latency is around fifty
microseconds (an actual number from our experimen-
tal cluster), the central datastore could easily see a sub-
millisecond burst of traffic. In this case, the componen-
tized structure of the application resulted in bursty traffic;
in other scenarios, the application domain could be intrin-
sically prone to bursty input. For example, a financial cal-
culator tracking a set of hundred equities with correlated
movements might expect to receive a burst of a hundred
packets in multiple groups almost instantaneously.

3 The Design of a Time-Critical Multicast
Primitive

In recent years, multicast research has focused almost
exclusively on application-level routing mechanisms, or
overlay networks ([13] is one example), designed to oper-
ate in the wide-area without any existing router support.
The need for overlay multicast stems from the lack of IP
Multicast coverage in the modern internet, which in turn
reflects concerns of administration complexity, scalabil-
ity, and the risk of multicast ‘storms’ caused by misbe-
having nodes. However, the homogeneity and compara-
tively limited size of datacenter networks pose few scala-
bility and administration challenges to IP Multicast, mak-
ing it a viable and attractive option in such settings. In
this paper, we restrict ourselves to a more traditional defi-
nition of ‘reliable multicast’, as a reliability layer over IP
Multicast. Given that the selection of datacenter hardware
is typically influenced by commercial constraints, we be-
lieve that any viable solution for this context must be able
to run on any mix of existing commodity routers and OS
software; hence, we focus exclusively on mechanisms that

act at the application-level, ruling out schemes which re-
quire router modification, such as PGM [19].

3.1 The Timeliness of (Scalable) Reliable Multicast
Protocols

Reliable multicast protocols typically consist of three log-
ical phases: transmission of the packet, discovery of
packet loss, and recovery from it. Recovery is a fairly fast
operation; once a node knows it is missing a packet, re-
covering it involves retrieving the packet from some other
node. However, in most existing scalable multicast pro-
tocols, the time taken to discover packet loss dominates
recovery latency heavily in the kind of settings we are in-
terested in. The key insight is that the discovery latency of
reliable multicast protocols is usually inversely dependent
on data rate: for existing protocols, the rate of outgoing
data at a single sender in a single group. Existing schemes
for reliability in multicast can be roughly divided into the
following categories:
ACK/timeout: RMTP [21], RMTP-II [22]. In this ap-
proach, receivers send back ACKs (acknowledgements)
to the sender of the multicast. This is the trivial exten-
sion of unicast reliability to multicast, and is intrinsically
unscalable due to ACK implosion; for each sent message,
the sender has to process an ACK from every receiver in
the group [21]. One work-around is to use ACK aggrega-
tion, which allows such solutions to scale in the number of
receivers but requires the construction of a tree for every
sender to a group. Also, any aggregative mechanism in-
troduces latency, leading to larger time-outs at the sender
and delaying loss discovery; hence, ACK trees are unsuit-
able in time-critical settings.
Gossip-Based: Bimodal Multicast [10], lpbcast [17]. Re-
ceivers periodically gossip histories of received packets

20

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 1 2 4 8 16 32 64 128

M
ill

is
ec

on
ds

Groups per Node (Log Scale)

SRM Average Discovery Delay

Figure 2: SRM’s Discovery Latency vs. Groups per Node,
on a 64-node cluster, with groups of 10 nodes each. Error
bars are min and max over 10 runs.

with each other. Upon receiving a digest, a receiver com-
pares the contents with its own packet history, sending
any packets that are missing from the gossiped history
and requesting transmission of any packets missing from
its own history. Gossip-based schemes offer scalability in
the number of receivers per group, and extreme resilience
by diffusing the responsibility of ensuring reliability for
each packet over the entire set of receivers. However,
they are not designed for time-critical settings: discov-
ery latency is equal to the time period between gossip ex-
changes (a significant number of milliseconds - 100ms in
Bimodal Multicast [10]), and recovery involves a further
one or two-phase interaction as the affected node obtains
the packet from its gossip contact.
NAK/Sender-based Sequencing: SRM [18]. Senders
number outgoing multicasts, and receivers discover
packet loss when a subsequent message arrives. Loss dis-
covery latency is thus proportional to the inter-send time
at any single sender to a single group - a receiver can’t
discover a loss in a group until it receives the next packet
from the same sender to that group - and consequently de-
pends on the sender’s data transmission rate to the group.
To illustrate this point, we measured the performance of
SRM as we increased the number of groups each node be-
longed in, keeping the throughput in the system constant
by reducing the data rate within each group - as Figure 2
shows, discovery latency of lost packets degrades linearly
as each node’s bandwidth is increasingly fragmented and
each group’s rate goes down, increasing the time between
two consecutive sends by a sender to the same group.
Once discovery occurs in SRM, lost packet recovery is
initiated by the receiver, which uses IP multicast (with a
suitable TTL value); the sender (or some other receiver),
responds with a retransmission, also using IP multicast.
Sender-based FEC [20, 23]: Forward Error Correction

schemes involve multicasting redundant error correction
information along with data packets, so that receivers can
recover lost packets without contacting the sender or any
other node. FEC mechanisms involve generating c repair
packets for every r data packets, such that any r of the
combined set of r + c data and repair packets is suffi-
cient to recover the original r data packets; we term this
(r, c) parameter the rate-of-fire. FEC mechanisms have
the benefit of tunability, providing a coherent relationship
between overhead and timeliness - the more the number
of repair packets generated, the higher the probability of
recovering lost packets from the FEC data. Further, FEC
based protocols are very stable under stress, since recov-
ery does not induce large degrees of extra traffic. As in
NAK protocols, the timeliness of FEC recovery depends
on the data transmission rate of a single sender in a single
group; the sender can send a repair packet to a group only
after sending out r data packets to that group. Fast, effi-
cient encodings such as Tornado codes [11] make sender-
based FEC a very attractive option in multicast applica-
tions involving a single, dedicated sender; for example,
software distribution or internet radio.

Receiver-based FEC [9]: Of the above schemes, ACK-
based protocols are intrinsically unsuited for time-critical
multi-sender settings, while sender-based sequencing and
FEC limit discovery latency to inter-send time at a single
sender within a single group. Ideally, we would like dis-
covery latency to be independent of inter-send time, and
combine the scalability of a gossip-based scheme with the
tunability of FEC. Receiver-based FEC, first introduced
in the Slingshot protocol [9], provides such a combina-
tion: receivers generate FEC packets from incoming data
and exchange these with other randomly chosen receivers.
Since FEC packets are generated from incoming data at a
receiver, the timeliness of loss recovery depends on the
rate of data multicast in the entire group, rather than the
rate at any given sender, allowing scalability in the num-
ber of senders to the group.

Slingshot is aimed at single-group settings, recovering
from packet loss in time proportional to that group’s data
rate. Our goal with Ricochet is to achieve recovery latency
dependent on the rate of data incoming at a node across
all groups. Essentially, we want recovery of packets to
occur as quickly in a thousand 10 Kbps groups as in a sin-
gle 10 Mbps group, allowing applications to divide node
bandwidth among thousands of multicast groups while
maintaining time-critical packet recovery. To achieve
this, we introduce Lateral Error Correction, a new form
of receiver-generated FEC that probabilistically combines
receiver-generated repair traffic across multiple groups to
drive down packet recovery latencies.

21

Application Payload

Packet ID:
(sender, group, seqno)

XOR of Data Packets

List of Data Packet IDs:
(sender1, group1, seqno1)
(sender2, group2, seqno2)
...

A
pp

lic
at

io
n

M
TU

: 1
02

4
by

te
s

Le
ss

 th
an

 N
et

w
or

k
M

TU

Data Packet :

Repair Packet :

Figure 3: Ricochet Packet Structure

4 Lateral Error Correction and the Rico-
chet protocol

In Ricochet, each node belongs to a number of groups,
and receives data multicast within any of them. The ba-
sic operation of the protocol involves generating XORs
from incoming data and exchanging them with other ran-
domly selected nodes. Ricochet operates using two differ-
ent packet types: data packets - the actual data multicast
within a group - and repair packets, which contain recov-
ery information for multiple data packets. Figure 3 shows
the structure of these two packet types. Each data packet
header contains a packet identifier - a (sender, group, se-
quence number) tuple that identifies it uniquely. A repair
packet contains an XOR of multiple data packets, along
with a list of their identifiers - we say that the repair packet
is composed from these data packets, and that the data
packets are included in the repair packet. An XOR repair
composed from r data packets allows recovery of one of
them, if all the other r − 1 data packets are available; the
missing data packet is obtained by simply computing the
XOR of the repair’s payload with the other data packets.

At the core of Ricochet is the LEC engine running at
each node that decides on the composition and destina-
tions of repair packets, creating them from incoming data
across multiple groups. The operating principle behind
LEC is the notion that repair packets sent by a node to
another node can be composed from data in any of the
multicast groups that are common to them. This allows re-
covery of lost packets at the receiver of the repair packet
to occur within time that’s inversely proportional to the
aggregate rate of data in all these groups. Figure 4 illus-
trates this idea: n1 has groups A and B in common with
n2, and hence it can generate and dispatch repair packets
that contain data from both these groups. n1 needs to wait
only until it receives 5 data packets in either A or B be-
fore it sends a repair packet, allowing faster recovery of
lost packets at n2.

n1

n2

n3 n4

IN
C

O
M

IN
G

 D
A

TA
 P

A
C

K
E

TS

Per-Group Repairs vs Multi-Group Repairs

Repair Packet I:(A1, A2, A3, B1, B2)

Repair Packet II:(A4, A5, B3, B4, A6)

n1 n2

A1

A2
A3

B2

B1

A4

A5

B4

B3

A6
B5

A1

A2
A3

B2

B1

A4

A5

B4

B3

A6

Repair Packet I:(A1, A2, A3, A4, A5)

Repair Packet II:(B1,B2,B3,B4,B5)

B5

n1 n2

Figure 4: LEC in 2 Groups: Receiver n1 can send repairs
to n2 that combine data from both groups A and B.

While combining data from different groups in outgo-
ing repair packets drives down recovery time, it tampers
with the coherent tunability that single group receiver-
based FEC provides. The rate-of-fire parameter in
receiver-based FEC provides a clear, coherent relation-
ship between overhead and recovery percentage; for ev-
ery r data packets, c repair packets are generated in the
system, resulting in some computable probability of re-
covering from packet loss. The challenge for LEC is to
combine repair traffic for multiple groups while retain-
ing per-group overhead and recovery percentages, so that
each individual group can maintain its own rate-of-fire. To
do so, we abstract out the essential properties of receiver-
based FEC that we wish to maintain:
1. Coherent, Tunable Per-Group Overhead: For every
data packet that a node receives in a group with rate-of-
fire (r, c), it sends out an average of c repair packets in-
cluding that data packet to other nodes in the group.
2. Randomness: Destination nodes for repair packets are
picked randomly, with no node receiving more or less re-
pairs than any other node, on average.

LEC supports overlapping groups with the same r com-
ponent and different c values in their rate-of-fire parame-
ter. In LEC, the rate-of-fire parameter is translated into the
following guarantee: For every data packet d that a node
receives in a group with rate-of-fire (r, c), it selects an av-
erage of c nodes from the group randomly and sends each

22

2

1

4

Figure 5: n1 belongs to groups A, B, C: it divides them
into disjoint regions abc, ab, ac, bc, a, b, c

of these nodes exactly one repair packet that includes d. In
other words, the node sends an average of c repair pack-
ets containing d to the group. In the following section,
we describe the algorithm that LEC uses to compose and
dispatch repair packets while maintaining this guarantee.

4.1 Algorithm Overview

Ricochet is a symmetric protocol - exactly the same LEC
algorithm and supporting code runs at every node - and
hence, we can describe its operation from the vantage
point of a single node, n1.

4.1.1 Regions

The LEC engine running at n1 divides n1’s neighborhood
- the set of nodes it shares one or more multicast groups
with - into regions, and uses this information to construct
and disseminate repair packets. Regions are simply the
disjoint intersections of all the groups that n1 belongs
to. Figure 5 shows the regions in a hypothetical sys-
tem, where n1 is in three groups, A, B and C. We de-
note groups by upper-case letters and regions by the con-
catenation of the group names in lowercase; i.e, abc is
a region formed by the intersection of A, B and C. In
our example, the neighborhood set of n1 is carved into
seven regions: abc, ac, ab, bc, a, b and c, essentially the
power set of the set of groups involved. Readers may be
alarmed that this transformation results in an exponential
number of regions, but this is not the case; we are only
concerned with non-empty intersections, the cardinality
of which is bounded by the number of nodes in the sys-
tem, as each node belongs to exactly one intersection (see
Section 4.1.4). Note that n1 does not belong to group D
and is oblivious to it; it observes n2 as belonging to region
b, rather than bd, and is not aware of n4’s existence.

4.1.2 Selecting targets from regions, not groups

Instead of selecting targets for repairs randomly from the
entire group, LEC selects targets randomly from each re-

1

1

A
ab

A abc

A a

A
ac

A
x

A

A

A

Figure 6: n1 selects proportionally sized chunks of cA

from the regions of A

gion. The number of targets selected from a region is set
such that:
1. It is proportional to the size of the region
2. The total number of targets selected, across regions, is
equal to the c value of the group
Hence, for a given group A with rate-of-fire (r, cA), the
number of targets selected by LEC in a particular region,
say abc, is equal to cA ∗ |abc|

|A| , where |x| is the number of
nodes in the region or group x. We denote the number of
targets selected by LEC in region abc for packets in group
A as cabc

A . Figure 6 shows n1 selecting targets for repairs
from the regions of A.

Note that LEC may pick a different number of targets
from a region for packets in a different group; for exam-
ple, cabc

A differs from cabc
B . Selecting targets in this man-

ner also preserves randomness of selection; if we rephrase
the task of target selection as a sampling problem, where
a random sample of size c has to be selected from the
group, selecting targets from regions corresponds to strat-
ified sampling [14], a technique from statistical theory.

4.1.3 Why select targets from regions?

Selecting targets from regions instead of groups allows
LEC to construct repair packets from multiple groups;
since we know that all nodes in region ab are interested
in data from groups A and B, we can create composite

23

|c|=5

|a|=5 |b|=1|ab|=2

|bc|=7|ac|=3

|abc|=10

1

Figure 7: Mappings between repair bins and regions: the
repair bin for ab selects 0.4 targets from region ab and 0.8
from abc for every repair packet. Here, cA = 5, cB = 4,
and cC = 3.

repair packets from incoming data packets in both groups
and send them to nodes in that region.

Single-group receiver-based FEC [9] is implemented
using a simple construct called a repair bin, which col-
lects incoming data within the group. When a repair bin
reaches a threshold size of r, a repair packet is generated
from its contents and sent to c randomly selected nodes
in the group, after which the bin is cleared. Extending
the repair bin construct to regions seems simple; a bin can
be maintained for each region, collecting data packets re-
ceived in any of the groups composing that region. When
the bin fills up to size r, it can generate a repair packet
containing data from all these groups, and send it to tar-
gets selected from within the region.

Using per-region repair bins raises an interesting ques-
tion: if we construct a composite repair packet from data
in groups A, B, and C, how many targets should we se-
lect from region abc for this repair packet - cabc

A , cabc
B , or

cabc
C ? One possible solution is to pick the maximum of

these values. If cabc
A ≥ cabc

B ≥ cabc
C , then we would select

cabc
A . However, a data packet in group B, when added to

the repair bin for the region abc would be sent to an aver-
age of cabc

A targets in the region; resulting in more repair
packets containing that data packet sent to the region than
required (cabc

B), which results in more repair packets sent
to the entire group. Hence, more overhead is expended
per data packet in group B than required by its (r, cB)

value; a similar argument holds for data packets in group
C as well.

Algorithm 1 Algorithm for Setting Up Repair Bins
1: Code at node ni:

2: upon Change in Group Membership do
3: while L not empty {L is the list of regions}

do
4: Select and remove the region Ri = abc...z from

L with highest number of groups involved (break
ties in any order)

5: Set Rt = Ri

6: while Rt 6= ε do
7: set cmin to min(cRt

A , cRt

B ...), where {A,B,...}
is the set of groups forming Rt

8: Set number of targets selected by Ri’s repair
bin from region Rt to cmin

9: Remove G from Rt, for all groups G where
cRt

G = cmin

10: For each remaining group G′ in Rt, set cRt

G′ =
cRt

G′ − cmin

Instead, we choose the minimum of values; this, as ex-
pected, results in a lower level of overhead for groups A
and B than required, resulting in a lower fraction of pack-
ets recovered from LEC. To rectify this we send the addi-
tional compensating repair packets to the region abc from
the repair bins for regions a and b. The repair bin for re-
gion a would select cabc

A −cabc
C destinations, on an average,

for every repair packet it generates; this is in addition to
the ca

A destinations it selects from region a.
A more sophisticated version of the above strategy in-

volves iteratively obtaining the required repair packets
from regions involving the remaining groups; for instance,
we would have the repair bin for ab select the minimum of
cabc
A and cabc

B - which happens to be cabc
B - from abc, and

then have the repair bin for a select the remainder value,
cabc
A − cabc

B , from abc. Algorithm 1 illustrates the final ap-
proach adopted by LEC, and Figure 7 shows the output of
this algorithm for an example scenario. A repair bin se-
lects a non-integral number of nodes from an intersection
by alternating between its floor and ceiling probabilisti-
cally, in order to maintain the average at that number.

4.1.4 Complexity

The algorithm described above is run every time nodes
join or leave any of the multicast groups that n1 is part
of. The algorithm has complexity O(I · d), where I is the
number of populated regions (i.e, with one or more nodes
in them), and d is the maximum number of groups that
form a region. Note that I at n1 is bounded from above
by the cardinality of the set of nodes that share a multicast

24

group with n1, since regions are disjoint and each node
exists in exactly one of them. d is bounded by the number
of groups that n1 belongs to.

4.2 Implementation Details

Our implementation of Ricochet is in Java. Below, we
discuss the details of the implementation, along with the
performance optimizations involved - some obvious and
others subtle.

4.2.1 Repair Bins

A Ricochet repair bin is a lightweight structure holding
an XOR and a list of data packets, and supporting an add
operation that takes in a data packet and includes it in the
internal state. The repair bin is associated with a particular
region, receiving all data packets incoming in any of the
groups forming that region. It has a list of regions from
which it selects targets for repair packets; each of these
regions is associated with a value, which is the average
number of targets which must be selected from that region
for an outgoing repair packet. In most cases, as shown in
Figure 7, the value associated with a region is not an inte-
ger; as mentioned before, the repair bin alternates between
the floor and the ceiling of the value to maintain the aver-
age at the value itself. For example, in Figure 7, the repair
bin for abc has to select 1.2 targets from abc, on average;
hence, it generates a random number between 0 and 1 for
each outgoing repair packet, selecting 1 node if the ran-
dom number is more than 0.2, and 2 nodes otherwise.

4.2.2 Staggering for Bursty Loss

A crucial algorithmic optimization in Ricochet is stagger-
ing - also known as interleaving [23] - which provides re-
silience to bursty loss. Given a sequence of data packets to
encode, a stagger of 2 would entail constructing one repair
packet from the 1st, 3rd, 5th... packets, and another repair
packet from the 2nd, 4th, 6th... packets. The stagger value
defines the number of repairs simultaneously being con-
structed, as well as the distance in the sequence between
two data packets included in the same repair packet. Con-
sequently, a stagger of i allows us to tolerate a loss burst
of size i while resulting in a proportional slowdown in re-
covery latency, since we now have to wait for O(i∗r) data
packets before despatching repair packets.

In conventional sender-based FEC, staggering is not a
very attractive option, providing tolerance to very small
bursts at the cost of multiplying the already prohibitive
loss discovery latency. However, LEC recovers packets
so quickly that we can tolerate a slowdown of a factor of
ten without leaving the tens of milliseconds range; addi-
tionally, a small stagger at the sender allows us to tolerate
very large bursts of lost packets at the receiver, especially
since the burst is dissipated among multiple groups and
senders. Ricochet implements a stagger of i by the sim-
ple expedient of duplicating each logical repair bin into i

instances; when a data packet is added to the logical re-
pair bin, it is actually added to a particular instance of the
repair bin, chosen in round-robin fashion. Instances of a
duplicated repair bin behave exactly as single repair bins
do, generating repair packets and sending them to regions
when they get filled up.

4.2.3 Multi-Group Views

Each Ricochet node has a multi-group view, which con-
tains membership information about other nodes in the
system that share one or more multicast groups with it. In
traditional group communication literature, a view is sim-
ply a list of members in a single group [24]; in contrast, a
Ricochet node’s multi-group view divides the groups that
it belongs to into a number of regions, and contains a list
of members lying in each region. Ricochet uses the multi-
group view at a node to determine the sizes of regions
and groups, to set up repair bins using the LEC algorithm.
Also, the per-region lists in the multi-view are used to se-
lect destinations for repair packets. The multi-group view
at n1 - and consequently the group and intersection sizes
- does not include n1 itself.

4.2.4 Membership and Failure Detection

Ricochet can plug into any existing membership and fail-
ure detection infrastructure, as long as it is provided with
reasonably up-to-date views of per-group membership by
some external service. In our implementation, we use
simple versions of Group Membership (GMS) and Fail-
ure Detection (FD) services, which execute on high-end
server machines. If the GMS receives a notification from
the FD that a node has failed, or it receives a join/leave
to a group from a node, it sends an update to all nodes
in the affected group(s). The GMS is not aware of re-
gions; it maintains conventional per-group lists of nodes,
and sends per-group updates when membership changes.
For example, if node n55 joins group A, the update sent by
the GMS to every node in A would be a 3-tuple: (Join, A,
n55). Individual nodes process these updates to construct
multi-group views relative to their own membership.

Since the GMS does not maintain region data, it has
to scale only in the number of groups in the system; this
can be easily done by partitioning the service on group id
and running each partition on a different server. For in-
stance, one machine is responsible for groups A and B,
another for C and D, and so on. Similarly, the FD can
be partitioned on a topological criterion; one machine on
each rack is responsible for monitoring other nodes on the
rack by pinging them periodically. For fault-tolerance,
each partition of the GMS can be replicated on multiple
machines using a strongly consistent protocol like Paxos.
The FD can have a hierarchical structure to recover from
failures; a smaller set of machines ping the per-rack fail-
ure detectors, and each other in a chain. We believe that

25

such a semi-centralized solution is appropriate and suffi-
cient in a datacenter setting, where connectivity and mem-
bership are typically stable. Crucially, the protocol it-
self does not need consistent membership, and degrades
gracefully with the degree of inconsistency in the views;
if a failed node is included in a view, performance will
dip fractionally in all the groups it belongs to as the re-
pairs sent to it by other nodes are wasted.

4.2.5 Performance

Since Ricochet creates LEC information from each in-
coming data packet, the critical communication path that
a data packet follows within the protocol is vital in de-
termining eventual recovery times and the maximum sus-
tainable throughput. XORs are computed in each repair
bin incrementally, as packets are added to the bin. A cru-
cial optimization used is pre-computation of the number
of destinations that the repair bin sends out a repair to,
across all the regions that it sends repairs to: Instead of
constructing a repair and deciding on the number of des-
tinations once the bin fills up, the repair bin precomputes
this number and constructs the repair only if the number is
greater than 0. When the bin overflows and clears itself,
the expected number of destinations for the next repair
packet is generated. This restricts the average number of
two-input XORs per data packet to c (from the rate-of-
fire) in the worst case - which occurs when no single re-
pair bin selects more than 1 destination, and hence each
outgoing repair packet is a unique XOR.

4.2.6 Buffering and Loss Control

LEC - like any other form of FEC - works best when
losses are not in concentrated bursts. Ricochet maintains
an application-level buffer with the aim of minimizing
in-kernel losses, serviced by a separate thread that con-
tinuously drains packets from the kernel. If memory at
end-hosts is constrained and the application-level buffer
is bounded, we use customized packet-drop policies to
handle overflows: a randomly selected packet from the
buffer is dropped and the new packet is accommodated
instead. In practice, this results in a sequence of almost
random losses from the buffer, which are easy to recover
using FEC traffic. Whether the application-level buffer is
bounded or not, it ensures that packet losses in the kernel
are reduced to short bursts that occur only during peri-
ods of overload or CPU contention. We evaluate Ricochet
against loss bursts of up to 100 packets, though in practice
we expect the kind of loss pattern shown in 1, where few
bursts are greater than 20-30 packets, even with highly
concentrated traffic spikes.

4.2.7 NAK Layer for 100% Recovery

Ricochet recovers a high percentage of lost packets via the
proactive LEC traffic; for certain applications, this proba-
bilistic guarantee of packet recovery is sufficient and even

desirable in cases where data ‘expires’ and there is no util-
ity in recovering it after a certain number of milliseconds.
However, the majority of applications require 100% re-
covery of lost data, and Ricochet uses a reactive NAK
layer to provide this guarantee. If a receiver does not re-
cover a packet through LEC traffic within a timeout pe-
riod after discovery of loss, it sends an explicit NAK to
the sender and requests a retransmission. While this NAK
layer does result in extra reactive repair traffic, two fac-
tors separate it from traditional NAK mechanisms: firstly,
recovery can potentially occur very quickly - within a few
hundred milliseconds - since for almost all lost packets
discovery of loss takes place within milliseconds through
LEC traffic. Secondly, the NAK layer is meant solely as
a backup mechanism for LEC and responsible for recov-
ering a very small percentage of total loss, and hence the
extra overhead is minimal.

4.2.8 Optimizations

Ricochet maintains a buffer of unusable repair packets
that enable it to utilize incoming repair packets better. If
one repair packet is missing exactly one more data packet
than another repair packet, and both are missing at least
one data packet, Ricochet obtains the extra data packet
by XORing the two repair packets. Also, it maintains a
list of unusable repair packets which is checked intermit-
tently to see if recent data packet recoveries and receives
have made any old repair packets usable.

4.2.9 Message Ordering

As presented, Ricochet provides multicast reliability but
does not deliver messages in the same order at all re-
ceivers. We are primarily concerned with building an ex-
tremely rapid multicast primitive that can be used by ap-
plications that require unordered reliable delivery as well
as layered under ordering protocols with stronger deliv-
ery properties. For instance, Ricochet can be used as a
reliable transport by any of the existing mechanisms for
total ordering [16] — in separate work [8], we describe
one such technique that predicts out-of-order delivery in
datacenters to optimize ordering delays.

5 Evaluation
We evaluated our Java implementation of Ricochet on a
64-node cluster, comprising of four racks of 16 nodes
each, interconnected via two levels of switches. Each
node has a single 1.3 GHz CPU with 512 Mb RAM, runs
Linux 2.6.12 and has two 100 Mbps network interfaces,
one for control and the other for experimental traffic. Typ-
ical socket-to-socket latency within the cluster is around
50 microseconds. In the following experiments, for a
given loss rate L, three different loss models are used:
· uniform - also known as the Bernoulli model [25] -
refers to dropping packets with uniform probability equal
to the loss rate L.

26

 0

 10

 20

 30

 40

 50

 0 50 100 150 200 250

R
ec

ov
er

y
Pe

rc
en

ta
ge

Milliseconds

96.8% LEC + 3.2% NAK

 0

 10

 20

 30

 40

 50

 0 50 100 150 200 250

R
ec

ov
er

y
Pe

rc
en

ta
ge

Milliseconds

92% LEC + 8% NAK

 0

 10

 20

 30

 40

 50

 0 50 100 150 200 250

R
ec

ov
er

y
Pe

rc
en

ta
ge

Milliseconds

84% LEC + 16% NAK

(a) 10% Loss Rate (b) 15% Loss Rate (c) 20% Loss Rate
Figure 8: Distribution of Recoveries: LEC + NAK for varying degrees of loss

 0

 20

 40

 60

 80

 100

 1 2 3 4 5 6 7 8
 10000

 15000

 20000

 25000

 30000

Pe
rc

en
ta

ge

R
ec

ov
er

y
L

at
en

cy
 (m

ic
ro

se
co

nd
s)

c

Changing c, Fixed r=8

Recovery %
Latency

Overhead %

 0

 20

 40

 60

 80

 100

 2 3 4 5 6 7 8 9 10
 10000

 15000

 20000

 25000

 30000

Pe
rc

en
ta

ge

R
ec

ov
er

y
L

at
en

cy
 (m

ic
ro

se
co

nd
s)

r

Changing r, Fixed c=r/2

Recovery %
Latency

Overhead %

Figure 9: Tuning LEC : tradeoff points available between
recovery %, overhead % (left y-axis) and avg recovery
latency (right y-axis) by changing the rate-of-fire (r, c).

· bursty involves dropping packets in equal bursts of
length b. The probability of starting a loss burst is set
so that each burst is of exactly b packets and the loss rate
is maintained at L. This is not a realistic model but allows
us to precisely measure performance relative to specific
burst lengths.
· markov drops packets using a simple 2-state markov
chain, where each node alternates between a lossy and a
lossless state, and the probabilities are set so that the av-
erage length of a loss burst is m and the loss rate is L, as
described in [25].

In experiments with multiple groups, nodes are as-
signed to groups at random, and the following formula
is used to relate the variables in the grouping pattern:
n ∗ d = g ∗ s, where n is the number of nodes in the
system (64 in most of the experiments), d is the degree of
membership, i.e. the number of groups each node joins,
g is the total number of groups in the system, and s is
the average size of each group. For example, in a 16-
node setting where each node joins 512 groups and each
group is of size 8, g is set to 16∗512

8 ≈ 1024. Each node is
then assigned to 512 randomly picked groups out of 1024.
Hence, the grouping patterns for each experiment is com-
pletely represented by a (n, d, s) tuple.

For every run, we set the sending rate at a node such
that the total system rate of incoming messages is 64000
packets per second, or 1000 packets per node per second.
Data packets are 1K bytes in size. Each point in the fol-
lowing graphs - other than Figure 8, which shows distri-
butions for single runs - is an average of 5 runs. A run
lasts 30 seconds and produces ≈ 2 million receive events
in the system.

5.1 Distribution of Recoveries in Ricochet

First, we provide a snapshot of what typical packet re-
covery timelines look like in Ricochet. Earlier, we made

27

 90

 92

 94

 96

 98

 100

 2 4 8 16 32 64 128 256 512 1024

L
E

C
 R

ec
ov

er
y

Pe
rc

en
ta

ge

Groups per Node (Log Scale)

Recovery %

 0

 10000

 20000

 30000

 40000

 50000

 2 4 8 16 32 64 128 256 512 1024

M
ic

ro
se

co
nd

s

Groups per Node (Log Scale)

Average Recovery Latency

Figure 10: Scalability in Groups

the assertion that Ricochet discovers the loss of almost
all packets very quickly through LEC traffic, recovers a
majority of these instantly and recovers the remainder us-
ing an optional NAK layer. In Figure 8, we show the
histogram of packet recovery latencies for a 16-node run
with degree of membership d = 128 and group size
s = 10. We use a simplistic NAK layer that starts uni-
casting NAKs to the original sender of the multicast 100
milliseconds after discovery of loss, and retries at 50 mil-
lisecond intervals. Figure 8 shows three scenarios: under
uniform loss rates of 10%, 15%, and 20%, different frac-
tions of packet loss are recovered through LEC and the
remainder via reactive NAKs. These graphs illustrate the
meaning of the LEC recovery percentage: if this number
is high, more packets are recovered very quickly without
extra traffic in the initial segment of the graphs, and less
reactive overhead is induced by the NAK layer. Impor-
tantly, even with a recovery percentage as low as 84%
in Figure 8(c), we are able to recover all packets within
250 milliseconds with a crude NAK layer due to early
LEC-based discovery of loss. For the remaining experi-
ments, we will switch the NAK layer off and focus solely
on LEC performance; also, since we found this distribu-

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 2 4 8 16 32 64 128 256 512 1024

M
ic

ro
se

co
nd

s

Groups per Node (Log Scale)

Updating Repair Bins
Data Packet Accounting

Waiting in Buffer
XOR

 0

 1

 2

 3

 4

 5

 2 4 8 16 32 64 128 256 512 1024

N
um

be
r

Groups per Node (Log Scale)

XORs per Data Packet

Figure 11: CPU time and XORs per data packet

tion of recovery latencies to be fairly representative, we
present only the percentage of lost packets recovered us-
ing LEC and the average latency of these recoveries. Ex-
periment Setup: (n = 16, d = 128, s = 10), Loss Model:
Uniform, [10%, 15%, 20%].

5.2 Tunability of LEC in multiple groups

The Slingshot protocol [9] illustrated the tunability of
receiver-generated FEC for a single group; we include a
similar graph for Ricochet in Figure 9, showing that the
rate-of-fire parameter (r, c) provides a knob to tune LEC’s
recovery characteristics. In Figure 9.a, we can see that
increasing the c value for constant r = 8 increases the
recovery percentage and lowers recovery latency by ex-
pending more overhead - measured as the percentage of
repair packets to all packets. In Figure 9.b, we see the
impact of increasing r, keeping the ratio of c to r - and
consequently, the overhead - constant. For the rest of the
experiments, we set the rate-of-fire at (r = 8, c = 5). Ex-
periment Setup: (n = 64, d = 128, s = 10), Loss Model:
Uniform, 1%.

28

 0

 20

 40

 60

 80

 100

 0 0.05 0.1 0.15 0.2 0.25

L
E

C
 R

ec
ov

er
y

Pe
rc

en
ta

ge

Loss Rate

Effect of Loss Rate on Recovery %

Bursty b=10
Uniform

Markov m=10

 10000
 15000
 20000
 25000
 30000
 35000
 40000
 45000
 50000
 55000

 0 0.05 0.1 0.15 0.2 0.25R
ec

ov
er

y
L

at
en

cy
 (M

ic
ro

se
co

nd
s)

Loss Rate

Effect of Loss Rate on Latency

Bursty b=10
Uniform

Markov m=10

Figure 12: Impact of Loss Rate on LEC

5.3 Scalability

Next, we examine the scalability of Ricochet to large
numbers of groups. Figure 10 shows that increasing the
degree of membership for each node from 2 to 1024 has
almost no effect on the percentage of packets recovered
via LEC, and causes a slow increase in average recovery
latency. The x-axis in these graphs is log-scale, and hence
a straight line increase is actually logarithmic with respect
to the number of groups and represents excellent scalabil-
ity. The increase in recovery latency towards the right side
of the graph is due to Ricochet having to deal internally
with the representation of large numbers of groups; we
examine this phenomenon later in this section.

For a comparison point, we refer readers back to SRM’s
discovery latency in Figure 2: in 128 groups, SRM dis-
covery took place at 9 seconds. In our experiments, SRM
recovery took place roughly 4 seconds after discovery in
all cases. While fine-tuning the SRM implementation for
clustered settings should eliminate that 4 second gap be-
tween discovery and recovery, at 128 groups Ricochet sur-
passes SRM’s best possible recovery performance of 5
seconds by between 2 and 3 orders of magnitude.

Though Ricochet’s recovery characteristics scale well

 30

 40

 50

 60

 70

 80

 90

 100

 5 10 15 20 25 30 35 40

R
ec

ov
er

y
Pe

rc
en

ta
ge

Burst Size

Resilience to Bursty Losses: Recovery Percentage

L=0.1%
L=1%

L=10%

 15000
 20000
 25000
 30000
 35000
 40000
 45000
 50000
 55000
 60000
 65000

 5 10 15 20 25 30 35 40R
ec

ov
er

y
L

at
en

cy
 (M

ic
ro

se
co

nd
s)

Burst Size

Resilience to Bursty Losses: Recovery Latency

L=0.1%
L=1%

L=10%

Figure 13: Resilience to Burstiness

in the number of groups, it is important that the compu-
tational overhead imposed by the protocol on nodes stays
manageable, given that time-critical applications are ex-
pected to run over it. Figure 11 shows the scalability of
an important metric: the time taken to process a single
data packet. The straight line increase against a log x-axis
shows that per-packet processing time increases logarith-
mically with the number of groups - doubling the num-
ber of groups results in a constant increase in processing
time. The increase in processing time towards the latter
half of the graph is due to the increase in the number of
repair bins with the number of groups. While we consid-
ered 1024 groups adequate scalability, Ricochet can po-
tentially scale to more groups with further optimization,
such as creating bins only for occupied regions. In the
current implementation, per-packet processing time goes
from 160 microseconds for 2 groups to 300 microsec-
onds for 1024, supporting throughput exceeding a thou-
sand packets per second. Figure 11 also shows the aver-
age number of XORs per incoming data packet. As stated
in section 4.2.2, the number of XORs stays under 5 - the
value of c from the rate-of-fire (r, c). Experiment Setup:
(n = 64, d = ∗, s = 10), Loss Model: Uniform, 1%.

29

 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 1 2 3 4 5 6 7 8 9 10

R
ec

ov
er

y
Pe

rc
en

ta
ge

Stagger

Staggering: LEC Recovery Percentage

b=10
burst=50

burst=100
Uniform

 10000
 15000
 20000
 25000
 30000
 35000
 40000
 45000
 50000
 55000
 60000
 65000

 1 2 3 4 5 6 7 8 9 10R
ec

ov
er

y
L

at
en

cy
 (M

ic
ro

se
co

nd
s)

Stagger

Staggering: Recovery Latency

b=10
burst=50

burst=100
Uniform

Figure 14: Staggering allows Ricochet to recover from long bursts of loss.

5.4 Loss Rate and LEC Effectiveness

Figure 12 shows the impact of the Loss Rate on LEC re-
covery characteristics, under the three loss models. Both
LEC recovery percentages and latencies degrade grace-
fully: with an unrealistically high loss rate of 25%, Ric-
ochet still recovers 40% of lost packets at an average of
60 milliseconds. For uniform and bursty loss models, re-
covery percentage stays above 90% with a 5% loss rate;
markov does not fare as well, even at 1% loss rate, primar-
ily because it induces bursts much longer than its average
of 10 - the max burst in this setting averages at 50 pack-
ets. Experiment Setup: (n = 64, d = 128, s = 10), Loss
Model: *.

5.5 Resilience to Bursty Losses

As we noted before, a major criticism of FEC schemes
is their fragility in the face of bursty packet loss. Fig-
ure 13 shows that Ricochet is naturally resilient to small
loss bursts, without the stagger optimization - however,
as the burst size increases, the percentage of packets re-
covered using LEC degrades substantially. Experiment
Setup: (n = 64, d = 128, s = 10), Loss Model: Bursty.

However, switching on the stagger optimization de-
scribed in Section 4.2.2 increases Ricochet’s resilience to
burstiness tremendously, without impacting recovery la-
tency much. Figure 14 shows that setting an appropriate
stagger value allows Ricochet to handle large bursts of
loss: for a burst size as large as 100, a stagger of 6 en-
ables recovery of more than 90% lost packets at an aver-
age latency of around 50 milliseconds. Experiment Setup:
(n = 64, d = 128, s = 10), Loss Model: Bursty, 1%.

5.6 Effect of Group and System Size

What happens to LEC performance when the average
group size in the cluster is large compared to the total
number of nodes? Figure 15 shows that recovery per-
centages are almost unaffected, staying above 99% in this

scenario, but recovery latency is impacted by more than
a factor of 2 as we triple group size from 16 to 48 in a
64-node setting. Note that this measures the impact of the
size of the group relative to the entire system; receiver-
based FEC has been shown to scale well in a single iso-
lated group to hundreds of nodes [9]. Experiment Setup:
(n = 64, d = 128, s = ∗), Loss Model: Uniform, 1%.

While we could not evaluate to system sizes beyond 64
nodes, Ricochet should be oblivious to the size of the en-
tire system, since each node is only concerned with the
groups it belongs to. We ran 4 instances of Ricochet on
each node to obtain an emulated 256 node system with
each instance in 128 groups, and the resulting recovery
percentage of 98% - albeit with a degraded average re-
covery latency of nearly 200 milliseconds due to network
and CPU contention - confirmed our intuition of the pro-
tocol’s fundamental insensitivity to system size.

6 Future Work
One avenue of research involves embedding more com-
plex error codes such as Tornado [11] in LEC; however,
the use of XOR has significant implications for the design
of the algorithm, and using a different encoding might re-
quire significant changes. LEC uses XOR for its simplic-
ity and speed, and as our evaluation showed, we obtain
properties on par with more sophisticated encodings, in-
cluding tunability and burst resilience. We plan on replac-
ing our simplistic NAK layer with a version optimized
for bulk transfer, providing an efficient backup for LEC
when sustained bursts occur of hundreds of packets or
more. Another line of work involves making the param-
eters for LEC - such as rate-of-fire and stagger - adap-
tive, reacting to meet varying load and network character-
istics. We are currently working with industry partners to
layer Ricochet under data distribution, publish-subscribe
and web-service interfaces, as well as building protocols
with stronger ordering and atomicity properties over it.

30

 90

 92

 94

 96

 98

 100

 16 24 32 40 48
 10000

 20000

 30000

 40000

 50000

 60000
R

ec
ov

er
y

Pe
rc

en
ta

ge

R
ec

ov
er

y
L

at
en

cy
 (m

ic
ro

se
co

nd
s)

Group Size

Recovery %
Latency

Figure 15: Effect of Group Size

7 Conclusion
We believe that the next generation of time-critical ap-
plications will execute on commodity clusters, using the
techniques of massive redundancy, fault-tolerance and
scalable communication currently available to distributed
systems practitioners. Such applications will require a
multicast primitive that delivers data at the speed of hard-
ware multicast in failure-free operation and recovers from
packet loss within milliseconds irrespective of the pattern
of usage. Ricochet provides applications with massive
scalability in multiple dimensions - crucially, it scales in
the number of groups in the system, performing well un-
der arbitrary grouping patterns and overlaps. A clustered
communication primitive with good timing properties can
ultimately be of use to applications in diverse domains not
normally considered time-critical - e-tailers, online web-
servers and enterprise applications, to name a few.

Acknowledgments
We received invaluable comments from Dave Andersen,
Danny Dolev, Tudor Marian, Art Munson, Robbert van
Renesse, Emin Gun Sirer, Niraj Tolia and Einar Vollset.
We would like to thank our shepherd Mike Dahlin, as well
as all the anonymous reviewers of the paper.

References
[1] Bea weblogic. http://www.bea.com/framework.

jsp?CNT=index.htm&FP=/content/
products/weblogic, 2006.

[2] Gemstone gemfire. http://www.gemstone.com/
products/gemfire/enterprise.php, 2006.

[3] Ibm websphere. www.ibm.com/software/
webservers/appserv/was/, 2006.

[4] Jboss. http://labs.jboss.com/portal/, 2006.
[5] Real-time innovations data distribution ser-

vice. http://www.rti.com/products/
data distribution/index.html, 2006.

[6] Tangosol coherence. http://www.tangosol.com/
html/coherence-overview.shtml, 2006.

[7] Tibco rendezvous. http://www.tibco.com/
software/messaging/rendezvous.jsp, 2006.

[8] M. Balakrishnan, K. Birman, and A. Phanishayee. Plato:
Predictive latency-aware total ordering. In IEEE SRDS,
2006.

[9] M. Balakrishnan, S. Pleisch, and K. Birman. Slingshot:
Time-critical multicast for clustered applications. In IEEE
Network Computing and Applications, 2005.

[10] K. P. Birman, M. Hayden, O. Ozkasap, Z. Xiao, M. Budiu,
and Y. Minsky. Bimodal multicast. ACM Trans. Comput.
Syst., 17(2):41–88, 1999.

[11] J. W. Byers, M. Luby, M. Mitzenmacher, and A. Rege. A
digital fountain approach to reliable distribution of bulk
data. In ACM SIGCOMM ’98 Conference, pages 56–67,
New York, NY, USA, 1998. ACM Press.

[12] Y. Chawathe, S. McCanne, and E. A. Brewer. Rmx: Reli-
able multicast for heterogeneous networks. In INFOCOM,
pages 795–804, 2000.

[13] Y. Chu, S. Rao, S. Seshan, and H. Zhang. Enabling confer-
encing applications on the internet using an overlay muilti-
cast architecture. In ACM SIGCOMM, pages 55–67, New
York, NY, USA, 2001. ACM Press.

[14] W. G. Cochran. Sampling Techniques, 3rd Edition. John
Wiley, 1977.

[15] S. E. Deering and D. R. Cheriton. Multicast routing in
datagram internetworks and extended lans. ACM Trans.
Comput. Syst., 8(2):85–110, 1990.

[16] X. Défago, A. Schiper, and P. Urbán. Total order broadcast
and multicast algorithms: Taxonomy and survey. ACM
Computing Surveys, 36(4):372–421, December 2004.

[17] P. T. Eugster, R. Guerraoui, S. B. Handurukande,
P. Kouznetsov, and A.-M. Kermarrec. Lightweight prob-
abilistic broadcast. ACM Trans. Comput. Syst., 21(4):341–
374, 2003.

[18] S. Floyd, V. Jacobson, C.-G. Liu, S. McCanne, and
L. Zhang. A reliable multicast framework for light-weight
sessions and application level framing. IEEE/ACM Trans.
Netw., 5(6):784–803, 1997.

[19] J. Gemmel, T. Montgomery, T. Speakman, N. Bhaskar, and
J. Crowcroft. The pgm reliable multicast protocol. IEEE
Network, 17(1):16–22, Jan 2003.

[20] C. Huitema. The case for packet level fec. In PfHSN
’96: Proceedings of the TC6 WG6.1/6.4 Fifth International
Workshop on Protocols for High-Speed Networks V, pages
109–120, London, UK, UK, 1997. Chapman & Hall, Ltd.

[21] J. C. Lin and S. Paul. RMTP: A reliable multicast transport
protocol. In INFOCOM, pages 1414–1424, San Francisco,
CA, Mar. 1996.

[22] T. Montgomery, B. Whetten, M. Basavaiah, S. Paul,
N. Rastogi, J. Conlan, and T. Yeh. The RMTP-II proto-
col, Apr. 1998. IETF Internet Draft.

[23] J. Nonnenmacher, E. Biersack, and D. Towsley. Parity-
based loss recovery for reliable multicast transmission. In
Proceedings of the ACM SIGCOMM ’97 conference, pages
289–300, New York, NY, USA, 1997. ACM Press.

[24] P. Verissimo and L. Rodrigues. Distributed Systems for
System Architects. Kluwer Academic Publishers, Norwell,
MA, USA, 2001.

[25] M. Yajnik, S. B. Moon, J. F. Kurose, and D. F. Towsley.
Measurement and modeling of the temporal dependence in
packet loss. In INFOCOM, pages 345–352, 1999.

31

http://www.bea.com/framework
http://www.gemstone.com/
http://www.ibm.com/software/
http://labs.jboss.com/portal/
http://www.rti.com/products/
http://www.tangosol.com/
http://www.tibco.com/

PLATO: Predictive Latency-Aware Total Ordering

Mahesh Balakrishnan, Ken Birman and Amar Phanishayee

{mahesh, ken, amar}@cs.cornell.edu

Department of Computer Science

Cornell University

Keywords: Datacenters, Distributed Systems, Group Communication, Multicast, Replication, Total Ordering.

32

Abstract

PLATO is a predictive total ordering protocol designed for low-latency multicast in datacenters. It predicts

out-of-order arrival of multicast packets by observing their inter-arrival times, and delays packets before passing

them up to the application only if it believes the packets to have arrived in the wrong order. We show through

experimentation on real datacenter-style networks that the inter-arrival time of consecutive packet pairs is an

excellent predictor of out-of-order delivery. We evaluate an implementation of PLATO on the Emulab testbed, and

show that it drives down delivery latencies by more than a factor of 2 compared to the fixed-sequencer protocol.

1 Introduction

Total ordering is a fundamental problem in distributed systems - in simple terms, it refers to the task of ensuring

that a set of nodes deliver incoming multicast messages in the same order. The total ordering problem is defined

within the context of thegroup communicationparadigm, where processes communicate with each other using

multicast groups providing different message delivery semantics.

Total ordering protocols occupy a critical slot in the communication stack of modern commercial datacenters,

allowing applications to distribute and replicate data and functionality with strong consistency guarantees. Made

popular by online e-commerce websites, datacenters are increasingly the computing platform of choice for a

wider range of applications, ranging from computational finance to mission-critical applications. Application

domains traditionally centered around expensive, specialized hardware and software - such as air-traffic control

or military command-and-control - have begun to migrate towards commodity datacenters, lured as much by the

cheap running costs and easy maintainability of COTS components as by the possibilities of the scale-out paradigm

- massive scalability and very high availability.

A growing class of datacenter applications is time-sensitive and requires low-latency delivery of multicast mes-

sages. In some cases, timeliness is directly related to real-world metrics - for instance, the inventory service of

33

an online bookseller has to reflect the latest item counts, to prevent losses caused by overselling. Other examples

involve calculators running in financial datacenters, which require up-to-date information on stock quotes, and

tracking applications on military datacenters dealing in location updates of targets. Such applications require the

ability to spread data consistently and rapidly throughout a datacenter - mandating the need for a fast, low-latency

total ordering protocol.

In this paper, we present PLATO, an optimistic total ordering protocol designed for time-critical datacenter

applications. The key idea behind PLATO is to delay incoming data packets from the application only if there is a

significant likelihood that they might be out of order - and to use a predictive scheme to determine that likelihood.

PLATO allows applications to consume most incoming data packets within a few hundred microseconds of arrival,

delaying packets to wait for ordering information only when it believes their arrival order to be inconsistent across

the multicast group. In line with other optimistic ordering protocols [6, 7, 8], PLATO requires the application to

haverollback capability, allowing delivered packets to be revoked when predictions are incorrect.

The predictor of out-of-order arrival used by PLATO is the inter-arrival time of consecutive packet pairs into

user-space. Packet inter-arrival time is a simple yet powerful predictor of disorder in a datacenter setting - im-

portantly, it is local information available at no extra cost or instrumentation at the receivers. To our knowledge,

PLATO is the first predictive total ordering protocol - while there is at least one protocol that masks delay dif-

ferences between receivers to achieve total order [8], we are not aware of any existing protocol that attempts to

speculate on disorder on a per-packet basis.

The contributions of this paper are:

• We experimentally assess the causes and extent of out-of-order delivery on two datacenter-style switched

networks - the Emulab testbed at Utah and a 252-node cluster at Cornell University.

• We propose the usage of inter-arrival times of consecutive packet pairs as a predictor of out-of-order delivery.

We motivate this predictor by experimentally observing a high correlation between low inter-arrival times

34

and out-of-order delivery.

• We design and implement PLATO, a predictive total-ordering protocol that uses the above predictor to

decide whether arriving packets are in order or not - and waits for extra ordering information only in the

latter case.

• PLATO is evaluated on the Emulab testbed, and performs significantly better than the existing fixed-sequencer

protocol, slashing delivery latency by more than a factor of 2 while incurring less than 1% rollbacks.

In Section 2, we articulate the requirements of a time-critical datacenter ordering protocol. In Section 3, we

assess the extent and causes of out-of-order delivery on datacenter-style networks, and show that the inter-arrival

time of packets can be an excellent predictor of disorder. Section 4 provides the design and implementation details

of PLATO, and Section 5 is the evaluation of the implementation.

2 The profile of a datacenter total ordering protocol

A time-critical total ordering protocol is likely to co-exist on nodes with other protocols, competing for band-

width and CPU cycles. A typical design for a datacenter application is shown in 1.(a), where several nodes host

a replicated service; they are queried by other nodes via TCP/IP or some other unicast protocol, and updated

using totally ordered multicast. For example, the replicated inventory service mentioned earlier would receive up-

dates from the service responsible for processing buy transactions and be queried by services requiring up-to-date

information on the availability of items.

The existence of other competing protocols and a time-critical, possibly CPU-intensive application running

on the node emphasizes the need for a light-weight, low-overhead ordering mechanism. Datacenter workloads

are likely to vary due to external factors - Christmas season for online stores and high-activity periods for stock

calculators come to mind - and the ordering protocol should be capable of working well at different data rates,

providing timely delivery at low and intermediate throughputs while being able to sustain bursts of high-throughput

35

E

D

C

B

A

Ke
rn

el
 B

uf
fe

r

Order of arrivals into
user-space

t

H

Loss Induced Disorder:
Kernel Buffer Overflows
F and G are dropped
App sees H after E !

A B C D E H

E

D

C

F G

G

F
Replicated Shopping Cart ServiceInventory Service

Replica 1

Inventory Service
Replica 2

Catalog Service
Replica 1

Catalog Service
Replica 2

Query

Query
Update 1

Receiver 1

Sender 1

Switch Switch
Receiver 2

Sender 2

Receives Sender 1's
message after Sender

2's message

Receives Sender 2's
message after Sender

1's message

Replicated Warehousing Service

Update 2

Updates to
Inventory Service

are Totally
Ordered (a): Total Order for updating services

(b): Swap-induced Disorder (c): Loss-induced Disorder

Figure 1.

traffic. A related goal is throughput and performance stability, typically achieved by inducing exclusively proactive

overheads and avoiding costly reactions to failures that further destabilize the system. Additionally, datacenters

and large clusters exhibit specific failure modes and performance trade-offs, and the ideal ordering protocol for

such settings should be able to exploit the natural properties of the underlying hardware - while retaining the ability

to work well on many different kinds of commodity hardware.

Of this wishlist of properties, we would like to underscore the importance of performance at low and rapidly

varying data rates. We have argued elsewhere that the natural use of multicast in a datacenter gives rise to large

numbers of groups with low individual data rates [1]. Imagine a replicated data store where fine-grained objects

are cloned and cached on different nodes with high-level objectives such as fault-tolerance and data locality; if

multicast is used to update objects, each node has to belong to as many groups as the number of objects it caches

or replicates, resulting in large numbers of groups that overlap in chaotic patterns. Another example involves

36

financial calculators that use publish-subscribe libraries to subscribe to the latest prices for different equities, and

hence belong to as many multicast groups as the equities they are interested in. The activity level within a single

group can vary dramatically, even if the overall system throughput stays constant - the popularity of a single

replicated object could experience sharp spikes, either independently or in correlation with other objects.

To summarize the properties mentioned thus far:

• The protocol should leverage the natural properties of the datacenter hardware,

• impose minimal and stable overheads,

• and crucially, work well at low per-group data rates that vary sharply over time and across groups.

3 Cluster Properties

It is a well-known fact that broadcasts on LANs arrive almost simultaneously at all receivers, and consequently

the arrival of packets in different orders at different receivers is a very rare event. Multiple protocols have leveraged

this property to provide optimistic delivery of broadcast messages to the application [6, 7]. In this paper, we extend

this observation to IP Multicast [2] within datacenters.

Datacenters are typically heterogenous agglomerations of smaller homogenous clusters, interconnected by high-

capacity switches. Intuitively, out-of-order delivery in switched networks occurs in two forms:swapsandpacket

loss. Swaps occur due to disparities in the distances between senders and receivers. Consider the simple case

of two senders and two receivers illustrated in Figure 1.(b), where one sender is very close to one receiver and

relatively far from the other one, and the other sender is placed close to the second receiver and far away from the

first one. Nearly simultaneous multicasts from the two senders will arrive at different orders at the two receivers.

Packet loss in a datacenter almost never occurs within the networking fabric; more commonly, it is the end-host

kernel that gets overwhelmed by the rate of incoming traffic and drops packets [1]. Figure 1.(c) illustrates how

kernel buffer overflows trigger out-of-order delivery - the receiver delivers the packets immediately before and

37

Cisco 6509

Cisco 6509Cisco 6509

Cisco 6509

Cisco 6513

1 Gb
8 Gb

4 Gb

4 Gb

100 Mb

100 Mb

100 Mb

600 Mhz

850 Mhz

850 Mhz 2 Ghz

Emulab3 test scenario:
3 switches of separation
One-way ping latency:

~110 microseconds

H
P

 P
ro

cu
rv

e
40

00
M

H
P

 P
rocurve

4000M

HP Procurve
6108

100 Mb 100 Mb
1 Gb 1 Gb

Cornell3 test scenario:
3 switches of separation
One-way ping latency:

~70 microseconds

Emulab2 test scenario:
2 switches of separation
One-way ping latency:

~100 microseconds

H
P

 P
ro

cu
rv

e
40

00
M

H
P

 P
rocurve

4000M

HP Procurve
6108

100 Mb 100 Mb
1 Gb 1 Gb

1.3 Ghz

1 Gb
Cornell5 test scenario:

2 switches of separation
One-way ping latency:

~60 microseconds

4 Gb

1.3 Ghz

HP Procurve
6108

1 Gb 1.3 Ghz

1.3 Ghz

3 GHz

850 Mhz

100 Mb

The Utah Emulab Testbed

The Cornell Testbed

Figure 2. Clusters

after the loss burst in consecutive order.

3.1 Experiments

We ran simple experiments on two datacenter-style switched networks to evaluate the extent of out-of-order

delivery of multicast messages. The first of these is the Emulab testbed at Utah [10], which is a heterogenous

collection of several smaller clusters connected by Cisco 6500 series switches; Figure 2 shows the topology of

the testbed (redrawn from information on www.emulab.net) - inter-node one-way ping latencies range from 100

to 300 microseconds, depending on the location of the nodes and how loaded the network is. The second network

38

http://www.emulab.net

is a homogenous rack-style cluster of 252 1.3 Ghz nodes at Cornell University, comprising of 14 racks of 18

blade-servers each, interconnected via a 3-level hierarchy with HP Procurve 4000M switches at the leaves and HP

Procurve 6108 switches in the interior - the network diameter is around 60-100 microseconds.

Our experiment involved placing a receiver and a sender each on two different parts of the network separated

by multiple switches, and multicasting data at different rates to measure the frequency of out-of-order deliveries.

We ran this experiment in four scenarios -Cornell3 andCornell5: the Cornell cluster, with the 1.3 Ghz sender-

receiver pairs separated by three switches and five switches, respectively,Emulab3: the Emulab testbed, where

one sender-receiver pair consists of 3 Ghz nodes and the other sender-receiver pair is made up of 2 Ghz nodes

three switches away, andEmulab2: the Emulab testbed, where one pair consists of 3 Ghz nodes and the other of

850 Mhz nodes two switches away. Figure 2 outlines the placement of these four scenarios.

Figure 3 shows the percentage of swaps and losses in these four scenarios, as we increase the multicast sending

rate in the group. We measure simple swaps by comparing receiver logs after the experiment and locating con-

secutive packets which are delivered in inverted orders at the two receivers. As expected, the higher the rate of

multicasts, the higher the probability of a swap occurring - for the Cornell cluster 5-switch scenario, the percentage

of consecutive packet pairs which are swaps rises from 1% at 800 packets per second to 4% at 4000 packets per

second. For the Emulab 3-switch scenario, the percentage of swaps rises from 0.7% at 800 packets a second to

around 3.2% at 4000 packets per second. In these graphs, we do not show the frequency of more complex swap

events, where a sequence of packets is swapped with another sequence - we observed a very small percentage

(< 0.0001%) of these on the Cornell cluster, and none of them on the Emulab testbed.

Figure 3 also shows that packet loss increases with receive throughput, albeit less smoothly - the Cornell 5-

switch scenario loses more packets at 2000 packets a second than at 2400 packets a second, and the Emulab 3-

switch scenario exhibits more loss at 3200 packets per second than at 3600 packets per second. Our hypothesis for

this uneven increase in packet loss is that the inter-arrival time of packets interacts with the OS thread scheduling

mechanisms in complex ways - at intermediate rates, the receive thread is occasionally context-switched out and

39

 0

 1

 2

 3

 4

 5

 6

 4
00

0

 3
60

0

 3
20

0

 2
80

0

 2
40

0

 2
00

0

 1
60

0

 1
20

0

 8
00

 4
00

lo
ss

es
 a

nd
 s

w
ap

s
%

receive throughput

Emulab3

swaps
total losses

 0

 1

 2

 3

 4

 5

 6

 4
00

0

 3
60

0

 3
20

0

 2
80

0

 2
40

0

 2
00

0

 1
60

0

 1
20

0

 8
00

 4
00

lo
ss

es
 a

nd
 s

w
ap

s
%

receive throughput

Emulab2

swaps
total losses

 0

 1

 2

 3

 4

 5

 6
 4

00
0

 3
60

0

 3
20

0

 2
80

0

 2
40

0

 2
00

0

 1
60

0

 1
20

0

 8
00

 4
00

lo
ss

es
 a

nd
 s

w
ap

s
%

receive throughput

Cornell5

swaps
total losses

 0

 1

 2

 3

 4

 5

 6

 4
00

0

 3
60

0

 3
20

0

 2
80

0

 2
40

0

 2
00

0

 1
60

0

 1
20

0

 8
00

 4
00

lo
ss

es
 a

nd
 s

w
ap

s
%

receive throughput

Cornell3

swaps
total losses

Figure 3. Disorder Characterization

loses packets while it’s not running, whereas at very high rates the receive thread is continuously dequeueing

packets off the socket and hence is rarely context-switched out.

With this experiment, we established that out-of-order delivery does occur in switched datacenter-style net-

works. Next, we explore the feasibility of using the inter-arrival time of consecutive packets into user-space as a

predictor of both swaps and packet loss. Since swaps occur when multicasts are nearly simultaneous, it is natural

to hypothesize that a swap would involve two packet arrivals that are very close to each other - in this case, we

expect the arrival times of packets into user-space to reflect the actual timing of the multicasts. Since packet loss

occurs when kernel buffers overflow, we’d expect to observe a sequence of very low user-space inter-arrival times

immediately prior to the loss burst, as the receive thread rapidly empties packets from the full kernel buffer. Recall

40

that we explained these scenarios in Figure 1.

To validate our hypotheses, we examined distributions of inter-arrival times for consecutive packet pairs. We

are interesting in two metrics of the distributions:

• The time representing the 95th percentile of inter-arrival times of swapped packet pairs, and

• the percentage of all consecutive packet pairs - swapped or not - whose inter-arrival times fall within this

limit.

Figure 4 shows this data in six settings: the top three graphs are for different throughputs, in theCornell3

scenario, and the bottom three are for a single throughput setting of 1200 packets per second, for theCornell5,

Emulab2andEmulab3scenarios. The top half of each graph shows the histogram for the inter-arrival time intervals

for swapped packet pairs, and the vertical line in each graph is the 95th percentile of these intervals. The bottom

half shows the inter-arrival time for all packet pairs, and as the vertical line continues down into this half, it

indicates the percentage of inter-arrival times of all packet pairs that lie within it. The two metrics mentioned are

stated on top of each distribution graph.

Why are we interested in knowing the percentage of all packet pairs that fall within the 95th percentile of

swapped pair inter-arrival times? In theCornell3 400 packet graph (top, left), 95% of all swaps and 14% of all

packets have inter-arrival times of less than 128 microseconds. Hence, if we use an inter-arrival threshold of

128 microseconds to detect swaps - by raising a ‘red flag’ (we will elaborate later on what exactly this entails)

whenever two packets arrive within that threshold time of each other - we would end up catching 95% of all swaps,

and suspect 14% of all packet pairs of being swaps.

Figure 5 shows how the two metrics mentioned above vary with throughput, for the four different scenarios;

this gives us a better understanding of how data rate affects the quality of prediction that can be obtained by

observing the inter-arrival times. In the graph, the 95th percentile of inter-arrival times of swaps stays almost

constant for all the scenarios - however, the percentage of all packet pairs that fall inside it goes up significantly

41

75

50

25

0

75

50

25

 0 200 400 600 800 1000

%
 o

f p
ac

ke
ts

 re
ce

iv
ed

inter-arrival time in microseconds

Cornell3, 400

128 micro-s (14% of all)

swaps
all

95th %ile swaps

75

50

25

0

75

50

25

 0 200 400 600 800 1000

%
 o

f p
ac

ke
ts

 re
ce

iv
ed

inter-arrival time in microseconds

Cornell3, 1200

130 micro-s (25% of all)

swaps
all

95th %ile swaps

75

50

25

0

75

50

25

 0 200 400 600 800 1000

%
 o

f p
ac

ke
ts

 re
ce

iv
ed

inter-arrival time in microseconds

Cornell3, 2000

131 micro-s (36% of all)

swaps
all

95th %ile swaps

75

50

25

0

75

50

25

 0 200 400 600 800 1000

%
 o

f p
ac

ke
ts

 re
ce

iv
ed

inter-arrival time in microseconds

Cornell5, 1200

125 micro-s (26% of all)

swaps
all

95th %ile swaps

75

50

25

0

75

50

25

 0 200 400 600 800 1000
%

 o
f p

ac
ke

ts
 re

ce
iv

ed

inter-arrival time in microseconds

Emulab2, 1200

173 micro-s (29% of all)

swaps
all

95th %ile swaps

75

50

25

0

75

50

25

 0 200 400 600 800 1000

%
 o

f p
ac

ke
ts

 re
ce

iv
ed

inter-arrival time in microseconds

Emulab3, 1200

134 micro-s (26% of all)

swaps
all

95th %ile swaps

Figure 4. Histograms of Packet Inter-arrival Times

 0

 50

 100

 150

 200

 250

 0

 5
00

 1
00

0

 1
50

0

 2
00

0

 2
50

0

 3
00

0

 3
50

0

 4
00

0

m
ic

ro
-s

ec
on

ds

throughput (# of 1k packets per second)

95th %ile of inter-arrival times for swapped packet pairs

(Cornell3)
(Cornell5)
(Emulab2)
(Emulab3)

 0

 20

 40

 60

 80

 100

 0

 5
00

 1
00

0

 1
50

0

 2
00

0

 2
50

0

 3
00

0

 3
50

0

 4
00

0

%

throughput (# of 1k packets per second)

% of all packet pairs corresponding to 95th %ile of swaps

(Cornell3)
(Cornell5)
(Emulab2)
(Emulab3)

Figure 5. Variation of Swap metrics with throughput

42

 0

 50

 100

 150

 200

 250
 1

50
0

 2
00

0

 2
50

0

 3
00

0

 3
50

0

 4
00

0

m
ic

ro
-s

ec
on

ds

throughput (# of 1k packets per second)

95th %ile of min inter-arrival time of 5 pairs before a loss burst

(Cornell3)
(Cornell5)
(Emulab2)
(Emulab3)

 0

 20

 40

 60

 80

 100

 1
50

0

 2
00

0

 2
50

0

 3
00

0

 3
50

0

 4
00

0

%

throughput (# of 1k packets per second)

% all packet pairs corresponding to 95th %ile

(Cornell3)
(Cornell5)
(Emulab2)
(Emulab3)

Figure 6. Variation of Loss metrics with throughput

as throughput rises. To continue using the metaphor of a ’red flag’, a fixed threshold would catch all swaps, irre-

spective of throughput; however, it would also suspect a much higher percentage of all packet pairs of being swaps.

Next, we perform a very similar analysis of losses. Here, we measure the minimum inter-arrival time of the

last five packet pairs immediately preceding a loss burst event. The rationale here is that the ’red flag’ in this case

gets raised when we observe a sequence of low inter-arrival times. Figure 6 shows this data; note that for certain

throughput-scenario pairings we did not observe enough loss to compute a percentile, and we have not plotted

these on the graph.

The data presented thus far leads us to formulate the following heuristic for detecting disorder, parameterized

by a threshold∆ - if the inter-arrival time between two packets at a receiver is less than∆, it is reasonably

probable that the packets have arrived in different order at other receivers; if the time is greater than∆, it is

highly improbable that the packets are delivered in different order at other receivers.

This heuristic fits swap-induced disorders precisely - and, in our particular implementation of it, also suffices to

catch loss-induced disorder; this will become clear once we describe our design.

43

4 The Design of a Predictive Ordering Protocol

To embed the heuristic presented above into a practical protocol, we need to examine the design space of total

ordering algorithms. Defago,et al. [3] provide an analytical comparison of total ordering protocols, dividing

them into five broad categories -fixed-sequencer, moving-sequencer, privilege-based, communication history, and

destinations agreement- and conclude that for the non-uniform version of total ordering (where the delivery

order at failed nodes does not matter), fixed-sequencer has the least latency and the second-highest throughput.

The paper states that the moving-sequencer algorithm has slightly higher throughput than fixed-sequencer, but is

more complicated to implement. Accordingly, we focus on the fixed-sequencer algorithm, both as a performance

benchmark to compare against and as a starting point for our own design.

In the fixed-sequencer algorithm, a single receiver - thesequencer- periodically multicastssequencing mes-

sages, establishing the correct order of delivery for the rest of the group. While most theoretical discussions of

fixed-sequencer present the algorithm as sending out a single sequencing message for every received data mes-

sage, in practice the sequencer can send out an ordered list of multiple received data messages in every sequencing

message, allowing it to tune the overhead imposed by sequencing. If the sequencer sends one sequencing message

for everyk received data messages, one out of everyk +1 messages in the group is pure sequencing overhead; we

call k thetrade-off parameter.

Armed with this basic understanding of the operation of the fixed-sequencer protocol, it becomes apparent

that in most cases, messages are delayed unnecessarily while the receiver waits for ordering information from

the sequencer. An ideal total ordering algorithm would delay only those packets which are received in different

orders at different receivers, and deliver all other messages immediately to the application. This observation

leads us towards a redesign of the fixed-sequencer protocol, where receivers wait for sequencing messages before

delivering packets to the application only if they suspect them of arriving in the wrong order. What is needed is a

decision mechanism that can be applied on a per-packet basis to selectively wait for sequencing information, and

44

this is precisely the heuristic described in the previous section.

For a predictive mechanism to be a viable option, the application should provide some form ofrollback ca-

pability to the protocol. We assume that the application provides the protocol with hooks that allow packets to

be revokedonce they are delivered, causing a rollback if the application has already consumed the packet. Since

application rollbacks are likely to be very expensive, we aim at having a very low percentage of them - typically,

one out of every thousand packets. Note that a packet revocation will only trigger an application rollback if the

application has already consumed the packet.

4.1 PLATO: Design and Implementation

The basic idea behind PLATO is extremely simple: If two consecutive packets arrive within∆ of each other,

they are suspected of arriving in incorrect order and further information is awaited from the sequencer node before

they are delivered to the application.

A trivial implementation of this idea would involve delaying packets for∆ time and delivering them to the

application if no other packet arrives within that time. However,∆ is likely to be in the tens or hundreds of

microseconds, making an efficient implementation of this algorithm difficult if not impossible on commodity

platforms - context switching granularity is typically in the milliseconds, and varies greatly over time and across

hardware.

As a result, PLATO does not delay packets before passing them up to the application - instead, it tags each

packet with a timestampTm before which it should not be used by the application, equal to∆ microseconds

after its arrival time. Instead of sleeping for∆ microseconds and then waking up and delivering the packet to

the application if no other packet arrives within that time-span, it just delivers the packet to the application and

resumes listening on the socket. If another packet arrives within∆ microseconds, we revoke the last packet

from the application instantly - since we are within the∆ envelope, we can be sure that the packet has not been

consumed by the application, and hence the revocation does not trigger a potentially expensive application-level

45

D

optdeliver(A)
optdeliver(E)
optdeliver(B)
optdeliver(D)

B E A

A

E

D

B

C

TC-TD<DELTA

TE-TA>DELTA

Seq Msg
Order: ABCD

D

B

revoke(D)
setsuspect(D)
setsuspect(C)

E A

C

E

revoke(E)
setsuspect(E)

confirm(A, B, C, D)

suspicious

suspicious

suspicious

pending

pending

pending

Underlined packets in
pending are suspected

t

s X YKernel Buffer

P
LA

TO

ev
en

t h
an

dl
er

B E A

D Cpending queue

suspicious queue

‘s’ is a sequencing packet
with the order ‘ABCD’

Application

optdeliver(DataPacket) revoke(PacketDescriptor) confirm(PacketDescriptor)

Application hooks

Figure 7. The PLATO Pipeline

rollback. An important metric for the protocol, then, is the frequency with which a revocation of a packet occurs

after the corresponding timeTm has passed.

PLATO has three hooks into the application -optdeliver, which takes a data packet as a parameter and is called

to optimistically deliver packets which may later be revoked;revoke, which takes a packet descriptor as a parameter

and is called to revoke packets previouslyoptdeliver-ed to the application, andconfirm, which is called with the

packet descriptor of a previouslyoptdeliver-ed packet when the final ordering of that packet is known.

As shown in Figure 7, PLATO processes packets through a simple pipeline consisting of two queues - apending

queue, which consists of packets being conservatively withheld from the application, and asuspiciousqueue,

which consists of packets already sent up to the application for which sequencing information has not yet arrived,

and which can consequently be revoked from the application. Packets in thependingqueue are markedsuspected

of being out-of-order and will not be delivered to application until sequencing information arrives for them; or,

they are notsuspectedbut are stuck in the queue behind one or moresuspectedpackets. If no out-of-order arrivals

occur, data packets travel through thependingqueue to thesuspiciousqueue, and then onto the application; if they

46

do occur, the arrival of sequencing information can cause packets to be transplanted from the middle of one queue

to the other, or to the application, violating queue FIFO order.

In addition, PLATO maintains asequencingqueue, which buffers sequencing information - this queue comes

into play only if we receive sequencing information for a data packet which we have not yet received, and hence

have to queue up all subsequent sequencing information until that data packet arrives and can be delivered to the

application.

We now describe PLATO in terms of two simple events - the arrival of a data packet, and the arrival of a

sequencing packet. When a data packet is received, PLATO tags it immediately with the arrival time. If ordering

information for the data packet has already arrived from the sequencer, the packet isoptdeliver-ed to the application

and immediatelyconfirm-ed, with no further processing. If not, the arrival time is compared with the previous data

packet’s arrival time, and the difference checked against∆.

If the difference is less than∆, the packet is tagged assuspected, and added to thependinglist. Now we need

to locate the previous data packet in the PLATO pipeline and prevent it from being used by the application. There

are three possibilities -

1. It is in thependingqueue and has not beenoptdeliver-ed to the application, in which case we can tag it as

suspected.

2. It is the last packet in thesuspiciousqueue and has beenoptdeliver-ed to the application, in which case

we revokeit from the application and move it from the tail of thesuspiciousqueue back to the head of the

pendingqueue. Note that it is necessarily the last packet in thesuspiciousqueue and cannot be in the middle,

since it was the last packet to be received.

3. It is in neither thesuspiciousnor thependingqueues, in which case it has already been sequenced and

confirm-ed to the application. Nothing more has to be done in this case.

If the difference is more than∆, the packet’s fate depends on the contents of thependingqueue. If thepending

47

queue is non-empty - i.e, there are packets ahead of the current packet which are taggedsuspectedand are awaiting

ordering information - then we need to add this packet to the end of thependingqueue. If thependingqueue is

empty, then we canoptdeliverthe packet and add it to the end of thesuspiciousqueue.

The second part of the protocol concerns its behavior when a sequencing packet is received. In its practical

implementation, a sequencing packet contains a list of data packet descriptors - sorted by the order of arrival at

the sequencer node. We iterate over this list of descriptors, and for each of them we locate the corresponding data

packet within the PLATO pipeline (if we can’t locate it in the pipeline, we buffer the descriptor - and all descriptors

following it in this and subsequent sequencing packets - in thesequencingqueue until we receive the data packet).

Once we locate the data packet, we perform one of the following actions:

1. If the packet is in thependingqueue, we remove it andoptdeliverandconfirm it to the application. We

also dequeue all the packets from thesuspiciousqueue,revokethem from the application, tag them as

suspectedand move them back to the head of thependingqueue; these are packets incorrectly delivered to

the application ahead of the currently sequenced packet.

2. If the packet is in thesuspiciousqueue, we remove it andconfirmit to the application. In this case, we have

to dequeue all packets ahead of it in thesuspiciousqueue,revokethem, tag them assuspectedand move

them back to the head of thependingqueue.

4.2 Implementation and other Details

PLATO is implemented as an event-driven system with two threads, one running at high priority dequeueing

packets off the socket and pushing them into the event queue, and the other servicing the queue and processing

events. The implementation is written in Java - for our experiments, we use Java’s System.nanoTime() method

for determining the current system time at microsecond precision; this may not be universally portable, but is

implemented on most modern platforms.

48

PLATO runs a link reliability layer that uses sender-based sequencing and negative acknowledgments to request

unicast retransmissions of lost packets. Node failure is orthogonal to the protocol as it is presented, and any scheme

that works to handle such faults in fixed-sequencer protocols should work equally well here. Also, while we have

presented PLATO as a modification of fixed-sequencer, we could equally well have modified a moving-sequencer

algorithm with similar results.

5 Performance Evaluation

To evaluate PLATO, we ran it in the Emulab 3-switch setting - recall that this involves a 3 Ghz sender-receiver

pair and a 2 Ghz sender-receiver pair on the Utah Emulab testbed, with three switches separating them. Our first

experiment was aimed at observing the impact of the∆ parameter on the performance of the protocol. Figure 8

plots delivery latency against the left y-axis as we run PLATO at increasing values of∆. The left sub-graph shows

performance at400 packets per second, and the right sub-graph at1600 packets per second, at two different values

of k - the trade-off parameter (from Section 4). The horizontal fixed lines in these graphs show the performance

of fixed-sequencer ordering for the sametrade-off parameter, and consequently for the same overhead. The bars

at the bottom of these graphs - plotted against the right y-axis - show the fraction of packets that are rolled back.

We see from these graphs that the higher the value of∆, the higher the delivery latency and lower the fraction of

rollbacks - also, PLATO always out-performs fixed-sequencer for the corresponding value ofk.

Next, we examine PLATO’s performance in the presence of changing throughput levels. In Figure 9, we start

out with 2 senders sending 200 packets/second each, and add 2 more senders 20 seconds into the experiment

sending at 750 packets/second each for a total of 10 seconds - hence, the data rate in the group jumps from 400

packets per second to 1900 packets per second between timet = 20 andt = 30. On the left y-axis of these graphs,

we plot 1-second moving averages every 10 milliseconds, of the delivery latencies achieved by PLATO and fixed-

sequencer. As we can see from the graphs, PLATO’s delivery latency remains constant throughout the experiment,

whereas fixed-sequencer’s delivery latency varies drastically with the data rate. The bars at the bottom of the

49

 0

 5000

 10000

 15000

 20000

 25000

 0 5
0

 1
00

 1
50

 2
00

 0

 0.1

 0.2

 0.3

 0.4

 0.5

de
liv

er
y

la
te

nc
y

(m
ic

ro
-s

ec
on

ds
)

fr
ac

tio
n

of
 ro

llb
ac

ks

DELTA (microseconds)

DELTA vs (delivery_latency and fraction of rollbacks); tput = 400

latency (k = 10)
rollbacks (k = 10)
fixed seq (k = 10)

latency (k = 20)
rollbacks (k = 20)
fixed seq (k = 20)

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0 5
0

 1
00

 1
50

 2
00

 0

 0.1

 0.2

 0.3

 0.4

 0.5

de
liv

er
y

la
te

nc
y

(m
ic

ro
-s

ec
on

ds
)

fr
ac

tio
n

of
 ro

llb
ac

ks

DELTA (microseconds)

DELTA vs (delivery_latency and fraction of rollbacks); tput = 1600

latency (k = 10)
rollbacks (k = 10)
fixed seq (k = 10)

latency (k = 20)
rollbacks (k = 20)
fixed seq (k = 20)

Figure 8. ∆ vs Delivery Latency: 400 packets/second (left) and 1600 packets/second (right)

 0

 5000

 10000

 15000

 20000

 25000

 30000

 10 15 20 25 30 35 40 45
 0

 0.01

 0.02

 0.03

 0.04

 0.05

D
el

iv
er

y
L

at
en

cy
 (M

ic
ro

se
co

nd
s)

Fr
ac

tio
n

of
 R

ol
lb

ac
ks

Time (seconds)

DELTA=140, k=10

Fixed-Sequencer
PLATO

Rollbacks

 0

 5000

 10000

 15000

 20000

 25000

 30000

 10 15 20 25 30 35 40 45
 0

 0.01

 0.02

 0.03

 0.04

 0.05

D
el

iv
er

y
L

at
en

cy
 (M

ic
ro

se
co

nd
s)

Fr
ac

tio
n

of
 R

ol
lb

ac
ks

Time (seconds)

DELTA=140, k=20

Fixed-Sequencer
PLATO

Rollbacks

Figure 9. Traffic spikes up from 200 packets/sec to 1900 packets/sec between 20 and 30 seconds.

graphs is a 1-second moving fraction of rollbacks, plotted against the right y-axis. Note that for a higher value of

k, delivery latencies are much higher for both protocols - since the latency to receiving ordering information from

the sequencer node is higher.

Figure 10 shows how delivery latency and rollback fraction are affected by the data throughput, for a particular

value of∆. As the throughput goes up, the latency to receiving a sequencing packet goes down for a particular

value of thetrade-off parameterk, and consequently delivery latency drops. There is no real trend for rollbacks

at this particular setting of∆ - all the values are within a tenth of a percent; however, for lower values of∆ we

observe the fraction of rollbacks going up with throughput.

50

 0

 5000

 10000

 15000

 20000

 25000
 0

 5
00

 1
00

0

 1
50

0

 2
00

0

 2
50

0

 3
00

0

 0

 0.002

 0.004

 0.006

 0.008

 0.01

de
liv

er
y

la
te

nc
y

(m
ic

ro
-s

ec
on

ds
)

fr
ac

tio
n

of
 ro

llb
ac

ks

throughput (# of 1k packets per second)

throughput vs (delivery_latency and fraction of rollbacks); DELTA = 160

latency (k = 10)
rollbacks (k = 10)

fixed seq latency (k = 10)
latency (k = 20)

rollbacks (k = 20)
fixed seq latency (k = 20)

Figure 10. Throughput vs Delivery Latency

-2000

 0

 2000

 4000

 6000

 8000

 10000

 10 15 20 25 30
 0

 0.02

 0.04

 0.06

 0.08

 0.1

M
ic

ro
se

co
nd

s

Fr
ac

tio
n

of
 R

ol
lb

ac
ks

Time (seconds)

DELTA=Adaptive, K=10

Delivery Latency
DELTA

Rollbacks

Figure 11. Setting ∆ Adaptively

In Figure 11, we replace the static∆ parameterization of PLATO by a simple adaptive scheme. We multiply the

current value of∆ by 1.5 when a rollback occurs and the current 1-second moving fraction of rollbacks is more

than0.01. Conversely, we multiply PLATO by.9 every 100 milliseconds or 1000 packets, whichever occurs first,

if the moving fraction of rollbacks is less than0.01. In Figure 11 we show that this simple mechanism gives good

performance - for comparison, this setting is similar to thek = 10 scenario in Figure 9, during the traffic spike.

6 Related Work

A plethora of total ordering protocols exists in literature - we would like to point the reader to [4], which offers

an excellent and thorough survey of this body of work, along with very useful categorizations. The particular

subclass of ordering protocols that our work is closest to are the optimistic algorithms [6, 7, 9].

Sousa, et al. propose a solution for WANs where receivers observe network distances and delay packets ap-

propriately to achieve a total ordering [8]. While this work is close in spirit to our own, it targets a completely

different networking environment and uses a technique that works very well in the wide-area but may not be quite

as useful in switched networks.

51

7 Conclusion

Low-latency data replication is a fundamental need for an emerging class of datacenter applications. PLATO

is a total-ordering protocol designed for such settings - it targets the traffic patterns commonly observed in these

applications and exploits the characteristics of the underlying hardware. We experimentally show that out-of-

order delivery occurs to a reasonable degree on switched datacenter-style networks, and that the inter-arrival time

of consecutive packet pairs is a powerful predictor of disorder.

8 Acknowledgments

We would like to thank Danny Dolev for his many valuable comments during the inception of this paper, Saikat

Guha for a key discussion of protocol implementation, Mike Hibler for his quick responses on the Emulab testbed

topology, and Art Munson and Einar Vollset for their feedback.

References

[1] M. Balakrishnan and K. Birman. Reliable multicast for time-critical systems. InTo Appear in Proceedings of the 1st
Workshop on Applied Software Reliability (WASR 2006), 2006.

[2] S. E. Deering and D. R. Cheriton. Multicast routing in datagram internetworks and extended lans.ACM Trans. Comput.
Syst., 8(2):85–110, 1990.

[3] X. Défago, A. Schiper, and P. Urbán. Comparative performance analysis of ordering strategies in atomic broadcast
algorithms.IEICE Trans. on Information and Systems, E86-D(12):2698–2709, December 2003.

[4] X. Défago, A. Schiper, and P. Urbán. Total order broadcast and multicast algorithms: Taxonomy and survey.ACM
Computing Surveys, 36(4):372–421, December 2004.

[5] R. Guerraoui, R. Levy, B. Pochon, and V. Quma. High throughput uniform total order broadcast protocol for cluster
environments. InDSN, June 2006.

[6] B. Kemme, G. Alonso, F. Pedone, and A. Schiper. Processing transactions over optimistic atomic broadcast protocols.
In 19th IEEE International Conference on Distributed Computing Systems (ICDCS’99), 1999.

[7] F. Pedone and A. Schiper. Optimistic atomic broadcast. InDISC, pages 318–332, 1998.

[8] A. Sousa, J. Pereira, F. Moura, and R. Oliveira. Optimistic total order in wide area networks. InSRDS ’02: Proceedings
of the 21st IEEE Symposium on Reliable Distributed Systems (SRDS’02), page 190, Washington, DC, USA, 2002. IEEE
Computer Society.

[9] P. Vicente and L. Rodrigues. An indulgent uniform total order algorithm with optimistic delivery. InSRDS, pages
92–101, 2002.

[10] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad, M. Newbold, M. Hibler, C. Barb, and A. Joglekar. An inte-
grated experimental environment for distributed systems and networks. InProc. of the Fifth Symposium on Operating
Systems Design and Implementation, pages 255–270, Boston, MA, Dec. 2002. USENIX Association.

52

Quicksilver Scalable Multicast (QSM)

Krzysztof Ostrowski
†
, Ken Birman

†
, and Danny Dolev

§

†
Cornell University and

§
The Hebrew University of Jerusalem

{krzys,ken}@cs.cornell.edu, dolev@cs.huji.ac.il

Abstract

QSM is a multicast engine designed to support a

style of distributed programming in which application

objects are replicated among clients and updated via

multicast. The model requires platforms that scale in

dimensions previously unexplored; in particular, to

large numbers of multicast groups. Prior systems we-

ren’t optimized for such scenarios and can’t take ad-

vantage of regular group overlap patterns, a key fea-

ture of our application domain. Furthermore, little is

known about performance and scalability of such sys-

tems in modern managed environments. We shed light

on these issues and offer architectural insights based

on our experience building QSM.

1. Introduction

Web applications are becoming increasingly dy-

namic: users expect live content powered by real time

data that can be modified, and demand a high-quality

multimedia experience. To a degree these are opposing

goals: peer-to-peer streaming systems are optimized to

move data one-way; interactive client-server systems

don’t scale as well. Reliable multicast is a useful third

option: instead of storing content on servers, we repli-

cate it across clients and multicast updates between

them in a peer-to-peer manner. Not every application

can be built this way, but the model is broadly applica-

ble; in particular, it is a good fit for interactive “ma-

shups” of the sort shown on Figure 1. Each application

object, such as a shared desktop or a text on the desk-

top, has its data replicated among all of its clients (the

processes displaying it), which form a multicast group.

In [22], we described a general programming

model based on this approach. Here, we focus on how

to implement such systems. The key element of the

platform is a multicast engine: most objects either have

replicated state, or are driven by a stream of updates.

Reliability is important, but weak guarantees are often

sufficient: one rarely needs atomic transactions or con-

sensus. Total ordering can be avoided: often updates

originate at one or a few sources, and portions of ob-

jects can be locked prior to updating via separate lock-

ing facilities. More importantly, one needs high stream-

ing bandwidth, low CPU footprint, and the ability to

support large numbers of users, and large numbers of

multicast instances. The last factor is important: each

object could be accessed by a different group of

clients, and so it needs its “own” separate instance of a

multicast protocol.

Multicast groups corresponding to different ob-

jects often overlap in regular ways. To see this, con-

sider airplane A, on a spatial desktop X of the sort

shown on Figure 1. When the user opens X, the user

can also see A. The group of X’s clients is thus a subset

of A’s clients. Overlap occurs also if objects related to

common topics are used by people with common inter-

est. Furthermore, in [28] we show that even if objects

are used at random, we can often partition them into a

small number of subsets such that groups in each set

overlap hierarchically. Regularities in group overlap

occur naturally in our application domain. As we shall

demonstrate, they could be leveraged to amortize over-

head across protocol instances.

In the work reported here, we focus on enterprise

computing environments: centers with thousands of

commodity PCs running Microsoft Windows and

communicating on a shared high-speed LAN. While

our broader vision can be applied in WAN scenarios,

the path to broad adoption of the paradigm leads

through successful use in corporate settings and on

campus networks, in context of applications such as

collaborative editing, interactive gaming, online

courses and videoconferencing, or distributed event

processing. Accordingly, we assume an environment

with system-wide support for IP multicast, in which

packet loss is relatively uncommon and bursty (mostly

triggered by overloaded recipients).

QSM is a system designed with precisely the ob-

jectives articulated above: it offers a simple, but useful

reliability guarantee despite bursty loss. It streams at

close to network speeds, at rates up to 9500 packets/s

in a cluster of 1.3GHz/512MB nodes on a 100Mbps

53

mailto:dolev@cs.huji.ac.il

LAN. It has a low CPU footprint: 50% CPU usage on

receivers at the highest data rates. Throughput falls by

5% as group size increases to 200 nodes and degrades

gracefully with loss. QSM exploits regularities in group

overlap, and amortizes protocol overheads across sets

of nodes with a similar group membership.

In summary, this paper makes the following con-

tributions:

 We propose a novel approach to scaling reliable

multicast with the number of groups by leveraging

regularity in the group overlap patterns to amortize

overhead across protocol instances.

 We discover a previously unnoticed connection

between memory usage and local scheduling poli-

cy in managed runtime environment (.NET), and

multicast performance in a large system.

 We describe several techniques, such as priority

I/O scheduling or pull protocol stack architecture,

developed based upon these observations, which

increase performance via reducing instabilities

causing broadcast storms, unnecessary recovery

and other disruptive phenomena.

2. Prior Work

Reliable multicast is a mature area [13] [16] [19]

[23] [24], but existing systems were not optimized for

our scenario. Most systems were designed for use with

one group at a time. Some don’t support multiple

groups at all, others run separate protocol instances per

group and incur overhead linear in the number of

groups. Popular toolkits such as JGroups [2] perform

best at small scale [3] and aren’t optimized for network

speeds. Systems that use IP multicast and run a proto-

col per group also suffer from state explosion: large

numbers of IP multicast addresses in use require hard-

ware to maintain a lot of state; this caused many data

centers to abandon IP multicast based products. Also,

the ability of NICs at client nodes to filter IP multicast

is limited. With 1000s of addresses in active use local

CPU is involved even on nodes that didn’t subscribe to

any of these addresses.

Systems like Isis and Spread can support lots of

groups [1] [12] [26], but these groups are an applica-

tion-level illusion; physically, there is just one group.

In Isis, it consists of the members of all application

groups. Spread uses a smaller set of servers to which

client systems connect: each application-level message

is sent to a server, multicast among servers and filtered

depending on whether a server has clients in the desti-

nation group or not, and finally, relayed by servers to

their clients. Support for large numbers of groups in

such systems comes at a high cost: unwanted traffic

and filtering in software, extra hops and higher latency,

and bottlenecks created by the servers.

Application-level multicast systems such as

OverCast, NARADA, NICE or SplitStream have been

proposed [4] [6] [8] [14] that do not use IP multicast.

These are very scalable, but messages follow circuitous

routes, incurring high latency. In enterprise LANs,

where IP multicast is available, such solutions simply

don’t fully utilize existing hardware support. Moreo-

ver, nodes are asked to forward messages that don’t

interest them at very high rates. This imposes addition-

al overheads.

SpiderCast [7] and the techniques proposed in [27]

have addressed the issue of scaling with the number of

groups, but only in the context of unreliable multicast.

Their overall approaches differ significantly from ours.

3. Protocol

QSM’s approach to scalability is based on the

concept of a region. A region is a set of nodes that are

members of the same multicast groups. The system is

partitioned into regions (Figure 2) by a global

airplane

object

space

object

building

object

map

object

text note

object

image

object

desktop

object

Figure 1. Example mashups enabled by our live objects platform and targeted by QSM. Each ob-

ject shown here is replicated among its clients and backed by a multicast protocol. Other exam-

ples and videos of the platform in use can be found at http://liveobjects.cs.cornell.edu.

54

http://liveobjects.cs.cornell.edu

membership service (GMS [15]). Nodes contact the

GMS to join groups, and it monitors their health. As

the system changes, the GMS maintains a sequence of

group and region views (sets of nodes that were

members of given groups and regions at given points in

time) and a mapping from one to the other (Figure 3).

Each group view in this mapping is mapped to all

region views that contain members of this group. The

relevant parts of it are distributed to nodes, and are

used to construct distributed structures, such as token

rings, in a consistent manner. The GMS also assigns an

individual IP address to each region. Multicasting to a

group is then done by transmitting the message to each

region the group spans over, using a single per-region

IP multicast (Figure 4).

This scheme is less bandwidth-efficient than mul-

ticasting to a per-group IP multicast address, but it

avoids the address explosion problem mentioned earli-

er: there are fewer regions than groups, and each node

only needs to subscribe to a single IP multicast address

at a time. The technique is most efficient when overlap

is regular enough, so that regions consist of at least a

few nodes, and each group maps to at most a few re-

gions. As mentioned earlier, by using a technique de-

scribed in [28], this can be achieved even in scenarios

with irregular overlap, by partitioning groups into sub-

sets. In a nutshell, we start by choosing the largest

group, and then look for another group that is either

contained in it, or overlaps with it in a way that doesn’t

produce small regions. We keep adding groups to the

set as long as maintaining regular overlap is possible,

and then simply start a new set of groups: pick the

largest, and proceed as before. In the end, this greedy

scheme yields a partitioning of groups such that in each

partition, groups overlap regularly. The GMS can then

simply run multiple instances of itself, each instance

maintaining a mapping of the sort described before.

Each node may now be a member of a few regions: at

most one region for each subset of groups.

Only practice can tell how well this scheme works

in real usage scenarios, but simulation results are prom-

ising. Figure 5 shows an experiment, in which a vary-

ing number of nodes (250 to 2000) subscribed to some

10% of a varying number of groups (1000 to 10000),

using Zipf popularity with parameter α=1.5. Several

studies suggest that this scenario is realistic [11] [17]

[25]. After partitioning, an average node belongs to

between 4 and 14 regions. Additionally, 95% of the

packets a node will receive is concentrated in only 2 of

these (Figure 6; here 2000 processes each join some

3

6

9

12

15

1 2 3 4 5 6 7 8 9 10

re
g

io
n

s
/

n
o

d
e

number of groups (thousands)

250 500 750 1000 2000

0

500

1000

1500

2000

1 4 7 10 13 16 19 22 25 28

n
o

d
e

s
th

a
t

a
re

 in

th
is

 m
a

n
y

 r
e

g
io

n
s

regions / node

all regions 95% most loaded regions

recover in Y

recover in X

X

Y

noderegion

inter-region

protocol

intra-region

protocol

Figure 5. A set of irregularly

overlapped groups is parti-

tioned into a small number of

regularly overlapped subsets.

Figure 6. Most of the traffic a

node sees is concentrated in

just 2 of the regions of over-

lap to which it was assigned.

Figure 7. Recovery is done in

a hierarchical manner, first

locally, and then globally, via

a hierarchy of token rings.

ABC

Group

“B”

A

AB

AC C

B

BC

Group

“A”
Group

“C”

Region

“BC”

(nodes that

are in both

B and C,

but not in A)

A

A1

RQP

Q1 Q2P1 R1

A2 B2B1

B
group group

view

region region view

node

Send

to A

A

B

C

A

AB

AC

ABC

B

C

BC

Apps

Group

Senders

Region

Senders

Send

to B

Figure 2. Groups overlap to

form regions. Nodes belong

to the same region if they

joined the same groups.

Figure 3. GMS keeps a map-

ping from groups to regions.

Nodes use it to reliably con-

struct distributed structures.

Figure 4. To multicast to a

group, QSM sends the mes-

sage to each of the regions

that the group spans over.

55

10% of a set of 10000 groups). In these experiments,

no group is ever fragmented into more than ~5 regions.

Regions generally contained 5-10 members, and the

most heavily loaded ones often reflected the intersec-

tion of ~10 or more groups. This result suggests that in

our design and analysis we can henceforth focus on just

a single subset of regularly overlapping groups.

Recovery in QSM is hierarchical; the basic idea is

to recover as locally as possible (Figure 7). To achieve

this, groups are subdivided into smaller and smaller

entities. First, a group is divided into regions it spans

across. Each region is then subdivided into partitions

of a fixed size. Each partition runs a local recovery

protocol to ensure that its members received the same

messages. Each region runs a higher-level protocol to

ensure that all of its partitions received the same mes-

sages. Finally, a protocol run at an inter-regional level

ensures that if the entire region lost a message, it is

recovered from the source.

At each level, recovery is performed by a token

ring (Figure 8, Figure 9). At the lowest level the ring is

run by nodes in a partition. The token is carrying ACKs

and NAKs, which neighbors on the ring compare, and

use to initiate push or pull recovery from each other.

The token is also used to calculate collective ACK and

NAK data, describing the status of the entire partition

(messages lost or received by all). The aggregate is

intercepted by a designated partition leader, which

participates in a higher-level ring. Again, neighbors

compare ACKs and NAKs collected from partitions

they represent, and use these to initiate recovery across

partitions and calculate aggregate ACKs/NAKs for the

entire region. These are collected by the region leader.

In QSM, this recursive scheme is only 3 levels

deep, but it could be generalized [20] [21]. The over-

head is extremely low: in our experiments, tokens cir-

culate only 1 to 5 times/s. This is a key factor enabling

high performance. Despite the low overhead, recovery

in QSM is efficient, in part thanks to QSM’s coopera-

tive caching similar to [5], and massively parallel re-

covery. In each region only one partition, selected in a

round-robin fashion, keeps a copy of each message.

When a long burst of messages is lost by a node, often

every partition is involved in recovery, and since nodes

to recover from are picked at random among those in a

partition, often the entire region is helping to repair the

loss. The efficiency of this technique is especially high

in very large regions.

The key to QSM’s scalability edge is the observa-

tion that, since nodes in the region are all members of

the same groups, they receive exactly the same mes-

sages. Thanks to this, QSM can run a single token ring

in each region and partition, and use it to perform re-

covery simultaneously for all groups.

The benefits are two-fold. First, each node in a re-

gion has at most four neighbors, and receives a fixed

small number of control packets/s. This is in contrast to

systems that run a separate protocol per group, where

nodes may have unbounded in-degrees and experience

arbitrary rates of control traffic. Furthermore, recovery

overhead in each region depends only on the number of

currently active senders, not on the number of groups

or the total number of senders in the system. This is

because when sending to a region, senders can index

messages on a per-region basis, across groups.

The token carries a separate recovery record on a

per-sender basis. When a sender ceases to actively mul-

ticast, in 2-3 token rounds QSM removes its record

from the token, to reintroduce it again next time a mes-

sage from this sender is seen in the region.

4. Architecture

We implemented QSM as a .NET library (mostly

in C#). In the course of doing so, we found landmark

features of managed environments, such as garbage

collection and multithreading, to have surprisingly

strong performance implications.

region

leader
partition

leader

intra-partition token

inter-partition

token

partition partition

sender
region

data

ACK

NAKs
intra-partition

push and pull

inter-partition

push and pull

application

thread

OS

kernel

socket

core

thread

alarm

queue

request

queue

I/O

queue

QSM

Figure 8. Token rings at the

higher levels in the hierarchy

are run by designated parti-

tion and regions leaders.

Figure 9. Per-partition rings

enable recovery within parti-

tions. Regional rings enable

recovery across partitions.

Figure 10. A single thread in

QSM processes I/O, timer and

application events based on

its internal scheduling policy.

56

QSM is single-threaded and event-driven: a dedi-

cated core thread processes events from three queues.

An I/O queue, based on a Windows I/O completion

port, collects asynchronous I/O completion notifica-

tions for all network sockets or files used by QSM. An

internal alarm queue based on a splay tree stores timer

events. Finally, a lock-free request queue implemented

on CAS-style operations allows the core thread to inte-

ract with other threads (Figure 10). The core thread

polls its queues in a round-robin fashion and processes

events of the same type in batches (Figure 11), up to

the limit determined by its quantum (50ms for I/O, 5ms

for timer events; no limit for application requests), ex-

cept that if an incoming packet is found on a socket,

the socket is drained of I/O to reduce the risk of packet

loss. For I/O events, QSM further prioritizes their

processing, in a manner reminiscent of interrupt han-

dling. First, events are read off the I/O queue, and scat-

tered across 6 priority queues. Then, they are handled

in priority order. Inbound I/O is prioritized over out-

bound I/O to reduce packet loss and avoid contention.

Control or recovery packets are prioritized over regular

multicast, to reduce delays in reacting to packet loss

(Figure 12). The pros and cons of using threads in

event-oriented systems are hotly debated. In our case,

multithreading was not only a source of overhead due

to context switches, but more importantly, a cause of

instabilities, oscillatory behaviors, and priority inver-

sions due to the random processing order. Eliminating

threads and introducing custom scheduling let us take

control of this order, which greatly improved perfor-

mance. In Section 5 we will see that the latency of con-

trol traffic is the key to minimizing memory overheads,

and as a result, it has a serious impact on the overall

system performance.

Control latencies and memory overheads motivate

another design feature: a pull protocol stack architec-

ture (Figure 13). QSM avoids buffering data, control,

or recovery messages, and delays their creation until

the moment they’re about to be transmitted. The proto-

col stack is organized into a set of trees rooted at indi-

vidual sockets, and consisting of feeds that can produce

data and sinks that can accept it. Feeds register with

sinks. Sinks pull data from registered feeds according

to their local rate, concurrency, windows size, or other

control policy. Using this scheme yields two advantag-

es. First, bulky data doesn’t linger in memory and

stress a garbage collector. Second, information created

just in time for transmission is fresher. ACKs and

NAKs become stale rather quickly: if sent after a delay,

they often trigger unnecessary recovery or fail to report

that data was received. Likewise, recovery packets

created upon the receipt of a NAK and stored in buf-

fers are often redundant after a short period: mean-

while, the data may be recovered via other channels.

Postponing their creation prevents QSM from doing

useless work.

5. Evaluation

In our evaluation of QSM, we focus on scalability

and on the interactions of the protocol with the runtime

environment that have driven our architectural deci-

sions. The experiments we report reveal a pattern: in

each scenario, performance is limited by overheads

related to memory management in .NET, which grow

linearly with the amount of memory in use, causing the

.NET CLR to steal CPU cycles from QSM. Managing

the use of memory within QSM turned out to be the

key to achieving stable, high performance.

In Section 5.1 and Section 5.2 we show that memory

overhead at senders and receivers is linked to latency,

and that latency is affected by the overhead it causes.

In Sections 5.3 and Section 5.4, we show that this is

also true also if the system is perturbed or if it is not

saturated. In Section 5.5 we show how the number of

groups can cause such effects.

Our results are abbreviated for lack of space (de-

tails can be found in our technical report). All results

were obtained on a 200-node Pentium III 1.3 GHz, 512

pre-process

I/O events

handle

I/O events

according

to priorities

process

scheduled

timer events

process

requests

incoming

control

outgoing

control

incoming

data

outgoing

data
disk I/O

other

handling I/O

events

according to

priorities

app

sock

f/s
app

f/s
app

f/s

elements of the protocol stack

act as feeds and sinks

at the same time

network sockets act

as sinks, and control

the way data is pulled

applications

act as feeds
Figure 11. QSM uses custom

time-sharing scheme, with a

quantum per event type. I/O

is handled like interrupts.

Figure 12. QSM prioritizes I/O

events: control packets and

inbound I/O are handled

ahead of everything else.

Figure 13. Elements of QSM

protocol stack form trees

rooted at sockets. Sockets

pull data from “their” trees.

57

MB cluster, on a 100 Mbps LAN, running Windows

Server 2003, .NET 2.0. Our benchmark is an ordinary

.NET executable, using QSM as a library. We send

1000-byte arrays without pre-allocating them, with no

batching, at the maximum rate. Our 95% confidence

intervals were not always large enough to be visible.

5.1 Memory Overheads on the Sender

Figure 14 shows throughput in messages/s as a

function of the number of receivers (all in a single

group). Why does performance decrease with the num-

ber of receivers? Figure 15 shows that receivers are not

CPU-bound, but the sender is. Profiling reveals that the

CLR at the sender is taking over the CPU; specifically,

memory allocation and garbage collection costs are

growing by as much as 10-15% (Figure 16). Inspecting

the managed heap shows that memory is used mostly

by the multicast messages pending ACK on the sender:

these have to be buffered for the purpose of loss recov-

ery. Memory usage is actually 3 times larger than what

the number of pending messages would suggest: at

these high data rates, the CLR can’t garbage collect

fast enough, hence old data is still lagging in memory.

Acknowledgement latency is caused by the increase in

the time to circulate a token around the region for the

purpose of state aggregation (token “roundtrip time”).

Hence, our throughput degradation is ultimately caused

by the latency to collect control information by the

protocol. Just a 500ms increase in token RTT resulted

in 10MB extra memory usage, inflated overhead by 10-

15%, and degraded throughput by 5%. The need to

reduce this latency to ensure a smooth token flow was

among the key reasons for the architectural decisions

outlined in the preceding section. Using a deeper hie-

rarchy of token rings would also help to alleviate this

problem (and indeed, this idea led us to the design pro-

posed in [20]). On the other hand, simply increasing

the token rates helps only up to a point (Figure 17), and

causing tokens to carry larger amounts of feedback per

round by making this amount proportional to the region

size increases processing complexity, and despite

memory saving, it is counterproductive (Figure 18).

5.2 Memory Overheads on the Receiver

The growth in cached data at the receivers repeats

the pattern of performance linked to memory. The in-

crease in the amount of such data slows us down, de-

spite the fact that receiver CPUs are half-idle (Figure

15). How can memory overhead affect a half-idle

node? Figure 19 shows results of an experiment where

we varied replication factor, the number of receivers

caching a copy of each message, causing a linear in-

crease of memory usage. We see a super-linear in-

crease of the token roundtrip time and a slow increase

of the number of messages pending ACK on the send-

er, causing a sharp decrease in throughput (Figure 20).

The underlying mechanism is as follows. The increased

garbage collector activity and allocation overheads

slow nodes down, and processing of the incoming

packets and tokens takes more time. Although this is

not significant on just a single node, it accumulates,

since a token must visit all nodes to aggregate state.

Increasing the number of caching replicas from 5 to all

200 nodes in the region, increases token RTT 3-fold!

5.3 Overheads in a Perturbed System

Another question to ask is whether our results

would be different if the system experienced high loss

rates or was otherwise perturbed. To find out, we per-

formed two experiments. In the “sleep” scenario, one

of the receivers experiences a periodic, programmed

perturbation: every 5s, QSM instance on the receiver

suspends all activity for 0.5s. This simulates the effect

of an OS overloaded by disruptive applications. In the

“loss” scenario, every 1s the node drops all incoming

packets for 10ms, thus simulating 1% bursty packet

loss. In practice, the resulting loss rate is up to 2-5%,

7500

8000

8500

9000

9500

10000

0 50 100 150 200

m
e

ss
ag

e
s

/
s

number of nodes
1 sender 2 senders

0

20

40

60

80

100

0 2500 5000 7500 10000

%
 C

P
U

 u
se

d

messages /s
sender receiver

28

31

34

37

0 50 100 150 200

%
 t

im
e

 (
in

cl
u

si
v

e
)

number of nodes
allocation garbage collection

Figure 14. Max throughput in

messages/s as a function of

the number of receivers with

1 group and 1KB messages.

Figure 15. % CPU utilized as

a function of multicast rate

(single group, 100 receivers).

Figure 16. % of time spent on

memory-related tasks on the

sender: allocation and gar-

bage collection in CLR code.

58

because recovery traffic interferes with regular multi-

cast, causing further losses. In both scenarios, CPU

usage at the receivers is in the 50-60% range and

doesn’t grow with system size, but the throughput de-

creases (Figure 21). In neither case does this decrease

in throughput seem to be correlated to the loss rate. It

does, however, correlate perfectly to the token RTT

and memory utilization on the sender (Figure 22, Fig-

ure 23), repeating again the by now familiar pattern.

A closer look at this experiment reveals that while

the increased ACK latency and resulting memory usage

can be explained by the extra token rounds needed to

perform recovery, the 2-fold overall increase in token

RTT in these scenarios, as compared to undisturbed

experiments, can’t be as easily explained. The problem

can be traced to a priority inversion. Because of re-

peated losses, the system maintains a high volume of

forwarding traffic. Forwarded data tends to get ahead

of tokens both on a sending and on a receiving path. As

a result, tokens are slowed down.

5.4 Overheads in a Lightly-Loaded System

We’ve just discussed a perturbed system, now

what if it’s lightly loaded? We’ll see that load has a

super-linear impact on overheads. As we increase the

multicast rate, the linear growth of traffic, combined

with our fixed rate of state aggregation, linearly in-

creases the amount of unacknowledged data and mem-

ory usage on the sender (Figure 24). This triggers high-

er overheads. For example, the time spent in the GC

grows from 50% to 60%. Combined with the linearly

growing demand for CPU due to the increasing volume

of traffic, these effects together cause the super-linear

growth of CPU overhead on the sender (Figure 15).

The overhead skyrockets at the highest rates because

the increasing amount of I/O slows down processing of

control messages; much as in Section 5.2. We can con-

firm this by looking at the end-to-end latency (Figure

25), or at the delay in firing timer events (Figure 26),

which at the highest rates get starved by the I/O.

5.5 Per-Group Memory Consumption

In this set of experiments, we explore scalability in

the number of groups. One sender multicasts to a vary-

ing number of groups, in a round-robin fashion. Each

receiver joins the same groups; the system contains just

one region. QSM’s regional recovery protocol is obli-

vious to the groups, but the system maintains a number

of per-group data structures, which affects the memory

footprint (Figure 27). Memory being involved, we ex-

pect the familiar pattern, where an increased memory

usage triggers GC and decreases the throughput, and

7500

7600

7700

7800

7900

5000

10000

15000

20000

25000

0 1 2 3 4 5

m
e

ss
ag

e
s

/
s

m
e

ss
ag

e
s

number of nodes
pending ack throughput

7600
7700
7800
7900
8000
8100
8200

0 50 100 150 200

m
e

ss
ag

e
s

/s

number of nodes
regular O(n) feedback

0.3

0.9

1.5

2.1

2.7

0

60

120

180

0 10 20 30 40 50 60 70

to
ke

n
 r

tt
 (s

)

m
e

m
o

ry
 u

se
d

 (M
B

)

replication factor
receiver memory use token rtt

Figure 17. Throughput and

the # of messages pending

ACK as a function of token

circulation rates.

Figure 18. With O(n) feedback

performance is worse due to

higher overhead, despite the

savings on memory usage.

Figure 19. Results of varying

the number of caching repli-

cas per message in a 192-

node region.

0

20000

40000

60000

6700

7000

7300

7600

7900

5 20 35 50 65

p
e

n
d

in
g

ac
k

m
e

ss
ag

e
s

/s

replication factor
throughput pending ack

5500

6500

7500

8500

0 50 100 150 200

m
e

ss
ag

e
s

/
s

number of nodes
sleep loss

0

1

2

3

4

0 50 100 150 200

ti
m

e
 (

s)

number of nodes
token rtt time to repair

Figure 20. As a # of caching

replicas increases, through-

put decreases despite CPUs

on receivers being 50% idle.

Figure 21. Throughput in the

experiments with a perturbed

node (1 sender, 1 group).

Figure 22. Token roundtrip

time and the time to recover

in the "sleep" scenario.

59

this is indeed the case (Figure 28). The effect becomes

even clearer if we turn on extra tracing in per-group

protocol stack components. This tracing is lightweight

and has no effect on CPU, but increases memory usage,

which burdens the GC. As expected, now throughput

degrades even more (Figure 28, “profiling on”).

A closer look at this scenario provides an even

deeper insight. Note how at 6000 groups throughput

degrades sharply (Figure 28) due to the increased token

RTT and control latency (Figure 29). The growth of

overhead suddenly becomes super-linear, and event at

4000 groups we are actually starting to see spikes of

occasional packet loss, clear signs of slight instability.

Detailed analysis again points to sender overhead as

the culprit. Most delays come from 40% of tokens

(Figure 30), since it is caused by disruption in their

flow, not system-wide increase of overhead. This dis-

ruption is caused by the sender, which is busy and de-

lays about 10% of the tokens (Figure 31), causing irre-

gularities in their flow. The magnitude of this delay

increases with the number of groups.

6. Discussion

Our experiments clearly show that memory is a

performance-limiting factor in QSM, and that its cost is

tried to latency by a positive feedback loop. Our results

aren’t specific to QSM and .NET; while managed envi-

ronments do have overheads, we believe the phenome-

na we’re observing are universal. Application with

large amounts of buffered data may incur high context

switching and paging delays, and even minor tasks get

costly as data structures get large. Memory-related

overheads can be amplified in distributed protocols,

manifesting as high latency when nodes interact. Tradi-

tional protocol suites buffer messages aggressively, so

existing multicast systems certainly exhibit such prob-

lems no matter what language they’re coded in or what

platform they use. The mechanisms QSM uses to re-

duce memory use, such as event prioritization, pull

protocol stack or cooperative caching, should therefore

be broadly useful. Below, we list our design insights.

1. Exploit structural regularity. We’ve recognized

that even in irregular overlap scenarios one can re-

structure the problem to arrange for regularities,

which can then be exploited by the protocol. This

justified focus on optimizing performance in the

scenario with a single heavily loaded set of regu-

larly overlapping groups.

2. Minimize memory footprint. This applies espe-

cially to messages cached for recovery purposes.

a. Pull data. Most protocols accept data when-

ever the application or a protocol layer pro-

0

1

2

3

4

5

0

10

20

30

40

50

1000 4500 8000

re
ce

iv
e

r
d

e
la

y
 (

m
s)

se
n

d
e

r
d

e
la

y
 (

m
s)

sending rate
sender receiver

15

35

55

75

95

40

85

130

175

220

0 2000 4000 6000 8000

re
ce

iv
e

r
m

e
m

o
ry

 (
M

B
)

se
n

d
e

r
m

e
m

o
ry

 (
M

B
)

number of topics
sender receiver

6500

7000

7500

8000

0 2000 4000 6000 8000

m
e

ss
a

g
e

s
/

s

number of topics
normal "heavyweight" (profiling on)

Figure 26. Delays in firing of

timer events as a function of

the sending rate, demonstrat-

ing “starvation through I/O”.

Figure 27. Memory use grows

with the # of groups. Beyond

a threshold, the system be-

comes increasingly unstable.

Figure 28. Throughput de-

creases with the # of groups

(1 sender, 110 receivers, all

groups perfectly overlap).

0

1.5

3

4.5

6

0 50 100 150 200

ti
m

e
 (

s)

number of nodes
token rtt time to repair

0

10

20

30

40

50

1000 4500 8000m
e

m
o

ry
 in

 u
se

 (
M

B
)

sending rate
sender receiver

0

10

20

30

40

50

1000 4000 7000 10000

la
te

n
cy

 (
m

s)

sending rate
1000-byte 16-byte

Figure 23. Token roundtrip

time and the time to recover

in the "loss" scenario.

Figure 24. Linearly growing

memory use on a sender and

flat usage on receivers as a

function of the sending rate.

Figure 25. Latency measured

from sending to receiving for

varying sending rate and with

various message sizes.

60

duces it. In contrast, by using an upcall driven

“pull” architecture, QSM can delay generating

messages until the very last moment and thus

prevents data from piling up in the buffers.

b. Limit buffering and caching. Most protocols

buffer and cache data rather casually for re-

covery purposes. QSM avoids buffering and

uses distributed, cooperative caching. Para-

doxically, by reducing memory overheads, the

reduction in cached data allows for a much

higher performance.

c. Clear messages out of the system quickly.

Data paths should have rapid data movement

as a key goal, to limit the amount of time

packets spend in the send or receive buffers.

d. Message flow isn’t the whole story. Most pro-

tocols are optimized for steady low-latency

data flow. To minimize memory usage, QSM

sometimes tolerates an increased end-to-end

latency for data, so as to allow for a faster

flow of the control traffic; this allows faster

cleanup and recovery.

3. Minimize delays. Most situations in which we

observed convoys and oscillatory throughputs can

be traced to design decisions that permitted sche-

duling jitter or some form of priority inversion, de-

laying crucial messages behind less important

ones. Implications included the following.

a. Event handlers should be short, predictable

and terminating. Using the event-driven

model consistently allowed us to eliminate the

need for locking or preemption; we obtained a

more predictable system, and got rid of mul-

tithreading, with its associated context switch-

ing overheads.

b. Drain input queues. From a memory footprint

perspective, one might prefer not to pull in a

message until QSM can process it. In data

centers and clusters, though, most losses occur

in the OS, not in the network, and loss rates

soar if packets are left in the system buffers

for too long.

c. Control the event processing order. In QSM,

this involved single-threading, batched asyn-

chronous I/O, and internal event prioritization.

Small delays add up in large systems: tight

control over event processing largely elimi-

nated convoy effects and the oscillatory

throughput problems.

d. Act upon fresh state. Our pull architecture has

the added benefit of letting us delay the prepa-

ration of status packets until they are about to

be transmitted, thus minimizing the risk that

nodes act on stale information and trigger re-

transmissions that aren’t longer needed, or

other overheads.

4. Handle disruptions gracefully. Broadcast storms

are triggered when recovery itself becomes disrup-

tive, causing convoy effects or triggering bursts of

even more loss. In addition to the above, QSM

employs the following techniques to keep balance.

a. Limit resources used for recovery. QSM lim-

its the maximum rate of the recovery traffic

and delays the creation of recovery packets to

prevent such traffic from overwhelming the

system.

b. Act proactively on reconfiguration. Reconfi-

guration after joins or failures can destabilize

the system: changes reach different nodes at

different times and structures such as trees and

rings can take time to form. To address this,

senders in QSM briefly suspend multicast on

reconfiguration and receivers buffer unknown

packets for a while in case a join is underway.

c. Balance recovery overhead. In some proto-

cols, bursty loss triggers a form of thrashing.

QSM delays recovery until a message is stable

on its caching replicas; then it coordinates a

0

0.2

0.4

0.6

0.8

1

0

10000

20000

30000

40000

0 4000 8000

to
ke

n
 r

tt
 (s

)

p
e

n
d

in
g

 a
ck

number of topics
pending ack token rtt

20%

40%

60%

80%

100%

0.4 0.9 1.4 1.9 2.4

%
 s

m
a

ll
e

r
th

a
n

 t
h

is

token roundtrip time (s)

4096 topics 7168 topics

70%

80%

90%

100%

1 1.5 2

%
 s

m
a

ll
e

r
th

a
n

 t
h

is

time between tokens (s)

4096 topics 7168 topics
Figure 29. # messages pend-

ing ACK and a token RTT as

a function of the # of perfect-

ly overlapping groups.

Figure 30. Cumulative distri-

bution of the token RTT with

4096 and 7168 groups.

Figure 31. Cumulative distri-

bution of the intervals be-

tween the subsequent tokens

with 4096 and 7192 groups.

61

parallel recovery in which separate point-to-

point retransmissions can be sent concurrently

by tens of nodes.

7. Conclusions

The premise of our work is that new options are

needed for performing multicast in modern platforms,

specifically in support of a new drag-and-drop style of

distributed programming inspired by web mash-ups,

and for use in enterprise desktop computing environ-

ments, or in datacenters where multi-component appli-

cations may be heavily replicated. Using multicast in

such settings requires a new flavor of scalability - to

large numbers of multicast groups - largely ignored in

previous work. QSM achieves this by exploiting regu-

larities and commonality of interest.

Our performance evaluations led to a recognition

that memory can be surprisingly costly. The techniques

that QSM uses to reduce such costs and maintain high

stable throughput despite perturbations should be use-

ful even in systems that do not run in managed runtime

environments.

8. Acknowledgements

Our work was funded by AFRL/IF, with additional

funds from AFOSR, NSF, I3P, and Intel. We want to

thank Jong Hoon Ahnn, Mahesh Balakrishnan, Lars

Brenna, Lakshmi Ganesh, Maya Haridasan, Chi Ho,

Ingrid Jansch-Porto, Tudor Marian, Amar Phanishayee,

Stefan Pleisch, Robbert van Renesse, Yee Jiun Song,

Einar Vollset, and Hakim Weatherspoon for feedback.

9. References

[1] Y. Amir, C. Danilov, M. Miskin-Amir, J. Schultz, and J.

Stanton. The Spread toolkit: Architecture and Perfor-

mance. 2004.

[2] B. Ban. Design and Implementation of a Reliable Group

Communication Toolkit for Java. 1998.

[3] B. Ban. Performance Tests JGroups 2.5.

http:// jgroups.org/javagroupsnew/perfnew/Report.html

[4] S. Banerjee, B. Bhattacharjee, and C. Kommareddy.

Scalable Application Layer Multicast. SIGCOMM’02.

[5] K. Birman, M. Hayden, O. Ozkasap, Z. Xiao, M. Budiu,

and Y. Minsky. Bimodal Multicast. TOCS 17(2), 1999.

[6] M. Castro, P. Druschel, A-M. Kermarrec, A. Nandi, A.

Rowstron, and A. Singh. SplitStream: High-Bandwidth

Multicast in a Cooperative Environment. SOSP’03.

[7] G. Chockler, E. Melamed, Y. Tock, and R. Vitenberg.

SpiderCast: a Scalable Interest-Aware Overlay for Top-

ic-Based Pub/Sub Communication. ACM DEBS 2007.

[8] Y. Chu, S. G. Rao, S. Seshan, and H. Zhang. A Case for

End System Multicast. IEEE JSAC 20(8), 2002.

[9] E. Decker. http://researchweb.watson.ibm.com/compsci/

project_spotlight/distributed/dsc/.

[10] D Dolev, and D Malki. The Transis Approach to High

Availability Cluster Communication. CACM 39(4),

1996.

[11] X. Gabaix, P. Gopikrishnan, V. Plerou, H. E. Stanley. A

Theory of Power-Law Distributions in Financial Market

Fluctuations. Nature 423, p. 267-270, 2003.

[12] B. Glade, K. Birman, R. Cooper, and R. van Renesse.

Light-Weight Process Groups in the ISIS System. Dis-

tributed Systems Engineering. Mar 1994. 1:29-36.

[13] M. Handley, S. Floyd, B. Whetten, R. Kermode, L.

Vicisano, and M. Luby. The Reliable Multicast Design

Space for Bulk Data Transfer, RFC 2887, August 2000.

[14] J. Jannotti, D. K. Gifford, K. L. Johnson, M. F. Kaa-

shoek, and J. W. O’Toole. Overcast: Reliable Multicast-

ing with an Overlay Network. OSDI’00.

[15] I. Keidar, J. Sussman, K. Marzullo, and D. Dolev.

Moshe: A Group Membership Service for WANs. ACM

TOCS 20(3), p. 191-238, August 2002.

[16] B. N. Levine, and J. J. Garcia-Luna-Aceves. A Compar-

ison of Reliable Multicast Protocols. Multimedia Sys-

tems 6: 334-348, 1998.

[17] H. Liu, V. Ramasubramanian, and E.G. Sirer. Client

Behavior and Feed Characteristics of RSS, A Publish-

Subscribe System for Web Micronews. IMC 2005.

[18] S. Maffeis, and D. Schmidt. Constructing Reliable Dis-

tributed Communication Systems with CORBA. IEEE

Communication Magazine, Vol. 14, No. 2, Feb. 1997.

[19] L. E. Moser, P. M. Melliar-Smith, D. A. Agarwal, R. K.

Budhia, C. A. Lingley-Papadopoulos, and T. P. Arc-

hambault. The Totem System. FTCS 25 (1995).

[20] K. Ostrowski, K. Birman, and D. Dolev. Extensible

Architecture for High-Performance, Scalable, Reliable

Publish-Subscribe Eventing and Notification. JWSR

4(4), 2007.

[21] K. Ostrowski, K. Birman, and D. Dolev. Declarative

Reliable Multi-Party Protocols. Cornell University

Technical Report, TR2007-2088. March, 2007.

[22] K. Ostrowski, K. Birman, D. Dolev, and J. Ahnn. Pro-

gramming with Live Distributed Objects. ECOOP’08.

[23] C. Papadopoulos, and G. Parulkar. Implosion Control

For Multipoint Applications. 10th Annual IEEE Work-

shop on Computer Communications, Sept. 1995.

[24] S. Pingali, D. Towsley, and J. F. Kurose. A Comparison

of Sender-Initiated and Receiver-Initiated Reliable Mul-

ticast Protocols. SIGMETRICS’94, pp. 221-230.

[25] B. M. Roehner. Patterns of Speculation: A Study in

Observational Econophysics. Cambridge University

Press (ISBN 0521802636). May 2002.

[26] L. Rodrigues, K. Guo, P. Verissimo, and K. Birman. A

Dynamic Light-Weight Group Service. Journal of Paral-

lel and Distributed Computing 60:12. 2000.

[27] Y. Tock, N. Naaman, A. Harpaz, and G. Gershinsky.

Hierarchical Clustering of Message Flows in a Multicast

Data Dissemination System. IASTED PDCS 2005.

[28] Y. Vifgusson, K. Ostrowski, K. Birman, and D. Dolev.

Tiling a Distributed System for Efficient Multicast. Un-

published manuscript.

62

http://jgroups.org/javagroupsnew/perfnew/Report.html
http://researchweb.watson.ibm.com/compsci/

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

Abstract

Existing Web service notification and eventing standards are useful in many applications, but they have
serious limitations that make them ill-suited for large-scale deployments, or as a middleware or a com-
ponent-integration technology in today’s data centers. For example, it is not possible to use IP multicast,
or for recipients to forward messages to others, scalable notification trees must be setup manually, and no
end-to-end security, reliability, or QoS guarantees can be provided. We propose an architecture that is free
of such limitations and that may serve as a basis for extending or complementing the existing standards.
The approach emerges from our work on QuickSilver, a new, extremely modular and extensible platform
for high-performance, scalable, reliable eventing.

Keywords:	 architecture; eventing; extensible; multicast; notification; publish-subscribe; reliable;
scalable

Extensible Architecture for
High-Performance, Scalable,
Reliable Publish-Subscribe
Eventing and Notification

Krzysztof Ostrowski, Cornell University, USA

Ken Birman, Cornell University, USA

Danny Dolev, The Hebrew University of Jerusalem, Israel

Introduction

Motivation
Notification is a valuable, widely used primitive
for designing distributed systems. The growing
popularity of RSS feeds and similar technologies
shows that this is also true at the Internet scales.
The WS-Notification (Graham et al., 2004)
and WS-Eventing (Box et al., 2004) standards

have been offered as a basis for interoperation
of heterogeneous systems deployed across the
Internet. Unlike RSS, they are subscription-
based and, hence, free of the scalability problems
of polling, and they support proxy nodes that
could be used to build scalable notification
trees. Nonetheless, they embody restrictions
that make them unsuitable as a middleware
technology in large-scale systems:

63

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

•	 No forwarding among recipients:
Many content distribution schemes build
overlays within which content recipients
participate in message delivery. In cur-
rent Web services notification standards,
however, recipients are passive (limited
to data reception). For example, given
the tremendous success of BitTorrent for
multicast file transfer, one could imagine
a future event notification system that uses
a BitTorrent-like protocol for data transfer.
But BitTorrent depends on direct peer-to-
peer interactions by recipients.

•	 Not self-organizing: While both standards
permit the construction of notification trees,
such trees must be manually configured and
require the use of dedicated infrastructure
nodes (“proxies”). Automated setup of
dissemination trees by means of a protocol
running directly between the recipients is
often preferable, but the standards preclude
this possibility.

•	 Weak reliability: Reliability in the existing
schemes is limited to per-link guarantees
resulting from the use of TCP. In many
applications, end-to-end guarantees are
required, and often of strong flavor, for
example, to support virtually synchronous,
transactional, or state-machine replication.
Because receivers are assumed passive
and cannot cache, forward messages, or
participate in multiparty protocols, even
weak guarantees of these sorts cannot be
provided.

•	 Difficult to manage: It is hard to create
and maintain an Internet-scale dissemina-
tion structure that would permit any node
to serve as a publisher or as a subscriber,

for this requires many parties to maintain a
common infrastructure and agree on stan-
dards, topology, and other factors. Any such
large-scale infrastructure should respect
local autonomy, whereby the owner of a
portion of a network can set up policies for
local routing, availability of IP multicast,
and so forth.

•	 Inability to use external multicast frame-
works: The standards leave it entirely to the
recipients to prepare their communication
endpoints for message delivery. This makes
it impossible for a group of recipients to
dynamically agree upon a shared IP mul-
ticast address, or to construct an overlay
multicast within a segment of the network.
Yet such techniques are central to achieving
high performance and scalability, and can
also be used to provide QoS guarantees or
to leverage emergent technologies.

In this article, we propose a principled ap-
proach to Web service notification in large-scale
systems, free of the limitations listed above,
which is modular and highly extensible. The
design presented here is a basis for Quicksilver
(Ostrowski & Birman, 2006c; Ostrowski, Bir-
man & Dolev, 2006), a novel, reliable, and ex-
tremely scalable platform for publish-subscribe
eventing and notification, under development at
Cornell. While this architecture is inspired by
our prior work on QuickSilver, it is designed
to be generic, and it is compatible, in general,
with a wide range of existing protocols.

Model
We employ the usual terminology, where
events are associated with topics, produced

subscribers

notification

publishers

node

subscription
manager

register
as a publisher

subscribe as
a receiver

Figure 1. Publishers and subscribers register for a topic with the subscription manager

64

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

by publishers, and delivered to subscribers.
We use the term “group X” to refer to the set
of nodes subscribed to topic “X.” More than
one node may publish to a given topic. The
prospective publishers and subscribers register
with a subscription manager. This entity can be
independent of the publishers (Figure 1). The
manager may be replicated to tolerate failures,
or hierarchical, to scale. A single manager may
track the publishers and subscribers for many
topics, and many independent managers may
coexist. Nodes may reside in many administra-
tive domains (LANs, data centers, etc.). Nodes
in the same domain may be jointly managed. It
is often convenient to define policies, such as
for message forwarding or resource allocation,
in a way that respects domain boundaries, for
example, for administrative reasons, or because
communication within a domain is cheaper than
across domains, as it is often related to network
topology. Publishers and subscribers might be
scattered across organizations. These need to
cooperate in message dissemination, which
often presents a logistic challenge (Figure 2).

Example
To facilitate discussion, the article uses a run-
ning example. Obviously, the architecture is
not limited to any particular application; the
architecture is intended to be flexible enough
to serve as a general, multipurpose middleware
component-integration technology, and to be
used in settings such as large data centers,
trading systems, military infrastructure, and so
forth. However, the example helps us illustrate
the architecture with specific scenarios that
highlight the role of specific features.

The example involves a possible vision for
the future of the Internet. Even today, the Web
is moving towards very dynamic and interactive
content. Massively multiplayer online gaming
and virtual realities, such as the World of War-
craft and Second Life, are becoming increas-
ingly popular. However, current techniques are
insufficient for massive-scale deployments. As
of this writing, the latter platform is reported
to host online 17,000 of a total of 2 million
of its users, on a server farm of nearly 2,600
dual-core Opteron machines. As the number of
online users simultaneously browsing through
such virtual realities will grow to tens and
hundreds of millions, as users start to expect
a smoother and more realistic experience, and
they start transmitting high-resolution audio,
video, and animation streams, it will become
very difficult to host entire virtual worlds in a
centralized manner. Centralized systems are
invariably costly and suffer from bottlenecks
and high latencies. We believe that the most
cost-effective (and perhaps ultimately the only
feasible) way to implement such scenarios is
for the virtual worlds to be decentralized, and
for the users to interact directly, without any
expensive servers in the middle.

Apart from the scalability aspect mentioned
above, we also believe that the Internet com-
munity is unlikely to accept a situation where all
content is controlled by a handful of providers.
Instead, we envision that just as today users
create Web pages, they would eventually want
to be able to create their own virtual rooms or
landscapes, where participants could interact
with one-another much as they do in online
multiplayer games. A successful technology
base of this sort could eventually transform

Org1 Org2

Org3

Organization

LAN1

LAN2

not associated publishers

subscribers

Figure 2. Nodes can be scattered across administrative domains hierarchically divided into
subdomains

65

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

the Web into a multi-verse, a federation of
millions of interconnected virtual places or
entire worlds, created and hosted by the Internet
community collaboratively, with a mixture of
infrastructure services, services hosted on data
centers, and services introduced and hosted by
individual users.

A high-performance, scalable, and reliable
variant of the publish-subscribe paradigm could
be the enabling technology for such applica-
tions. To see this, think of each location in a
virtual world as a separate publish-subscribe
topic, and of the users that currently reside
inside the location as subscribers (Figure 3).
The state of the room, for example, its interior,
user positions, actions in progress, all objects
inside the room, and so forth, is replicated
among all the subscribers. The state is loaded
by the users upon entering the room, and can be
updated in a consistent manner by multicasting
any updates (such as users speaking, moving,
handing objects to each other, etc.) reliably
to the set of all subscribers. The state can be
retained while no visitors are in the room by a
room guardian, a special entity that can either
stay in the room at all times, or slip in only if
the last “regular” user leaves, depending on how
the room is setup. Unlike in the centralized ap-
proaches, here users interact directly with each
other, with no server in between. Although this
solution does require infrastructure components,
for example, to track subscriptions, inform users
of each other’s existence, control the “guard,”
and so forth, none of the required infrastructure

sits on the “critical path” and acts as a proxy or
intermediary. If one user speaks or projects a
video clip to others, the data can be transmitted
directly to participants, without the involvement
of any such infrastructure. Infrastructure that
controls a virtual location could thus be hosted
even on a home machine of the user who cre-
ated it. The network of users’ home machines,
hosting their virtual rooms connected by virtual
corridors, can thus form a background backbone
structure that controls the virtual reality in a
way similar to how DNS serves as a backbone
of the Internet.

To realize the vision outlined above, we
need a publish-subscribe platform that can
provide very high performance, scalability in
multiple dimensions, such as the size of the
system, the number of publish-subscribe topics,
or data rates, and so forth, end-to-end reliability
guarantees, and a way to integrate with mod-
ern development platforms. In work reported
elsewhere, we have created a system with these
attributes. Initial results from experiments on
the system (Quicksilver Scalable Multicast, or
QSM) suggest that these goals can be achieved
(Ostrowski & Birman, 2006b, 2006c). However,
for truly massive adoption, we need publish-
subscribe interoperability standards that allow
a large number of independent users, residing
in different administrative domains scattered
across the Internet, to collaboratively form a
single infrastructure for reliable publish-sub-
scribe notification. This was our original reason
to explore the architectural proposal that is the
subject of this article.

users in the room
= subscribers

enter the room
= subscribe

and load state

room = publish-subscribe topic

leave =
ubsubscribe

replicated room state

move, talk =
publish state

updates
user

Figure 3. A virtual room in a virtual world, modeled as a “publish-subscribe” topic

66

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

Let’s now revisit the problems listed in the
section entitled “Motivation” in the context of
our example. Consider a user sitting in a caf-
eteria with his laptop that enters a virtual room
and starts interacting with friends in our three-
dimensional virtual reality. The user would act
as one of several publishers and subscribers.
Because such interactions would be ad-hoc, the
technique that the users would use to disseminate
data between them should be self-organizing,
that is, it should not rely on proxies, or other
dedicated infrastructure.

A simple way to meet this requirement
could be for each publisher to send updates
directly to all subscribers over TCP, but this
is not acceptable for several reasons. First, to
ensure that all users see a consistent history of
events, we’d need reliability guarantees, such
as a global ordering of all updates published by
different users (so that all of them see events
occurring in the same order, or that two users
don’t pick up the same object), atomicity (so
that if one user can see something happening,
then so do all the others) and so forth. While
solutions to such problems are well known
from the literature, they need more than a
plain point-to-point TCP-based dissemination
scheme. Thus, the users would need to run a
suite of special reliability protocols.

Second, the wireless link of the user in
the cafeteria, or his laptop, may not be fast
enough to simultaneously send updates to ten
other people who may be in the virtual room. If
other users are connected, for example, directly
to the campus network, over a wire, it may be
desirable to arrange it so that the wireless user
publishes updates to a user on a campus LAN,
which is then responsible for forwarding it to
the others. If the campus LAN is configured to
enable IP multicast, it would be desirable to be
able to exploit such external mechanisms. The
users should thus be able to quickly form small
overlays that can efficiently utilize whatever
resources are available.

Finally, note that users will often reside in
different administrative domains, for example,
in a cafeteria wireless network, in different
campus networks, on a cable LAN, and so forth.

The administrators of these domains may need
to impose acceptable use policies that specify
how dissemination should be performed inter-
nally in the domain they own. For example,
one domain might disallow IP multicast, while
another might permit IP multicast provided
that various rules are respected. Policies could
govern sharing of connections, what data rates
are acceptable, what multicast protocol to use,
and so forth.

Different domains will often have distinct
administrative policies. And yet, users residing
in those domains would expect a smooth opera-
tion, as if the entire Internet formed a single,
fully-connected administrative domain. Such
management issues are a logistic headache, and
require better interoperability standards. An up-
date published by the user in the cafeteria should
be disseminated in every campus network, or
among wireless users, locally according to the
local policies setup by the domain administra-
tors, but all these domains need to cooperate
with each other, ideally without reliance on
costly proxies. Existing eventing standards have
overlooked such issues, but they form the core
of our proposal.

Design Principles
The limitations of the existing architectures,
listed in the section on “Motivation,” and our
experience in designing scalable multicast
systems, led us to the following design prin-
ciples:

•	 Programmable nodes: Senders and re-
cipients should not be limited to sending or
receiving. They should be able to perform
certain basic operations on data streams,
such as forwarding or annotating data with
information to be used by other peers, in
support of local forwarding policies. The
latter must be expressive enough to support
protocols used in today’s content delivery
networks, such as overlay trees, rings, mesh
structures, gossip, link multiplexing, or
delivery along redundant paths.

•	 External control: Forwarding policies
used by subscribers must be selected and

67

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

updated in a consistent manner. A node
cannot predict a-priori what policy to use,
or which other nodes to peer with; it must
thus permit an external trusted entity or an
agreement protocol to control it: determine
the protocol it follows, install rules for
message forwarding or filtering, and so
forth.

•	 Channel negotiation: The creation of
communication channels should permit a
handshake. A recipient might be requested
to, for example, join an IP multicast address
or subscribe to an external system. The
recipient could also make configuration
decisions on the basis of the information
about the sender. For example, a LAN
domain asked to create a communication
endpoint for receiving could select a well-
provisioned node as its entry point to handle
the anticipated load.

•	 Managed channels: Communication
channels should be modeled as contracts
in which receivers have a degree of control
over the way the senders are transmitting.
In self-organizing systems, reconfigura-
tion triggered by churn is common and
communication channels often need to be
reopened or updated to adapt to the chang-
ing topology, traffic patterns, or capacities.
For example, a channel that previously
requested that a given source transmits
messages to one node may notify the source
that messages should now be transmitted
to some two other nodes.

•	 Hierarchical structure: The principles
listed above should apply to not just
individual nodes, but also to entire ad-
ministrative domains, such as LANs,
data centers, or corporate networks. This
allows the definition and enforcement of
Internet-scale forwarding policies, facili-
tating cooperation among organizations in
maintaining the global infrastructure. The
way messages are delivered to subscribers
across the Internet thus reflects policies
defined at various levels (for example,
policies “internal” to data centers, and a
global policy “across” all data centers).

•	 Isolation and local autonomy: A degree of
a local autonomy of the individual adminis-
trative domains, such as how messages are
forwarded internally, which nodes are used
to receive incoming traffic or relay data
to other domains, and so forth, should be
preserved. In essence, the internal structure
of an administrative domain should be hid-
den from other domains it is peering with
and from the higher layers. Likewise, the
details of the subcomponents of a domain
should be as opaque as possible.

•	 Reusability: It should be possible to
specify a policy for message forwarding
or loss recovery in a standard way and
post it into an online library of such poli-
cies as a contribution to the community.
Administrators willing to deploy a given
policy within their administrative domain
should be able to do so in a simple way,
for example, by drag-and-drop, within a
suitable GUI.

•	 Separation of concerns: Motivated by
the end-to-end principle, we separate
implementation of loss recovery and other
reliability properties from the unreliable
dissemination of messages, as well as
from message ordering, security, and
subscription management. Accordingly,
our design includes reliability, dissemi-
nation, ordering, security, and manage-
ment frameworks, five independent, yet
complementary structures. This decoupling
gives our system an elegant structure and a
degree of modularity and flexibility unseen
in existing architectures.

Hierarchical View of the Network
A group X of subscribers for a given topic across
the entire Internet can be divided into subsets
Y1, Y2, . . ., YN of subscribers in N top-level
administrative domains (Figure 4). This may
continue recursively, leading to a hierarchical
perspective on the group X. Hierarchies of this
sort have been previously exploited in scalable
multicast protocols, for example, in RMTP
(Paul, Sabnani, Lin, & Bhattacharyya, 1997),
or in the context of content-based filtering

68

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

(Banavar, Chandra, Mukherjee, Nagarajarao,
Strom, & Sturman, 1999). The underlying prin-
ciple, implicit in many scalable protocols, is to
exploit locality. Following this principle, sets of
nodes, clustered based on proximity or interest,
cooperate semi-autonomously in message rout-
ing and forwarding, loss recovery, managing
membership and subscriptions, failure detec-
tion, and so forth. Each such set is treated as
a single cell within a larger infrastructure. A
protocol running at a global level connects all
cells into a single structure. Scalability arises as
in the divide-and-conquer principle. Addition-
ally, the cells can locally share workload and
amortize dissemination or control overheads,
for example, buffer messages from different
sources and locally disseminate such combined
bundles, and so forth.

In the architecture described here we go one
step further. Following our principle of isola-
tion and local autonomy, each administrative
domain should manage the registration of its
own publishers and subscribers internally, and
it should be able to decide how to distribute
messages among them or how to perform loss
recovery according to its local policy. Unlike
in most hierarchical systems, where hierarchy
and protocol are inseparable, and hence the
“subprotocols” used at all levels of the hierarchy
are identical, in our architecture we decouple
the creation of the hierarchy from the specific
“subprotocols” used at different levels of the
hierarchy and we allow the “subprotocols”
to differ. Thus for example, our architecture
permits the creation of a single, global dis-
semination scheme for a topic that uses differ-
ent mechanisms to distribute data in different
organizations or data centers. Likewise, it

permits the creation of a single Internet-scale
loss recovery scheme that employs different
recovery policies within different administrative
domains. Previously, this has only been possible
with proxies, which can be costly, and which
introduce latency and bottleneck. In this article,
we propose a way to do this efficiently, and
in a very generic, flexible manner. This novel
hierarchical protocol “composition” approach,
motivated by the principles of locality and local
autonomy, is central to our architecture.

Architecture

The Hierarchy of Scopes
Our architecture is organized around the fol-
lowing key concepts: management scope, for-
warding policy, channel, filter, session, recovery
protocol, recovery domain, and agent.

A management scope (or simply scope)
represents a set of jointly managed nodes. It
may include a single node, span over a set of
nodes residing within a certain administrative
domain, or include nodes clustered based on
other criteria, such as common interest. In the
extreme, a scope may span across the entire
Internet. We do not assume a 1-to-1 correspon-
dence between administrative domains and the
scopes defined based on such domains, but that
will often be the case. A LAN scope (or just a
LAN) will refer to a scope spanning all nodes
residing within a LAN. The reader might find
it easier to understand our design with such
examples in mind.

A scope is not just any group of nodes; the
assumption that they are jointly managed is es-
sential. The existence of a scope is dependent
upon the existence of an infrastructure that

Figure 4. A hierarchical decomposition of the set of subscribers along the domain boundaries

Internetsubscribers to X
across the Internet

subscribers
to X in Org1

subscribers
to X in Org2

Org1

Org2

notification
in X

69

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

maintains its membership and administers it. For
a scope that corresponds to a LAN, this could be
a server managing all local nodes. In a domain
that spans several data centers in an organization,
it could be a management infrastructure, with a
server in the company headquarters indirectly
managing the network via subordinate servers
residing in every data center. No such global
infrastructure or administrative authority exists
for the Internet, but organizations could provide
servers to control the Internet scope in support
of their own publishers or to manage the dis-
tribution of messages in topics of importance
to them. Many global scopes, independently
managed, could thus co-exist.

Like administrative domains, scopes
form a hierarchy, defined by the relation of
membership: one scope may declare itself to
be a member (or a “subscope”) of another. If X
declares itself to be a member of Y, it means X
is either physically or logically a part (subset) of
Y. Typically, a scope defined for a subdomain X
of an administrative domain Y will be a member
of the scope defined for Y. For example, a node
may be a member of a LAN. The LAN may be
a member of a data center, which in turn may
be a member of a corporate network. A node
may also be a member of a scope of an overlay
network. For a data center, two scopes may be
defined, for example, monitoring and control
scopes, both covering the entire data center,
with some LANs being a part of one scope,
or the other, or both. The corporate scope may
be a member of several Internet-wide scopes,
and so forth.

The generality in these definitions allows
us to model various special cases, such as
clustering of nodes based on interest or other
factors. Such clusters, formed, for example, by
a server managing a LAN and based on node
subscription patterns, could also be treated as
(virtual) scopes, all managed by the same server.
Nodes would thus be members of clusters, and
clusters (not nodes) would be members of the
LAN. As we shall explain below, every such
cluster, as a separate scope, could be locally and
independently managed. For example, suppose
that we are building an event notification system

that needs to disseminate events reliably, and is
implemented by an unreliable multicast mecha-
nism coupled to a reliability layer that recovers
lost packets. In the proposed architecture, dif-
ferent clusters could run different multicast or
loss recovery protocols; this technique is used
in the QSM platform (Ostrowski & Birman,
2006b, 2006c). Thus, if one cluster happens to
reside within a LAN that permits the use of IP
multicast, it could use that technology, while
a different cluster on a network that prohibits
IP multicast, or consisting of a large number of
nodes across the Internet, could instead form
an end-to-end multicast overlay.

The scope hierarchy need not necessar-
ily be a tree (Figure 5). There may be many
global scopes, or many superscopes for any
given scope. However, a scope decomposes
into a tree of subscopes, down to the level of
nodes. The span of a scope X is the set of all
nodes at the bottom of the hierarchy of scopes
rooted at X. For a given topic X, there always
exists a single global scope responsible for it,
that is, such that all subscribers to X reside in
the span of X. Publishing a message to a topic
is thus always equivalent to delivering it to all
subscribers in the span of some global scope,
which may be further recursively decomposed
into the sets of subscribers in the spans of its
subscopes.

Suppose that Alice and Bob are sitting with
their laptops in a cafeteria, while Charlie is in a
library. Both the cafeteria’s wireless network and
the local network in the library are separately
managed administrative domains, and they
define their own management scopes. Alice’s
and Bob’s laptops are also scopes, both of which

Figure 5. An example hierarchy of management
scopes in a game

BobAlice Charlie

Cafeteria Library

Room 1 Room 2
Internet

70

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

become members of the cafeteria’s scope. Now
suppose that Alice opens her virtual realities
browser and enters a virtual place “Room1”
in the virtual reality, while Bob and Charlie
enter “Room2.” Each of the virtual rooms de-
fines a global, Internet-wide scope that could
be thought of as “the scope of all users in this
room, wherever they are.” If the networking
support for Alice and Bob is still provided by
the cafeteria and library wireless networks re-
spectively, when the students enter the rooms,
the cafeteria’s and library’s scopes become
members of these global scopes (Figure 5).

The Anatomy of a Scope
The infrastructure component administering a
scope is referred to as a scope manager (SM). A
single SM may control multiple scopes. It may
be hosted on a single node, or distributed over
a set of nodes, and it may reside outside of the
scope it controls. It exposes a control interface,
a Web service hosted at a well-known address,
to dispatch control requests (e.g., “subscribe”)
directed to the scopes it controls (Figure 6).

A scope maintains communication chan-
nels for use by other scopes. A channel is a
mechanism through which a message can be
delivered to all those nodes in the span of this
scope that subscribed to any of a certain set
of topics. In a scope spanning a single node, a
channel may be just an address/protocol pair;
creating it would mean arranging for a local
process to open a socket. In a distributed scope,
a channel could be an IP multicast address; creat-
ing it would require all local nodes to listen at
this address. It could also be a list of addresses,
if messages are to be delivered to all of them,

or if addresses are to be used in a random or a
round-robin fashion. In an overlay network, for
example, a channel could lead to a small set of
nodes that forward messages across the entire
overlay. In general, a scope that spans a set of
nodes can thus be governed by a forwarding
policy that determines how messages originat-
ing within the scope, or arriving through some
communication channel, are disseminated
internally, within the local scope.

Continuing our example, the cafeteria and
the library would host the managers of their
scopes on dedicated servers, and each of the
student laptops would run a local service that
serves as a scope manager for the local machine.
The library’s SM may be on a campus network
with IP multicast enabled. When the cafeteria’s
SM requests a channel from the library’s SM,
the latter might, for example, dedicate some
machine as the entry point for all messages com-
ing from the cafeteria, instruct it to retransmit
these messages to the IP multicast address, and
instruct all other laptops to join the IP multicast
address. Similarly, the cafeteria’s SM might
setup a local forwarding tree. In most settings, a
scope manager would live on a dedicated server.
It is also conceivable to offload, in certain sce-
narios, parts of the SM’s functionality to nodes
currently in the scope (e.g., to Alice’s and Bob’s
laptops), but a single “point of contact” for the
scope would still need to exist.

The control interfaces “exposed” by scopes
(interfaces exposed by their scope managers)
are “accessed” by other scopes (i.e., by their
SMs). When interacting, scopes can play one
of a few standard roles, corresponding to the
three principal interaction patterns: member-

Figure 6. A scope is controlled by a scope manager, which exposes a standardized control interface,
and may create a number of incoming data channels, to serve as “entry points” for the scope

control
interface

incoming
data channels

scope manager

managed entity
(scope)forwarding

policy

sm

71

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

owner, sender-receiver, and client-host (see
Figure 7). A member registers with an owner
to establish a relation of membership, that is,
to “declare” itself as a subscope of the owner.
After such a relationship has been established,
the member may then register with the owner as
a publisher or subscriber in one or more topics.
Depending on the topics for which the mem-
ber has registered and its role in these topics,
it may be requested by the owner to perform
relevant actions, for example, by forwarding
messages or participating in the construction
of an overlay structure. At the same time, the
owner is responsible for tracking the health of its
members, and in particular for detecting failures
and performing local reconfiguration.

The client-host relationship is similar to
member-owner, in that a client can register with
a host as a publisher or as a subscriber. However,
unlike the member-owner relationship, which
involves a mutual commitment, the client-host
relationship is more casual, in the sense that the
host cannot rely on the client to perform any
tasks for the system, or even to notify the host
when it leaves, and similarly, the client cannot
rely on the host to provide it with the same
quality of service and reliability properties as
the regular members. Thus for example, while
a member can form a part of a forwarding tree,
a client will not; the latter will also typically
get weaker reliability guarantees, because the
protocols run by the scope members will not be
prevented from making progress when transient

clients are unreachable. The same applies to
publishers. A long-term publisher that forms a
part of a corporate infrastructure will register
as a member, but handheld devices roaming
on a wireless network will usually register as
clients.

The sender-receiver relationship is similar
to a publisher registering as a client or member
in that the sender registers with the receiver
to send data. However, whereas a member
registers with its owner to publish to the set
of all subscribers in a topic, including nodes
inside as well as nodes outside of the owner, a
sender will register with a receiver to establish
a communication channel between the two to
disseminate messages only within the scope
of the receiver. When a publisher registers as
a member with an owner scope that is not the
global scope for the given topic, the owner may
itself be forced to subscribe with its superscope.
The sender-receiver relationship is horizontal;
no cascading subscriptions take place. On
the other hand, while a member scope never
exchanges data with the owner (instead, it is
“told” by the owner to form part of a dissemi-
nation structure that the owner controls), the
sender-receiver relationship serves exactly this
purpose; the two parties involved in the latter
will negotiate protocols, addresses, transmission
rates, and so forth.

The reader should recognize in our con-
struction the design principles we articulated
earlier. Scopes, whether individual nodes, LANs

Figure 7. When interacting, scopes follow one of a few standardized relationship patterns, in
which they can play one of a few standard roles

host

sm senderreceiver

clientmember

member

owner sm

smsubscribe

manage
member

owner

manage sender

sm sm

want
to send

sender

receiver

manage client

sm sm

want to publish

client

host

72

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

or overlays, are externally controlled using the
control interfaces exposed by SMs, may be
programmed with policies that govern the way
messages are distributed internally, forwarded
to other scopes, and so forth, and transmit mes-
sages via managed communication channels,
established through a dialogue between a pair
of SMs, and dynamically reconfigured.

Hierarchical Composition of
Policies
Following our design principles, we propose to
solve the issue of a large-scale global coopera-
tion in message delivery between independently
managed administrative domains by introducing
a hierarchical structure in which forwarding
policies defined at various levels are merged
into a single dissemination scheme. Each
scope is configured with a policy dictating, on
a per-topic (and perhaps a per-sender) basis,
how messages are forwarded among its mem-
bers. For example, a policy governing a global
scope might determine how messages in topic
T, originating in a corporate network X, are
forwarded between the various organizations.
A policy of a scope of the given organization’s
network might determine how to forward mes-
sages among its data centers, and so forth. A
policy defined for a particular scope X is always
defined at the granularity of X’s members (not
individual nodes). The way a given subscope Y
of X delivers messages internally is a decision

made autonomously by Y. Similarly, X’s policy
may specify that Y should forward messages to
Z, but it is up to Y’s policy to determine how
to perform this task.

Accordingly, a global policy may request
that organization X forward messages in topic
T to organizations Y and Z. A policy govern-
ing X may then determine that to distribute
messages in X, they must be sent to LAN1,
which will forward them to LAN2. The same
policy might also specify which LANs within
X should forward to Y and Z, and finally, the
policies of these LANs will delegate these
forwarding tasks to individual nodes they own.
When all the policies defined at all the involved
scopes are combined together, they yield a
global forwarding structure that completely
determines the way messages are disseminated
(Figure 8). In the examples given, the forward-
ing policies are simply graphs of connections:
each message is always forwarded along every
channel. In general, however, a channel could
be constrained with a filter that decides, on a
per-message basis, whether to forward or not,
and may optionally tag the message with cus-
tom attributes (more details are in the section
“Communication Channels”). This allows us to
express many popular techniques, for example,
using redundant paths, multiplexing between
dissemination trees, and so forth.

Every scope manager maintains a map-
ping from topics to their forwarding policies.
A forwarding policy is defined as an object that

Figure 8. Channels created in support of forwarding policies defined at different levels

channel to
scope

channel to
sub-scope

channel to
physical node

73

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

lives in an abstract context, and that exposes
a fixed set of events to which members must
be prepared to react, and the operations and
attributes. A scope manager might be thought
of as a container for objects representing
policies. The interfaces that the container and
the policies expose to each other and interact
with are standardized, and may include, for
example, an event informing the policy that
a new member has been added to the set of
members locally subscribed to the topic, or an
operation exposed by the container that allows
the policy to request a member to establish a
channel to another member and instantiate a
given type of filter (Figure 9). A scope manger
thus provides a runtime environment in which
policies can be hosted. This allows policies to
be defined in a standard way, independent not
only of the platform, but also of the type of the
administrative domain. For example, one can
imagine a policy that uses some sort of a novel
mesh-like forwarding structure with a sophisti-
cated adaptive flow and rate control algorithm.
Our architecture would allow that policy to be
deployed, without any modifications, in the con-
text of a LAN, data center, corporate network,
or a global scope. In effect, we’ve separated
the policy from the details of how it should be
implemented in a particular domain. Policies
may be implemented in any language, expose
and consume Web service APIs, stored online

in protocol libraries, downloaded as needed,
and executed in a secure manner.

Graphs of connections for different top-
ics, generated by their respective policies, are
superimposed (Figure 10). The SM of the scope
maintains an aggregate structure of channels
and filters, and issues requests to the SMs of its
members to create channels, instantiate filters,
and so forth. If multiple policies request chan-
nels between the same pair of nodes, the SM will
not create multiple channels, but rather a single
channel, for multiple topics. To avoid the situ-
ation where every member talks to every other
member, the SM may use a single forwarding
policy for multiple topics, to ensure that chan-
nels created for different topics overlap.

Communication Channels
Consider a node X, which is a member of a
scope Y that, based on a forwarding policy at
Y, has been requested to create a communica-
tion channel to scope Z to forward messages
in topic T. Following the protocol, X asks the
SM of Z for the specification of the channel
to Z that should be used for messages in topic
T. The SM of Z might respond with an ad-
dress/protocol pair that X should use to send
over this channel. Alternatively, a forwarding
policy defined for T at scope Z may dictate
that, in order to send to Z in topic T, scope X
should establish channels to members A and B

Figure 9. A forwarding policy as a code snippet

.NET
class

forwarding algorithmIForwardingAlgorithm

IForwardingAlgorithmContext

added or removed
senders, members,
or receivers

create, delete or
update channels
between nodes

Figure 10. Forwarding graphs for different topics are superimposed. Two members may be linked
by multiple channels, each with a different filter

filter

filter

74

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

of Z, constrained with filters α and β. After X
learns this from the SM of Z, it contacts SMs
of A and B for further details. Notice that the
channel to Z decomposes into subchannels to A
and B through a policy at a target scope Z. This
procedure will continue hierarchically, until
the point when X is left with a tree with filters
in the internal nodes and address and protocol
pairs at the leaves (Figure 11). Now, to send
a message along a channel constructed in this
way, X executes filters, starting from the root,
to determine recursively which subchannels to
use, proceeding until it is left with just a list of
address/protocol pairs, and then transmits the
message. Filters will usually be simple, such as
modulo-n; hence X can perform this procedure
very efficiently. Indeed, with network cards
becoming increasingly powerful and easily
programmable (Weinsberg, Dolev, Anker, &
Wyckoff, 2006), such functionality might even
be offloaded to hardware.

Accordingly, to support the hierarchical
composition of policies described in the preced-
ing section, we define a channel as one of the
following: an address/protocol pair, a reference
to an external multicast mechanism, or a set of
subchannels accompanied by filters. In the latter
case, the filters jointly implement a multiplexing
scheme that determines which subchannels to
use for sending, on a per-message basis (Figure
12, Figure 13).

Consider now the situation where scope
X, spanning a set of nodes, has been requested
to create a channel to scope Y. Through a dia-
logue with Y and its subscopes, X can obtain a
detailed channel definition, but unlike in prior
examples, X now spans a set of nodes, and
as such, it cannot execute filters or send mes-
sages. To address this issue, we now propose
two simple, generic techniques: delegation and
replication (Figure 14). Both of them rely on
the fact that if X receives messages in a topic T,
then some of its members, Z, must also receive

Figure 11. A channel split into subchannels and a possible filter tree corresponding to it

filter

filter

filter

filter
filter

transmit

transmit
transmit

Figure 12. A channel may be an address/protocol pair (left), or it may consist of subchannels,
with an algorithm deciding what goes where (right)

Figure 13. A distributed scope may delegate a channel or some of its subchannels to its members,
or it may replicate the channel among members with filters that jointly implement a round-robin
policy, and so forth

channel
algorithm

send to subchannelsend to channel

protocol +
address

transmit

filter
filter

filter

send to channel filter

fwd? tag

75

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

them (for otherwise X would not declare itself
as a subscriber and it would not be made part
of the forwarding structure for topic T by X’s
superscope). In case of delegation, X requests
such a subscope Z to create the channel on behalf
of X, essentially “delegating” the entire channel
to its member. The problem can be recursively
delegated, down to the level where a single
physical node is requested to create the channel,
and to forward messages it receives along the
channel. A more sophisticated use of delegation
would be for X to delegate subchannels. In such
case, X would first contact Y to obtain the list
of subchannels and the corresponding filters,
and for each of these subchannels, delegate it
to its subscopes. In any case, X delegates the
responsibility for forwarding over a channel
to its subscopes.

Our approach is flexible enough to support
even more sophisticated policies. An example of
one such policy is a replication strategy, outlined
here. In this scheme, scope X could request that
n of its subscopes create the needed channel,
constraining each with a modulo-n filter based
on a message sequence number. Hence, while
each of the subscopes would create the same
channel on behalf of its parent scope (hence the
name “replication”), subscope k would only
forward messages with numbers m such that
m mod n equals k. By doing this, X effectively
implements a round-robin policy of the sort pro-
posed in protocols such as MIT’s SplitStream.
Although all subscopes would create the same
channel, the round-robin filtering policy would
ensure that every message is forwarded only by

one of them. This technique could be useful,
for example, in the cases where the volume of
data in a topic is so high that delegation to a
single subscope is simply not feasible.

Our point is not that this particular way of
decomposing functionality should be required of
all protocols, but rather that for an architecture
to be powerful enough and flexible enough to
be used with today’s cutting-edge protocols
and to support state-of-the-art technologies, it
needs to be flexible enough to accommodate
even these kinds of “fancy” behaviors. Our
proposed architecture can do so. The existing
standards proposals, in contrast, are incred-
ibly constraining. Each only accommodates a
single rather narrowly conceived style of event
notification system.

Constructing the Dissemination
Structure
A detailed discussion of how forwarding
policies can be defined and translated to filter
networks is beyond the scope of this article.
We describe here just one simple, yet fairly
expressive scheme.

Suppose that the forwarding policies in all
scopes define forwarding trees on a per-topic
basis and possibly also depending on the loca-
tion at which the message locally originated. By
saying that a message locally originated from
a member X of scope Y, we mean that either
the message was created by X (if X is itself a
node) or a member of X, or that the message
was created outside of Y, but X is (or contains)
the first node in all of Y to which the message

Figure 14. Channel algorithms are realized as sets of filters, one per subchannel, deciding
whether to forward, and optionally adding custom tags.

delegationreplication

X Y X Y

X Y
filter

filter
X Y

delegate
channel

delegate
sub-

channels

76

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

was forwarded. The technique described here
implicitly assumes that messages do not ar-
rive along redundant paths, that is, that the
forwarding policy at each level is a tree, not a
mesh. This scheme may be extended to cover
the more general case with redundant paths and
randomized policies, but we omit it here, for it
would unnecessarily complicate our example.
A comprehensive treatment of dissemination
policies is beyond the scope of this article.

A scope manager thus maintains a graph, in
which the scope members are linked by edges,
labeled with constraints such as β:X, µ:Y, …,
meaning that a message is forwarded along
the edge if it was sent in topic β and locally
originates at X, or if it was sent in topic µ and
locally originates at Y, and so on. We shall now
describe, using a simple example, how a struc-
ture of channels is established based on scope
policies, and how filters are instantiated. We
shall then explain how messages are routed.

Consider the structure of scopes depicted
on Figure 15. Here A, B, C, D, and E are student
laptops. P, Q, and R are three departments on

a campus, with independent networks, hence
they are separate scopes. X represents the entire
campus. All students subscribe to topic T. Topic
T is local to the campus, and X serves as its root.
The scopes first register with each other. Then,
the laptops send requests to subscribe for topics
to P, Q, and R. Laptop A requests the publisher
role, all others request to be subscribers. None
of P, Q, or R are roots for the topic, hence they
themselves subscribe for topic T with X, in a
cascading manner. Now, all scopes involved
create objects that represent local forwarding
policies for topic T, and feed these objects with
the “new member” events. The policy at P for
messages in T originating at A creates a chan-
nel from A to B. Similarly, the policy at X for
messages in T originating at P creates channels
P to Q and Q to R (Figure 16). Each channel has
a label of the form “X-Y, T:Z”, meaning that
it is a channel from X to Y, for messages in T
originating at Z. Note that no channels have been
created in scope Q. Until now, Q is not aware
of any message sources because neither C nor
D is a publisher, and because no other scope
has so far requested a channel to Q, hence there
is no need to forward anything. Channels are
now delegated to individual nodes, as described
in the section “Communication Channels.” P
delegates its channel to B, and Q delegates to
D (Figure 17, delegated channels are in blue).

A B C D E

P Q R

X

Figure 15. An example hierarchy of scopes with
cascading subscriptions

Figure 18. Channels are delegated

Figure 16. Channels created by the policies
based on subscriptions

A B C D E

P Q R

X

t:P t:P

t:A
A b

P Q Q r

Figure 17. B and D contact Q and R to create
channels. Q and R select C and E as entry points.
Q now has a local message source and creates
its own local channel, from C do D

A B C D E

P Q R

t:P t:P
t:A

A b
P:b Q Q:d r

A B C D E

P Q Rt:P t:P

t:A t:c
A b

P:b Q:c Q:d r:E

c d

77

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

Channel labels are extended to reflect the fact
that they have been delegated, for example,
P-Q becomes P:B-Q, which means that P has
delegated its source endpoint to its member B,
and so forth. At this point, B and D contact the
destinations Q and R and request the channels
be created. Q and R select C and E as their
entry points for these channels. Now Q also
has a local source of messages (node C, the
entry point), so now it also creates an instance
of a forwarding policy, which determines that
messages in T, locally originating at C, are for-
warded to D (Figure 18). The entire forwarding
structure is complete.

A message in transit is a tuple of the form
(T, k, r), where T is the topic, k is the identi-
fier that may include the source name, one or
more sequence numbers, and so forth, and r
is a routing record. The routing record is an
object of the form (XK–YK), (X(K-1)–Y(K-1)), …,
(X1–Y1), in which every pair of elements (Xi,
Yi) represents the state of dissemination in
one scope; Xi is the member of the scope that
the message locally originated from and Yi is
the member of the scope that the message is
moving inside of or that it is entering. Pair (X1,
Y1) represents individual nodes, and for each
i, scopes Xi and Yi are a level below Xi+1 and

Yi+1, respectively, and Yi is always a member
of Yi+1. This list of entries does not need to
“extend” all the way up to the root. If entries
at a certain level are missing, they will be filled
up when the message jumps across scopes, as
it is explained below.

When a message arrives at a node, the
node iterates over all of its outgoing channels,
and matches channel filters against the routing
record. Message T, k, ((XK–YK), (X(K-1)–Y(K-

1)), …, (X1–Y1)) matches channel (PL:PL-1:…:
P1 – QL:QL-1:…:Q1 , T:R) when (K ≥ L ˄ XL
= R ˅ K < L ˄ PL = R) holds. This condition
has two parts. If K ≥ L, then in the scope in
which the channel endpoints PL, QL and R are
members, the message originated at XL and
is currently at YL. According to our rules, the
message should be forwarded iff XL = R (and
YL = PL, but this is always true). If K < L, then
the routing record does not carry any state for
the scope at which PL, QL and R are members.
This means the message must have originated
in this scope (the recovery record is filled up
when the message is forwarded, as explained
below), hence the condition PL = R. Note that
there might be several channels originating
at the node; the message is forwarded across
each one it matches. Now, when the message

Figure 19. The flow of messages (rounded rectangles, left), and the channels (square rectangles,
right) in the scenario of Figure 17. Elements compared against each other are shown as black,
bold, and underlined

A-b,t:A

P:b-Q:c,t:P

c-d,t:c

Q:d-r:E,t:P

t,k,(P-r,E-E)

t,k,(P-Q,c-d)

t,k,(P-Q,c-c)

t,k,(A-b)

t,k,(A-A) A

b

c

d

E

78

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

is forwarded, its routing record is modified as
follows. First, the record is extended. If K < L,
then for each i such that i > K and i ≤ L, we set
Xi = Pi and Yi = Pi. Then, the details internal
to the scope that the channel is leaving are
replaced with the details internal to the scope
the channel is entering, so for each i such that
i < L, we set Xi = Qi and Yi = Qi. Finally, the
current scope at the level at which the chan-
nel is defined is updated, we set YL = QL. The
original value of XL, once set, is not changed
until the message is forwarded out of the scope
of which XL is the member. Entries for i > L
also remain unchanged.

The flow of messages and matching in the
example of Figure 18 is shown on Figure 19.
When created on the publisher A, the message
initially has a routing record A–A, since we
know that it originated locally at A and that it
is still at A. No entries are included at this point
for routing in the scopes above A. There is no
need for doing so since no routing has been
done so far at those higher levels, so there is
no state to maintain. Now the routing record is
compared against channel A-B, T:A. The local
origin A does match the channel’s constraint A,
so the message is forwarded along A-B, with
a new record A-B to reflect the fact that it is
now entering B. While matching this record
to channel P:B–Q:C at B, we find that the
record lacks routing information for the scope
at which this channel is defined. This means
that the message must have originated at the
channel’s source endpoint (which we know
is P from the channel’s description). We find
that the channel’s constraint P is the same as
the channel’s source endpoint P, so we again
forward the message. While doing so, we ex-
tend its routing record with a new entry P-Q
to record the fact that we made progress at this
higher level. We also replace information lo-
cal to P (the entry A-B) with new information
local to Q (the new entry C-C). Forwarding
at C and D works similarly to how it worked
on A and B.

The Local Architecture of a
Dissemination Scope
So far we focused in our description on peer-to-
peer aspects of the dissemination framework,
but we have not described how applications
use this infrastructure, and how leaf scopes are
internally organized. Of a number of possible
architectures of the leaf scopes, the most general
one involves the following components: scope
manager, local controller, and controlled ele-
ment (Figure 20). The controlled element is a
very thin layer that resides in the application
process. Its purpose is to serve as a hookup to
the application process that allows for control-
ling the way the application communicates over
the network. As such, it serves two principal
purposes: (a) passing to the local controller
requests to subscribe/unsubscribe, and (b)
opening send and receive sockets in the process
per request from the controller. The controlled
element does not forward messages, nor does it
include any other peer-to-peer functionality, and
it is not a part of the management network. This
simplicity allows it to be easily incorporated
into legacy applications. It can be implemented
in any way, for as long as it exposes a control
endpoint (Figure 20, thin, black), a standard-
ized Web service interface, and as long as it can

Figure 20. The architecture of a leaf scope in
the most general scenario, with a local scope
manager, a thin controlled element linked to
the application, and with a local controller
to handle peer-to-peer aspects, for example,
forwarding

Scope
Manager

Local
Controller

Controlled
ElementApp

DataControl
Process

79

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

create communication endpoints (thick, red) to
receive or connect to remote endpoints to send.
The local controller implements all the peer-
to-peer functionality such as forwarding, and
so forth, and hosts such elements as channels
or filters. It may also create communication
endpoints, and may send data to or receive it
from the controlled element. The controller is
not a part of the management network, and it
does not interact with any scope mangers besides
the local one. These interactions are the job of
the local SM, which, on the other hand, never
sends or receives any messages itself.

In general, the three components can live
in separate processes, or even physically on
different machines, and may communicate over
local sockets or over the network. However,
in the typical scenario, the scope manager and
local controllers are located in a single process
(“manager”). The manager runs as a system
service and may control multiple applications,
either local or running on subordinate devices
managed by the local node, through the con-
trol elements embedded in these applications.
Within this scenario, we can distinguish three
basic subscenarios, or three patterns of usage
(Figure 21), depending on whether applications
participate in sending or receiving directly, or
only through the manager.

In the first scenario, the applications only
receive data, directly from the network (Figure
21, left). When the manager is requested to create
an incoming channel to the scope, it may either
arrange for all applications to open the same
socket to receive messages directly from the
network (if the applications are all hosted one
the same machine), or it may make them all sub-

scribe to the same IP multicast address (if they
are running on multiple subordinate devices),
or it may have them create multiple endpoints,
in which case the definition of the local channel
endpoint will include a set of addresses rather
than just one. The manager does not sit on the
critical path; hence we avoid bottleneck and
latency. If the local scope is required to forward
data to other scopes, the manager also creates an
endpoint (opens the same socket, or extends the
receive channel endpoint definition to include
its own address), to receive the data that needs
to be forwarded.

In our example, the library’s server might
act as a leaf scope, and students’ laptops might
act as subordinate devices that do not host their
own local scope managers and do not forward
messages. Applications on the laptops would
have the embedded controlled elements that
communicate with the local controller on the
library server via a standard Web interface.
When students subscribe to a local topic, such
as an online lecture transmitted by another
department, the server chooses an IP multicast
address and has all the laptops subscribe to it.
The data arriving on the local network is received
by all devices without any intermediary. If the
library needs to forward messages, the server
also subscribes to the IP multicast address and
creates all the required channels and filters.

In the second scenario, the applications
act as publishers (Figure 21, center). There is
no need to forward data, hence the manager
does not create any send or receive channels.
In order to support this scenario, the controlled
element must allow transmitting data to multiple
IP addresses; embed various headers provided
by the local controller, and so forth. There can
be different “classes” of controlled elements,
depending on what functionality they provide;
this scenario might be feasible only for some
such classes. This scenario avoids proxies, thus
it could be useful, for example, in streaming
systems.

In the third scenario, the applications
communicate only with the local controller,
which acts as a proxy (Figure 21, right). Un-
like in the first two scenarios, this introduces

Figure 21. Three example architectures with the
scope manager and the local controller merged
into a single local system “daemon”

Mgr

APP

Mgr

APP

Mgr

APP

DataControl

80

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

a bottleneck, but since the controlled elements
do not need to support any external protocols
or to be able to embed or strip any external
headers, this scenario is always feasible. This
scenario could also be used to interoperate with
other eventing standards, such as WS-Eventing
or WS-Notification. Here, the manager could
act as the publisher or a proxy from the point
of view of the application, and provide or
consume messages in the format defined by all
those other standards, while using our general
infrastructure “under the hood.” And similarly,
for high-performance applications that reside on
the server, an efficient implementation is pos-
sible using shared memory as a communication
channel between the manager and the applica-
tions, and permitting applications to deserialize
the received data directly from the manager’s
receive buffers, without requiring extra copy
or marshaling across domains.

Sessions
We now shift focus to consider architectural
implications of reliability protocols. Protocols
that provide stronger reliability guarantees
traditionally express them in terms of what we
shall call epochs, corresponding to what in group
communication systems are called membership
views. In group communication systems, the
lifetime of a topic (also referred to as a group)
is divided into a sequence of views. Whenever
the set of topic subscribers changes after a
“subscribe” or an “unsubscribe” request, or a
failure, a new view is created. In group com-
munication systems, the corresponding event
initiates a new epoch. Subscribers are notified
of the beginnings or endings of epochs, and of
the membership of the topic for each epoch.
One then defines consistency in terms of which
messages can be delivered to which subscribers
and at what time relative to epoch boundaries.
The set of subscribers during a given epoch is
always fixed.

Whereas group communication views are
often defined using fairly elaborate models
(such as virtual synchrony, a model used in
some of our past research, or consensus, the
model used in Lamport’s Paxos protocol suite),

the architectural standard proposed here needs
to be flexible enough to cover a range of reli-
ability protocols, include many that have very
weak notions of views. For example, simple
protocols, such as SRM or RMTP, do not pro-
vide any guarantees of consistent membership
views for topics.

In developing our architectural proposal,
we found that even for protocols such as these
two, in which properties are not defined in terms
of epochs, epochs can still be a very useful, if
not a universal, necessary concept. In a dynamic
system, configuration changes, especially those
resulting from crashes, usually require recon-
figuration or cleanup, for example, to rebuild
distributed structures, release resources, or
cancel activities that are no longer necessary.
Most simple protocols lack the notion of an
epoch because they do not take such factors
into account and do not support reconfiguration.
Others do address some of these kinds of issues,
but without treating them in a systematic man-
ner. By reformulating such mechanisms in terms
of epochs, we can standardize a whole family
of behaviors, making it easier to talk about
different protocols using common language, to
compare protocols, and to design applications
that can potentially run over any of a number of
protocols, with the actual binding made on the
basis of runtime information, policy, or other
considerations.

Our design includes two epoch-like con-
cepts: sessions, which are global to the entire
topic, across the Internet, are shared by dif-
ferent frameworks (reliability, ordering, etc.),
and which we discuss in this section, and local
views, which are local to scopes, and which
are discussed in the section on “Building the
Hierarchy of Recovery Domains”.

A session is a generalization of an epoch.
In our system, sessions are used primarily as
means of reconfiguring the topic to alter its
security or reliability properties, or for other
administrative changes that must be performed
online, while the system is running.

The lifetime of any given topic is always
divided into a sequence of sessions. However,
session changes may be unrelated to member-

81

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

ship changes of the topic. Since introducing a
new session involves a global reconfiguration,
as described further, it is infeasible for an In-
ternet-scale system to introduce a new session,
and disseminate membership views, every time
a node joins or leaves. Instead, such events are
handled locally, in the scopes in which they
occur, and without introducing a new, global,
Internet-wide epoch.

Session numbers are assigned globally, for
consistency. As explained before, for a given
topic, a single global scope (“root”) always
exists such that all subscribers to that topic
reside within its span. Although, as we shall
explain, dissemination, reliability, and other
frameworks may use different scope hierarchies,
the root scope is always the same and all the
dissemination, reliability, and other aspects
of it are normally managed by a single scope
manager. This top-level scope manager main-
tains the topic’s metadata; it is also responsible
for assigning and updating session numbers.
Note that local topics, for example, internal
to an organization, may be rooted locally, for
example, in the headquarters, and managed by a
local SM, much in a way local newsgroups are
managed locally. Accordingly, for such topics,
sessions are managed by a local server (internal
to the organization).

To conclude, we explain how sessions im-
pact the behavior of publishers and subscribers.
After registering, a publisher waits for the SM
to notify it of the session number to use for a
particular topic. A publisher is also notified
of changes to the session number for topics
it registered with. All published messages are
tagged with the most recent session number,
so that whenever a new session is started for a
topic, within a short period of time no further
messages will be sent in the previous session.
Old sessions eventually quiesce as receivers
deliver messages and the system completes
flushing, cleanup, and other reliability mecha-
nisms used by the particular protocol. Similarly,
after subscribing to a topic, a node does not
process messages tagged as committed to ses-
sion k until it is explicitly notified that it should
receive messages in that session. Later, after

session k+1 starts, all subscribers are notified
that session k is entering a flushing phase (this
term originates in virtual synchrony protocols,
but similar mechanisms are common in many
reliable protocols; a protocol lacking a flush
mechanism simply ignores such notifications).
Eventually, subscribers report that they have
completed flushing and a global decision is made
to cease any activity and cleanup all resources
pertaining to session k, thus completing the
transition.

Incorporating Reliability, Ordering,
and Security
As mentioned earlier, we rooted our design in
the principle of separation of concerns, and we
implement tasks such as reliability, ordering,
security, or scope management independently
from dissemination. In the section entitled
“The Local Architecture of a Dissemination
Scope,” we explained how the management
and the dissemination infrastructures interact
in our system. The remaining frameworks, reli-
ability, security, and ordering, are decomposed
in a similar manner, and they also include three
base components: (a) the controlled element
that lives in the application processes and
implements only base functionality, related
to sending or receiving from the applications,
but none of the peer-to-peer or management
aspects, (b) the local controller that may live
outside of the application process, and where
all the peer-to-peer aspects are implemented,
and (c) the scope manager that implements the
interactions with other scope managers, but
that is not involved in any activities related to
the data flows, such as forwarding, calculating
recovery state, managing encryption keys, as-
signing message order, and so forth.

In general, each of the dissemination, reli-
ability, security, and ordering frameworks has
a separate hierarchy of scopes and a separate
network of scope managers. For example,
reliability scopes isolate and encapsulate the
local aspects related to reliability, such as loss
recovery, and so forth, and hide their internal
details from other scopes, just like dissemina-
tion scopes manage local dissemination and

82

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

hide the local aspects of message delivery. In
some cases, the different scopes would overlap.
This will be normally the case, for example,
with the four “flavors” of scopes (ordering,
security, reliability, and dissemination) local
to a node. In such cases, a single local service
would act as a scope manager for all the scopes
of all four flavors. The same would typically be
the case for the servers that control administra-
tive domains, such as a departmental LAN, a
wireless network in a cafeteria, a data center, a
corporate network, and so forth. Scopes of all
flavors would again overlap, and they would
be managed by a single server.

Irrespective of whether components of
the four different frameworks overlap, or are
physically hosted on the same machine or
in the same process, the frameworks always
logically converge in the application (Figure
22). The complete local architecture includes a
multiplexer (MUX), which serves as the entry
point for messages from the application, and
assigns messages to sessions, and a separate
protocol stack for each session (rows on Fig-
ure 22). Elements of the per-session stacks are
subcomponents owned by the four “controlled
elements” (columns on Figure 22): security
(SEC), dissemination (DISS), reliability (REL),
and ordering (ORD), each of which exposes the
standard Web interface required for interaction
with its corresponding local controller. Now,
when the application sends a message, it is
first assigned to a session by the multiplexer,
and assigned a local sequence number within
the session. It is then passed to the appropriate

per-session protocol stack, simultaneously to
the subcomponents that handle security and
ordering. Each of these two subcomponents
processes the message independently and
concurrently. The security component may
encrypt and sign it, if necessary, and then pass
it further to the dissemination component for
transmission, and independently, to the reli-
ability component to place it in a local cache
for the purpose of retransmission, forwarding,
and so forth, and to update the local structures
to record the fact that the message was created.
At the same time, the ordering component, also
working in parallel with the dissemination and
reliability components, records the presence
of the message in its own structures, which
are used later by the ordering infrastructure to
generate ordering requests, to be submitted to
the orderer (for details, see the section entitled
“Ordering”).

On the receive path, the process would
look similar (Figure 23). Messages may arrive
either through the dissemination framework,
in the normal case, or via the reliability frame-
work if they were initially lost, and have been
later recovered. Messages that arrive from the
dissemination framework are routed via the
reliability subcomponent so that they are regis-
tered, can be cached, or so that delivery can be
suppressed. When ordering arrives from the or-
dering framework, messages can be decrypted,
placed in a buffer (BUF), and delivered in the
appropriate order to the application.

The exact manner in which the subtasks
performed by the four subcomponents are syn-

Figure 22. Internal architecture of the application process

APP

sEc dIss rEL ord

sEc dIss rEL ord

MuX

controlled
element

single-session
protocol stack

83

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

chronized may vary. On the send path, messages
may not be transmitted until the entire protocol
stack for a given session can be assembled, that
is, if the dissemination framework learned of
a new session, but the reliability framework
has not, the transmission might be postponed
until the information about the new session
propagates across the reliability framework as
well, to avoid problems stemming from such
misalignments. On the receive path, the decryp-
tion of the message might be postponed until
the ordering is known, to avoid maintaining two
copies of the message in memory, one for the
purpose of loss recovery (encrypted) and one
for delivering to the application (decrypted),
and so forth.

Hierarchical Approach to
Reliability
Our approach to reliability resembles our hi-
erarchical approach to dissemination. Just as
channels are decomposed into subchannels, in
the reliability framework we decompose the
task of loss repair and providing other reli-

ability goals. Recovering messages in a given
scope is modeled as recovering within each of
its subscopes, concurrently and independently,
then recovering across all the subscopes (Figure
24). For example, suppose that scope X has
members Y1, Y2, …, YK. A simple reliability
property P(X) requiring that “if some node x in
the span of scope X receives a message m, then
for as long as either x or some other node keeps
a copy of it, every other node y in the span of X
will also eventually get m,” can be decomposed
as follows. First, we ensure P(Yi) for every Yi,
that is, we ensure that in each subscope Yi of
scope X, if one node has the message, then so
eventually do the others. The protocols that
lead to this goal can run in all these subscopes
independently and concurrently. Then, we run
a protocol across subscopes Y1, Y2, …, YK,
to ensure that if any of them has in its span
a node x that received message m, then each
of the other Yi also eventually has a node that
received m. When these tasks, that is, recovery
in each Yi plus the extra recovery across all Yi,
are all performed for sufficiently long, P(X) is
eventually established.

Coming back to our example, assume that
students with their laptops sit in university de-
partments, each of which is a scope. Suppose
that some, but not all of the students received
a message with a homework problem set from
their professor sitting in a cafeteria. We would
like to ensure that the problem set gets reliably
delivered to all students. In our architecture,
this would be achieved by a combination of
protocols: a protocol running in each depart-
ment would ensure that internally, for every

Figure 23. Processing messages on the send
path (red and solid lines) and on the receive
path (blue and dotted lines)

APP

sEc dIss

rEL

ord

MuX

buF

recover in Y

recover in X
disseminate

within X

disseminate
within Y

scope X

sub-scope Y

Figure 24. The similarities between a hierarchical dissemination (left) and hierarchical recovery
(right)

84

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

pair x, y of students, if x got the message then
so eventually does y, and likewise a protocol
running across the departments ensures that for
each pair of departments x, y, if some students
in x got the message, so eventually do some
students in y. In the end, this yields the desired
outcome.

Just like recovery among individual nodes,
recovery among LANs might also involve
comparing their “state” (such as aggregated
ACK/NAK information for the entire LAN)
or forwarding lost messages between them.
We give an example of this in the section on
“Recovery Agents.” As mentioned earlier, in
our architecture, different recovery schemes
may be used in different scopes, to reflect dif-
ferences in the network topologies, node or
communication link capacities, the availability
of IP multicast and other local infrastructure, the
way subscribers are distributed (e.g., clustered
or scattered) and so forth.

For example, in one department, the
machines of the students subscribed to topic
T could form a spanning tree. The property
we mentioned above could be guaranteed by
making neighbors in the tree compare their
state, and upon discovering that one of them
has a message m that the other is missing,
forwarding m between the two of them. The
same approach may also be used across the
departments, that is, departments would form
a tree, the departments “neighboring” on that
tree could compare what their students got, and
perhaps arrange for messages to be forwarded
between them. For the latter to be possible,
the departments need a way to calculate “what
their students got,” which is an example of an
aggregated, “department-wide” state. Finally,
some departments could use a different ap-
proach. For example, a department enamored
of gossip protocols might require that student
machines randomly gossip about messages they
got; a department that has had bad experiences
with IP multicast and with gossip might favor
a reliability protocol that runs on a token ring
instead of a tree, and a department with a site-
license for a protocol such as SRM (which runs
on IP multicast) might favors its use, where the

option is available. In each department, a dif-
ferent protocol could be used locally. As long
as each protocol produces the desired outcome
(satisfies the reliability property inside of the
department), and as long as the department has
a way to calculate aggregate “department-wide”
state needed for inter-department recovery, these
very different policies can be simultaneously
accommodated.

Just as messages are disseminated through
channels, forming what might be termed dis-
semination domains, reliability is achieved
via recovery domains. A recovery domain D
in scope X may be thought of as a “distributed
recovery protocol running among some nodes
within X that performs recovery-related tasks
for a certain set of topics.”

For example, when some of the students
sitting in a library subscribe to topic T, the
library might create a “local recovery domain
for topic T.” This domain could be “realized,”
for example, as a spanning tree connecting the
laptops of the subscribed students and running
a recovery protocol between them. The library
could internally create many domains, for ex-
ample, many such trees of student’s laptops.

The concept of a recovery domain is dual
to the notion of a channel; here we present the
analogy:

•	 Just like a channel is created to disseminate
messages for some topics T1, T2, …. Tk in
scope X, a recovery domain is created to
handle loss recovery and other reliability
tasks, again for a specific set of topics, and
in a specific scope. Just like there could exist
multiple channels to a scope, for example,
for different sets of topics, there could also
exist multiple recovery domains within
a single reliability scope, each ensuring
reliability for different sets of topics.

•	 Just as channels may be composed of sub-
channels, a recovery domain D defined at a
scope X may be composed of subdomains
D1, D2, …. Dn defined at subscopes of X
(we will call them the members of D).
Each such subdomain Di handles recovery
for a set of subscribers in the respective

85

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

subscope, while D handles recovery across
the subdomains. The hierarchy of recovery
domains reflects the hierarchy of scopes
that have created them, just as channels
are decomposed in ways that reflect the
hierarchy of scopes that have exposed those
channels.

•	 Just as channels are composed of sub-
channels via applying filters assigned by
forwarding policies, a recovery domain
D performs its recovery tasks using a re-
covery protocol. Such a protocol, assigned
to D, specifies how to combine recovery
mechanisms in the subdomains of D into a
mechanism for all of D. Recovery protocols
are defined in terms of how the subdomains
“interact” with each other. We explain how
this is done in more detail in the section
entitled “Hierarchical Approach to Reli-
ability.”

•	 Just like a single channel may be used to
disseminate messages in multiple topics,
a recovery domain may run a single pro-
tocol to perform recovery simultaneously
for a set of topics. In both cases, reusing a
single mechanism (a channel, a token ring,
a tree, etc.) may significantly improve per-
formance due to the reduction in the total
number of control messages and other such
optimizations. Indeed, we implemented and
evaluated this idea in QSM (Ostrowski &
Birman, 2006b, 2006c).

Each individual node is a recovery domain
on its own. On the other hand, in a distributed
scope such as a LAN, the library in our example,
many cases are possible. In one extreme, a single
domain may cover the entire LAN. All internal
nodes could thus form a token ring, or gossip
randomly to exchange ACKs for messages in all
topics simultaneously, and use this to arrange
for local repairs. In the other extreme, separate
domains could be created for every individual
topic; subscribers to the different topics could
thus form separate structures, such as separate
rings and trees, and run separate protocol in-
stances in each of them, exchanging state and
the lost messages. In our system, recovery

domains actually handle recovery for specific
sessions, not just specific topics. Each of the
recovery domains created internally by a scope
performs recovery for some set of sessions, and
these sets are such that for each session in which
this scope has subscribers, there is a recovery
domain in this scope that performs recovery
for this session.

A recovery domain D of a data center
could have as its members recovery domains
created by the LANs in that data center (by the
SMs of these LANs). Note that in this case,
members of D would themselves be distributed
domains, that is, sets of nodes. A recovery
protocol running in D would specify how all
these different sets of nodes should exchange
state and forward lost messages to one another.
Note the similarity to a forwarding policy in a
data center, which would also specify how mes-
sages are forwarded among sets of nodes. As
explained in the section on “Recovery Agents”
and the section on “Implementing Recovery
Domains with Agents,” recovery protocols
are implemented through delegation, just like
forwarding. A concept of a recovery protocol is,
to some extent, dual, symmetric to the notion
of a forwarding policy.

Building the Hierarchy of
Recovery Domains
Before we show how the hierarchical recovery
scheme can be implemented, we need to explain
how domains created at different scopes are re-
lated to each other. As explained in the preceding
section, domains are organized by the relation
of membership: domains in superscopes can be
thought of as containing domains in subscopes
as members. Just as was the case for scopes,
a given domain can have many parents, and
there may be multiple global domains, but for
a given topic, all domains involved in recovery
for that topic always form a tree. Domains
know their members (subdomains) and own-
ers (superdomains), and through a mechanism
described below, also their peers (other domains
that have the same parent). This knowledge of
membership allows the scopes that create those

86

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

domains to establish distributed structures in
an efficient way.

A consistent view of membership is the
basis for many reliable protocols, and could
benefit many others that don’t assume it. Know-
ing the members of a topic helps to determine
which nodes have crashed or disconnected. In
existing group communication systems, this
is usually achieved by a Global Membership
Service (GMS) that monitors failures and
membership changes for all nodes, decides
when to “install” new membership views for
topics, and notifies the affected members of
these new views, including the lists of topic
members. Nodes then use those membership
views to determine, for example, what other
nodes should be their neighbors in a tree, who
should act as a leader, and so forth.

In our framework, the manager of the root
scope for a given topic is responsible for creat-
ing the top-level recovery domain, announcing
when sessions for that topic begin or end, and
so forth. However, if the root SM, which in case
of an Internet-wide scope would “manage” the
entire Internet, had to process all subscriptions,
and respond to every failure across the Internet,
it would lead to a non-scalable design: beyond
a certain point the system would be constantly
in the state of reconfiguration, trying to change
membership or install new sessions, and hence
unable to make useful progress. It would also
violate the principle of isolation: the higher-level
scopes would process information that should
be local, for example, a corporate network
would have to know which nodes in data cen-
ters are subscribers, whereas according to our
architectural principles, the administrator of a
corporate network, and the policies defined at
this level, should treat the entire data centers
as black boxes.

To avoid the problem just mentioned,
rather than collecting all information about
membership in a topic T and processing it
centrally, we distribute this information across
all scope managers in the hierarchy of scopes
for topic T (recall this hierarchy defined in the
section entitled “The Hierarchy of Scopes”).
Each SM thus has only a partial membership

view for each topic and session. This scheme
is outlined below.

In the reliability framework, if a scope X
subscribes to a topic T, it first selects or creates
a local recovery domain D that will handle the
recovery for topic T locally in X, and then sends
a request to one of its parent scopes, some Y,
asking to subscribe this specific domain, to topic
T. At this point, it is not significant which of its
parent scopes X directs the request to. X may
be manually setup by an administrator with the
list of parent scopes, and to send requests in all
topics that have names matching a certain pattern
to a given parent, or it could use an automated,
or a semi-automated scheme to discover the
parent scopes that it should subscribe with.
Exactly how such a discovery scheme can be
most efficiently constructed is beyond the scope
of this article, but we do hope to explore the
issue in a future work.

The superscope Y processes the X’s sub-
scription request jointly with requests from other
of its subscopes, for example, batching them
together for efficiency. It then either joins X and
other subscopes to an existing recovery domain
or creates a new one, some D’. When joining an
existing recovery domain, Y follows a special
protocol, some details of which are given in
the section entitled “Reconfiguration”. In any
case, scope Y informs all scopes of the new
membership of domain D’. So for each recovery
domain D’’ that is a member of D’, the subscope
of Y that owns this domain will be notified by
Y that domain D’ changed membership, and
will be given the list of all subdomains of D’
together with the names of the scopes that own
those subdomains. Finally, if domain D’ has just
been created, and scope Y is not the root scope
for the topic, Y itself sends a request to one of
its parent scopes, asking to subscribe domain
D’ to the topic. Topic subscriptions thus travel
all the way to the root scope for the topic, in a
cascading manner, creating a tree of recovery
domains in a bottom-up fashion.

In our example, when a student A sitting in
a library L enters a virtual room T, A’s laptop
creates a local recovery domain DA, and sends a
request to the library server. Suppose that there

87

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

are other students in the library that are already
subscribed to T, so the library server already has
a recovery domain DL that performs recovery
in topic T. In this case all that is left to do for
the library server is to update the membership
of DL, and to inform student A’s laptop, as well
as the laptops of the other students subscribed
to T, of the new membership of DL, so that the
laptops can update the distributed recovery
structure, and build a new distributed structure.
For example, if laptops used a spanning tree, or
a token ring, to compare the sets of messages
they have received and exchange messages
between neighbors, the spanning tree or the
ring may be updated to include the new laptop.
On the other hand, suppose that student A is
the first in the library to subscribe to T. In this
case, the library server creates a new recovery
domain DL, with DA as its only member, and
sends its own request, in a cascading manner,
to a campus server C, asking to subscribe DL
to topic T, and so on.

The above procedure effectively constructs
a hierarchy of subdomains, with the property
that for each topic T, the recovery domains

subscribed to T form a tree. At the same time,
a membership hierarchy is built in a distributed
manner. Specifically, for each domain µ in
some scope S, S will maintain a list of the form
{ X1:β1, X2:β2, …, XK:βK }, in which β1, β2,
…, βK are the members, that is, subdomains of
domain µ, and X1, X2, …, XK are the names of
the scopes that own those subdomains (i.e., that
created them). In the process of establishing
this structure, each of the scopes Xi receives
the list, along with any future updates to it.
This information is not “pushed” all the way
down to the leaf nodes. Instead, every scope
maintains the membership of the domains it
created (so, for example, scope S maintains
the list mentioned above), plus a copy of the
membership of all superdomains of the domains
it created (so, for example, each Xi has a copy
of the list above), but not the membership of
any domains created below it (so, for example,
S would not track the membership of any of the
domains β1, β2, …, βK), more than one level
above it (so, for example, while scope S would
know what are the peers of its own domain µ,
scopes X1, X2, …, XK would not know those

Figure 25. Node A subscribes to topic T with the library L. Library L subscribes with campus
C. Membership information and view numbers are passed one level down (never up) the hier-
archy.

A
sm

sm
L

1

subscribe
A: to T

A
sm

sm
L

1

subscribe
L: to T

sm
C

sm

1
1 =

{A: }

A
sm

sm
L

1

sm

1

1 =
{L: }

C C
1

A
sm

sm
L

sm
C

1

1

1

B
sm 1

A
sm

sm
L

sm
C

1

1

1

B
sm 1

subscribe
B: to T

2

2=
{A: ,B: }

88

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

peers, because this information is, logically,
two levels “above”), or any internal details
of its peers (so, for example, while all of X1,
X2, …, XK would know the membership of µ,
that is, the entire list { X1:β1, X2:β2, …, XK:
βK }, they would not know the membership
of any of the domains β1, β2, …, βK besides
their own; they only know the names of their
peer domains).

Figure 25 shows an example of the structure
the system would construct in a scenario similar
to the one above. Laptop A creates a new domain
α, which may have a version number, like any
other domain, say α1. Then, A directs a request
subscribe A:α to T to the library L. Note that
the version number of α was not included in the
request to L. This is a detail internal to A that L
does not need to know about. Now, the library
creates a new domain μ, and gives it a version
number, say μ1, and directs subscribe L:μ to T
to the campus C (omitting the version number).
Concurrently, L notifies A that A:α is now a
member of μ1. This means that a domain μ has
been created at L, and version (view) number 1
of μ has just a single member A:α. Similarly,
C creates a new domain ε with initial version
ε1 that includes a single member L:μ and noti-
fies L. Later, another laptop B in the library L
also joins topic T. This time, no request is sent
to campus C. The library handles the request
internally. A new version (view) μ2 of domain μ
is created with two members A:α and B:β, and
both A and B are notified of this new view. A
and B undergo a special protocol to “transition”
from recovery domain μ1 to recovery domain μ2
in a reliable manner, and the protocol running
for μ1 eventually quiesces. The protocols that
run at higher levels are unaffected. Domain
ε1 still has only a single member L:μ, and the
view change that occurred internally in domain
μ is transparent to C, and to the protocols that
run at this level, and handled internally in the
library L, between nodes A and B.

By keeping the information about the hi-
erarchy of domains distributed, and by limiting
the way in which this information is propagated
to only one level below, we remain faithful to
the principles of isolation and local autonomy

laid out earlier. At the same time, this enables
significant scalability and performance ben-
efits. Because parent domains are oblivious
to the membership of their subdomains, and
reconfiguration can often be handled internally,
as in the example above, churn and failures in
lower layers of the hierarchy do not translate to
churn and failures in higher layers. A failure of
a node or a mobile user with a laptop joining or
leaving the system does not need to cause the
Internet-wide structure of recovery domains,
potentially spanning across tens of thousands
of nodes, to fluctuate and reconfigure.

As stated earlier, a single recovery domain
may perform recovery for multiple topics (ses-
sions), simultaneously. Additionally, recall that
the domain hierarchy, with multiple topics, may
not be a tree. We now present an example of how
and why this could be the case. Suppose that
nodes in a certain scope L are clustered based
on their interest. Nodes A and B would be in the
same cluster if A and B subscribed to the same
topics. Clusters are thus defined by sets of topic
names, for example, cluster RXY would include
nodes that have subscribed to topics X and Y,
and that have not subscribed to any other topics
besides these two. The set of nodes subscribed
to each topic would thus include nodes in a
certain set of clusters. We might even think of
as topics “including” clusters, and the clusters
including the individual nodes (Figure 26). Ac-
cordingly, a scope manager in L might create a
separate recovery domain for each cluster, and
then a separate recovery domain for each topic.
If node A subscribes to topic X, and nodes B
and C subscribe to topic Y, then L could cre-
ate a recovery domain RX for cluster RX and a
recovery domain RXY for cluster RXY. Domain
RX would have a single member A:α, while
RXY would have two members, B:β and C:φ.
Scope L would also create a local domain L:X
for topic X and L:Y for topic Y. Domain L:X
would have members L:RX and L:RXY while
domain L:Y would have a single member L:
RXY. Domains L:X and L:Y defined at scope L
could themselves be members of some higher-
level domains, defined at a higher-level scope
C, and so on. Now, the protocol running in

89

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

domain RXY at scope L, for example, would
perform recovery simultaneously for topics X
and Y. As said earlier, the protocol running in
RXY would also be used to calculate aggregate
information about domain RXY, to be used in
the higher-level protocols. In our example, the
information collected by the protocol running in
L:RXY would be used by two such protocols, a
protocol running in domain L:X and a protocol
running in L:Y.

While the structure just described may
seem complex, the ability to perform recovery
in multiple topics simultaneously is important
in systems like our virtual worlds, where the
number of topics (virtual rooms) may be very
large. QSM, mentioned previously, uses the
architecture just presented, and is able to scale
to thousands of publish-subscribe topics.

To complete the discussion of recovery
hierarchy, we now turn to sessions. As explained
earlier, in our architecture recovery is always
performed in the context of individual ses-
sions, not topics, because whenever a session
changes, so can the reliability properties of the
topic. The creation of the domain hierarchy,
outlined above, is mostly independent of the
creation of sessions. The only case when these
two processes are synchronized arises when the
last member, across the entire Internet, leaves
the topic, or when the first member rejoins the
topic after a period when no members existed,
for in such cases, it is impossible to handle the
event via a local reconfiguration between mem-
bers (such as transferring the state from some

existing member to the newly joining member,
or “flushing” any changes from the departing
member to some of the existing members).
Such an event will force an existing session to
be flushed or a new session to be created.

In any case, sessions for a topic T are
created by the scope that serves as the root for
T. The root maintains topic metadata and the
information about sessions in persistent stor-
age. It assigns new session number whenever
a new session is created, and then installs the
new session and flushes the existing session in
the top-level recovery domain that it created to
perform recovery in topic T. More on how the
installing and flushing of a session are realized
will be explained in the section “Implement-
ing Recovery Domains with Agents.” Now,
concurrently with installing of a new session
and flushing of the old session in the top-level
recovery domain, the scope manager passes the
session change event further, to the subdomains
that are members of this global recovery domain,
by communicating with the scope managers
that created those subdomains. This notifica-
tion travels down the hierarchy of recovery
domains in a cascading manner, until the ses-
sion change events are disseminated across the
entire structure.

Recovery Agents
The reader will have noticed by now that
the structure of recovery domains we’ve just
described “exists” only virtually, inside the
scope managers. These recovery domains are

Figure 26. A hierarchy of recovery domains in a system that clusters nodes based on interest

A
sm

sm
L

RX

B
sm

B

C
A

C
sm

RXY

X YX Y

RX RXY RY

90

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

“implemented” by physical protocols running
directly between physical nodes, the publishers
and subscribers, in a manner similar to how
we implemented channels between scopes, by
delegating the tasks that the recovery domains
are responsible for to physical nodes. Just as
channels between scopes are “implemented”
by physical connections between nodes that
can be constrained with filter chains and that
are “installed” in the physical nodes by their
superscopes, in the reliability framework re-
covery domains are “implemented” by agents.
Similarly to filters, these agents are also small,
“downloadable” components, which are in-
stalled on physical nodes by their superscopes.
Before going into details of how precisely this
is done, however, we first explain how exist-
ing recovery protocols can be modeled in a
hierarchical manner that is compatible with
our architecture.

Modeling Recovery Protocols
The reliability framework is based on an abstract
model of a scalable distributed protocol dealing
with loss recovery and other reliability proper-
ties. In this model, a protocol such as SRM,
RMTP, virtual synchrony, or atomic commit,
is defined in terms of a group of cooperating
peers that exchange control messages and can
forward lost packets to each other, and that may
perhaps interact with a distinguished node, such
as a sender or some node higher in a hierarchy,
which we will refer to as a controller (Figure
27). The controller does not have to be a separate
node; this function could be served by one of the
peers. The distinction between the peers and the
controller may be purely functional. The point

is that the group of peers, as a whole, may be
asked to perform a certain action, or calculate
a value, for some higher-level entity, such as a
sender, a higher-level protocol, or a layer in a
hierarchical structure. Examples of such actions
include retransmitting or requesting a retrans-
mission for all peers, reporting which messages
were successfully delivered to all peers, which
messages have been missed by all peers, and so
forth. Irrespectively of how exactly the interac-
tion with the controller is realized, it is present
in this form or another in almost every protocol
run by a set of receivers. We shall refer to the
possible interactions between the peers and the
controller as the upper interface. Notice that
some reliability protocols aren’t traditionally
thought of as hierarchical; we would view
them as supporting only a one-level hierarchy.
The benefit of doing so is that those protocols
can then be treated side by side with protocols
such as SRM and RMTP, in which hierarchy
plays a central role.

Each peer inspects and controls its local
state. Such state could include, for example, a
list of messages received, and perhaps copies
of those that are cached (for loss recovery),
the list and the order of messages delivered,
and so forth. Operations that a peer may issue
to change the local state could include retriev-
ing or purging messages from cache, marking
messages as deliverable, delivering some of the
previously missed message to the application,
and so forth. We refer to such operations, used
to view or control the local state of a peer, as a
bottom interface.

In protocols offering strong guarantees,
peers are typically given the membership of

Figure 27. A group of peers in a reliable protocol

peer peer

app app

peer

app

peer

app

group
of peers

local state

controller communication
with controller

communication
between peers

91

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

their group, received as a part of the initializa-
tion process, and subsequently updated via
membership change events. Peers send control
messages to each other to share state or to
request actions, such as forwarding messages.
Sometimes, as in SRM, a multicast channel to
the entire peer group exists.

To summarize, in most reliable protocols,
a peer could be modeled as a component that
runs in a simple environment that provides
the following interface: a membership view
of its peer group, channels to all other peers,
and sometimes to the entire group, a bottom
interface to inspect or control local state, and
an upper interface, to interact with the sender
or the higher levels in the hierarchy concerning
the aggregate state of the peer group (Figure 28).
In some protocols, certain parts of this interface
might be unavailable, for example, in SRM
peers might not know other peers. The bottom
and upper interfaces also would vary.

This model is flexible enough to capture
the key ideas and features of a wide class of
protocols, including virtual synchrony. How-
ever, because in our framework protocols must
be reusable in different scopes, they may need
to be expressed in a slightly different way, as
explained below.

In RMTP, the sender and the receivers
for a topic form a tree. Within this tree, every
subset of nodes consisting of a parent and its
child nodes represents a separate local recovery
group. The child nodes in every such group send
their local ACK/NAK information to the parent
node, which arranges for a local recovery within

the recovery group. The parent itself is either
a child node in another recovery group, or it is
a sender, at the root of the tree. Packet losses
in this scheme are recovered on a hop-by-hop
basis, either top-down or bottom-up, one level
at a time. This scheme distributes the burden of
processing the individual ACKs/NAKs, and of
retransmissions, which is normally the respon-
sibility of the sender. This improves scalability
and prevents ACK implosion.

There are two ways to express RMTP in our
model. One approach is to view each recovery
group consisting of a parent node and its child
nodes as a separate group of peers (Figure 29).
Since internal nodes in the RMTP tree simulta-
neously play two roles, a “parent” node in one
recovery group and a “child” node in another,
we could think of each node as running two
“agents,” each representing a different “half”
of the node, and serving as a peer in a separate
peer group. In this perspective it would be
not the nodes, but their “halves” that would
represent peers. Every group of peers, in this
perspective, would include the “bottom agent”
of the parent node, and the “upper agents” of its
child nodes. When a node sends messages to its
child nodes as a result of receiving a message
from its parent, of vice versa, we may think
of those two “agents” as interacting with each
other through a certain interface that one of
them views as upper, and the other as bottom.
These two types of agents play different roles
in the protocol, as explained below.

The bottom agent of each node interacts
via its bottom interface with the local state of

Figure 28. A peer modeled as a component living in abstract environment (events, interfaces,
and so forth)

bottom
interface

membership
change

notifications

control
messages
from other

peers

upper
interface

(unicast)
channels to
other peers
in the group

peer

(multicast)
channel to the
group of peers

92

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

the node. It also serves as a distinguished peer
in the peer group, composed of itself and the
upper agents of the child nodes. A protocol
running in this peer group is used to exchange
ACKs between child nodes and the parent node
and arrange for message forwarding between
peers, but also to calculate collective ACKs for
the peer group, that is, which messages were not
recoverable in the group. This is communicated
by the bottom agent, via its upper interface,
to the upper agent. The upper agent of every
node interacts via its bottom interface with the
bottom agent. What the upper agent considers
as its “local state” is not the local state of the
node. Instead, it is the state of the entire recovery
group, including the parent and child nodes, that
is collected for the upper agent by the bottom
agent though the protocol that the bottom agent
runs with the upper agents in child nodes. Such
interactions, between a component that is logi-
cally a part of a “higher layer” (“upper agent”)
with components that reside in a “lower layer”
(“bottom agent”), both components co-located
on the same physical node, and connected via
their upper and bottom interfaces, are the key
element in our architecture.

At the top of this hierarchy is the sender, the
root of the tree. The bottom agent of the sender
node collects for the upper agent the state of
the top-level recovery group, which subsumes
the state of the entire tree, and passes it to the
upper agent through its upper interface. The
upper agent of the sender can thus be thought
of as “controlling” through its bottom interface
the entire receiver tree.

The second way to model RMTP, which
builds on the concepts we just introduced,
captures the very essence of our approach to
combining protocols. It is similar to the first
model, but instead of the “upper” and “bot-
tom” agents, each node can now host multiple
agents, again connected to each other through
their “bottom” and “upper” interfaces. Each
of these agents works at a different level. We
may think of every node as hosting a “stack”
of interconnected agents (Figure 30). In this
structure, the sender would not be the root of the
hierarchy any more. Rather, it would be treated
in the very same way as any of the receivers. The
same structure could feature multiple senders,
and a single recovery protocol would run for
all of them simultaneously.

Figure 29. RMTP expressed in our model. A node hosts “agents” playing different roles

Figure 30. Another way to express RMTP. Each node hosts multiple “agents” that act as peers
at different levels of the RMTP hierarchy

child nodes

parent node group of peers upper agent
(one peer)

bottom agent
(another peer)

groups
of peers

a node with
three agents

peers (agents) working
at different levels

93

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

Focusing for a moment on a concrete ex-
ample, assume that nodes reside in three LANs,
which are part of a single data center (Figure
30). Each of these administrative domains is a
scope. Each node hosts, in its “agent stack,” a
“node agent” (bottom level, green, Figure 30).
The “local state” of the node agent, accessed by
the node agent through its bottom interface, is
the state of the node, such as the messages that
the node received or missed, and so forth. Now,
in each LAN, the node agents of all nodes in
that LAN form a peer group and communicate
with each other to compare their local state, or
to arrange for forwarding messages between
them. One of these node agents in each LAN
serves as a leader (or “parent”), and the others
serve as subordinates (or “children”). The leader
collects the aggregate ACK/NAK information
about the LAN from the entire peer group.
The node that hosts the leader also runs anther,
higher-level component that we shall call a
“LAN agent” (middle level, orange, Figure 30).
The LAN agent accesses, through its bottom
interface, the aggregated state of the LAN that
the “leader” node agent, co-located with it on
the same “leader” node, calculated. The LAN
agent can therefore be thought of as controlling,
through its bottom interface, the entire LAN,
just like a node agent was controlling the lo-

cal node. Now, all the LAN agents in the data
center again form a peer group, compare their
state (which are aggregate states of their LANs),
arrange for forwarding (between the LANs),
and calculate aggregate ACK/NAK informa-
tion about the data center. Finally, one of the
nodes that host the LAN agents hosts an even
higher-level component, a “data center agent”
(top level, blue, Figure 30). The aggregate state
of the data center, collected by the peer group
of LAN agents, is communicated through the
upper interface of the “leader” LAN agent to the
data center agent; the latter can now be thought
as controlling, through its bottom interface, the
entire data center. In a larger system, the hier-
archy could be deeper, and the scheme could
continue recursively.

Note the symmetry between the different
categories of agents. In essence, for every entity,
be it a single node, a LAN, or a data center,
there exists exactly one agent that collects,
via lower-level agents, the state of the entity
it represents, and that acts on behalf of this
entity in a protocol that runs in its peer group.
The agent that represents a distributed scope is
always hosted together with one of the agents
that represent subscopes. By now, the reader
should appreciate that this structure corresponds
to the hierarchy of recovery domains we intro-

Figure 31. A node as a “container” for agents

LAN

node

agent
representing

the node

agent
representing

the LAN

agent representing
the data center

data
center

connection between
peer agents

94

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

duced in the section “Building the Hierarchy
of Recovery Domains.” In our design, every
recovery domain is represented, as a part of some
higher-level domain, by an agent that collects
the state of the domain, which it represents,
and acts on behalf of it in a protocol that runs
among the agents representing other recovery
domains that have the same parent (Figure 31).
In order to be able to do their job, these agents
are updated whenever a relevant event occurs.
For example, they receive a membership change
notification, with the list of their peer agents,
when a new recovery domain is created. To
this end, each agent maintains a bi-directional
channel from the scope that created the recovery
domain represented by this agent, down to the
node that hosts the agent, along what we call
an agent “delegation chain.”

Note also that as long as the interfaces used
by agents to communicate with one-another are
standardized, each group of agents could run
an entirely different protocol, because the only
way the different peer groups are connected
with each other is through the bottom and up-
per interfaces of their agents. For example, in
smaller peer groups with small interconnect
latency agents could use a token ring protocol,
whereas in very large groups over a wide area
network, with frequent joins and leaves and
frequent configuration changes agents might
use randomized gossip protocol. This flexibility
could be extremely useful in settings where local
administrators control policies governing, for

example, use of IP multicast, and hence where
different groups may need to adhere to differ-
ent rules. It also allows for local optimizations.
Protocols used in different parts of the network
could be adjusted so as to match the local net-
work topology, node capacities, throughput or
latency, the present of firewalls, security poli-
cies, and so forth. Indeed, we believe that the
best approach to building high-performance
systems on the Internet scale is not through
a uniform approach that forces the use of the
same protocol in every part of the network,
but by the sorts of modularity our architecture
enables, because it can leverage the creativity
and specific domain expertise of a very large
class of users, who can tune their local protocols
to match their very specific needs.

The flexibility enabled by our architecture
also brings a new perspective on a node in a
publish-subscribe system. A node subscrib-
ing to the same topics in different portions
of the Internet, joining an already established
infrastructure (existing recovery domains and
agents implementing them running among
existing subscribers) may be forced to follow
a different protocol, potentially not known in
advance. Indeed, if we exploit the full power
of modern runtime platforms, a node might be
asked to use a protocol that must first be down-
loaded and installed, in plug-and-play fashion.
Because in our architecture, elements “installed”
in nodes by the forwarding framework (filters
and channels) and by the recovery framework
(agents) are very simple, and communicate
with the node via a small, standardized API
(recall the abstract model of a peer in Figure
28, which can also be interpreted as the abstract
model of an agent in the recovery framework),
these elements can be viewed as downloadable
software components.

Thus, a filter or a recovery agent can be a
piece of code, written in any popular language,
such as Java or one of the family of .NET lan-
guages, that exposes (to the node hosting it, or to
agents above and below in the agent stack) and
consumes a standardized interface, for example,
described in WSDL. Such components could be
stored in online repositories, and downloaded

Figure 32. A hierarchy of recovery domains
and agents implementing them

APPLIcAtIon

node

agent

95

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

as needed, much as a Windows XP user who
tries to open a file in the new Vista XPS format
will be prompted to download and install an
XPS driver, or a visitor to a Web page that uses
some special Active-X control will be given an
opportunity to download and install that control.
In this perspective, the subscribers and publish-
ers that join a publish-subscribe infrastructure,
rather than being applications compiled and
linked with a specific library that implements a
specific protocol, and thus very tightly coupled
with the specific publish-subscribe engine, can
now be thought of as “empty containers” that
provide a standard set of hookups to host dif-
ferent sorts of agents. Nodes using a publish-
subscribe system are thus runtime platforms,
programmable “devices,” elements of a large,
flexible, programmable, dynamically reconfigu-
rable runtime environment, offering the sort of
flexibility and expressive power unseen in prior
architectures.

We believe that in light of the huge success
of extensible, component-oriented program-
ming environments, standards for distributed
eventing must incorporate the analogous forms
of flexibility. To do otherwise is to resist the
commercial, off-the-shelf (COTS) trends, and
history teaches that COTS solutions almost
always dominate in the end. It is curious to
realize that although Web services standards
were formulated by some of the same companies
that are leaders in this componentized style of
programming, they arrived at standards propos-
als that turn out to be both rigid and limited in
this respect.

One part of our architecture, for which API
standardization options may not be obvious,
includes the upper and bottom interfaces. As the
reader may have realized, the exact form of these
interfaces would depend on the protocol. For
example, while a simple protocol implementing
the “last copy recall” semantics of the sort we
used in some of our examples require agents
to be able to exchange a simple ACK/NAK
information, more complex protocols may need
to determine if messages have been persisted to
stable storage, to be able to temporarily suppress
the delivery of messages to the application,

control purging messages from cache, decide
on whether to commit a message (or an opera-
tion represented by it) or abort it, and so forth.
The “state” of recovery domain and the set of
actions that can be “requested” from a recovery
domain may vary significantly.

As it turns out, however, defining the up-
per and bottom interfaces in a standard way is
possible for a wide range of protocols. In our
technical report (Ostrowski et al., 2006), we
have outlined elements of a novel architecture
being developed by the three authors of this
article, called the “QuickSilver Properties
Framework,” and based on the very architecture
presented here, that achieves precisely this form
of standardization. Moreover, the properties
framework allows a large class of protocols,
including such protocols as virtually synchro-
nous multicast and multicast with transaction
semantics, and so forth, to be implemented in
a declarative manner, using a special, domain-
specific rule-based language, without requiring
that the developer worry about performance and
scalability aspects.

The key idea behind this approach is based
on the observation that the state of most distrib-
uted protocols can be accurately described by
a set of “properties.” Properties are essentially
variables that can be associated with various
distributed entities (the reader might think of
these entities as recovery domains, which they
would indeed be, were the system described
there to be implemented within the architecture
described here). An example of a property is
Received(x), parameterized by an entity name
x. The value of this variable would be the set
of identifiers of all messages that have been
received by at least one node that is still in x.
Other examples, values of all of which would
again be sets of message identifiers, include
Cached(x) – the messages cached at some nodes
in x, Cleaned(x) – the messages received, but
no longer cached in x, Stable(x) – messages
received by all nodes in x, and so on.

In Ostrowski et al. (2006), we argue that
the logic of most protocols could be modeled
as a set of rules that determine how the values
of such properties are created and propagated.

96

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

For example, some properties are aggregated.
For a distributed entity x, Received(x) can be
defined as the set sum of Received(y) for all
y that are members of x. If this rule is applied
recursively to a distributed entity, it will yield
the set of messages that are received by any
node in the span of that entity, as requested.
Similarly, Stable(x) can be defined as the
set intersection of Stable(y) for all y that are
members of x. A rule that implements message
cleanup could be modeled as CanClean(root)
← Stable(root), where root is the top-level
entity (the top-level recovery domain), and
CanClean(x) is a property, the value of which
is disseminated rather than aggregated, that is,
passed in a top-down fashion, from the root
down to the individual nodes. As it turns out,
such rules can be implemented on top of the
architecture outlined in this article, using a
special version of an agent that supports a few
simple mechanisms, such as different flavors of
property aggregation or dissemination, and the
ability to produce a property based on a value
of a certain expression, either periodically, or
in response to events, such as receiving a mes-
sage, and so forth.

We believe that even without using the
properties framework, a set of properties, ex-
pressed in a standard manner, including their
“types,” is a good candidate for the upper or
bottom interface. Agents could still be imple-
mented in an imperative manner, explicitly
use the messaging API and the membership
notifications from the scopes controlling them,
but using the “properties” API to interact with
other agents in the agent stack. The details of
how exactly such interface could be defined
is, however, beyond the scope of this article.
Moreover, other similarly expressive schemes
may exist. Indeed, it is conceivable that agents
co-located on the stack could be able to “nego-
tiate” the manner in which they interact, and
download appropriate “converter” components
if necessary to ensure that their upper and bottom
interfaces match against each other.

To conclude this section, we now turn to
recovery in many topics at once. Throughout
this section, the discussion focused on a single

topic, or a single session, but as mentioned
before, the recovery domains created by the
reliability framework, and hence the sets of
agents that are instantiated to “implement” those
recovery domains, may be requested to perform
recovery in multiple sessions at once, for rea-
sons of scalability. As mentioned earlier, after
recovery domains are established, and agents
instantiated, the root scope may issue requests
to install or flush a session, passed along the
hierarchy of domains, in a top-down fashion.
These notifications are a part of the standard
agent API. Agents respond to the notifications by
introducing or eliminating information related
to a particular session in the state they maintain
or control messages they exchange.

For example, agents in a peer group could
use a token ring protocol and tokens circulating
around that ring could carry a separate recovery
record for each session. After a new session
would get installed, the token would start to
include the recovery record for that session.
When a flushing request would arrive for a
session, the session would eventually quiesce,
and the recovery record related to that session
would be eliminated from the tokens, and from
the state kept by the agents. The exact manner
in which introducing a new session and flushing
are expressed would depend on how the agent
implements it. The available agent implementa-
tion might not support parallel recovery in many
sessions at once; in this case, the scope manager
could simply create a separate recovery domain
for each topic, or even for each session, so that
separate agents are used for each.

If an agent performs recovery for many
sessions simultaneously, its “upper” and “bot-
tom” interfaces would be essentially arrays
of interfaces, one for each session. Likewise,
agent stacks might no longer be vertical. The
stacks for a scenario of Figure 26 are shown
on Figure 33. Here, agents on node B form a
tree. Two parts of the upper interface of one
agent that correspond to two different sessions
that the agent is performing recovery for, are
connected with two bottom interfaces of two
independent higher-level agents. At this point,
the structure depicted in this example may seem

97

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

confusing. In the section entitled “Implement-
ing Recovery Domains with Agents,” we come
back to this scenario, and we explain how such
structures are built.

Implementing Recovery Domains
with Agents
In the section entitled “Building the Hierarchy
of Recovery Domains,” we’ve explained how
a hierarchy of recovery domains is built, such
that for each session, there is a tree of domains
performing recovery for that session. In the sec-
tion on “Recovery Agents,” we indicated that
the recovery domains are “implemented” with
agents, and in the section entitled “Modeling
Recovery Protocols,” we explained how recov-
ery protocols can be expressed in a hierarchical
manner, by a hierarchy of agents that represent
recovery domains. We now explain how agents
are created.

A distributed recovery domain D in our
framework (i.e., a domain different than a
node, not a leaf in the domain hierarchy) will
correspond to a peer group. When D is created
at some scope X, the latter selects a protocol

to run in D, and then every subdomain Yk:Dk
of D is requested to create an agent that acts
as a “peer Yk:Dk within peer group X:D”. We
will refer to an agent defined in this manner as
“Yk:Dk in X:D.” Note how the membership
algorithm provides membership view at one
level “above,” that is, the scope that owns a
particular domain would learn about domains in
all the sibling scopes. This is precisely what is
required for each peer Yk:Dk in a peer group X:
D to learn the membership of its group. Hence,
the scopes Yk that own the different domains
Dk will learn of the existence of domain X:
D, each of them will realize that they need to
create an agent “Yk:Dk in X:D,” and each of
them will receive from X all the membership
change events it needs to keep its agent with
an up to date list of its peers.

For example, on Figure 26, domains B:
β and C:φ are shown as members of L:RXY,
so according to our rules, agents “B:β in L:
RXY” and “C:φ in L:RXY” should be created
to implement L:RXY. Indeed, the reader will
find those agents on Figure 33, in the protocol
stacks on nodes B and C.

Figure 33. Agents stacks that are not simply vertical that may be created on nodes in the scenario
from Figure 26. Agents are shown as gray boxes, with the parts of their upper or bottom interfaces
corresponding to particular sessions as small yellow boxes. On node B, the bottom-level agent
connects the two parts of its upper interface to two different higher-level agents, one to each of
them. The peer groups are circled with thick dotted red lines

X1 Y1

B: in L:RXY

X1 Y1

App on B

X1 Y1

L:RXY in L:X
X1

X1

L:RXY in L:Y
Y1

Y1

L:Y in C:Y
Y1

Y1

X1 Y1

C: in L:RXY

X1 Y1

App on C

X1 Y1

X1

A: in L:RX

X1

App on A

X1

L:RX in L:X
X1

X1

L:X in C:X
X1

X1

Node A Node CNode B

98

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

When the manager of a scope Y discov-
ers that an agent should be created for one of
its recovery domains Dk that is a member of
some X:D, two things may happen. If X man-
ages a single node, the agent is created locally.
Otherwise, Y delegates the task to one of its
subscopes. As a result, the agents that serve
as peers at the various levels of the hierarchy
are eventually delegated to individual nodes,
their definitions downloaded from an online
repository if needed, placed on the agent stack
and connected to other agents or to the applica-
tions. We thus arrive at a structure just like in
Figure 30, Figure 31, Figure 32, and Figure 33,
where every node has a stack of agents, linked
to one another, with each of them operating at
a different level.

While agents are delegated, the records
of it are kept by the scopes that recursively
delegated the agent, thus forming a delegation
chain. This chain serves as a means of com-
munication between the agent and the scope
that originally requested it to be created. The
scope and the agent can thus send messages
to one another. This is the way membership
changes or requests to install or flush sessions
can be delivered to agents.

When the node hosting a delegated agent
crashes, the node to which that agent is del-
egated changes. That is, some other node is
assigned the role of running this agent, and will
instantiate a new version of it to take over the
failed agents responsibilities. Here, we again
rely on the delegation chain. When the manager
of the superscope of the crashed node (e.g., a
LAN scope manager) detects the crash, it can
determine that an agent was delegated to the
crashed node, and it can request the agent to
be redelegated elsewhere. Since our frame-
work would transparently recreate channels
between agents, it would look to other peers
agents as if the agent lost its cached state (not
permanently, for it can still query its bottom
interface and talk to its peers). On the one part,
this frees the agent developer from worrying
about fault-tolerance. On the other part, this
requires that agent protocols be defined in a
way that allows peers to crash and “resume”

with some of their state “erased.” Based on our
experience, for a wide class of protocols this is
not hard to achieve.

Reconfiguration
Many large systems struggle with costs triggered
when nodes join and leave. As a configura-
tion scales up, the frequency of join and leave
events increases, resulting in a phenomenon
researchers refer to as “churn.” A goal in our
architecture was to support protocols that handle
such events completely close to where they
occur, but without precluding global reactions
to a failure or join if the semantics of the pro-
tocol demand it. Accordingly, the architecture
is designed so that management decisions and
the responsibility for handling events can be
isolated in the scope where they occurred.
For example, in the section on “Building the
Hierarchy of Recovery Domains,” we saw a
case in which membership changes resulting
from failures or nodes joining or leaving were
isolated in this manner. The broad principle is to
enable solutions where the global infrastructure
is able to ignore these kinds of events, leaving
the local infrastructure to handle them, without
precluding protocols in which certain events do
trigger a global reconfiguration.

An example will illustrate some of the
tradeoffs that arise. Consider a group of agents
implementing some recovery domain D that has
determined that a certain message m is locally
cached, and reported it as such to a higher-
level protocol. But now suppose that a node
crashed and that it happens to have been the
(only) one on which m was cached. To some
extent, we can hide the consequences of the
crash: D can reconfigure its peer group to drop
the dead node and reconstruct associated data
structures. Yet m is no longer cached in D and
this may have consequences outside of D: so
long as D cached m, higher level scopes could
assume that m would eventually be delivered
reliably in D; clearly, this is no longer the case.
Thinking back to the properties framework, the
example illustrates the risk that a property such
as Cached(x), defined earlier, might not grow

99

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

monotonically: here, Cached(x) has lost an
item as a consequence of the crash

This is not the setting for an extended
discussion of the ways that protocols handle
failures. Instead, we limit ourselves to the
observations already made: a typical protocol
will want to conceal some aspects of failure
handling and reconfiguration, by handling
them locally. Other aspects (here, the fact that
m is no longer available in scope D) may have
global consequences and hence some failure
events need to be visible in some ways outside
the scope. Our architecture offers the developer
precisely this flexibility: events that he wishes
to hide are hidden, and aspects of events that
he wishes to propagate to higher-level scopes
can do so.

Joining presents a different set of chal-
lenges. In some protocols, there is little notion
of state and a node can join without much fuss.
But there are many protocols in which a joining
node must be brought up to date and the associ-
ated synchronization is a traditional source of
complexity. In our own experience, protocols
implementing reconfiguration (especially joins)
can be greatly facilitated if members of the re-
covery domains can be assigned certain “roles”.
In particular, we found it useful to distinguish
between “regular” members, which are already
“up to date” and are part of an ongoing run of
a protocol, and “light” members, which have
just been added, but are still being brought up
to date.

When a new member joins a domain,
its status is initially “light” (unless this is the
first membership view ever created for this
domain). The job of the “light” members, and
their corresponding agents, is to get up-to-date
with the rest of their peer group. At some point,
presumably when the light members are more
or less synchronized with the active ones, the
“regular” agents may agree to briefly suspend
the protocol and request some of these “light”
peers to be promoted to the “regular” status.

The ability to mark members as “light” or
“regular” is a fairly powerful tool. It provides
agents with the ability to implement certain
forms of agreement, or consensus protocols

that would otherwise be hard to support. In
particular, this feature turns out to be sufficient
to allow our architecture to support virtually
synchronous, consensus-like, or transactional
semantics.

Ordering
As mentioned in the section on “Incorporating
Reliability, Ordering, and Security,” ordering is
implemented independently of dissemination.
When a publisher submits a message to the
dissemination framework, it simultaneously
submits an ordering request into the ordering
framework. An ordering request is a small
object that lists the sender identifier, message
topic and a sequence number. In response to
the ordering requests, the ordering framework
produces orderings. Orderings are small objects
assigning indexes to batches of messages, per-
haps coming from different publishers. These
orderings are then delivered to the interested
subscribers (Figure 34).

Because the ordering framework is de-
signed to process requests from different pub-
lishers together, it is possible to, for example,
totally order messages in each topic, or even
totally order messages across different topics.

Messages transmitted by publishers may
be marked as ordered, as a hint for subscribers
that these messages should not be delivered until

Figure 34. For all messages for which ordering
across multiple senders is required, publishers
create ordering requests and submit these in
batches to the ordering framework. The latter
produces orderings in response to the ordering
requests, and delivers these orderings to the
subscribers

publisher subscriber

ordering
framework

dissemination
framework

ordering
request ordering

message message

ordering request

100

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

an ordering for these messages arrives through
the ordering framework. The subscribers that
do not care about ordering will simply not
subscribe to the ordering framework, and will
ignore such markings.

The ordering framework consists of two
components: a component that collects ordering
requests from multiple sources and produces
orderings in response to these requests, and
a component that delivers these orderings to
subscribers. The first of these components is
essentially an aggregation mechanism, and
the second is similar to the dissemination
framework.

Like every other element of our architec-
ture, ordering is performed in a hierarchical
manner that respects isolation and local au-
tonomy of administrative domains. Thus, the
ordering framework also relies on the concept
of management scopes, in this case the ordering
scopes, which may or may not overlap with the
other flavors of scopes. Each scope can define
its own policies that govern the way ordering is
performed: how ordering requests are collected,
which member of the scope should serve as the
orderer (collect these requests and produce
orderings), and how these orderings should
be disseminated to subscribers. The resulting
architecture is a product of policies defined at
various levels, just as it was the case for dis-
semination and reliability.

To prevent the article from becoming
excessively long, we shall omit the details of
the ordering framework. The design shares
common elements and ideas with the dissemi-
nation and reliability frameworks, and will be
covered comprehensively in the first author’s
Ph.D. thesis.

Other Possible Frameworks
Up until now, we’ve focused on the dissemina-
tion, recovery, and ordering frameworks within
our overall architecture. However, the same
structure can also support additional frame-
works, which exist as logical “siblings” to the
ones already presented. These include:

•	 Flow and rate control. Architectural mecha-
nisms in support of flow and congestion
control handling, negotiating rates, manag-
ing leases on bandwidth, and so forth.

•	 Security. Architectural support for integrat-
ing security (managing keys, granting or
revoking access, managing certificates,
etc.) into scalable eventing systems.

•	 Auditing. Self-verification, detection of
inconsistencies (e.g., partitions, invalid
routing, and so forth).

•	 Failure detection and health monitoring.
Scalable detection of faulty or underper-
forming machines.

Conclusion
We have argued that new and more flexible event
notification standards are going to be needed
if the Web services community is to gain the
benefits of architectural standardization while
also exploiting the full power of component
architectures and integration platforms. The
proposal presented here draws heavily from
our experience building Quicksilver, a new and
extremely scalable eventing infrastructure that
scales in multiple dimensions, integrates seam-
lessly with modern component-style platforms,
and has the flexibility to support a wide range of
reliability models including best-effort, virtual
synchrony, consensus, and transactional ones.
In contrast, our experience trying to express
Quicksilver within the existing Web services
options was discouraging; we found them to be
narrowly conceived and incapable of offering
needed flexibility and scalability.

Acknowledgment
Our research was supported by AFRL/Cornell
Information Assurance Institute. We acknowl-
edge Mahesh Balakrishnan, Lars Brenna, Yejin
Choi, Maya Haridasan, Tudor Marian, Ingrid
Jansch-Porto, Robert van Renesse, Yee Jiun
Song, Einar Vollset, and Hakim Weatherspoon
for their feedback.

101

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

References
Banavar, G., Chandra, T., Mukherjee, B., Nagara-

jarao, J., Strom, R., & Sturman, D. (1999, May
31-June 4). An efficient multicast protocol for
content-based publish-subscribe systems. In
Proceedings of the 19th IEEE International
Conference on Distributed Computing Systems
(ICDCS) (IEEE Computer Society), Washing-
ton, D.C. (p. 262).

Box, D., Cabrera, L.F., Critchley, C., Curbera, D.,
Ferguson, D., Geller, A., et al. (2004). Web
services eventing (WS-eventing). Retrieved
August 30, 2007, from http://www.ibm.com/
developerworks/Webservices/library/specifica-
tion/ws-eventing/

Floyd, S., Jacobson, V., Liu, C., McCanne, S., &
Zhang, L. (1996). A reliable multicast frame-
work for light-weight sessions and application
level framing. IEEE/ACM Transactions on
Networking, 5(6), 784-803.

Graham, S., Niblett, P., Chappell, D., Lewis, A.,
Nagaratnam, N., Parikh, J., et al. (2004). Web
services brokered notification (WS-brokered-
notification). Retrieved August 30, 2007, from
http://www.ibm.com/developerworks/library/
specification/ws-notification/

Keidar, I., & Dolev, D. (1995, May 22-25). Increasing
the resilience of atomic commit, at no additional
cost. In Proceedings of the Fourteenth ACM
SIGACT-SIGMOD-SIGART Symposium on
Principles of Database Systems (PODS ’95),
San Jose, CA (pp. 245-254). New York, NY:
ACM Press.

Keidar, I., Sussman, J., Marzullo, K., & Dolev, D.
(2002). Moshe: A group membership service
for WANs. ACM Transcations on Computer
Systems, 20(3), 191-238.

Ostrowski, K., & Birman, K.P. (2006a, September
18-22). Extensible Web services architecture for
notification in large-scale systems. In Proceed-
ings of the IEEE International Conference on
Web Services (ICWS’06) (Vol. 00, pp. 383-392).
Washington, D.C.: IEEE Computer Society.

Ostrowski, K., & Birman, K.P. (2006b, November
3). Scalable group communication system for
scalable trust. In Proceedings of the First ACM
Workshop on Scalable Trusted Computing (STC
‘06) Alexandria, VA (pp. 3-6). New York, NY:
ACM Press.

Ostrowski, K., & Birman, K.P. (2006c). Scalable
publish-subscribe in a managed framework
(Tech. Rep.). Cornell University.

Ostrowski, K., Birman K.P., & Dolev, D. (2006).
Properties framework and typed endpoints for
scalable group communication (Tech. Rep).
Cornell University.

Paul, S., Sabnani, K.K., Lin, J. C.-H., & Bhattacha-
ryya, S. (1997). Reliable multicast transport
protocol. IEEE Journal of Selected Areas in
Communications, 15(3), 407-421.

Weinsberg, Y., Dolev, D., Anker, T., & Wyckoff,
P. (2006, November). Hydra: A novel frame-
work for making high-performance computing
offload capable. In Proceedings of the 31st IEEE
Conference on Local Computer Networks (LCN
2006). Tampa, FL.

Krzysztof Ostrowski is a PhD student in the Department of Computer Science at Cornell University. He is
currently building QuickSilver, a new type of a development platform with an extremely fast and scalable
group communication engine at the core, offering a range of strong reliability properties and a smooth
integration with Windows, Visual Studio, and the web service technologies. This new platform is aimed at
enabling a new style of programming, characterized by casual use of publish-subscribe topics to represent
distributed, interactive content. Before joining Cornell, Ostrowski spent four years in the industry.

Ken Birman is a professor of computer science at Cornell University. He currently heads the QuickSilver
project, which is developing the world’s fastest and most scalable publish-subscribe system and a new,
highly automated, platform aimed at making it dramatically easier to build scalable clustered applications.
Previously he worked on fault-tolerance, security, and reliable multicast. In 1987 he founded a company,

102

http://www.ibm.com/
http://www.ibm.com/developerworks/library/

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

Isis Distributed Systems, which developed robust software solutions for stock exchanges, air traffic control,
and factory automation. For example, Isis currently operates the New York and Swiss Stock Exchanges, the
French air traffic control system, and the US Navy AEGIS warship. The technology permits these and other
systems to automatically adapt themselves when failures or other disruptions occur, and to replicate critical
services so that availability can be maintained even while some system components are down. In contrast
to his past work, Birman’s recent work has focused on issues of scale, self-management and self-repair
mechanisms for complex distributed systems, such as large data centers and wide-area publish-subscribe.
The very large scale of these kinds of applications poses completely new challenges. For example, while
protocols for data replication on a small scale are closely tied to dahabase concepts such as two-phase
commit, these large scale applications are best viewed as probabilistic systems, and the most appropriate
technologies are similar to techniques seen in peer-to-peer file sharing applications. Birman is the author
of several books. His most recent textbook, Reliable Distributed Computing: Technologies, Web Services,
and Applications, was published by Springer-Verlag in May of 2005. Previously he wrote two other books
and more than 200 journal and conference papers, including one that appeared in Scientific American in
May, 1996. Dr. Birman was also editor in chief of ACM Transactions on Computer Systems from 1993-
1998 and is a fellow of the ACM.

Danny Dolev received his BSc degree in mathematics and physics from the Hebrew University, Jerusalem in
1971. His MSc thesis in applied mathematics was completed in 1973, at the Weizmann Institute of Science,
Israel. His PhD thesis was on Synchronization of Parallel Processors (1979). He was a post-doctoral fellow
at Stanford University, 1979-1981, and IBM Research Fellow 1981-1982. He joined the Hebrew University
in 1982. From 1987 to 1993 he held a joint appointment as a professor at the Hebrew University and as
a research staff member at the IBM Almaden Research Center. He is currently a professor at the Hebrew
University of Jerusalem. His research interests are all aspects of distributed computing, fault tolerance,
security and networking—theory and practice.

103

J. Vitek (Ed.): ECOOP 2008, LNCS 5142, pp. 463–489, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Programming with Live Distributed Objects

Krzysztof Ostrowski1, Ken Birman1, Danny Dolev2, and Jong Hoon Ahnn1

1 Cornell University, and
2 The Hebrew University of Jerusalem

{krzys, ken, ja275}@cs.cornell.edu, dolev@cs.huji.ac.il

Abstract. A component revolution is underway, bringing developers improved
productivity and opportunities for code reuse. However, whereas existing tools
work well for builders of desktop applications and client-server structured sys-
tems, support for other styles of distributed computing has lagged. In this paper,
we propose a new programming paradigm and a platform, in which instances of
distributed protocols are modeled as “live distributed objects”. Live objects can
represent both protocols and higher-level components. They look and feel much
like ordinary objects, but can maintain shared state and synchronization across
multiple machines within a network. Live objects can be composed in a type-
safe manner to build sophisticated distributed applications using a simple, intui-
tive drag and drop interface, very often without writing any code or having to
understand the intricacies of the underlying distributed algorithms.

1 Motivation

It has become common to build applications in a component-oriented manner, com-
posing reusable building blocks by binding strongly-typed interfaces. At runtime, an
underlying object-oriented managed environment, such as Java/J2EE or .NET pro-
vides further checking and support. The paradigm has numerous benefits: it promotes
clean, modular architectures, facilitates extensions, enables collaborative development
and code reuse, and by making contracts between components explicit and their code
more isolated, reduces the risk of bugs resulting from badly documented or implicit
assumptions such as cross-component behavior or side effects.

Unfortunately, distributed systems developers are only able to exploit these tools in
limited ways, typically wedded to client-server programming styles. Moreover, the
most widely used technologies can be awkward and inflexible. For example, a devel-
oper uses different methods to access a system depending on whether it is hosted on a
single remote server [6], cloned for load-balancing on a cluster [37], or using state ma-
chine replication [52]. Yet even as the available tools have standardized on these lim-
ited options, the research community is creating a wave of powerful new technologies
that includes peer-to-peer and gossip protocols, multicast with various levels of consis-
tency, ordering and timing, Byzantine state replication, distributed hash tables, creden-
tial management services, naming services, content distribution networks, etc.

Our goal is to break through this barrier by treating protocols as components in the
same sense as in .NET or COM. We propose a technology in which application com-
ponents and protocols are unified within a single object-oriented paradigm. Our “live

104

mailto:dolev@cs.huji.ac.il

distributed objects” represent running instances of distributed protocols, but they have
types and support composition, much like “ordinary” objects. While ours is certainly
not the first approach to unify distributed protocols with object-oriented environ-
ments, we innovate in ways that make the solution uniquely powerful:

• We leverage the type system without being language-specific. Our platform offers
mechanisms such as reflection and dynamic type checking, previously seen only in
systems closely tied to an underlying language, such as Smalltalk, Java, ML or IOA.
In our interactive GUI, type-checking prevents users from dropping objects in inap-
propriately. Down the road, we’ll use type checking to ensure that replicated applica-
tion objects use a protocol with sufficiently strong properties.

• It can be incrementally deployed, and supports legacy applications, including Ex-
cel spreadsheets, Oracle databases, and web services. For example, we can import data
from a database, multicast it, and export it back into a set of desktop spreadsheets.

• Our object-oriented embedding can support any distributed protocol as a reus-
able component. Existing systems are protocol-agnostic only in the limited sense that
users can choose among several different protocols to implement communication. For
us, protocols are objects; a small shift in perspective with broad implications.

• The approach extends from the UI to the hardware level, whereas prior systems
focused on one class of application objects, e.g. shared data structures or UI compo-
nents1. Jini has a vision similar to ours, but is tightly bound to the client-server para-
digm, whereas our model is focused on distributed multi-party protocols.

• We support composition of behavioral protocol types. Prior composition toolkits
either lacked types, or used a limited form of typing, where the protocol type was the
type of the implementing class, and composition was achieved via inheritance.

• Our model is replication-centric. Although many live objects don’t replicate
state, the handling of replication and scalability sets our solution apart from prior
ones. We’re able to support various replication (multicast) models, and to express this
in a type system.

• Our system may be the first drag and drop tool for type-safe protocol composi-
tion. Drag and drop mechanisms are easy to use and yet can support sophisticated
applications. For many applications, no new code is needed at all. Prior systems (in-
cluding some from which we took inspiration, such as Ensemble [33], BAST [20], x-
Kernel [45], and I/O automata [36]) were programmer-intensive.

Although the current system is quite usable, live objects raise a number of ques-
tions, only some of which have been addressed. The technology requires a scalable
multicast layer capable of supporting very large groups, and in which a single node can
join large numbers of object-groups. In work reported elsewhere, we describe Quick-
silver, a high-performance, scalable communication layer that achieves these goals
[46,47,48]. We’re also collaborating with a group at INRIA/IRISA on a gossip-based
infrastructure compatible with live objects; we expect this to be useful for discovering
and tracking system configuration information. Looking further out, we’re extending
Quicksilver to support a range of reliability models (expressed in a new protocol script-
ing language [47]), and are implementing a new security architecture based on reflec-
tion. We also have ideas for WAN and mobile applications, debugging, performance
tuning, system management, and object state persistence. However, all of these ques-
tions lie beyond the scope of the present paper.

1 Demos of this functionality and a prototype of our platform are available on our website [34].

105

2 Prior Work

While we believe our work to be innovative in the ways just described, we’re not the
first to integrate the object-oriented and distributed programming models.

There are many language abstractions for distributed protocols, including remote
objects [17, 20], fault-tolerant objects [24], multicast objects [19], asynchronous col-
lections [9], tuple spaces [6, 38], and replicated objects driven by multicast [25, 37] or
two-phase commit [34]. None matches the requirements described above. First, these
abstractions are all specialized to support specific protocols. For example, asynchro-
nous collections cannot easily be used to express two-phase commit or leader election.
Second, most lack the notion of a distributed type, and in those that do, this notion is
shallow, e.g. the type of a multicast object [19] is determined by the type of transmitted
events, and the type of an asynchronous collection [9] is the type of the implementing
class. The former definition can’t convey information about subtle behaviors of proto-
cols such as virtual synchrony [5], while the latter severely restricts reusability. Finally,
most lack support for composition.

The idea of defining object types in terms of their behaviors is not new [55]. CSP
[24] and π-calculus [41] were some of the first protocol specifications, and these early
process calculi serve as a basis for recent specification efforts, such as BPEL [3],
SSDL [49], and WSCL [4]. As recently noted [19], the weakness of process calculi,
and specifications based on them, is that they can’t express the semantics of replication
or the behavior of protocols such as consensus in a clean way. For example, while
BPEL is clearly strong enough to express business processes, the language defines
protocols in terms of sets of participants fixed at the outset, and can’t model dynamic
join or leave events. It would be very hard to express replication properties, such as
“once any group member does X, eventually all operational members do too” [12].

On the other hand, while state-based approaches such as I/O automata [36], CFSM
[7], interface automata [1], and others [18] are very expressive, they combine func-
tional descriptions of protocol behaviors with the specifics of their implementations
expressed through state transitions. This is useful in correctness proofs, but it may be
a weakness in the context of a type system. Two protocols implemented using differ-
ent data structures and states can exhibit the same external behavior, e.g. “messages
are totally ordered and delivered atomically with respect to failures”. We believe that
protocols that behave equivalently should be considered to have the same distributed
type; state transition representations can easily obscure such relationships [27].

Live objects support an extensible style of formal behavioral specifications for
group and multicast protocols [2, 12, 22, 26]. As one composes protocols, a construc-
tive distributed type system is obtained. The type checking mechanism is itself com-
ponentized, and can be extended by developers.

The idea of building protocols from simpler components dates to the x-Kernel [45]
and to systems like Ensemble [33], which constructed replication protocols from mi-
croprotocols. Among such systems, BAST [20] is closest to ours in terms of the di-
versity of protocols it can express, but lacks a behavioral notion of a protocol type:
protocol types in BAST are determined by the types of the implementing classes, and
composition is achieved by inheritance. The creators of BAST observed that in retro-
spect, inheritance wasn’t the right mechanism for this task. We’ve drawn lessons from
these experiences and created a model in which inheritance isn’t used at all: we treat

106

protocols as black boxes and connect them with typed event channels in a visual de-
signer. Our protocol objects interact via events, much as in Smalltalk [21].

Jini [57], the widely used Java-based platform in which clients access services by
dynamically loading proxy code, is highly relevant prior work. The strongest contrast
is that Jini has a pervasive client-server bias, making it very hard to express object
replication, particularly in applications that use strong consistency or (at the other
extreme) peer-to-peer protocols.

This client-server bias is visible in many ways. First, Jini lacks a rigorous notion
of a group [43], and it is hard to implement consistency across a set of group mem-
bers, state replication within the group, coordination, leader-election, etc. Jini's
lookup, join, and discovery specifications lack membership views (needed to assign
tasks to group members) and synchronized state transfer (used to initialize new group
members). Moreover, Jini doesn’t guarantee consistent failure detection. Thus, while
services in Jini can be grouped, the mechanism lacks expressive power to facilitate
building systems that use stronger forms of replication. Additionally, abstractions
such as notification and transactional protocols can’t be directly modeled as objects in
Jini. Finally, Jini lacks distributed types and protocol composition mechanisms.

Live objects are replication-centric, with a strong notion of protocol types and
composition. This makes live objects particularly appropriate for building applications
in which users collaborate, share content, or engage in other kinds of peer-to-peer
behaviors, (obviously we can also support traditional non-replicated and client-server
behaviors). Complex protocols can be modeled as objects, in a manner that separates
behavior of the protocol from its implementation.

Many of these same issues distinguish our work from WS-* standards. Elsewhere
[48], we discuss issues that arise if one tries to use WS-Notification or WS-Eventing
to implement live objects. We concluded that the relevant WS-* standards are tightly
bound to specific protocol implementations; as written, they cannot accommodate
commercially important protocols such as peer-to-peer video streaming, BitTorrent,
or Byzantine replication. We’ve proposed an extended WS-based eventing standard
matched to the work described here, and able to overcome this problem [48].

JXTA [57] is probably the most sophisticated existing collaboration technology for
peer-to-peer systems, but it doesn’t support stronger replication and consistency mod-
els. While JXTA does have notions such as a group and a membership view, members
can have inconsistent views. Researchers have struggled to layer reliable multicast on
these mechanisms [35]. Groupware toolkits, such as Croquet [53], Groove [39], and
group communication [5] toolkits all support replication, and some support strong
forms of consistency. However, unlike Jini, JXTA and our work, none of these is po-
sitioned as a general-purpose interoperability platform.

3 Model

3.1 Objects and Their Interactions

A live distributed object (or live object) is an instance of a distributed protocol: pro-
gramming logic executed by a set of components that may reside on different nodes
and communicate by sending messages over the network. For flexibility, we won’t
assume that the machines running the protocol “know” about one-another or that they

107

share any common state. Thus, a live object could be a Byzantine fault-tolerant repli-
cated state machine, but it could also be an entity with purely local state, one that uses
gossip to share data, or an IP multicast channel.

Live objects have behavioral types. Suppose that object A logs messages on the
nodes where it runs, using a reliable, totally ordered multicast to ensure consistency
between replicas. Object B might offer the same functionality, but be implemented
differently, perhaps using a gossip protocol. As long as A and B offer the same inter-
faces and equivalent properties (consistency, reliability, etc), we consider A and B to
be implementations of the same type. The concept of behavioral equivalence is the
key here; we define it more carefully in section 3.2.

When node Y executes live object X, we’ll say that a proxy of live object X is run-
ning on Y. Thus, a live object is executed by the group of its proxies (Figure 1). A
proxy is a functional part of the object running on a node. When two objects have
proxies on overlapping sets of nodes, their respective proxies may interact. We can
think of the live objects as interacting through their proxies.

A reference to a live object X is a complete set of instructions for constructing and
configuring a proxy of X on a node. Thus, when node Y wants to access live object X,
node Y uses a reference to X as a recipe with which it can create a new proxy for X
that will run locally on Y. The proxy then executes the protocol associated with X.
For example, it might seek out other proxies for X, transfer the current distributed
state from them, and connect itself to a multicast channel to receive updates. Unlike
proxies, which can have state, references are just passive, stateless, portable recipes.

The instructions in a reference must be complete, but need not be self-contained.
Some of their parts can be stored inside online repositories, from which they need to
be downloaded. These repositories are themselves live objects, referenced by the ob-
jects that use them. Thus, given a reference, a node can dereference it without prior
“knowledge” of the protocol. An exception is thrown if dereferencing fails (for exam-
ple, if a repository containing a part of the reference is unavailable).

We model proxies in a manner reminiscent of I/O automata. A proxy runs in a vir-
tual context consisting of a set of endpoints: strongly-typed bidirectional event chan-
nels, through which the proxy can communicate with other software on the same node
(Figure 1). Unlike in I/O automata, a proxy can use external resources, such as local
network connections, clocks, or the CPU. These interactions are not expressed in our

proxy1 proxy2

node1 node2

proxy3

node3

live
object

proxy

A: 1 B: 2

C: 3 D: 4

typed
events

E: 1

typed
endpoints

network
messages

: 2

Fig. 1. To access a live object (protocol), a node starts a proxy: a software component that runs the
protocol on the node, and may communicate with proxies on other nodes by sending messages
over the network. On a given node, proxies for different objects communicate via endpoints:
strongly-typed, bidirectional event channels.

108

model and they are not limited in any way. However, interactions of a live object’s
proxy with any other component of the distributed system must be channeled through
the proxy’s endpoints.

All proxies of the same live object run that live object’s code. Unlike in state ma-
chines [37, 52], we need not assume that proxies run in synchrony, in a deterministic
manner, or that their internal states are identical. We do assume that each proxy of a
live object X interacts with other components of the distributed system using the same
set of endpoints, which must be specified as part of X’s type. To avoid ambiguity, we
sometimes use the term instance of endpoint E at proxy P to explicitly refer to a run-
ning event channel E, physically connected to and used by P.

Because our model is designed to facilitate component integration, we shall adopt a
somewhat radical perspective, in which the entire system, all applications and infra-
structure are composed of live objects. Accordingly, endpoints of a live object’s proxy
will be connected to endpoints exposed by proxies of other live objects running on the
same node (Figure 2). When proxies of two different objects X and Y are connected
through their endpoints on a certain node Z, we’ll say that X and Y are connected on Z.

Example (a). Consider a distributed collaboration tool that uses reliable multicast to
propagate updates between users (Figure 2). Let a be an application object in this sys-
tem that represents a collaboratively edited document. Proxies of a have a graphical
user interface, through which users can see the document and submit updates. Updates
are disseminated to other users over a reliable multicast protocol, so that everyone can
see the same contents. The system is designed in a modular way, so instead of linking
the UI code with a proprietary multicast library, the document object a defines a typed
endpoint reliable_channel_client, with which its proxies can submit updates to a reli-
able multicast protocol (event send) and receive updates submitted by other proxies
and propagated using multicast (event receive). Multicasting can then be implemented
by a separate object r, which has a matching endpoint reliable channel. Proxies of a
and r on all nodes are connected through their matching endpoints.

membership
object (m)

replicated
state

machine
object (s)

application
object (a)

m1 m2

m3 m4

r1 r2

u1 u2

s1 s2

a1 a2

reliable
multicast
object (r)

unreliable
multicast
object (u)

p1 p2 persistent
storage
object (p)

Fig. 2. Applications in our model are composed of interconnected live objects. Objects are
“connected” if endpoints of a pair of their proxies are connected. Connected objects can affect
one-another by having their proxies exchange events through endpoints. A single object can be
connected to multiple other objects. Here, a reliable multicast object r is simultaneously con-
nected to an unreliable multicast object u, a membership object m, and an application object a.
The same object can be accessed by different machines in different ways. For example, m is
used in two contexts: by the multicast object r, and by replicas of a membership service. The
latter employs a replicated state machine s, which persists its state through a storage object p.

109

Similarly, object r may be structured in a modular way: rather than being a single
monolithic protocol, r could internally use object u for dissemination and object m for
membership tracking [12]. Additional endpoints unreliable channel and member-
ship would serve as contracts between r and its internal parts u and m.

Figure 2 illustrates several features of our model. First, a pair of endpoints can be
connected multiple times: there are multiple connections between different instances of
the reliable channel endpoint of object r and the reliable_channel_client endpoint of
a, one connection on each node where a runs. Since objects are distributed, so are the
control and data flows that connect them. If different proxies of r were to interact with
proxies of a in an uncoordinated manner, this might be an issue. To prevent this, each
endpoint has a type, which constrains the patterns of events that can pass through dif-
ferent instances of the endpoint. These types could specify ordering, security, fault-
tolerance or other properties. The live objects runtime won’t permit connections be-
tween a and r, unless their endpoint types declare the needed properties.

A single object could also define multiple endpoints. One case when this occurs is
when the protocol involves different roles. For example, the membership object m has
two endpoints, for clients and for service replicas. The role of the proxy in the proto-
col depends on which endpoint is connected. In this sense, endpoints are like inter-
faces in object-oriented languages, giving access to a subset of the object’s functional-
ity. Another similarity between endpoints and interfaces is that both serve as contracts
and isolate the object’s implementation details from the applications using it. We also
use multiple endpoints in object r, proxies of which require two kinds of external
functionality: an unreliable multicast, and a membership service. Both are obligatory:
r cannot be activated on a platform unless both endpoints can be connected.

Earlier, we commented that not all live objects replicate their state. We see the lat-
ter in the case of the persistent store p. Its proxies present the same type of endpoint to
the state machine s, but each uses a different log file and has its own state.

Our model promotes reusability by isolating objects from other parts of the system
via endpoints that represent strongly typed contracts. If an object relies upon external
functionality, it defines a separate endpoint by which it gains access to that functional-
ity, and specifies any assumptions about the entity it may be connected to by encoding
them in the endpoint type. This allows substantial flexibility. For example, object u in
our example could use IP multicast, an overlay, or BitTorrent, and as long as the end-
point that u exposes to r is the same, r should work correctly with all these implemen-
tations. Of course this is conditional upon the fact that the endpoint type describes all
the relevant assumptions r makes about u, and that u does implement all of the de-
clared properties.

3.2 Defining Distributed Types

The preceding section introduced endpoint types, as a way to define contracts between
objects. We now define them formally and give examples of how typing can be used to
express reliability, security, fault-tolerance, and real time properties of objects.

Formally, the type Θ of a live object is a tuple of the form Θ = (E, C, C'). E in this
definition is a set of named endpoints, E = {(n1, τ1), (n2, τ2), …, (nk, τk)}, where ni is
the name and τi is the type of the ith endpoint. C and C' represent sets of constraints
describing security, reliability, and other characteristics of the object (C), and of its

110

environment (C'). C models constraints provided by the object, such as semantics of
the protocol: guarantees that the object’s code delivers to other objects connected to it.
C' models constraints required, which are prerequisites for correct operation of the
object’s code. Constraints can be described in any formalism that captures aspects of
object and environment behavior in terms of endpoints and event patterns. Rather than
trying to invent a new, powerful formalism that subsumes all the existing ones, we
build on the concepts of aspect-oriented programming [28], and we define C to be a
finite function from some set A of aspects to predicates in the corresponding formal-
isms. For example, constraints C = {(a1, φ1), (a2, φ2), …, (am, φm)} would state that in
formalism a1 the object’s behavior satisfies formula φ1, and so on. We’ll give exam-
ples of various practically useful formalisms and constraints later in this section.

Type τ of an endpoint is a tuple of the form τ = (I, O, C, C'). I is a set of incoming
events that a proxy owning the endpoint can receive from some other proxy, O is a set
of outgoing events that the proxy can send over this endpoint, and C and C' represent
constraints provided and required by this endpoint, defined similarly to constraints of
the object, but expressed in terms of event patterns, not in terms of endpoints (for ex-
ample, an endpoint could have an event of type time, and with a constraint that time
advances monotonically in successive events). Each of the sets I and O is a collection
of named events of the form E = {(n1, ε1), (n2, ε2), …, (nk, εk)}, where ni is event name
and εi is its type. Event types can be value types of the underlying type system, such as
.NET or Java primitive types and structures, or types described by WSDL [13] etc., but
not arbitrary object references or addresses in memory. We assume that events are se-
rializable and can be transmitted across the network or process boundaries. References
to live objects are also serializable, hence they can also be passed inside events. The
subtyping relation on the event types is inherited from the underlying type system.

The purpose of creating endpoints is to connect them to other, matching endpoints,
as described in Section 3.1 and illustrated on Figure 2. Connect is the only operation
possible on endpoints. We say that endpoint types τ1 and τ2 match, denoted τ1 ∝ τ2,
when the following two conditions hold.

1. For each output event n of type ε of either endpoint, its counterpart must have an
input event with the same name n, and with either type ε, or some supertype of ε.
This guarantees that all events can be delivered between the two connected proxies.

2. The provided constraints of each of the endpoints must imply (be no weaker than)
the required constraints of the other. This ensures that the endpoints mutually sat-
isfy each other’s requirements.

Formally, for τ1 = (I1, O1, C1, C1') and τ2 = (I2, O2, C2, C2') we define:

τ1 ∝ τ2 ⇔ O1 →* I2 ∧ O2 →* I1 ∧ C1 ⇒* C2' ∧ C2 ⇒* C1'. (1)

Relation →* between two sets of named events expresses the fact that events from the
first can be understood as events from the second. Formally, we express it as follows:

E →* E' ⇔ ∀ (n, ε)∈E ∃ (n, ε′)∈E' such that ε ≤ ε′. (2)

Operator “≤” on types always represents the relation of subtyping in this paper.
Relation ⇒* between two sets of constraints expresses the fact that the constraints

in the first set are no weaker than constraints in the second. Formally, we write this as:

111

C ⇒* C' ⇔ ∀ (a, φ′)∈C′ ∃ (a, φ)∈C such that φ ⇒a φ'. (3)

Relation ⇒a is simply a logical consequence in formalism a. Intuitively, this defini-
tion states that if C' defines a constraint defined in some formalism, then C must de-
fine a constraint that is no weaker than that, in the same formalism. For example, if C'
defines some reliability constraint expressed in temporal logic, then C must define an
equivalent or stronger constraint, also in temporal logic, in order for C ⇒* C' to hold.

For a pair of endpoint types τ1 and τ2, the former is a subtype of the latter if it can
be used in any context in which the latter can be used. Since the only possible opera-
tion on an endpoint is connecting it to another, matching one, hence τ1 ≤ τ2 holds iff
τ1 matches every endpoint that τ2 matches, i.e. τ1 ≤ τ2 iff ∀τ′ (τ2 ∝ τ′) ⇒ (τ1 ∝ τ′),
which after expanding the definition of “∝” can be formally expressed as follows:

τ1 ≤ τ2 ⇔ O1 →* O2 ∧ I2 →* I1 ∧ C1 ⇒* C2 ∧ C2′ ⇒* C1′. (4)

Intuitively, τ1 ≤ τ2 if (a) τ1 defines no more output events and no fewer input events
than τ2, (b) the types of output events of τ1 are subtypes and the types of input events
of τ1 are supertypes of the corresponding events of τ2, and (c) the provided con-
straints of τ1 are no weaker and the required constraints of τ1 are no stronger than
those of τ2.

Subtyping for live object types is defined in a similar manner. Type Θ1 is a sub-
type of Θ2, denoted Θ1 ≤ Θ2, when Θ1 can replace Θ2. Since the only thing that one
can do with a live object is connect it to another object through its endpoints, this
boils down to whether Θ1 defines all the endpoints that Θ2 defines, and whether the
types of these endpoints are no less specific, and whether Θ1 guarantees no less and
expects no more than Θ2. Formally, for two types Θ1 = (E1, C1, C1′) and Θ2 = (E2,
C2, C2′), we define:

Θ1 ≤ Θ2 ⇔ E1 ≤* E2 ∧ C1 ⇒* C2 ∧ C2′ ⇒* C1′. (5)

Relation ≤* between sets of named endpoints used above is defined as follows:

E ≤* E' ⇔ ∀ (n, τ′)∈E′ ∃ (n, τ)∈E such that τ ≤ τ′. (6)

The use of types in our platform is limited to checking whether the declared object
contracts are compatible, to ensure that the use of objects corresponds to the devel-
oper’s intentions. The live objects platform performs the following checks at runtime:

1. When a reference to an object of type Θ is passed as a value of a parameter that is
expected to be a reference to an object of type Θ', the platform verifies that Θ ≤
Θ'.

2. When an endpoint of type τ is to be connected to an endpoint of type τ', either pro-
grammatically or during the construction of composite objects described in Section
4.2, the platform verifies that the two endpoints are compatible i.e. that τ ∝ τ'.

We believe that in practice, this limited form of type safety is sufficient for most uses.
For provable security, the runtime could be made to verify that live object’s code im-
plements the declared type prior to execution. Techniques such as proof-carrying code
[44] and domain-specific languages with limited expressive power could facilitate this.

112

3.3 Constraint Formalisms

We conclude this section with a discussion of different formalisms that can be used to
express the constraints in the definition of objects and endpoints. The issue is subtle
because on the one hand, a type system won’t be very helpful if it has nothing to
check, but on the other hand, there are a great variety of ways to specify protocol
properties. It isn’t much of an exaggeration to suggest that every protocol of interest
brings its own descriptive formalism to the table! As noted earlier, many prior sys-
tems have effectively selected a single formalism, perhaps by defining types through
inheritance. Yet when we consider protocols that might include time-critical multi-
cast, IPTV, atomic broadcast, Byzantine agreement, transactions, secure key replica-
tion, and many others, it becomes clear that no existing formalism could possibly cov-
er the full range of options.

A further issue is the incompleteness of many specifications, in a purely formal
sense. For example, one popular formalism is temporal logic [22,12]. Here, we as-
sume a global time and a set of locations, and a function that maps from time to
events that occur at those locations. In the context of endpoint constraints, we can
think of instances of the endpoint as locations, and the endpoint’s incoming and out-
going events, and explicit connect/disconnect events, as the events of the temporal
logic. Constraints would be expressed as formulas over these events, identifying the
legal event sequences within the (infinite) set of possible system histories.

Example (b). Consider the reliable channel endpoint, exposed by the reliable chan-
nel r in the example in Section 3.1. The endpoint’s type might define one incoming
event send(m) and one outgoing event receive(m), parameterized by message body
m. Constraints provided by the channel object r might include a temporal logic for-
mula stating that if event receive(m) is delivered by r through some of the instances
of the endpoint sooner than receive(m′), then for any other instance of the endpoint, if
both events are delivered, they are delivered in the same sequence.

Example (b) illustrates a safety property of a type for which temporal logic is espe-
cially convenient. Chockler et. al. use temporal logic to specify a range of reliable
multicast protocols in [12]. However, the FLP impossibility result establishes that
these protocols cannot guarantee liveness in traditional networks. Thus, while we can
express a liveness constraint in such a logic, no protocol could achieve it – in effect,
such a protocol type would be useless in real systems!

Temporal logic is just one of many useful formalisms. In our work on a security
architecture, still underway, we’re looking into using a variant of the BAN logic [9] to
define security properties provided by live objects or expected from their environ-
ment. Real-time and performance guarantees are conveniently expressed as probabil-
istic guarantees on event occurrences, e.g. in terms of predicates such as “at least p %
of the time, receive(m) occurs at all endpoint instances at most t seconds following
send(m),” or “at least p % of the time, receive(m) occurs at all different endpoint
instances in a time window of at most t seconds”.

Yet another useful formalism would be a version of temporal logic that talks about
the number of instances of different endpoints in time. For example, constraints of the
sort “at most one instance of the publisher endpoint may be connected at any given
time” could describe single-writer semantics or similar assumptions made by the

113

protocol designer. Constraints of this sort could also express fault-tolerance properties,
e.g. define the minimum number of proxies to maintain a certain replication level etc.

In general, with formalisms like those listed above, type-checking might involve a
theorem prover, and hence may not always be practical. In practice, however, the ma-
jority of object and endpoint types would choose from a relatively small set of stan-
dard constraints, such as best-effort, virtually-synchronous, transactional, or atomic
dissemination, total ordering of events etc. Predicates that represent common con-
straints could be indexed, and stored as macros in a standard library of such predi-
cates, and the object and endpoint types would simply list such macros. The runtime
would perform type-checking by comparing such lists, and using cached known facts,
such as that a virtually synchronous channel is also best-effort reliable etc. By taking
advantage of late binding and reflection, features of .NET and of most Java platforms,
it is easy to make these mechanisms extensible in a “plug and play” manner. This will
allow developers to introduce additional formalisms down the road.

3.4 Group Types

Readers familiar with group communication [5,11] may be concerned that although our
model is fundamentally about creating and working with groups of entities (live object
proxies), the type system itself lacks a rigorous notion of a group. This actually makes
our model simpler and more generic, without preventing us from expressing group
properties. For example, to model a virtually synchronous group, we can define a pair
of endpoints channel and membership, and specify constraints on the occurrences of
events on the two endpoints, as in group communication specifications [12]. Within
groups of endpoints, one can use temporal logic formulas with operators such as eve-
rywhere and everywhere within a membership view, much as in [2,12,22]. To bind to
such a group an object would define two matching endpoints. This approach has the
advantage of generality: we can potentially express a range of group semantics.

4 Language Embeddings and Support for Composition

4.1 Language Embeddings

Our model has a good fit with modern object-oriented programming languages. There
are two aspects of this embedding. On one hand, live object code can be written in a
language like Java and C# (we will demonstrate this in Section 4.2). On the other
hand, live objects, proxies, endpoints, and connections between them are first-class
entities that can be used within C# or Java code. Their distributed types build upon
and extend the set of non-distributed types in the underlying managed environment. In
this section, we’ll discuss each of the new programming language entities we intro-
duce: references to live objects, references to proxies, references to endpoint in-
stances, and references to connections between endpoints. An example of their use is
shown in Code 1. We will conclude this section with a discussion of two more ad-
vanced mechanisms, template object references and casting operator extensions.

114

Code 1. An example piece of code in a language similar to C#, but with a simplified syntax for
legibility. Here, “ReceiveObject” is a handler of an incoming event of a live object proxy. The
event is parameterized by a live object reference “ref_object”. If the reference is to a shared
folder, the code launches a new proxy to connect to the folder’s protocol and attaches a handler
to event “AddedElement” generated by this protocol, in order to monitor this folder’s contents.

01 void ReceiveObject(ref<liveobject> ref_object) // code of an event handler
02 {
03 if (referenced_type(ref_object) is SharedFolder)
04 {
05 ref<SharedFolder> ref_folder := (ref<SharedFolder>) ref_object;
06 SharedFolder folder := dereference(ref_folder); // creates a proxy
07 external<FolderClient> folder_ep := endpoint
08 internal<FolderClient> my_ep := new_endpoint<FolderClient>();
09 my_ep.AddedElement += ...;
10 connection my_connection := connect(folder_ep, my_ep);
11 // some code to store the newly created proxy and endpoint connection references
12 }
13 }

A. References to Live Objects. Operations that can be performed on these references
include reflection (inspecting the referenced object’s type), casting, and dereferencing
(the example uses are shown in Code 1, in lines 03, 05, and 06 accordingly). Derefer-
encing results in the local runtime launching a new proxy of the referenced object
(recall from Section 3.1 that references include complete instructions for how to do
this). The proxy starts executing immediately, but its endpoints are disconnected A
reference to the new proxy is returned to the caller (in our example it is assigned to a
local variable folder). This reference controls the proxy’s lifetime. When it is dis-
carded and garbage collected, the runtime disconnects all of the proxy’s endpoints and
terminates it. To prevent this from happening, in our example code we must store the
proxy reference before exiting (we would do so in line 11).

Whereas a proxy must have a reference to it to remain active, a reference to a live
object is just a pointer to a recipe for constructing a proxy for that object, and can be
discarded at any time. An important property of object references is that they are seri-
alizable, and may be passed across the network or process boundaries between prox-
ies of the same or even different live objects, as well as stored on in a file etc. The
reference can be dereferenced anywhere in the network, always producing a function-
ally equivalent proxy – assuming, of course, that the node on which this occurs is ca-
pable of running the proxy. In an ideal world, the environmental constraints would
permit us to determine whether a proxy actually can be instantiated in a given setting,
but the world is obviously not ideal. Determining whether a live object can be derefe-
renced in a given setting, without actually doing so, is probably not possible.

The types of live object references are based on the types of live objects, which we
will define formally below. To avoid ambiguity, if Θ is a live object type, and x is a
reference to an object of type Θ, we will write ref<Θ> to refer to the type of entity x.

The semantics of casting live object references is similar to that for regular objects.
Recall that if a regular reference of type IFoo points to an object that implement IBar,
we can cast the reference to IBar even if IFoo is not a subtype of IBar, and while as a

115

result the type of the reference will change, the actual referenced object will not. In a
similar manner, casting a live object reference of type ref<Θ> to some ref<Θ′> pro-
duces a reference that has a different type, and yet dereferencing either of these refer-
ences, the original one or the one obtained by casting, result in the local runtime creat-
ing the same proxy, running the same code, with the same endpoints. A reference can
be cast to ref<Θ> for as long as the actual type of the live object is a subtype of Θ.

B. References to Proxies. The type of a proxy reference is simply the type of the
object it runs, i.e. if the object is of type Θ, references to its proxies are of type Θ.
Proxy references can be type cast just like live object references. One difference be-
tween the two constructs is that proxy references are local and can’t be serialized,
sent, or stored. Another difference is that they have the notion of a lifetime, and can
be disposed or garbage collected. Discarding a proxy reference destroys the locally
running proxy, as explained earlier, and is like assigning null to a regular object refer-
ence in a language like Java. The live object is not actually destroyed, since other
proxies may still be running, but if all proxy references are discarded (and proxies
destroyed), the protocol ceases to run, as if it were automatically garbage collected.

Besides disposing, the only operation that can be performed on a proxy reference is
accessing the proxy endpoints for the purpose of connecting to the proxy. An example
of this is seen in line 07, where we request the proxy of the shared folder object to
return a reference to its local instance of the endpoint named “folder”.

C. References to Endpoint Instances. There are two types of references to endpoint
instances, external and internal. An external endpoint reference is obtained by enu-
merating endpoints of a proxy through the proxy reference, as shown in line 07. The
only operation that can be performed with an external reference is to connect it to a
single other, matching endpoint (line 10). After connecting successfully, the runtime
returns a connection reference that controls the connection’s lifetime. If this reference
is disposed, the two connected endpoints are disconnected, and the proxies that own
both endpoints are notified by sending explicit disconnect events.

An internal endpoint reference is returned when a new endpoint is programmati-
cally created using operator new (line 08). This is typically done in the constructor
code of a proxy. Each proxy must create an instance of each of the object’s endpoints
in order to be able to communicate with its environment. The proxy stores the internal
references of each of its endpoints for private use, and provides external references to
the external code per request, when its endpoints are being enumerated. Internal refer-
ences are also created when a proxy needs to dynamically create a new endpoint, e.g.
to interact with a proxy of some subordinate object that it has dynamically
instantiated.

An internal reference is a subtype of an external reference. Besides connecting it to
other endpoints, it also provides a “portal” through which a proxy that created it can
send or receive events to other connected proxies. Sending is done simply by method
calls, and receiving by registering event callbacks (line 09).

An important difference between external and internal endpoint references is that
the former could be serialized, passed across the network and process boundaries, and
then connected to a matching endpoint in the target location. The runtime can imple-
ment this e.g. by establishing a TCP connection to pass events back and forth between
proxies communicating this way. This is possible because events are serializable.

116

Internal endpoint references are not serializable. This is crucial, for it provides iso-
lation. Since any interaction between objects must pass through endpoints, and events
exchanged over endpoints must be serializable, this ensures that an internal endpoint
reference created by a proxy cannot be passed to other objects or even to other proxies
of the same object. Only the proxy that created an endpoint has access to its portal
functionality of an endpoint, and can send or receive events with it.

D. References to Connections. Connection references control the lifetime of connec-
tions. Besides disposing, the only functionality they offer is to register callbacks, to be
invoked upon disconnection. These references are not strongly typed. They may be
created either programmatically (as in line 10 in Code 1), or by the runtime during the
construction of a composite proxy. The latter is discussed in detail in Section 4.2.

E. Template Object References. Template references are similar to generics in C# or
templates in C++. Templates are parameterized descriptions of proxies; when derefer-
encing them, their parameters must be assigned values. Template types do not support
subtyping, i.e. references of template types cannot be cast or assigned to references of
other types. The only operation allowed on such references is conversion to non-
template references by assigning their parameters, as described in Section 4.2.

Template object references can be parameterized by other types and by values. The
types used as parameters can be object, endpoint, or event types. Values used as pa-
rameters must be of serializable types, just like events, but otherwise can be anything,
including string and int values, live object references, external endpoint references etc.

Example (c). A channel object template can be parameterized by the type of mes-
sages that can be transmitted over the channel. Hence, one can e.g. define a template
of a reliable multicast stream and instantiate it to a reliable multicast stream of video
frames. Similarly, one can define a template dissemination protocol based on IP mul-
ticast, parameterized with the actual IP multicast address to use. A template shared
folder containing live objects could be parameterized by the type of objects that can
be stored in the folder and the reference to the replication object it uses internally.

F. Casting Operator Extensions. This is a programmable reflection mechanism.
Recall that in C# and C++, one can often cast values to types they don’t derive from.
For example, one can assign an integer value to a floating-point type. Conversion
code is then automatically generated by the runtime, and injected into this assignment.
One can define custom casting operators for the runtime to use in such situations. Our
model also supports this feature. If an external endpoint or an object reference is cast
to a mismatching reference type, the runtime can try to generate a suitable wrapper.

Example (d). Consider an application designed to use encrypted communication. The
application has a user interface object u exposing a channel endpoint, which it would
like to connect to a matching endpoint of an encrypted channel object. But, suppose
that the application has a reference to a channel object c that is not encrypted, and that
exposes a channel endpoint of type lacking the required security constraints. When
the application tries to connect the endpoints of u and c, normally the operation would
fail with a type mismatch exception. However, if the channel endpoint of c can be
made compatible with the endpoint of u by injecting encryption code into the connec-
tion, the compiler or the runtime might generate such wrapper code instead. Notice

117

that proxies for this wrapper would run on all nodes where the channel proxy runs,
and hence could implement fairly sophisticated functionality. In particular, they could
implement an algorithm for secure group key replication. In effect, we are able to
wrap the entire distributed object: an elegant example of the power of the model.

The same can be done for object references. While casting a reference, the runtime
may return a description of a composite reference that consists of the old proxy code,
plus the extra wrapper, to run side by side (we discuss composite references in Sec-
tion 4.2). In addition to encryption or decryption, this technique could be used to auto-
matically inject buffering code, code that translates between push and pull interface,
code that persists or orders events, automatically converts event data types, and so on.

Currently, our platform uses casting only to address certain kinds of binary incom-
patibilities, as explained in Section 5.2. In future work, we plan to extend the platform
to support more sophisticated uses of casting, e.g. as in the example above, and define
rules for choosing casting operators when more that one is available.

4.2 Construction and Composition

As noted in Section 4.1, a live object exists if references to it exist, and it runs if any
proxies constructed from these references are active. Creating new objects thus boils
down to creating references, which are then passed around and dereferenced to create

Code 2. An example live object reference, based on a shared document template, parameterized
by a reliable communication channel. The channel is composed of a dissemination object and a
reliability object, connected to each other via their “UnreliableChannel” endpoints, much like r
and u in Figure 2. The “ReliableChannel” endpoint of the reliability object is exposed by the
channel. The dissemination object reference is to be found as an object named “MyChannel”, of
type “Channel”, in an online repository (“Id” and “Channel” are predefined types). The refer-
ence to the repository is to be found, as an object named “QuickSilver”, of type “Folder”, i.e.
containing channels, in another online repository, the “registry” object (see Section 0).

01 parameterized object // an object based on a parameterized template
02 using template primitive object 3
03 {
04 parameter "Channel" :
05 composite object // a complex object built from multiple component objects
06 {
07 component "DisseminationObject" :
08 external object "MyChannel" as Channel
09 from external object "QuickSilver" as Folder<Id, Channel>
10 from primitive object 2 // the registry ect
11 component "ReliabilityObject" :
12 // specification of some loss recovery object, omitted for brevity
13 connection // an internal connection between a pair of component endpoints
14 endpoint "UnreliableChannel" of "DisseminationObject"
15 endpoint "UnreliableChannel" of "ReliabilityObject"
16 export // endpoints of the components to be exposed by the composite object
17 endpoint "ReliableChannel" of "ReliabilityObject"
18 }
19 }

118

running applications. Object references are hierarchical: references to complex objects
are constructed from references to simpler objects, plus logic to “glue” them together.
The construction can use four patterns, for constructing composite, external, param-
eterized, and primitive objects. We shall now discuss these, illustrating them with an
example object reference that uses each of these patterns, shown in Code 2.

A. Composite References. A composite object consists of multiple internal objects,
running side by side. When such an object is instantiated, the proxies of the internal
objects run on the same nodes (like objects r and u in Figure 2). A composite proxy
thus consists of multiple embedded proxies, one for each of the internal objects. A
composite reference contains embedded references for each of the internal proxies,
plus the logic that glues them together. In the example reference shown in lines 05 to
18 in Code 2, there is a separate section “component name : reference” for each of
the embedded objects, specifying its internal name and reference. This is followed by
a section of the form “connection endpoint1 endpoint2”, for each internal connection.
Finally, for every endpoint of some embedded internal object that is to be exposed by
the composite object as its own, there is a separate section “export endpoint”.

When a proxy is constructed from a composite reference, the references to any in-
ternal proxies and connections are kept by the composite proxy, and discarded when
the composite proxy is disposed of (Figure 3). The lifetimes of all internal proxies are
thus connected to the lifetime of the composite. Embedded objects and their proxies
thus play the role analogous to member fields of a regular object.

B. External References. An external reference is one that has not been embedded
and must be downloaded from somewhere. It is of the form “external object name as
type from reference”, where reference is a reference to the live object that represents
some online repository containing live object references, and name is the name of the
object, the reference to which is to be retrieved from this repository. The type Θ of the
retrieved object is expected to be a subtype of type, and the type of the external refer-
ence is ref<type>. One example of such a reference is shown in lines 08 to 10, and
another (embedded in the first one) in lines 09 to 10.

The repository could be any object of type Θ ≤ folder, where type folder is a built-
in type of objects with a simple dictionary-like interface. Objects of this type have an
endpoint with input event get(n) and with output events item(n, r) and missing(n).
To retrieve an external reference, the runtime creates a repository object proxy from
the embedded reference, runs it, connects to its folder endpoint, submits the get event,
and awaits response. Once the response arrives, the repository proxy can be discarded.

The “as type” clause allows the runtime to statically determine the type of the ref-
erence without having to engage in any protocol. In case of composite, parameterized,
or primitive references, the runtime can derive the type right from the description. The
“as type” clause can still be used in the other categories of references as an explicit
type cast, in case it is necessary e.g. to hide some of the object’s endpoints.

The types in the reference (such as Channel in line 08 or Folder<Id, Channel> in
line 09) could either refer to the standard, built-in types, or they could be described

119

explicitly using a language based on the formalisms in Section 3.2. To keep our ex-
ample simple, we assume that all types are built-in, and we refer to them by names.

C. Parameterized References. These references are based on template objects intro-
duced in Section 4.1. They include a section “using template reference”, where
reference is an embedded template object reference, and a list of assignments to pa-
rameter values, each in a separate section of the form “parameter name : argument”,
where the argument could be a type description or a primitive value, e.g. an embed-
ded object reference. For example, the reference in Code 2 is parameterized with a
single parameter, Channel. The type of the parameter needn’t be explicitly specified,
for it is determined by the template. In our example, the template expects a live object
reference to a reliable communication channel. The specific reference used here to
instantiate this template is the composite reference in lines 05 to 18.

D. Primitive References. The types of references mentioned so far provide a means
for recursively constructing complex objects from simple ones, but the recursion
needs to terminate somewhere. Hence, the runtime provides a certain number of built-
in protocols that can be selected by a known 128-bit identifier (lines 02 and 10 in
Code 2). Of course even a 128-bit namespace is finite, and many implementations of
the live objects runtime could exist, each offering different built-in protocols. To
avoid chaos, we reserve primitive references only for objects that either cannot be
referenced using other methods, or where doing so would be too inefficient. We will
discuss two such objects: the library template and the registry object.

reliability object dissemination object

composite

internal proxies

exposed endpoint references to
internal proxies
and connection
maintained
automatically
by the runtime

composite object

1 1

0..0..

Fig. 3. A live object class diagram for the composite object in Code 2 (left) and the structure of
the composite proxy (right). When constructing a composite proxy, the runtime automatically
constructs all the internal proxies and the internal connections between them, and stores their
references in the composite proxy. Embedded proxies and connections are destroyed together
with the composite proxy. The latter can expose some of the internal endpoints as its own.

Code 3. An example live object reference for a custom protocol, implemented in a library that
can be downloaded from http://www.mystuff.com/mylibrary.dll. Objects running this protocol
are of type “MyType1”, and can be found in the library under name “MyProtocol1”. The li-
brary template provides the folder abstraction introduced in Section 0.

01 external object "MyProtocol1" as MyType1 // my own, custom implementation
02 from parameterized object // an instance of the library template
03 using template primitive object 1 // an id of a built-in library template
04 {
05 parameter "URL" : http://www.mystuff.com/mylibrary.dll
06 }

120

http://www.mystuff.com/mylibrary.dll
http://www.mystuff.com/mylibrary.dll

a1

x1

a2

x2

t1

x3

t2

y1

a3

y2

a4

y3local
multicast
object (x)

composite
multicast
object (m)

application
object (a)

tunnel
object (t)

Fig. 4. An example of a hybrid multicast object m, constructed from two local protocols x, y
that disseminate data in two different regions of the network, e.g. two LANs, combined using a
tunnel object t that acts as a repeater and replicates messages between the two LANs. Different
proxies of the composite object m, running on different nodes, are configured differently, e.g.
some use an embedded proxy of object x, while others use an embedded proxy of object y.

Code 4. A portable reference to the “hybrid” object m from Figure 4 built using the registry.

01 external object "MyChannel" as Channel
02 from external object "MyPlatform" as Folder<Id, Channel>
03 from primitive object 2 // the registry

Code 5. An example of a “proper” use of the registry, to specify a locally configured multicast
platform, which could then be used by external references like the one in Code 4. Here, the
local instance of the communication platform is configured with the address of a node that con-
trols a region of the Internet, from which other objects can be bootstrapped.

01 parameterized object
02 using template external object "MyPlatform" as Folder<Id, Channel>
03 from parameterized object // from a binary downloaded from the url below
04 using template primitive object 1 // the library template
05 { parameter "URL" : http://www.mystuff.com/mylibrary.dll }
06 { parameter "LocalController" : tcp://192.168.0.100:60000 }

D.1 Library. A library is an object of type folder, representing a binary containing
executable code, from which one can retrieve references to live objects implemented
by the binary. The library template is parameterized by URL of the location where the
binary is located (see Code 3, lines 02 to 06). The binary can be in any of the known
formats that allow the runtime to locate proxy code, object and type definitions in it,
either via reflection, or by using an attached manifest (we show one example of this in
Section 5.2). After a proxy of a library is created, the proxy downloads the binary and
loads it. When an object reference retrieved from a library is dereferenced, the library
locates the corresponding constructor in the binary, and invokes it to create the proxy.

D.2 Registry. The registry object is again a live object of type folder, i.e. a mapping
of names to object references. The registry references are stored locally on each node,
can be edited by the user, and in general, the mapping on each node may be different.
Proxies respond to requests by returning the locally stored references.

121

http://www.mystuff.com/mylibrary.dll
tcp://192.168.0.100:60000

The registry enables construction of complex heterogeneous objects that can use
different internal objects in different parts of the network, as follows

Example (e). Consider a multicast protocol constructed in the following manner:
there are two LANs, each running a local IP multicast based protocol to locally dis-
seminate messages: local multicast objects x and y (Figure 4). A pair of dedicated
machines on these LANs also run proxies of a tunneling object t, connected to proxies
of x and y. Object t acts as a “repeater”, i.e. it copies messages between x and y, so
that proxies running both of these protocols receive the same messages. Now, con-
sider an application object a, deployed on nodes in both LANs, and having some of its
proxies connected to x, and some to y. From the point of view of object a, the entire
infrastructure consisting of x, y, and t could be thought of as a single, composite mul-
ticast object m. Object m is heterogeneous in the sense that its proxies on different
machines have a different internal structure: some have an embedded object x and
some are using y. Logically, however, m is a single protocol and we’d like to be able
to fully express it in our model. The problem stems from the fact that on one hand,
references to m must be complete descriptions of the protocol, so they should have
references to x and y embedded, yet on the other hand, references containing local
configuration details are not portable. The registry object solves this problem by in-
troducing a level of indirection (Code 4).

The reader might be concerned that the portability of live objects is threatened by
use of the registry. References that involve registry now rely on all nodes having
properly configured registry entries. For this reason, we use the registry sparingly, just
to bootstrap the basic infrastructure. Objects placed in the registry would represent the
entire products, e.g. “the communication infrastructure developed by company XYZ”,
and would expose the folder abstraction introduce earlier, whereby specific infra-
structure objects can be loaded. An example of such proper use is shown in Code 5.

5 System

5.1 Embedding Live Objects into the Operating System Via Drag and Drop

Our implementation of the live object runtime runs on Microsoft Windows2 with
.NET Framework 2.0. The system has two major components: an embedding of live
objects into Windows drag and drop technologies, discussed here, and embedding of
the new language constructs into .NET, discussed in Section 5.2.

Our drag and drop embedding is visually similar to Croquet [53] and Kansas [54],
and mimics that employed in Windows Forms, tools such as Visual Studio (or similar
ones for Java), and in the Object Linking and Embedding (OLE) [8], XAML [40], and
ActiveX standards used in Microsoft Windows to support creation of compound doc-
uments with embedded images, spreadsheets, drawings etc. The primary goal is to en-
able non-programmers to create live collaborative applications, live documents, and
business applications that have complex, hierarchical structures and non-trivial internal
logic, just by dragging visual components and content created by others from toolbars,
folders, and other documents, into new documents or design sheets.

2 Porting our system from C#/.NET to Mono, to run under Linux, or building a Java/J2EE ver-

sion of the runtime, shouldn’t be a problem, but we haven’t yet undertaken this task.

122

Our hope is that a developer who understands how to create a web page, and un-
derstands how to use databases and spreadsheets as part of their professional activi-
ties, would use live objects to glue together these kinds of components, sensors cap-
turing real-world data, and other kinds of information to create content-rich applica-
tions, which can then be shared by emailing them to friends, placing them in a shared
repository, or embedding them into standard productivity applications.

Live object references are much like other kinds of visual components that can be
dragged and dropped. References are serialized into XML, and stored in files with a
“.liveobject” extension. These “.liveobject” files can easily be moved about. Thus,
when we talk about emailing a live application, one can understand this to involve
embedding a serialized object reference into an HTML email. On arrival the object
can be activated in place. This involves deserializing the reference (potentially run-
ning online repository protocols to retrieve some of its parts), followed by analysis of
the object’s type. Live objects can also be used directly from the desktop browser
interface. We configured the Windows shell to interpret actions such as doubleclick
on “.liveobject” files by passing the XML content of the file to our subsystem, which
processes it as described above. Note that although our discussion has focused on GUI
objects, the system also supports services that lack user interfaces.

We have created a number of live object templates based on reliable multicast pro-
tocols, including 2-dimensional and 3-dimensional desktops, text notes, video streams,
live maps, and 3-dimensional objects such as airplanes and buildings. These can be
mashed up to create live applications such as the ones on our web site (Figure 5).

Although the images in Figure 5 are evocative of multi-user role-playing systems
such as Second Life, Live Objects differ in important ways. In particular, live objects
can run directly on the user nodes, in a peer-to-peer fashion. In contrast, systems such
as Second Life are tightly coupled to the data centers on which the content resides and
is updated in a centralized manner. In Second Life, the state of the system lives in that
data center. Live objects keep state replicated among users. When a new proxy joins,
it must obtain some form of a checkpoint to initialize itself, or starts in a null state.

As noted earlier, live objects support drag and drop. The runtime initiates a drag by
creating an XML to represent the dragged object’s reference, and placing it in a clip-
board. When a drop occurs, the reference is passed on to the application handling the
drop. The application can store it as XML, or it can deserialized it, inspect the type of
the dropped object, and take the corresponding action based on that. For example, the
spatial desktop on Figure 5, only supports objects with a 3-dimensional user interface.
Likewise, the only types of objects that can be dropped onto airplanes are those that
represent textures or streams of 3-dimensional coordinates. The decision in each case
is made by the application logic of the object handling the drop.

Live objects can also be dropped into OLE-compliant containers, such as Microsoft
Word documents, emails, spreadsheets, or presentations. In this case, an OLE compo-
nent is inserted with an embedded XML of the dragged object’s reference. When the
OLE component is activated (e.g. when the user opens the document), it invokes the live
objects runtime to construct a proxy, and attaches to its user interface endpoint (if there
is one). This way, one can create documents and presentations, in which instead of static
drawings, the embedded figures can display content powered by any type of a distrib-
uted protocol. Integration with spreadsheets and databases is also possible, although a

123

little trickier because these need to access the data in the object, and must trigger actions
when a new event occurs.

As mentioned above, one can drag live objects into other live objects. In effect, the
state of one object contains a reference to some other live object. This is visible in the
desktop example on Figure 5. This example illustrates yet another important feature.
When one object contains a reference to another (as is the case for a desktop contain-
ing references to objects dragged onto it), it can dynamically activate it: dereference,
and connect to the proxy of the stored object, and interact with the proxy. For exam-
ple, the desktop object automatically activates references to all visual objects placed
on it, so that when the desktop is displayed, so are all objects, the references of which
have been dragged onto the desktop.

airplane
object

space
object

building
object

map
object

text note
object

image
object

desktop
object

Fig. 5. Screenshots of our platform running live objects with an attached user interface logic.
The 3-dimensional space, the area map embedded in this space, as well as each of the airplanes
and buildings (left) is a separate live object, with its own embedded multicast channel. Simi-
larly, the green desktop, and the text notes and images embedded in it are independent live
objects. Each of these objects can be viewed and accessed from anywhere on the network, and
separately embedded in other objects to create various web-style mash-ups, collaborative edi-
tors, online multiplayer games, and so on. Users create these by simply dragging objects into
one another. Our download site includes a short video demonstrating the ease with which appli-
cations such as these can be created.

By now, the reader will realize that in the proposed model, individual nodes might
end up participating in large numbers of distributed protocol instances. Opening a live
document of the sort shown on Figure 5 can cause the user’s machine to join hundreds
of instances of a reliable, totally ordered multicast protocol with state transfer, which
support the objects embedded in the document. This might lead to scalability con-
cerns. In our prior work we demonstrated that this problem is not a showstopper. Our
Quicksilver Scalable Multicast (QSM) system [46], can support thousands of overlap-
ping multicast groups, communicating at network speeds with low overhead.

5.2 Embedding Live Object Language Constructs into .NET Via Reflection

Extending a platform such as .NET to support the new constructs discussed in Section
4.1 would require extending the underlying type system and runtime, thus precluding
incremental deployment. Instead, we leverage the .NET reflection mechanism to im-
plement dynamic type checking. This technique doesn’t require modifications to the

124

.NET CLR, and it can be used for other managed environments, such as Java. The key
idea is to use ordinary .NET types as “aliases” representing our distributed types.
Whenever such an alias type is used in a .NET code, the live objects runtime “under-
stands” that what is “meant” by the programmer is actually the distributed type. Ali-
ases are defined by decorating.NET types with attributes, as in Code 6 and Code 7.

Example (f). Consider a template object type channel for multicast channels, param-
eterized by the .NET type of the messages that can be transmitted. One defines an alias
type as a .NET interface annotated with ObjectTypeAttribute (Code 6, line 01).
When a library object (of Section 4.2) loads a new binary, the runtime scans the binary
for .NET types annotated this way and registers them on its internal list of aliases.

Code 6. A .NET interface can be associated with a live object type using an “ObjectType” at-
tribute (line 01). The interface may then be used anywhere to represent the represented live
object type. The live objects runtime uses reflection to parse such annotations in binaries it
loads and build a library of built-in objects, object types and templates. Object and type tem-
plates are defined by specifying and annotating generic arguments (line 03).

01 [ObjectTypeAttribute]
02 interface IChannel<
03 [ParameterAttribute(ParameterClass.ValueClass)] MessageType>
04 {
05 [EndpointAttribute("Channel")] EndpointTypes.IDual<
06 Interfaces.IChannel<MessageType>,
07 Interfaces.IChannelClient<MessageType>>
08 ChannelEndpoint { get; }
09 }

Parameters of the represented live object type are modeled as generic parameters of
the alias. Each generic parameter is annotated with Parameter Attribute (line 03), to
specify the kind of parameter it represents. The classes of parameters supported by the
runtime include Value, ValueClass, ObjectClass, EndpointClass, and others we won’t
discuss here. Value parameters are simply serializable values, including .NET types or
references to live objects, The others represent the types of values, types of live ob-
jects and types of endpoints. For example, we could define a live object type template
parameterized by the type of another live object. A practical use of this is a typed
folder template, i.e. a folder that contains only references to live objects of a certain
type. For example, an instance of this template could be a folder that contains reliable
communication channels of a particular type. Another good example is a factory ob-
ject that creates references of a particular type, e.g. an object that configures new reli-
able multicast channels in a multicast platform.

An alias interface for a live object type is expected to specify only .NET properties,
each annotated with EndpointAttribute (line 05). Each property defines one named
endpoint for all live objects of this type. The property can only have a getter (line 08),
which must return a value of a .NET type that is an alias for some endpoint type. The
example in Code 6 uses alias EndpointTypes.IDual<Interface1, Interface2>. This
is an alias template built into the runtime, but parameterized by two .NET interfaces.

125

Code 7. A live object template is defined by decorating a generic class definition (line 01), its
generic class parameters (line 03), and constructor parameters (line 08) with .NET attributes.
To specify the template live object’s type, the class must implement an interface that is anno-
tated to represent a live object type (line 04 referencing the definition shown in Code 6). In the
body of the class, we create endpoints to be exposed by the proxy (created in lines 11-12, ex-
posed in lines 19-25), handle incoming events (line 27) and send events through its endpoints.

01 [ObjectAttribute("89BF6594F5884B6495F5CD78C5372FC6")]
02 sealed class MyChannel<
03 [ParameterAttribute(ParameterClass.ValueClass)] MessageType>
04 : ObjectTypes.IChannel<MessageType>, // specifies the live object type
05 Interfaces.IChannel // we implement handlers to all incoming events, see line 12
06 {
07 public MyChannel(
08 [Parameter(ParameterClass.Value)] // also a parameter of the template
09 ObjectReference<ObjectTypes.IMembership> membership_reference)
10 {
11 this.myendpoint = new Endpoints.Dual<
12 Interfaces.IChannel, Interfaces.IChannelClient>(this);
13 ... // the rest of the constructor would contain code very similar to that in Code 1
14 }
15 // this is our internal reference to the channel endpoint
16 private Endpoints.Dual<
17 Interfaces.IChannel, Interfaces.IChannelClient> myendpoint;
18
19 EndpointTypes.IDual<
20 Interfaces.IChannel<MessageType>,
21 Interfaces.IChannelClient<MessageType>>
22 ObjectTypes.IChannel.ChannelEndpoint
23 {
24 get { return myendpoint; } // returns an external endpoint reference
25 }
26 // this is a handler for one of the incoming events of the channel endpoint
27 Interfaces.IChannel.Send(MessageType message) { ... } // details omitted
28 ... // the rest of the alias definition, containing all the other event handlers etc.
29 }

The methods defined by these interfaces, again accordingly annotated, are used by the
runtime to compile the list of this endpoint’s incoming and outgoing events, and simi-
lar annotations can be used to express its constraints. When the alias defined this way
is used in some context with its generic parameters assigned (lines 05-07), the runtime
treats it as an alias for the specific endpoint type, with the specific events defined by
those interfaces.

Having defined the object’s type, we can define the object itself. This is again done
via annotations. An example definition of a live object template is shown in Code 7.

A live object template is defined as a .NET class, the instances of which represent
the object’s proxies. The class is annotated with ObjectAttribute (line 01) to instruct
the runtime to build a live object definition from it. This template has two parameters:
the type parameter representing the type of messages carried by the channel (line 03),
and a “value” parameter - the reference to the membership object that this channel

126

should use (lines 08-09). To specify the type of the live object, line 03 inherits from
an alias. This forces our class to implement properties returning the appropriate end-
points (lines 19-25). The actual endpoints are created in the constructor (lines 11-12).
While creating endpoints, we connect event handlers for incoming events (hooking
itself up, in line 12, and implementing these handlers, as in line 27).

While the use of aliases is convenient as a way of specifying distributed types, alias
types are, of course, not distributed, and the .NET runtime doesn’t understand subtyp-
ing rules we defined in Section 3.2. The actual type checking is done dynamically.
When the programmer invokes a method of a .NET alias to request a type cast, or to
create a connection between endpoints, the runtime uses its internal list of aliases to
identify the distributed types involved and performs type checking by itself. The
physical .NET types of aliases are irrelevant. Indeed, if the runtime determines that
two different .NET types are actually aliases for the same distributed type, it will in-
ject a wrapper code, as demonstrated below.

Example (g). Suppose that binary Foo.dll defines an object type alias IChannel as in
Code example 6, and an object template alias MyChannel as in Code example 7.
Now, suppose that a different, unrelated binary Bar.dll also defines an alias IChannel
in exactly the same way, as in Code 6, and then uses this alias, e.g. in the definition of
an application object that could use channels of the corresponding distributed type. If
both binaries are loaded by the live objects runtime, we will end up with two distinct,
binary-incompatible .NET aliases IChannel, representing the same distributed type.
Whenever the programmer makes an assignment between these two types, the runtime
dynamically creates, compiles, and injects the appropriate wrapper to forward method
calls between the incompatible interfaces, to make the assignment legal in .NET.

6 Conclusions

Our paper described the architecture and implementation of a system supporting live
distributed objects, a strongly typed, object-oriented platform in which distributed
protocols are treated as first-class objects. The platform is working and quite versatile,
but is still a work in progress. Future challenges include implementing our security
and WAN architectures (designed but not yet operational), providing runtime moni-
toring and debugging tools, and automated self-configuration and tuning.

Acknowledgements. Our work was funded by AFRL/IF, AFOSR, NSF, I3P and In-
tel. We’d like to thank Mahesh Balakrishnan, Kathleen Fisher, Paul Francis, Lakshmi
Ganesh, Rachid Guerraoui, Chi Ho, Maya Haridasan, Annie Liu, Tudor Marian, Greg
Morrisett, Andrew Myers, Anil Nerode, Robbert van Renesse, Yee Jiun Song, Einar
Vollset, and Hakim Weatherspoon for the feedback they provided.

References

1. de Alfaro, L., Henzinger, T.: Interface automata. SIGSOFT Softw. Eng. Notes 26, 5 (2001)
2. Anceaume, E., Charron-Bost, B., Minet, P., Toueg, S.: On the Formal Specification of

Group Membership Services. Cornell University Tech. Report TR95-1534 (August 1995)

127

3. Andrews, T., et al.: Business Process Execution Language for Web Services v1.1. May
(2003), http://download.boulder.ibm.com/ibmdl/pub/software/dw/
specs/ws-bpel/ws-bpel.pdf

4. Banerji, A., et al.: Web Services Conversation Language (WSCL),
http://www.w3.org/TR/wsc110

5. Birman, K.: The Process Group Approach to Reliable Distributed Computing. Communi-
cations of the ACM 36(12), 37–53 (1993)

6. Birrell, A., Nelson, G., Owicki, S., Wobber, W.: Network Objects. In: SOSP 1993
7. Brand, D., Zafiropulo, P.: On communicating finite-state machines. JACM, 30(2) (1983)
8. Brockschmidt, K.: Inside OLE. Microsoft Press (1995)
9. Burrows, M., Abadi, M., Needham, R.: A Logic of Authentication. TOCS 8(1), 18–36

(1990)
10. Carriero, N., Gelernter, D.: Linda in Context. CACM 32(4), 444–458 (1989)
11. Cheriton, D., Zwaenepoel, W.: Distributed Process Groups in the V Kernel. ACM Trans-

actions on Computer Systems 3(2), 77–107 (1985)
12. Chockler, G., Keidar, I., Vitenberg, W.: Group Communication Specifications: A Com-

prehensive Study. ACM Computer Surveys 33(4):1, 43 (2001)
13. Christensen, E., Curbera, F., Meredith, G., Weerawarana, S.: Web Services Description

Lan-guage (WSDL). W3C Note 15 March (2001), http://www.w3.org/TR/wsdl
14. Eugster, P., Guerraoui, R.: On Objects and Events. In: OOPSLA 2001, pp. 254–269 (2001)
15. Eugster, P., Guerraoui, R.: Distributed Programming with Typed Events. IEEE Soft-

ware 21(2), 56–64 (2004)
16. Eugster, P., Damm, H., Guerraoui, R.: Towards Safe Distributed Application Develop-

ment. In: ICSE 2004, pp. 347–356 (2004)
17. Eugster, P., Guerraoui, R., Sventek, J.: Distributed Asynchronous Collections: Abstrac-

tions for Publish/Subscribe Interaction. In: Bertino, E. (ed.) ECOOP 2000. LNCS,
vol. 1850, pp. 252–276. Springer, Heidelberg (2000)

18. Fu, X., Bultan, T., Su, J.: Conversation Specification: A New Approach to Design and
Anal-ysis of E-Service Composition. In: WWW 2003, Budapest, Hungary, May 20-24
(2003)

19. Fuzzati, R., Nestmann, U.: Much Ado About Nothing. In: Algebraic Process Calculi, the
First Twenty Five Years and Beyond. Process algebra,
http://www.brics.dk/NS/05/3/

20. Garbinato, B., Guerraoui, R.: Using the Strategy Pattern to Compose Reliable Distributed
Protocols. In: Proceedings of 3rd USENIX COOTS, Portland, Oregon (June 1997)

21. Goldberg, A., Robson, D.: Smalltalk-80: the language and its implementation. Addison-
Wesley Longman Publishing Co., Inc., Boston (1983)

22. Halpern, J., Fagin, R., Moses, Y., Vardi, M.: Reasoning about Knowledge. MIT Press,
Cambridge (1995)

23. Hickey, J., Lynch, N., van Renesse, R.: Specifications and proofs for Ensemble layers. In:
Cleaveland, W.R. (ed.) ETAPS 1999 and TACAS 1999. LNCS, vol. 1579, Springer, Hei-
delberg (1999)

24. Hoare, C.: Communicating sequential processes. CACM 21(8), 666–677 (1978)
25. Jul, E., Levy, H., Hutchinson, N., Black, A.: Fine-Grained Mobility in the Emerald Sys-

tem. ACM TOCS 6(1), 109–133
26. Karr, D.: Specification, Composition, and Automated Verification of Layered Communi-

cation Protocols. Ph.D. Thesis. Cornell University (1997)

128

http://download.boulder.ibm.com/ibmdl/pub/software/dw/
http://www.w3.org/TR/wsc110
http://www.w3.org/TR/wsdl
http://www.brics.dk/NS/05/3/

27. Keidar, I., Khazan, R., Lynch, N., Shvartsman, A.: An inheritance-based technique for
building simulation proofs incrementally. ACM Trans. Soft. Eng. Methodol. 11(1), 63–91
(2002)

28. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier, J.-M., Irwin,
J.: Aspect-Oriented Programming. In: Aksit, M., Matsuoka, S. (eds.) ECOOP 1997.
LNCS, vol. 1241, pp. 220–242. Springer, Heidelberg (1997)

29. Krumvieda, C.: Distributed ML: Abstractions for Efficient and Fault-Tolerant Prgram-
ming. Technical Report, TR93-1376, Cornell University (1993)

30. Lamport, L.: The Temporal Logic of Actions. ACM Toplas 16(3), 872–923 (1994)
31. Liskov, B.: Distributed Programming in Argus. CACM 31(3), 300–312 (1988)
32. Liskov, B., Schieffler, R.: Guardians and Actions: Linguistic Support for Robust, Distrib-

uted Programs. ACM TOPLAS 5, 3 (1983)
33. Liu, X., Kreitz, C., van Renesse, R., Hickey, J., Hayden, M., Birman, K., Constable, R.:

Building Reliable, High-Performance Communication Systems from Components. In:
SOSP (1999)

34. Live Objects at Cornell, http://liveobjects.cs.cornell.edu/
35. Loesing, K., Wirtz, G.: An Implementation of Reliable Group Communication Based on

the Peer-to-Peer Network JXTA. In: AICCSA 2005 (2005)
36. Lynch, N., Tuttle, M.: Hierarchical correctness proofs for dist.ributed algorithms. In:

PODC 1987 (1987)
37. Maffeis, S., Schmidt, D.: Constructing Reliable Distributed Communication Systems with

CORBA. IEEE Communications Magazine 14 (February 1997)
38. Makpangou, M., Gourhant, Y., Le Narzul, J.-P., Shapiro, M.: Fragmented Objects for Dis-

tri-buted Abstractions, pp. 170–186. IEEE Computer Society Press, Los Alamitos (1994)
39. Microsoft. Microsoft Office Groove, http://office.microsoft.com/en-us/groove/
40. Microsoft. XAML Overview, http://msdn2.microsoft.com/en-us/library/ms752059.aspx
41. Milner, R., Parrow, J., Walker, D.: A Calculus of Mobile Processes, parts I and II. LFCS

Report 89-85. University of Edinburgh (June 1989)
42. Miranda, H., Pinto, A., Rodrigues, L.: Appia, a Flexible Protocol Kernel Supporting Mul-

tiple Coordinated Channels. In: Proc. of 21st ICDCS, Phoenix, Arizona, pp. 707–710
(2001)

43. Montresor, A., Davoli, R., Babaoglu, O.: Enhancing Jini with group communication. In:
ICDCS Workshop, April 2001, pp. 69–74 (2001)

44. Necula, G.: Proof-Carrying Code. ACM SIGPLAN-SIGACT POPL 1997 (1997)
45. O’Malley, S., Peterson, L.: A Dynamic Network Architecture. TOCS 10(2), 110–143

(1992)
46. K. Ostrowski, K. Birman, D. Dolev. Quicksilver Scalable Multicast (in submission)
47. Ostrowski, K., Birman, K., Dolev, D.: Declarative Reliable Multi-Party Protocols. Cornell

University Technical Report, TR2007-2088 (March 2007)
48. Ostrowski, K., Birman, K., Dolev, D.: Extensible Architecture for High-Performance,

Scalable, Reliable Publish-Subscribe Eventing and Notification. JWSR v. 4, no 4 (Octo-
ber- December 2007)

49. Parastatidis, S., Webber, J., Woodman, S., Kuo, D., Greenfield, P.: SOAP Service Descrip-
tion Language (SSDL). Technical Report, University of Newcastle, CS-TR-899 (2005)

50. Reiter, M., Birman, K.: How to securely replicate services. In: TOPLAS, vol. 16(3), pp.
986–1009 (1994)

51. van Renesse, R., Birman, K., Hayden, M., Vaysburd, A., Karr, D.: Building Adaptive Sys-
tems Using Ensemble. Software Practice and Experience. 28(9), pp. 963-979 (August
1998)

129

http://liveobjects.cs.cornell.edu/
http://office.microsoft.com/en-us/groove/
http://msdn2.microsoft.com/en-us/library/ms752059.aspx

52. Schneider, F.: Implementing Fault-Tolerant Services Using the State Machine Approach: a
Tutorial. ACM Computng Surveys 22(4), 299–319 (1990)

53. Smith, D., Kay, A., Raab, A., Reed, D.: Croquet: a collaboration system architecture. Cre-
ating, Connecting and Collaborating Through Computing, C5 2003, p. 2–9 (2003)

54. Smith, R., Wolczko, M., Ungar, D.: From Kansas to Oz: Collaborative Debugging When a
Shared World Breaks. CACM, 72–78 (1997)

55. Snyder, A.: Encapsulation and Inheritance in Object-Oriented Programming Languages.
In: OOPLSA 1986

56. van Steen, M., Homburg, P., Tanenbaum, A.: Globe: A Wide Area Distributed System.
IEEE Concurrency 7(1), 70–78 (1999)

57. Sun Microsystems, Inc. JXTA v2.0 Protocols Specification, http://www.jxta.org
58. Waldo, J.: The Jini architecture for network-centric computing. CACM 42(7), 76–82

(1999)

130

http://www.jxta.org

Maelstrom: Transparent Error Correction for Lambda Networks ∗

Mahesh Balakrishnan, Tudor Marian, Ken Birman, Hakim Weatherspoon, Einar Vollset
{mahesh, tudorm, ken, hweather, einar}@cs.cornell.edu

Cornell University, Ithaca, NY-14853

Abstract

The global network of datacenters is emerging as an im-
portant distributed systems paradigm — commodity clus-
ters running high-performance applications, connected by
high-speed ‘lambda’ networks across hundreds of mil-
liseconds of network latency. Packet loss on long-haul
networks can cripple application performance — a loss
rate of 0.1% is sufficient to reduce TCP/IP throughput by
an order of magnitude on a 1 Gbps link with 50ms latency.
Maelstrom is an edge appliance that masks packet loss
transparently and quickly from inter-cluster protocols, ag-
gregating traffic for high-speed encoding and using a new
Forward Error Correction scheme to handle bursty loss.

1 Introduction

The emergence of commodity clusters and datacenters
has enabled a new class of globally distributed high-
performance applications that coordinate over vast geo-
graphical distances. For example, a financial firm’s New
York City datacenter may receive real-time updates from a
stock exchange in Switzerland, conduct financial transac-
tions with banks in Asia, cache data in London for locality
and mirror it to Kansas for disaster-tolerance.

To interconnect these bandwidth-hungry datacenters
across the globe, organizations are increasingly deploy-
ing private ‘lambda’ networks [35, 39]. Raw bandwidth
is ubiquitous and cheaply available in the form of ex-
isting ‘dark fiber’; however, running and maintaining
high-quality loss-free networks over this fiber is diffi-
cult and expensive. Though high-capacity optical links
are almost never congested, they drop packets for nu-
merous reasons — dirty/degraded fiber [14], misconfig-
ured/malfunctioning hardware [20,21] and switching con-
tention [27], for example — and in different patterns,
ranging from singleton drops to extended bursts [16, 26].

Non-congestion loss has been observed on long-haul
networks as well-maintained as Abilene/Internet2 and Na-

∗This work was supported in part by grants from AFOSR, AFRL,
NSF and Intel Corporation.

N

S
EW

100 ms

RTT: 110 ms

210 ms

220 ms

110 ms

100 ms 200 ms

Figure 1: Example Lambda Network

tional LambdaRail [15, 16, 20, 21] — as has its crippling
effect on commodity protocols, motivating research into
loss-resistant data transfer protocols [13, 17, 25, 38, 43].
Conservative flow control mechanisms designed to deal
with the systematic congestion of the commodity Internet
react too sharply to ephemeral loss on over-provisioned
links — a single packet loss in ten thousand is enough
to reduce TCP/IP throughput to a third over a 50 ms gi-
gabit link, and one in a thousand drops it by an order of
magnitude. Real-time applications are impacted by the
reliance of reliability mechanisms on acknowledgments
and retransmissions, limiting the latency of packet recov-
ery to at least the Round Trip Time (RTT) of the link; if
delivery is sequenced, each lost packet acts as a virtual
‘road-block’ in the FIFO channel until it is recovered.

Deploying new loss-resistant protocols is not an alter-
native in corporate datacenters, where standardization is
the key to low and predictable maintenance costs; nei-
ther is eliminating loss events on a network that could
span thousands of miles. Accordingly, there is a need to

131

mailto:@cs.cornell.edu

Link Loss:
FEC

Receiver Buffer
Overflow:
Local Recovery

Sending End-hosts
Send-side
Appliance

Receive-side
Appliance Receiving End-hosts

Locations of
Packet Loss

Appliances: dedicated machines, in-kernel code
 No dropped packets

Figure 2: Maelstrom Communication Path

mask loss on the link, rapidly and transparently. Rapidly,
because recovery delays for lost packets translate into
dramatic reductions in application-level throughput; and
transparently, because applications and OS networking
stacks in commodity datacenters cannot be rewritten from
scratch.

Forward Error Correction (FEC) is a promising solution
for reliability over long-haul links [36] — packet recovery
latency is independent of the RTT of the link. While FEC
codes have been used for decades within link-level hard-
ware solutions, faster commodity processors have enabled
packet-level FEC at end-hosts [18, 37]. End-to-end FEC
is very attractive for inter-datacenter communication: it’s
inexpensive, easy to deploy and customize, and does not
require specialized equipment in the network linking the
datacenters. However, end-host FEC has two major is-
sues — First, it’s not transparent, requiring modification
of the end-host application/OS. Second, it’s not necessar-
ily rapid; FEC works best over high, stable traffic rates
and performs poorly if the data rate in the channel is low
and sporadic [6], as in a single end-to-end channel.

In this paper, we present the Maelstrom Error Correc-
tion appliance — a rack of proxies residing between a
datacenter and its WAN link (see Figure 2). Maelstrom
encodes FEC packets over traffic flowing through it and
routes them to a corresponding appliance at the desti-
nation datacenter, which decodes them and recovers lost
data. Maelstrom is completely transparent — it does not
require modification of end-host software and is agnostic
to the network connecting the datacenter. Also, it elim-
inates the dependence of FEC recovery latency on the

data rate in any single node-to-node channel by encoding
over the aggregated traffic leaving the datacenter. Finally,
Maelstrom uses a new encoding scheme called layered in-
terleaving, designed especially for time-sensitive packet
recovery in the presence of bursty loss.

The contributions of this paper are as follows:

• We explore end-to-end FEC for long-distance com-
munication between datacenters, and argue that the
rate sensitivity of FEC codes and the opacity of their
implementations present major obstacles to their us-
age.

• We propose Maelstrom, a gateway appliance that
transparently aggregates traffic and encodes over the
resulting high-rate stream.

• We describe layered interleaving, a new FEC scheme
used by Maelstrom where for constant encoding
overhead the latency of packet recovery degrades
gracefully as losses get burstier.

• We discuss implementation considerations. We built
two versions of Maelstrom; one runs in user mode,
while the other runs within the Linux kernel.

• We evaluate Maelstrom on Emulab [45] and show
that it provides near lossless TCP/IP throughput and
latency over lossy links, and recovers packets with
latency independent of the RTT of the link and the
rate in any single channel.

132

2 Model

Our focus is on pairs of geographically distant datacenters
that coordinate with each other in real-time. This has long
been a critical distributed computing paradigm in appli-
cation domains such as finance and aerospace; however,
similar requirements are arising across the board as glob-
alized enterprises rely on networks for high-speed com-
munication and collaboration.
Traffic Model: The most general case of inter-cluster
communication is one where any node in one cluster can
communicate with any node in the other cluster. We make
no assumptions about the type of traffic flowing through
the link; mission-critical applications could send dynami-
cally generated real-time data such as stock quotes, finan-
cial transactions and battleground location updates, while
enterprise applications could send VoIP streams, ssh ses-
sions and synchronous file updates between offices.
Loss Model: Packet loss typically occurs at two points
in an end-to-end communication path between two data-
centers, as shown in Figure 2 — in the wide-area network
connecting them and at the receiving end-hosts. Loss in
the lambda link can occur for many reasons, as stated
previously: transient congestion, dirty or degraded fiber,
malfunctioning or misconfigured equipment, low receiver
power and burst switching contention are some reasons
[14, 20, 21, 23, 27]. Loss can also occur at receiving end-
hosts within the destination datacenter; these are usually
cheap commodity machines prone to temporary overloads
that cause packets to be dropped by the kernel in bursts [6]
— this loss mode occurs with UDP-based traffic but not
with TCP/IP, which advertises receiver windows to pre-
vent end-host buffer overflows.

What are typical loss rates on long-distance optical
networks? One source of information is TeraGrid [5],
an optical network interconnecting major supercomput-
ing sites in the US. TeraGrid has a monitoring framework
within which ten sites periodically send each other 1 Gbps
streams of UDP packets and measure the resulting loss
rate [3]. Each site measures the loss rate to every other
site once an hour, resulting in a total of 90 loss rate mea-
surements collected across the network every hour. Be-
tween Nov 1, 2007 and Jan 25, 2007, 24% of all such
measurements were over 0.01% and a surprising 14% of
them were over 0.1%. After eliminating a single site (In-
diana University) that dropped incoming packets steadily
at a rate of 0.44%, 14% of the remainder were over 0.01%
and 3% were over 0.1%.

These numbers reflect the loss rate experienced for
UDP traffic on an end-to-end path and may not gener-
alize to TCP packets. Also, we do not know if packets
were dropped within the optical network or at intermedi-
ate devices within either datacenter, though it’s unlikely
that they were dropped at the end-hosts; many of the mea-

surements lost just one or two packets whereas kernel/NIC
losses are known to be bursty [6]. Further, loss occurred
on paths where levels of optical link utilization (deter-
mined by 20-second moving averages) were consistently
lower than 20%, ruling out congestion as a possible cause,
a conclusion supported by dialogue with the network ad-
ministrators [44].

Other data-points are provided by the back-bone net-
works of Tier-1 ISPs. Global Crossing reports average
loss rates between 0.01% and 0.03% on four of its six
inter-regional long-haul links for the month of December
2007 [1]. Qwest reports loss rates of 0.01% and 0.02%
in either direction on its trans-pacific link for the same
month [2]. We expect privately managed lambdas to ex-
hibit higher loss rates due to the inherent trade-off be-
tween fiber/equipment quality and cost [10], as well as
the difficulty of performing routine maintenance on long-
distance links. Consequently, we model end-to-end paths
as dropping packets at rates of 0.01% to 1%, to capture a
wide range of deployed networks.

3 Existing Reliability Options

TCP/IP is the default reliable communication option for
contemporary networked applications, with deep, exclu-
sive embeddings in commodity operating systems and
networking APIs. Consequently, most applications re-
quiring reliable communication over any form of network
use TCP/IP.

3.1 The problem with commodity TCP/IP

ACK/Retransmit + Sequencing: Conventional TCP/IP
uses positive acknowledgments and retransmissions to en-
sure reliability — the sender buffers packets until their
receipt is acknowledged by the receiver, and resends if
an acknowledgment is not received within some time pe-
riod. Hence, a lost packet is received in the form of a re-
transmission that arrives no earlier than 1.5 RTTs after the
original send event. The sender has to buffer each packet
until it’s acknowledged, which takes 1 RTT in lossless op-
eration, and it has to perform additional work to retrans-
mit the packet if it does not receive the acknowledgment.
Also, any packets that arrive with higher sequence num-
bers than that of a lost packet must be queued while the
receiver waits for the lost packet to arrive.

Consider a high-throughput financial banking applica-
tion running in a datacenter in New York City, sending
updates to a sister site in Switzerland. The RTT value be-
tween these two centers is typically 100 milliseconds; i.e.,
in the case of a lost packet, all packets received within the
150 milliseconds between the original packet send and the

133

A B C D E F G HX X X X

A C E G X X
B D F H X X

A,B,C,D E,F,G,H

A,C,E,G

B,D,F,H

Figure 3: Interleaving with index 2: separate encoding for
odd and even packets

receipt of its retransmission have to be buffered at the re-
ceiver.

Notice that for this commonplace scenario, the loss of
a single packet stops all traffic in the channel to the ap-
plication for a seventh of a second; a sequence of such
blocks can have devastating effect on a high-throughput
system where every spare cycle counts. Further, in appli-
cations with many fine-grained components, a lost packet
can potentially trigger a butterfly effect of missed dead-
lines along a distributed workflow. During high-activity
periods — market crashes at stock exchanges, Christmas
sales at online stores, winter storms at air-traffic control
centers — overloaded networks and end-hosts can exhibit
continuous packet loss, with each lost packet driving the
system further and further out of sync with respect to its
real-world deadlines.
Sensitive Flow Control: TCP/IP is unable to distinguish
between ephemeral loss modes — due to transient con-
gestion, switching errors, or dirty fiber — and persistent
congestion. The loss of one packet out of ten thousand
is sufficient to reduce TCP/IP throughput to a third of its
lossless maximum; if one packet is lost out of a thousand,
throughput collapses to a thirtieth of the maximum.

3.2 The Case For (and Against) FEC

FEC encoders are typically parameterized with an (r, c)
tuple — for each outgoing sequence of r data packets, a
total of r + c data and error correction packets are sent
over the channel 1. Significantly, redundancy informa-
tion cannot be generated and sent until all r data pack-
ets are available for sending. Consequently, the latency
of packet recovery is determined by the rate at which the
sender transmits data. Generating error correction packets
from less than r data packets at the sender is not a viable
option — even though the data rate in this channel is low,
the receiver and/or network could be operating at near full
capacity with data from other senders.

FEC is also very susceptible to bursty losses [34]. In-
terleaving [32] is a standard encoding technique used
to combat bursty loss, where error correction pack-

ets are generated from alternate disjoint sub-streams of
data rather than from consecutive packets. For exam-
ple, with an interleave index of 3, the encoder would
create correction packets separately from three disjoint
sub-streams: the first containing data packets numbered
(0, 3, 6...(r − 1) ∗ 3), the second with data packets num-
bered (1, 4, 7...(r − 1) ∗ 3 + 1), and the third with data
packets numbered (2, 5, 8, ...(r− 1) ∗ 3+2). Interleaving
adds burst tolerance to FEC but exacerbates its sensitiv-
ity to sending rate — with an interleave index of i and an
encoding rate of (r, c), the sender would have to wait for
i ∗ (r − 1) + 1 packets before sending any redundancy
information.

These two obstacles to using FEC in time-sensitive set-
tings — rate sensitivity and burst susceptibility — are in-
terlinked through the tuning knobs: an interleave of i and
a rate of (r, c) provides tolerance to a burst of up to c ∗ i
consecutive packets. Consequently, the burst tolerance of
an FEC code can be changed by modulating either the c
or the i parameters. Increasing c enhances burst toler-
ance at the cost of network and encoding overhead, poten-
tially worsening the packet loss experienced and reducing
throughput. In contrast, increasing i trades off recovery
latency for better burst tolerance without adding overhead
— as mentioned, for higher values of i, the encoder has to
wait for more data packets to be transmitted before it can
send error correction packets.

Importantly, once the FEC encoding is parameterized
with a rate and an interleave to tolerate a certain burst
length B (for example, r = 5, c = 2 and i = 10 to
tolerate a burst of length 2∗10 = 20), all losses occurring
in bursts of size less than or equal to B are recovered with
the same latency — and this latency depends on the i pa-
rameter. Ideally, we’d like to parameterize the encoding
to tolerate a maximum burst length and then have recov-
ery latency depend on the actual burstiness of the loss.
At the same time, we would like the encoding to have a
constant rate for network provisioning and stability. Ac-
cordingly, an FEC scheme is required where latency of
recovery degrades gracefully as losses get burstier, even
as the encoding overhead stays constant.

4 Maelstrom Design and Implemen-
tation

We describe the Maelstrom appliance as a single machine
— later, we will show how more machines can be added to
the appliance to balance encoding load and scale to mul-
tiple gigabits per second of traffic.

134

29 28 27 26 25

25
26

27
28

29

X

LOSSXOR

‘Recipe List’:
25,26,27,28,29

25 26 28 29

Lam
bda Jum

bo M
TU

LAN M
TU

Appliance

Appliance

27

Recovered
Packet

Figure 4: Basic Maelstrom mechanism: repair packets are
injected into stream transparently

4.1 Basic Mechanism

The basic operation of Maelstrom is shown in Figure 4
— at the send-side datacenter, it intercepts outgoing data
packets and routes them to the destination datacenter, gen-
erating and injecting FEC repair packets into the stream
in their wake. A repair packet consists of a ‘recipe’ list
of data packet identifiers and FEC information generated
from these packets; in the example in Figure 4, this in-
formation is a simple XOR. The size of the XOR is equal
to the MTU of the datacenter network, and to avoid frag-
mentation of repair packets we require that the MTU of
the long-haul network be set to a slightly larger value.
This requirement is usually satisfied in practical deploy-
ments, since gigabit links very often use ‘Jumbo’ frames
of up to 9000 bytes [19] while LAN networks have stan-
dard MTUs of 1500 bytes.

At the receiving datacenter, the appliance examines in-
coming repair packets and uses them to recover missing
data packets. On recovery, the data packet is injected
transparently into the stream to the receiving end-host.
Recovered data packets will typically arrive out-of-order,
but this behavior is expected by communication stacks de-
signed for the commodity Internet.

4.2 Flow Control

While relaying TCP/IP data, Maelstrom has two flow
control modes: end-to-end and split. With end-to-end
flow control, the appliance routes packets through with-
out modification, allowing flow-control between the end-
hosts. In split mode, the appliance acts as a TCP/IP
endpoint, terminating connections and sending back
ACKs immediately before relaying data on appliance-to-
appliance flows; this is particularly useful for applications
with short-lived flows that need to ramp up throughput
quickly and avoid the slow-start effects of TCP/IP on a
long link. The performance advantages of splitting long-
distance connections into multiple hops are well known
[7] and orthogonal to this work; we are primarily inter-
ested in isolating the impact of rapid and transparent re-
covery of lost packets by Maelstrom on TCP/IP, rather
than the buffering and slow-start avoidance benefits of
generic performance-enhancing proxies. In the remain-
der of the paper, we describe Maelstrom with end-to-end
flow control.
Is Maelstrom TCP-Friendly? While Maelstrom respects
end-to-end flow control connections (or splits them and
implements its own proxy-to-proxy flow control as de-
scribed above), it is not designed for routinely congested
networks; the addition of FEC under TCP/IP flow control
allows it to steal bandwidth from other competing flows
running without FEC in the link, though maintaining fair-
ness versus similarly FEC-enhanced flows [30]. How-
ever, friendliness with conventional TCP/IP flows is not a
primary protocol design goal on over-provisioned multi-
gigabit links, which are often dedicated to specific high-
value applications. We see evidence for this assertion in
the routine use of parallel flows [38] and UDP ‘blast’ pro-
tocols [17, 43] both in commercial deployments and by
researchers seeking to transfer large amounts of data over
high-capacity academic networks.

4.3 Layered Interleaving

In layered interleaving, an FEC protocol with rate (r, c) is
produced by running c multiple instances of an (r, 1) FEC
protocol simultaneously with increasing interleave indices
I = (i0, i1, i2...ic−1). For example, if r = 8, c = 3 and
I = (i0 = 1, i1 = 10, i2 = 100), three instances of an
(8, 1) protocol are executed: the first instance with inter-
leave i0 = 1, the second with interleave i1 = 10 and
the third with interleave i2 = 100. An (r, 1) FEC en-
coding is simply an XOR of the r data packets — hence,
in layered interleaving each data packet is included in c
XORs, each of which is generated at different interleaves
from the original data stream. Choosing interleaves ap-
propriately (as we shall describe shortly) ensures that the
c XORs containing a data packet do not have any other

135

3 2 1

X1

1121

X2

101201

X3

Data Stream

XORs:

Figure 5: Layered Interleaving: (r = 3, c = 3), I = (1, 10, 100)

data packet in common. The resulting protocol effectively
has a rate of (r, c), with each XOR generated from r data
packets and each data packet included in c XORs. Fig-
ure 5 illustrates layered interleaving for a (r = 3, c = 3)
encoding with I = (1, 10, 100).

As mentioned previously, standard FEC schemes can
be made resistant to a certain loss burst length at the cost
of increased recovery latency for all lost packets, includ-
ing smaller bursts and singleton drops. In contrast, lay-
ered interleaving provides graceful degradation in the face
of bursty loss for constant encoding overhead — single-
ton random losses are recovered as quickly as possible,
by XORs generated with an interleave of 1, and each suc-
cessive layer of XORs generated at a higher interleave
catches larger bursts missed by the previous layer.

The implementation of this algorithm is simple and
shown in Figure 6 — at the send-side proxy, a set of re-
pair bins is maintained for each layer, with i bins for a
layer with interleave i. A repair bin consists of a par-
tially constructed repair packet: an XOR and the ‘recipe’
list of identifiers of data packets that compose the XOR.
Each intercepted data packet is added to each layer —
where adding to a layer simply means choosing a repair
bin from the layer’s set, incrementally updating the XOR
with the new data packet, and adding the data packet’s
header to the recipe list. A counter is incremented as each
data packet arrives at the appliance, and choosing the re-
pair bin from the layer’s set is done by taking the modulo
of the counter with the number of bins in each layer: for
a layer with interleave 10, the xth intercepted packet is
added to the (x mod 10)th bin. When a repair bin fills
up — its recipe list contains r data packets — it ‘fires’: a
repair packet is generated consisting of the XOR and the
recipe list and is scheduled for sending, while the repair
bin is re-initialized with an empty recipe list and blank
XOR.

At the receive-side proxy, incoming repair packets are
processed as follows: if all the data packets contained in
the repair’s recipe list have been received successfully,
the repair packet is discarded. If the repair’s recipe list
contains a single missing data packet, recovery can oc-
cur immediately by combining the XOR in the repair with

25 26 27 28 29

20 24 28

21 25 29

22 26

23 27

Layer 1: Interleave 1

Layer 2: Interleave 4

20 28

21 29

22

23

Layer 3: Interleave 8

X X

24

25

26

27

29
Layer with
interleave
of 4 has 4
repair bins

Incoming
Data
Packet

Figure 6: Layered Interleaving Implementation: (r =
5, c = 3), I = (1, 4, 8)

the other successfully received data packets. If the repair
contains multiple missing data packets, it cannot be used
immediately for recovery — it is instead stored in a table
that maps missing data packets to repair packets. When-
ever a data packet is subsequently received or recovered,
this table is checked to see if any XORs now have single-
ton losses due to the presence of the new packet and can
be used for recovering other missing packets.

Importantly, XORs received from different layers in-
teract to recover missing data packets, since an XOR re-
ceived at a higher interleave can recover a packet that
makes an earlier XOR at a lower interleave usable —
hence, though layered interleaving is equivalent to c dif-
ferent (r, 1) instances in terms of overhead and design, its
recovery power is much higher and comes close to stan-
dard (r, c) algorithms.

136

41 49 57

50 58

59

Layer Interleave 8

45 53 61

54 62

63

65

(1)

(2,10)

(3,11,19)

(4,12,20,28)

(5)

(6,14)

(7,15,23)

(8,16,24,32)

Repair Bins

Staggered Start
XORs

(9,17,25,33)

(18,26,34,42)

(27,35,43,51)

(36,44,52,60)

(13,21,29,37)

(22,30,38,46)

(31,39,47,55)

(40,48,56,64)

Second Set of r-
sized XORs

r = 4

Figure 7: Staggered Start

4.3.1 Optimizations

Staggered Start for Rate-Limiting In the naive imple-
mentation of the layered interleaving algorithm, repair
packets are transmitted as soon as repair bins fill and al-
low them to be constructed. Also, all the repair bins in
a layer fill in quick succession; in Figure 6, the arrival of
packets 36, 37, 38 and 39 will successively fill the four re-
pair bins in layer 2. This behavior leads to a large number
of repair packets being generated and sent within a short
period of time, which results in undesirable overhead and
traffic spikes; ideally, we would like to rate-limit trans-
missions of repair packets to one for every r data packets.

This problem is fixed by ‘staggering’ the starting sizes
of the bins, analogous to the starting positions of runners
in a sprint; the very first time bin number x in a layer of
interleave i fires, it does so at size x mod r. For example,
in Figure 6, the first repair bin in the second layer with
interleave 4 would fire at size 1, the second would fire at
size 2, and so on. Hence, for the first i data packets added
to a layer with interleave i, exactly i/r fire immediately
with just one packet in them; for the next i data packets
added, exactly i/r fire immediately with two data packets
in them, and so on until r∗ i data packets have been added
to the layer and all bins have fired exactly once. Subse-
quently, all bins fire at size r; however, now that they have
been staggered at the start, only i/r fire for any i data
packets. The outlined scheme works when i is greater
than or equal to r, as is usually the case. If i is smaller
than r, the bin with index x fires at ((x mod r) ∗ r/i) —
hence, for r = 4 and i = 2, the initial firing sizes would
be 2 for the first bin and 4 for the second bin. If r and i are
not integral multiples of each other, the rate-limiting still
works but is slightly less effective due to rounding errors.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Loss probability

R
e

c
o

v
e

ry
 p

ro
b

a
b

ili
ty

Reed!Solomon

Maelstrom

Figure 8: Comparison of Packet Recovery Probability:
r=7, c=2

Delaying XORs In the naive implementation, repair
packets are transmitted as soon as they are generated. This
results in the repair packet leaving immediately after the
last data packet that was added to it, which lowers burst
tolerance — if the repair packet was generated at inter-
leave i, the resulting protocol can tolerate a burst of i lost
data packets excluding the repair, but the burst could swal-
low both the repair and the last data packet in it as they are
not separated by the requisite interleave. The solution to
this is simple — delay sending the repair packet generated
by a repair bin until the next time a data packet is added to
the now empty bin, which happens i packets later and in-
troduces the required interleave between the repair packet
and the last data packet included in it.

Notice that although transmitting the XOR immediately
results in faster recovery, doing so also reduces the prob-
ability of a lost packet being recovered. This trade-off
results in a minor control knob permitting us to balance
speed against burst tolerance; our default configuration is
to transmit the XOR immediately.

4.4 Back-of-the-Envelope Analysis

To start with, we note that no two repair packets generated
at different interleaves i1 and i2 (such that i1 < i2) will
have more than one data packet in common as long as
the Least Common Multiple (LCM) of the interleaves is
greater than r ∗ i1; pairings of repair bins in two different
layers with interleaves i1 and i2 occur every LCM(i1, i2)
packets. Thus, a good rule of thumb is to select interleaves
that are relatively prime to maximize their LCM , and also
ensure that the larger interleave is greater than r.

Let us assume that packets are dropped with uniform,
independent probability p. Given a lost data packet, what
is the probability that we can recover it? We can recover a

137

data packet if at least one of the c XORs containing it is re-
ceived correctly and ‘usable’, i.e, all the other data packets
in it have also been received correctly, the probability of
which is simply (1− p)r−1. The probability of a received
XOR being unusable is the complement: (1−(1−p)r−1).

Consequently, the probability x of a sent XOR being
dropped or unusable is the sum of the probability that it
was dropped and the probability that it was received and
unusable: x = p+(1−p)(1−(1−p)r−1) = (1−(1−p)r).

Since it is easy to ensure that no two XORs share
more than one data packet, the usability probabilities of
different XORs are independent. The probability of all
the c XORs being dropped or unusable is xc; hence,
the probability of correctly receiving at least one usable
XOR is 1 − xc. Consequently, the probability of recov-
ering the lost data packet is 1 − xc, which expands to
1− (1− (1− p)r)c.

This closed-form formula only gives us a lower bound
on the recovery probability, since the XOR usability for-
mula does not factor in the probability of the other data
packets in the XOR being dropped and recovered.

Now, we extend the analysis to bursty losses. If the lost
data packet was part of a loss burst of size b, repair pack-
ets generated at interleaves less than b are dropped or use-
less with high probability, and we can discount them. The
probability of recovering the data packet is then 1 − xc′

,
where c′ is the number of XORs generated at interleaves
greater than b. The formulae derived for XOR usability
still hold, since packet losses with more than b intervening
packets between them have independent probability; there
is only correlation within the bursts, not between bursts.

How does this compare to traditional (r, c) codes such
as Reed-Solomon [46]? In Reed-Solomon, c repair pack-
ets are generated and sent for every r data packets, and
the correct delivery of any r of the r + c packets trans-
mitted is sufficient to reconstruct the original r data pack-
ets. Hence, given a lost data packet, we can recover it if
at least r packets are received correctly in the encoding
set of r + c data and repair packets that the lost packet
belongs to. Thus, the probability of recovering a lost
packet is equivalent to the probability of losing c − 1 or
less packets from the total r + c packets. Since the num-
ber of other lost packets in the XOR is a random vari-
able Y and has a binomial distribution with parameters
(r + c − 1) and p, the probability P (Y ≤ c − 1) is the
summation

∑
z≤c−1 P (Y = z). In Figure 8, we plot

the recovery probability curves for Layered Interleaving
and Reed-Solomon against uniformly random loss rate,
for (r = 7, c = 2) — note that the curves are very close
to each other, especially in the loss range of interest be-
tween 0% and 10%.

4.5 Local Recovery for Receiver Loss

In the absence of intelligent flow control mechanisms like
TCP/IP’s receiver-window advertisements, inexpensive
datacenter end-hosts can be easily overwhelmed and drop
packets during traffic spikes or CPU-intensive mainte-
nance tasks like garbage collection. Reliable application-
level protocols layered over UDP — for reliable multi-
cast [6] or high speed data transfer [17], for example —
would ordinarily go back to the sender to retrieve the lost
packet, even though it was dropped at the receiver after
covering the entire geographical distance.

The Maelstrom proxy acts as a local packet cache, stor-
ing incoming packets for a short period of time and pro-
viding hooks that allow protocols to first query the cache
to locate missing packets before sending retransmission
requests back to the sender. Future versions of Maelstrom
could potentially use knowledge of protocol internals to
transparently intervene; for example, by intercepting and
satisfying retransmission requests sent by the receiver in
a NAK-based protocol, or by resending packets when ac-
knowledgments are not observed within a certain time pe-
riod in an ACK-based protocol.

4.6 Implementation Details

We initially implemented and evaluated Maelstrom as a
user-space proxy. Performance turned out to be limited by
copying and context-switching overheads, and we subse-
quently reimplemented the system as a module that runs
within the Linux 2.6.20 kernel. At an encoding rate of
(8, 3), the experimental prototype of the kernel version
reaches output speeds close to 1 gigabit per second of
combined data and FEC traffic, limited only by the ca-
pacity of the outbound network card.

Of course, lambda networks are already reaching
speeds of 40 gigabits, and higher speeds are a certainty
down the road. To handle multi-gigabit loads, we envision
Maelstrom as a small rack-style cluster of blade-servers,
each acting as an individual proxy. Traffic would be dis-
tributed over such a rack by partitioning the address space
of the remote datacenter and routing different segments
of the space through distinct Maelstrom appliance pairs.
In future work, we plan to experiment with such con-
figurations, which would also permit us to explore fault-
tolerance issues (if a Maelstrom blade fails, for example),
and to support load-balancing schemes that might vary
the IP address space partitioning dynamically to spread
the encoding load over multiple machines. For this paper,
however, we present the implementation and performance
of a single-machine appliance.

The kernel implementation is a module for Linux
2.6.20 with hooks into the kernel packet filter [4]. Mael-
strom proxies work in pairs, one on each side of the long

138

haul link. Each proxy acts both as an ingress and egress
router at the same time since they handle duplex traffic in
the following manner:

• The egress router captures IP packets and creates re-
dundant FEC packets. The original IP packets are
routed through unaltered as they would have been
originally; the redundant packets are then forwarded
to the remote ingress router via a UDP channel.

• The ingress router captures and stores IP packets
coming from the direction of the egress router. Upon
receipt of a redundant packet, an IP packet is recov-
ered if there is an opportunity to do so. Redundant
packets that can be used at a later time are stored. If
the redundant packet is useless it is immediately dis-
carded. Upon recovery the IP packet is sent through
a raw socket to its intended destination.

Using FEC requires that each data packet have a unique
identifier that the receiver can use to keep track of re-
ceived data packets and to identify missing data packets
in a repair packet. If we had access to end-host stacks, we
could have added a header to each packet with a unique
sequence number [37]; however, we intercept traffic trans-
parently and need to route it without modification or addi-
tion, for performance reasons. Consequently, we identify
IP packets by a tuple consisting of the source and des-
tination IP address, IP identification field, size of the IP
header plus data, and a checksum over the IP data pay-
load. The checksum over the payload is necessary since
the IP identification field is only 16 bits long and a sin-
gle pair of end-hosts communicating at high speeds will
use the same identifier for different data packets within
a fairly short interval unless the checksum is added to
differentiate between them. Note that non-unique iden-
tifiers result in garbled recovery by Maelstrom, an event
which will be caught by higher level checksums designed
to deal with tranmission errors on commodity networks
and hence does not have significant consequences unless
it occurs frequently.

The kernel version of Maelstrom can generate up to a
Gigabit per second of data and FEC traffic, with the in-
put data rate depending on the encoding rate. In our ex-
periments, we were able to saturate the outgoing card at
rates as high as (8, 4), with CPU overload occurring at
(8, 5) where each incoming data packet had to be XORed
5 times.

4.7 Buffering Requirements
At the receive-side proxy, incoming data packets are
buffered so that they can be used in conjunction with
XORs to recover missing data packets. Also, any received
XOR that is missing more than one data packet is stored

temporarily, in case all but one of the missing packets are
received later or recovered through other XORs, allowing
the recovery of the remaining missing packet from this
XOR. In practice we stored data and XOR packets in dou-
ble buffered red black trees — for 1500 byte packets and
1024 entries this occupies around 3 MB of memory.

At the send-side, the repair bins in the layered inter-
leaving scheme store incrementally computed XORs and
lists of data packet headers, without the data packet pay-
loads, resulting in low storage overheads for each layer
that rise linearly with the value of the interleave. The
memory footprint for a long-running proxy was around
10 MB in our experiments.

4.8 Other Performance Enhancing Roles

Maelstrom appliances can optionally aggregate small sub-
kilobyte packets from different flows into larger ones for
better communication efficiency over the long-distance
link. Additionally, in split flow control mode they can
perform send-side buffering of in-flight data for multi-
gigabyte flows that exceed the sending end-host’s buffer-
ing capacity. Also, Maelstrom appliances can act as mul-
ticast forwarding nodes: appliances send multicast pack-
ets to each other across the long-distance link, and use
IP Multicast [11] to spread them within their datacenters.
Lastly, appliances can take on other existing roles in the
datacenter, acting as security and VPN gateways and as
conventional performance enhancing proxies (PEPs) [7].

5 Evaluation
We evaluated Maelstrom on the Emulab testbed at Utah
[45]. For all the experiments, we used a ‘dumbbell’ topol-
ogy of two clusters of nodes connected via routing nodes
with a high-latency link in between them, designed to em-
ulate the setup in Figure 2, and ran the proxy code on
the routers. Figure 10 shows the performance of the ker-
nel version at Gigabit speeds; the remainder of the graphs
show the performance of the user-space version at slower
speeds. To emulate the MTU difference between the long-
haul link and the datacenter network (see Section 4.1) we
set an MTU of 1200 bytes on the network connecting the
end-hosts to the proxy and an MTU of 1500 bytes on the
long-haul link between proxies; the only exception is Fig-
ure 10, where we maintained equal MTUs of 1500 bytes
on both links.

5.1 Throughput Metrics

Figures 9 and 10 show that commodity TCP/IP through-
put collapses in the presence of non-congestion loss, and
that Maelstrom successfully masks loss and prevents this

139

 0

 5

 10

 15

 20

 25

 0.1 1 10

Th
ro

ug
hp

ut
 (M

bp
s)

Loss Rate %

Maelstrom
TCP/IP

 0

 10

 20

 30

 40

 50

 60

 0 50 100 150 200 250

Th
ro

ug
hp

ut
 (M

bp
s)

One-Way Link Latency (ms)

TCP/IP No Loss
Maelstrom No Loss

Maelstrom (0.1%)
Maelstrom (1.0%)

TCP/IP (0.1%)
TCP/IP (1.0%)

Figure 9: User-Space Throughput against (a) Loss Rate and (b) One-Way Latency

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450
 500

 0.1 1 10

Th
ro

ug
hp

ut
 (M

bp
s)

Packet Loss Rate %

Maelstrom
TCP

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 1000

 0 50 100 150 200 250

Th
ro

ug
hp

ut
 (M

bp
s)

One Way Link Latency (ms)

TCP No Loss
Maelstrom No Loss

Maelstrom (0.1%)
Maelstrom (1.0%)

TCP/IP (0.1%)
TCP (1% loss)

Figure 10: Kernel Throughput against (a) Loss Rate and (b) One-Way Latency

collapse from occurring. Figure 9 shows the performance
of the user-space version on a 100 Mbps link and Figure
10 shows the kernel version on a 1 Gbps link. The exper-
iment in each case involves running iperf [41] flows from
one node to another across the long-distance link with and
without intermediary Maelstrom proxies and measuring
obtained throughput while varying loss rate (left graph on
each figure) and one-way link latency (right graph). The
error bars on the graphs to the left are standard errors of
the throughput over ten runs; between each run, we flush
TCP/IP’s cache of tuning parameters to allow for repeat-
able results. The clients in the experiment are running
TCP/IP Reno on a Linux 2.6.20 that performs autotun-
ing. The Maelstrom parameters used are r = 8,c = 3,
I = (1, 20, 40).

The user-space version involved running a single 10
second iperf flow from one node to another with and
without Maelstrom running on the routers and measuring
throughput while varying the random loss rate on the link
and the one-way latency. To test the kernel version at gi-
gabit speeds, we ran eight parallel iperf flows from one

node to another for 120 seconds. The curves obtained
from the two versions are almost identical; we present
both to show that the kernel version successfully scales
up the performance of the user-space version to hundreds
of megabits of traffic per second.

In Figures 9 (Left) and 10 (Left), we show how TCP/IP
performance degrades on a 50ms link as the loss rate is in-
creased from 0.01% to 10%. Maelstrom masks loss up to
2% without significant throughput degradation, with the
kernel version achieving two orders of magnitude higher
throughput that conventional TCP/IP at 1% loss.

The graphs on the right side of Figures 9 and 10
show TCP/IP throughput declining on a link of increas-
ing length when subjected to uniform loss rates of 0.1%
and 1%. The top line in the graphs is the performance of
TCP/IP without loss and provides an upper bound for per-
formance on the link. In both user-space and kernel ver-
sions, Maelstrom masks packet loss and tracks the lossless
line closely, lagging only when the link latency is low and
TCP/IP’s throughput is very high.

To allow TCP/IP to attain very high speeds on the gi-

140

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 1000
 1100

 0.01 0.1 1 10

D
el

iv
er

y
La

te
nc

y
(m

s)

Loss Rate %

TCP/IP
Maelstrom

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600

 0 50 100 150 200 250

D
el

iv
er

y
La

te
nc

y
(m

s)

One-Way Link Latency (ms)

TCP/IP
Maelstrom

Figure 11: Per-Packet One-Way Delivery Latency against Loss Rate (Left) and Link Latency (Right)

 0

 100

 200

 300

 400

 500

 600

 0 1000 2000 3000 4000 5000 6000

D
el

iv
er

y
La

te
nc

y
(m

s)

Packet #

TCP/IP: 0.1% Loss

 0

 100

 200

 300

 400

 500

 600

 0 1000 2000 3000 4000 5000 6000

D
el

iv
er

y
La

te
nc

y
(m

s)

Packet #

Maelstrom: 0.1% Loss

Figure 12: Packet delivery latencies

gabit link, we had to set the MTU of the entire path to
be the maximum 1500 bytes, which meant that the long-
haul link had the same MTU as the inter-cluster link. This
resulted in the fragmentation of repair packets sent over
UDP on the long-haul link into two IP packet fragments.
Since the loss of a single fragment resulted in the loss of
the repair, we observed a higher loss rate for repairs than
for data packets. Consequently, we expect performance to
be better on a network where the MTU of the long-haul
link is truly larger than the MTU within each cluster.

5.2 Latency Metrics

To measure the latency effects of TCP/IP and Maelstrom,
we ran a 0.1 Mbps stream between two nodes over a 100
Mbps link with 50 ms one-way latency, and simultane-
ously ran a 10 Mbps flow alongside on the same link to
simulate a real-time stream combined with other inter-
cluster traffic. Figure 11 (Left) shows the average delivery
latency of 1KB application-level packets in the 0.1 Mbps
stream, as loss rates go up.

Figure 11 (Right) shows the same scenario with a con-
stant uniformly random loss rate of 0.1% and varying one-
way latency. Maelstrom’s delivery latency is almost ex-
actly equal to the one-way latency on the link, whereas
TCP/IP takes more than twice as long once one-way la-
tencies go past 100 ms. Figure 12 plots delivery latency
against message identifier; the spikes in latency are trig-
gered by losses that lead to packets piling up at the re-
ceiver.

A key point is that we are plotting the delivery latency
of all packets, not just lost ones. TCP/IP delays cor-
rectly received packets while waiting for missing pack-
ets sequenced earlier by the sender — the effect of this
is shown in Figure 12, where single packet losses cause
spikes in delivery latency that last for hundreds of packets.
The low data rate in the flow of roughly 10 1KB packets
per RTT makes TCP/IP flow control delays at the sender
unlikely, given that the congestion control algorithm is
Reno, which implements ‘fast recovery’ and halves the
congestion window on packet loss rather than resetting
it completely [22]. The Maelstrom configuration used is

141

 60
 65
 70
 75
 80
 85
 90
 95

 100

 0.1 1 10

Pe
rc

en
ta

ge
 o

f P
ac

ke
ts

Re
co

ve
re

d

Loss Rate %

(1,11,19) - Burst Size 1
(1,10,20) - Burst Size 1

(1,11,19) - Burst Size 10
(1,10,20) - Burst Size 10

Figure 13: Relatively prime interleaves offer better per-
formance

r = 7, c = 2, I = (1, 10).

5.3 Layered Interleaving and Bursty Loss
Thus far we have shown how Maelstrom effectively hides
loss from TCP/IP for packets dropped with uniform ran-
domness. Now, we examine the performance of the lay-
ered interleaving algorithm, showing how different pa-
rameterizations handle bursty loss patterns. We use a loss
model where packets are dropped in bursts of fixed length,
allowing us to study the impact of burst length on perfor-
mance. The link has a one-way latency of 50 ms and a
loss rate of 0.1% (except in Figure 13, where it is varied),
and a 10 Mbps flow of udp packets is sent over it.

In Figure 13 we show that our observation in Section
4.4 is correct for high loss rates — if the interleaves
are relatively prime, performance improves substantially
when loss rates are high and losses are bursty. The graph
plots the percentage of lost packets successfully recovered
on the y-axis against an x-axis of loss rates on a log scale.
The Maelstrom configuration used is r = 8, c = 3 with
interleaves of (1, 10, 20) and (1, 11, 19).

In Figure 14, we show the ability of layered interleav-
ing to provide gracefully degrading performance in the
face of bursty loss. On the top, we plot the percentage
of lost packets successfully recovered against the length
of loss bursts for two different sets of interleaves, and in
the bottom graph we plot the average latency at which
the packets were recovered. Recovery latency is defined
as the difference between the eventual delivery time of
the recovered packet and the one-way latency of the link
(we confirmed that the Emulab link had almost no jitter
on correctly delivered packets, making the one-way la-
tency an accurate estimate of expected lossless delivery
time). As expected, increasing the interleaves results in
much higher recovery percentages at large burst sizes, but

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30 35 40

Pe
rc

en
ta

ge
 o

f P
ac

ke
ts

Re
co

ve
re

d

Burst Length

(1,19,41)
(1,11,19)

 0
 10
 20
 30
 40
 50
 60
 70
 80

 0 5 10 15 20 25 30 35 40

Re
co

ve
ry

 L
at

en
cy

 (M
ill

ise
co

nd
s)

Burst Length

(1,19,41)
(1,11,19)

Figure 14: Layered Interleaving Recovery Percentage and
Latency

comes at the cost of higher recovery latency. For example,
a (1, 19, 41) set of interleaves catches almost all packets
in an extended burst of 25 packets at an average latency of
around 45 milliseconds, while repairing all random sin-
gleton losses within 2-3 milliseconds. The graphs also
show recovery latency rising gracefully with the increase
in loss burst length: the longer the burst, the longer it takes
to recover the lost packets. The Maelstrom configuration
used is r = 8, c = 3 with interleaves of (1, 11, 19) and
(1, 19, 41).

In Figures 16 and 17 we show histograms of recovery
latencies for the two interleave configurations under dif-
ferent burst lengths. The histograms confirm the trends
described above: packet recoveries take longer from left
to right as we increase loss burst length, and from top to
bottom as we increase the interleave values.

Figure 15 illustrates the difference between a tradi-
tional FEC code and layered interleaving by plotting a
50-element moving average of recovery latencies for both
codes. The channel is configured to lose singleton packets
randomly at a loss rate of 0.1% and additionally lose long
bursts of 30 packets at occasional intervals. Both codes

142

 0

 20

 40

 60

 80

 100

 0 200 400 600 800 1000

Re
co

ve
ry

 L
at

en
cy

 (M
ill

ise
co

nd
s)

Recovered Packet #

Reed Solomon
Layered Interleaving

Figure 15: Reed-Solomon versus Layered Interleaving

are configured with r = 8, c = 2 and recover all lost
packets — Reed-Solomon uses an interleave of 20 and
layered interleaving uses interleaves of (1, 40) and con-
sequently both have a maximum tolerable burst length of
40 packets. We use a publicly available implementation
of a Reed-Solomon code based on Vandermonde matri-
ces, described in [36]; the code is plugged into Maelstrom
instead of layered interleaving, showing that we can use
new encodings within the same framework seamlessly.
The Reed-Solomon code recovers all lost packets with
roughly the same latency whereas layered interleaving re-
covers singleton losses almost immediately and exhibits
latency spikes whenever the longer loss burst occurs.

6 Related Work
A significant body of work on application and TCP/IP per-
formance over high-speed long-distance networks exists
in the context of high-performance computing, grids and
e-science. The use of parallel sockets for higher through-
put in the face of non-congestion loss was proposed in
PSockets [38]. A number of protocols have been sug-
gested as replacements for TCP/IP in such settings —
XCP [25], Tsunami [43], SABUL [13] and RBUDP [17]
are a few — but all require modifications to end-hosts
and/or the intervening network. Some approaches seek
to differentiate between congestion and non-congestion
losses [8].

Maelstrom is a transparent Performance Enhancing
Proxy, as defined in RFC 3135 [7]; numerous implemen-
tations of PEPs exist for improving TCP performance on
satellite [42] and wireless links [9], but we are not aware
of any PEPs that use FEC to mask errors on long-haul op-
tical links.

End-host software-based FEC for reliable communica-
tion was first explored by Rizzo [36, 37]. OverQOS [40]

suggested the use of FEC for TCP/IP retransmissions over
aggregated traffic within an overlay network in the com-
modity Internet. AFEC [34] uses FEC for real-time com-
munication, modulating the rate of encoding adaptively.
The use of end-host FEC under TCP/IP has been explored
in [30].

A multitude of different FEC encodings exist in liter-
ature; they can broadly be categorized into optimal era-
sure codes and near-optimal erasure codes. The most
well-known optimal code is Reed-Solomon, which we de-
scribed previously as generating c repair packets from r
source packets; any r of the resulting r + c packets can be
used to reconstruct the r source packets. Near-optimal
codes such as Tornado and LT [29] trade-off encoding
speed for large data sizes against a loss of optimality —
the receiver needs to receive slightly more than r source
or repair packets to regenerate the original r data pack-
ets. Near-optimal codes are extremely fast for encoding
over large sets of data but not of significant importance
for real-time settings, since optimal codes perform equally
well with small data sizes. Of particular relevance are
Growth Codes [24], which use multiple encoding rates for
different overhead levels; in contrast, layered interleaving
uses multiple interleaves for different burst resilience lev-
els without modulating the encoding rate.

The effect of random losses on TCP/IP has been stud-
ied in depth by Lakshman [28]. Padhye’s analytical model
[33] provides a means to gauge the impact of packet loss
on TCP/IP. While most published studies of packet loss
are based on the commodity Internet rather than high-
speed lambda links, Fraleigh et al. [12] study the Sprint
backbone and make two observations that could be ex-
plained by non-congestion loss: a) links are rarely loaded
at more than 50% of capacity and b) packet reordering
events occur for some flows, possibly indicating packet
loss followed by retransmissions.

7 Future Work
Scaling Maelstrom to multiple gigabits per second of traf-
fic will require small rack-style clusters of tens of ma-
chines to distribute encoding load over; we need to de-
sign intelligent load-balancing and fail-over mechanisms
for such a scheme. Additionally, we have described lay-
ered interleaving with fixed, pre-assigned parameters, and
the next step in extending this protocol is to make it adap-
tive, changing interleaves and rate as loss patterns in the
link change.

8 Conclusion
Modern distributed systems are compelled by real-world
imperatives to coordinate across datacenters separated by

143

 0
 20
 40
 60
 80

 100

 0 50 100 150 200

%
 R

ec
ov

er
ed

Recovery Latency (ms)

 0
 20
 40
 60
 80

 100

 0 50 100 150 200

%
 R

ec
ov

er
ed

Recovery Latency (ms)

 0
 20
 40
 60
 80

 100

 0 50 100 150 200

%
 R

ec
ov

er
ed

Recovery Latency (ms)

Figure 16: Latency Histograms for I=(1,11,19) — Burst Sizes 1 (Left), 20 (Middle) and 40 (Right)

 0
 20
 40
 60
 80

 100

 0 50 100 150 200

%
 R

ec
ov

er
ed

Recovery Latency (ms)

 0
 20
 40
 60
 80

 100

 0 50 100 150 200

%
 R

ec
ov

er
ed

Recovery Latency (ms)

 0
 20
 40
 60
 80

 100

 0 50 100 150 200

%
 R

ec
ov

er
ed

Recovery Latency (ms)

Figure 17: Latency Histograms for I=(1,19,41) — Burst Sizes 1 (Left), 20 (Middle) and 40 (Right)

thousands of miles. Packet loss cripples the performance
of such systems, and reliability and flow-control protocols
designed for LANs and/or the commodity Internet fail to
achieve optimal performance on the high-speed long-haul
‘lambda’ networks linking datacenters. Deploying new
protocols is not an option for commodity clusters where
standardization is critical for cost mitigation. Maelstrom
is an edge appliance that uses Forward Error Correction
to mask packet loss from end-to-end protocols, improv-
ing TCP/IP throughput and latency by orders of magni-
tude when loss occurs. Maelstrom is easy to install and
deploy, and is completely transparent to applications and
protocols — literally providing reliability in an inexpen-
sive box.

Acknowledgments

We would like to thank our shepherd Robert Morris and
the other reviewers for extensive comments that signifi-
cantly shaped the final version of the paper. Danny Dolev,
Lakshmi Ganesh, T. V. Lakshman, Robbert van Renesse,
Yee Jiun Song, Vidhyashankar Venkataraman and Vivek
Vishnumurthy provided useful comments. Tom Boures
provided valuable insight into the quality of existing fiber
links, Stanislav Shalunov provided information on loss
rates on Internet2, and Paul Wefel gave us access to Tera-
Grid loss measurements.

Notes
1Rateless codes (e.g, LT codes [29]) are increasingly popular and

used for applications such as efficiently distributing bulk data [31] —
however, it is not obvious that these have utility in real-time communi-
cation.

References
[1] Global crossing current network performance.

http://www.globalcrossing.com/network/
network_performance_current.aspx. Last
Accessed Feb, 2008.

[2] Qwest ip network statistics. http://stat.qwest.
net/statqwest/statistics_tp.jsp. Last Ac-
cessed Feb, 2008.

[3] Teragrid udp performance. network.teragrid.
org/tgperf/udp/. Last Accessed Feb, 2008.

[4] Netfilter: firewalling, nat and packet mangling for linux.
http://www.netfilter.org/, 1999.

[5] Teragrid. www.teragrid.org, 2008.
[6] M. Balakrishnan, K. Birman, A. Phanishayee, and

S. Pleisch. Ricochet: Lateral error correction for time-
critical multicast. In NSDI 2007: Fourth Usenix Sympo-
sium on Networked Systems Design and Implementation,
2007.

[7] J. Border, M. Kojo, J. Griner, G. Montenegro, and
Z. Shelby. Performance Enhancing Proxies Intended to
Mitigate Link-Related Degradations. Internet RFC3135,
June, 2001.

[8] S. Bregni, D. Caratti, and F. Martignon. Enhanced loss dif-
ferentiation algorithms for use in TCP sources over hetero-
geneous wireless networks. In GLOBECOM 2003: IEEE
Global Telecommunications Conference, 2003.

[9] R. Chakravorty, S. Katti, I. Pratt, and J. Crowcroft. Flow
aggregation for enhanced tcp over wide area wireless. In
INFOCOM, 2003.

144

http://www.globalcrossing.com/network/
http://stat.qwest
http://www.netfilter.org/
http://www.teragrid.org

[10] D. Comer, Vice President of Research and T. Boures, Se-
nior Engineer. Cisco systems, inc. Private Communica-
tion., October 2007.

[11] S. E. Deering and D. R. Cheriton. Multicast routing in
datagram internetworks and extended lans. ACM Trans.
Comput. Syst., 8(2):85–110, 1990.

[12] C. Fraleigh, S. Moon, B. Lyles, C. Cotton, M. Khan,
D. Moll, R. Rockell, T. Seely, and S. Diot. Packet-level
traffic measurements from the Sprint IP backbone. IEEE
Network, 17(6):6–16, 2003.

[13] Y. Gu and R. Grossman. SABUL: A Transport Protocol for
Grid Computing. Journal of Grid Computing, 1(4):377–
386, 2003.

[14] R. Habel, K. Roberts, A. Solheim, and J. Harley. Optical
domain performance monitoring. Optical Fiber Communi-
cation Conference, 2000.

[15] T. Hacker, B. Athey, and B. Noble. The end-to-end perfor-
mance effects of parallel TCP sockets on a lossy wide-area
network. In IPDPS, 2002.

[16] T. J. Hacker, B. D. Noble, and B. D. Athey. The effects
of systemic packet loss on aggregate tcp flows. In Super-
computing ’02: Proceedings of the 2002 ACM/IEEE con-
ference on Supercomputing, 2002.

[17] E. He, J. Leigh, O. Yu, and T. Defanti. Reliable Blast UDP:
predictable high performance bulk data transfer. IEEE In-
ternational Conference on Cluster Computing, 2002.

[18] C. Huitema. The case for packet level fec. In PfHSN
’96: Proceedings of the TC6 WG6.1/6.4 Fifth International
Workshop on Protocols for High-Speed Networks V, pages
109–120, London, UK, UK, 1997. Chapman & Hall, Ltd.

[19] J. Hurwitz and W. Feng. End-to-end performance of 10-
gigabit Ethernet on commodity systems. Micro, IEEE,
24(1):10–22, 2004.

[20] Internet2. End-to-end performance initiative: Hey!
where did my performance go? - rate limiting rears
its ugly head. http://e2epi.internet2.edu/
case-studies/UMich/index.html.

[21] Internet2. End-to-end performance initiative:
When 99% isn’t quite enough - educause bad con-
nection. http://e2epi.internet2.edu/
case-studies/EDUCAUSE/index.html.

[22] V. Jacobson. Modified TCP Congestion Avoidance Al-
gorithm. Message to end2end-interest mailing list, April,
1990.

[23] L. James, A. Moore, M. Glick, and J. Bulpin. Physical
Layer Impact upon Packet Errors. Passive and Active Mea-
surement Workshop (PAM 2006), 2006.

[24] A. Kamra, J. Feldman, V. Misra, and D. Rubenstein.
Growth codes: Maximizing sensor network data persis-
tence. In Proceedings of ACM Sigcomm, Pisa, Italy,
September 2006.

[25] D. Katabi, M. Handley, and C. Rohrs. Congestion control
for high bandwidth-delay product networks. Proceedings
of the 2002 conference on Applications, technologies, ar-
chitectures, and protocols for computer communications,
pages 89–102, 2002.

[26] D. Kilper, R. Bach, D. Blumenthal, D. Einstein, T. Lan-
dolsi, L. Ostar, M. Preiss, and A. Willner. Optical Per-
formance Monitoring. Journal of Lightwave Technology,
22(1):294–304, 2004.

[27] A. Kimsas, H. Øverby, S. Bjornstad, and V. L. Tuft. A
cross layer study of packet loss in all-optical networks. In
AICT/ICIW, page 65, 2006.

[28] T. Lakshman and U. Madhow. The performance of TCP/IP
for networks with high bandwidth-delay products and ran-
dom loss. IEEE/ACM Transactions on Networking (TON),
5(3):336–350, 1997.

[29] M. Luby. LT codes. The 43rd Annual IEEE Symposium on
Foundations of Computer Science, 2002.

[30] H. Lundqvist and G. Karlsson. TCP with End-to-End For-
ward Error Correction. International Zurich Seminar on
Communications (IZS 2004), 2004.

[31] P. Maymounkov and D. Mazieres. Rateless codes and big
downloads. IPTPS03, 2003.

[32] J. Nonnenmacher, E. Biersack, and D. Towsley. Parity-
based loss recovery for reliable multicast transmission. In
Proceedings of the ACM SIGCOMM ’97 conference, pages
289–300, New York, NY, USA, 1997. ACM Press.

[33] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose. Modeling
tcp throughput: a simple model and its empirical valida-
tion. SIGCOMM Comput. Commun. Rev., 28(4):303–314,
1998.

[34] K. Park and W. Wang. AFEC: an adaptive forward er-
ror correction protocol for end-to-endtransport of real-time
traffic. Computer Communications and Networks, 1998.
Proceedings. 7th International Conference on, pages 196–
205, 1998.

[35] M. Reardon. Dark fiber: Businesses see
the light. http://www.news.com/
Dark-fiber-Businesses-see-the-light/
2100-1037_3-5557910.html?part=rss&tag=
5557910&subj=news.1037.5, 2005. Last Accessed
Feb, 2008.

[36] L. Rizzo. Effective erasure codes for reliable computer
communication protocols. SIGCOMM Comput. Commun.
Rev., 27(2):24–36, 1997.

[37] L. Rizzo. On the feasibility of software FEC. Univ. di Pisa,
Italy, January, 1997.

[38] H. Sivakumar, S. Bailey, and R. L. Grossman. Psock-
ets: the case for application-level network striping for
data intensive applications using high speed wide area net-
works. In Supercomputing ’00: Proceedings of the 2000
ACM/IEEE conference on Supercomputing (CDROM),
page 37, Washington, DC, USA, 2000. IEEE Computer
Society.

[39] Slashdot.com. Google’s secret plans for all that dark
fiber. http://slashdot.org/articles/05/11/
20/1514244.shtml, 2005.

[40] L. Subramanian, I. Stoica, H. Balakrishnan, and R. H.
Katz. Overqos: An overlay based architecture for enhanc-
ing internet qos. In NSDI 04: First Usenix Symposium on
Networked Systems Design and Implementation, 2004.

[41] A. Tirumala, F. Qin, J. Dugan, J. Ferguson, and K. Gibbs.
Iperf-The TCP/UDP bandwidth measurement tool. http:
//dast.nlanr.net/Projects/Iperf, 2004.

[42] D. Velenis, D. Kalogeras, and B. Maglaris. SaTPEP: a TCP
Performance Enhancing Proxy for Satellite Links. Pro-
ceedings of the Second International IFIP-TC6 Network-
ing Conference on Networking Technologies, Services, and
Protocols; Performance of Computer and Communica-
tion Networks; and Mobile and Wireless Communications,
pages 1233–1238, 2002.

[43] S. Wallace et al. Tsunami File Transfer Protocol. In PFLD-
Net 2003: First Int. Workshop on Protocols for Fast Long-
Distance Networks, 2003.

[44] P. Wefel, Network Engineer. The University of Illi-
nois’ National Center for Supercomputing Applications
(NCSA). Private Communication., Feb 2008.

[45] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad,
M. Newbold, M. Hibler, C. Barb, and A. Joglekar. An in-
tegrated experimental environment for distributed systems
and networks. In Proc. of the Fifth Symposium on Oper-
ating Systems Design and Implementation, Boston, MA,
2002.

[46] S. Wicker and V. Bhargava. Reed-Solomon Codes and
Their Applications. John Wiley & Sons, Inc. New York,
NY, USA, 1999.

145

http://e2epi.internet2.edu/
http://e2epi.internet2.edu/
http://www.news.com/
http://slashdot.org/articles/05/11/

Tempest: Soft State Replication in the Service Tier∗

Tudor Marian, Mahesh Balakrishnan, Ken Birman, Robbert van Renesse
Department of Computer Science

Cornell University, Ithaca, NY 14853
{tudorm,mahesh,ken,rvr}@cs.cornell.edu

Abstract

Soft state in the middle tier is key to enabling scalable
and responsive three tier service architectures. While soft-
state can be reconstructed upon failure, replicating it across
multiple service instances is critical for rapid fail-over and
high availability. Current techniques for storing and man-
aging replicated soft state require mapping data structures
to different abstractions such as database records, which
can be difficult and introduce inefficiencies. Tempest is a
system that provides programmers with data structures that
look very similar to conventional Java Collections but are
automatically replicated. We evaluate Tempest against al-
ternatives such as in-memory databases and we show that
Tempest does scale well in real world service architectures.

1 Introduction

Service-Oriented Architectures (SOAs) have emerged as
the paradigm of choice for structuring large datacenter-
hosted systems. Most contemporary large-scale applica-
tions are built as SOAs: online stores, search engines, en-
terprise software and financial infrastructure are some ex-
amples. The canonical design for such systems is a three-
tier architecture: a first tier load-balancing proxies sends
requests to a second tier of state-less service logic which in
turn accesses and updates a third tier of durable databases
or filesystems.

Soft state in the service tier is key to building highly re-
sponsive and scalable SOAs. Soft state is characterized as
data that does not have to be stored durably and can be re-
constructed at some cost [33, 18, 14] — examples include
short-lived user sessions, stored aggregates and transforma-
tions on large datasets, and general purpose write-through

∗This work was supported by DARPA/IPTO under the SRS program
and by the Rome Air Force Research Laboratory, AFRL/IF, under the
Prometheus program. Additional support was provided by the NSF,
AFOSR, and by Intel.

caches for files and database records. Third-tier constructs
are extremely fault-tolerant but correspondingly slow and
expensive, and soft state is typically used to limit their role
in performance-critical data paths. For example, the devel-
oper of an online travel service might use the memory of
the service instance to store intermediate choices made by a
user during the booking process, so that only the final sale
transaction — a small fraction of all user activity — hits the
third-tier database.

In this paper, we consider the availability of soft state
stored in the service tier. When soft state is lost or made
unavailable due to service instance crashes and overloads,
reconstructing it through user interaction or third-tier re-
access can be expensive in time and resources. Replicat-
ing soft state provides applications with two critical capa-
bilities: rapid fail-over to other instances during crashes
and fine-grained load-balancing across instances to prevent
overload [33]. For example, a user request can be trans-
parently redirected during a crash or overload to a different
service instance that has up-to-date session context, without
requiring her to log in again.

Many options exist for adding high availability to
programs that manipulate soft state and these can be
broadly classified into three categories: clustered appli-
cation servers [3], messaging toolkits, and collocated in-
memory databases. However, all these options require
the developer to write code in “state-aware” ways, map-
ping data structures to special replication-aware containers,
replicated state-machine stores and database-style records,
respectively. Such mapping needs to be done carefully
to avoid performance issues — for example, storing fine-
grained variables in a database could result in severe locking
contention [1]. However the natural way for programmers
to store and manage soft state in a service is to use con-
ventional in-memory data structures such as hash tables or
linked lists.

In this paper, we present Tempest, a Java runtime library
designed for easy storage and replication of service-level
soft state. Tempest provides developers with TempestCol-
lections: custom data structures that look similar to conven-

1

146

tional Java Collections [27]. Data stored in these structures
is transparently replicated across multiple machines, pro-
viding fail-over and load-balancing for soft state with zero
extra effort by the developer. Under the hood, Tempest uses
a fast but unreliable IP multicast operation to spread/broad-
cast invocations to multiple service instances and then uses
gossip-based reconciliation to maintain replica consistency
in the face of faults and overloads. Additional adaptive
mechanisms are used to maintain high responsiveness dur-
ing failures.

High-performance in-memory databases are used ex-
tensively to store soft state in currently deployed sys-
tems [5, 22] and we show that Tempest outperforms them
by more than an order of magnitude in large-scale SOA set-
tings. Real-world SOAs often have many services interact-
ing with each other to perform complex tasks — for exam-
ple, a first-tier front-end could contact a hundred second-
tier services to assemble a webpage [15]. Further, each ser-
vice is potentially contacted in parallel by a large number of
load-balancing first-tier front-ends. Tempest scales in both
the number of front-ends querying a single service and the
number of services being queried by a single front-end. In
contrast, in-memory databases fail to scale in these dimen-
sions due to contention, large latency variations and inef-
ficiencies in cross-process interactions between the service
and the database.

Accordingly, the contributions of this paper are as fol-
lows:

• We present a Java runtime library that exposes data
structures to programmers that are transparently repli-
cated across multiple nodes.

• We describe the gossip-based mechanisms used within
the system for rapidly replicating data and speeding-up
access to it.

• We evaluate Tempest on two datacenter-style testbeds
— the Emulab testbed at Utah [30] and a 255 node
cluster at Cornell. We show that Tempest maintains
rapid responsiveness under heavy loads and outper-
forms in-memory and on-disk databases while scaling
in two important dimensions — the number of front-
ends accessing a single service and the number of ser-
vices composing a single response.

The remainder of this paper is structured as follows: Sec-
tion 2 describes the interface and semantics provided by
TempestCollections to service developers. Section 3 de-
scribes the protocols and mechanisms used by Tempest to
implement the TempestCollection abstraction, and Section
4 provides an evaluation of Tempest on datacenter testbeds.

2 The TempestCollection Abstraction

2.1 Service Model

Services are self-contained entities designed to support
interoperable machine to machine interaction over a net-
work [31]. Each service exposes an API through which a
set of methods can be invoked by clients, and each service
offers its own quality of service and availability guarantees.
Take for example the interface of a shopping cart service as
listed in Figure 1.

public interface ShoppingCartIF extends Iterable {
update int add(String itemSymbol, int count);
update int remove(String itemSymbol, int count);
update int update(String itemSymbol, int count);
read int check(String itemSymbol);

}

Figure 1. ‘Shopping Cart’ service interface.

Add, remove and update do the obvious things; these are
classified as update operations because they change state.
Check is a read operation; it retrieves the current number of
items in the shopping cart for the symbol of interest. Clients
issue add/remove/update and check requests against
the service; the service processes each request and in return
sends back a reply. This simple example can be trivially ex-
tended to services like item browsing history, product avail-
ability, product rating, or caching services.

In this work we assume that business logic is collocated
with soft state stored in the memory of the service instance;
as mentioned before, this is a natural design choice for ap-
plications requiring scalability and responsiveness. For ex-
ample, storing shopping cart information in-memory allows
the service to handle a large quantity of browsing traffic that
otherwise would have reached the third tier. A developer
implementing the shopping cart service in Java could use
different data structures to store the state of the cart; a natu-
ral way would involve using a hash table to store mappings
between item identifiers and corresponding counts.

Service state is modified by updates sent to it through its
interface — in the conventional three-tier setup, this refers
to database state hidden by the service, but in our case it in-
cludes soft state maintained by the service. In our shopping
cart example, items are added to or subtracted from the cart.

The implementation of a service as a Java application
running on a single node is obviously prone to crashes, over-
loads and slowdowns. Our goal is to transparently replicate
a service on multiple nodes while retaining the program-
ming ease and familiarity of Java’s built-in Collection data
structures. Accordingly, we provide developers with Tem-
pestCollections — data structures very similar to vanilla
Collections but providing automatic replication of the data
stored in them.

2

147

2.2 TempestCollection: Syntax and Se-
mantics

TempestCollections are syntactically identical to stan-
dard Java Collections. For example, a TempestHashtable
exposes get and put methods while a TempestSet has
add,remove methods. Like most Java Collections, ob-
jects stored in a TempestCollection cannot be modified in
place. For example, to change a field inside an Object stored
in a TempestSet, the programmer would have to remove the
Object, modify it and then re-insert it into the set.

This is a very common programming idiom within the
Java Collections framework. For example, Java TreeSets
provide ordered iteration over their elements, and changing
the value of an item in-place can push the TreeSet into an
inconsistent state by modifying the outcome of compare op-
erations. Programmers are expected to instead change val-
ues by removal, modification and re-insertion if they want
the TreeSet to remain consistent and ordered. In general,
many Collections involve comparisons through equals
and compareTo — such as HashMaps, TreeSets or Hash-
Sets — and do not allow safe in-place modification of ob-
jects stored within them. In this respect, TempestCollec-
tions offer identical semantics.

To prevent accidental modification of stored items,
TempestCollections implement by-value parameter passing.
Deep clones of added Objects are stored within the Tem-
pestCollection and clones of stored Objects are returned by
accessor functions. For example, calling put(K, A) on
a TempestHashMap will result in a clone A′ being stored
within the collection, and calling get(K) will return A′′

to the programmer.
However, the Tempest runtime can alter the contents of

TempestCollections by adding and / or removing items to
keep collections consistent across replicas. TempestCollec-
tions provide eventual consistency — all replicas converge
to the same set of objects [10, 8]. An implication of this
model is that the programmer is not provided with ACID
transactions; however, this is not a major limitation for soft
state management [8]. In many soft state applications, data
stored within structures is naturally immutable — for in-
stance, a browsing history service that stores a list of item
identifiers. For others, updates do not depend on current
state — for example, a map from users identifiers to last
viewed items. Even if the soft state is manipulated with ar-
bitrary operations, it is expected by definition to not have
strong semantics — the user is always asked to verify the
contents of a shopping cart or the final itinerary of a travel
plan before committing to it.

To summarize, TempestCollections are data structures
exposing interfaces identical to those in the Java Collec-
tions framework and supporting similar semantics by not
allowing in-place modifications of stored Objects. The sole

deviation from the Java Collections framework – aside the
weak consistency implications – is that Tempest enforces
Object immutability by passing parameters by-value — a
side effect of this is the possibility for services to operate
on stale data.

3 Tempest Architecture

REPLICA

REPLICA

REPLICA

REPLICA

REPLICA

REPLICA

REPLICA

FRONT
END

FRONT
END

FRONT
END

GMS

multicast

gossip

CLIENT

CLIENT

CLIENT

CLIENT

Services

Figure 2. Tempest architecture.

In this section we describe the mechanisms used to im-
plement replicated TempestCollections. Tempest services
reside on second-tier servers; a single server represents the
platform configuration on a single computer and might run
several services. A service instance stores data in one or
more TempestCollections. Multiple instances of a service
execute across different servers, and invocations to this ser-
vice are sent by first-tier front-ends to all the service in-
stances — see Figure 2 (front end initiates a multicast to the
servers that contain replicas of the same service instance).

The life-cycle of a Tempest invocation begins when a
client sends a request over the Internet to the datacenter,
which gets load balanced to a web-facing front-end node.
The front-end is then responsible for contacting a set of ser-
vices and aggregating individual service responses into a
composite result that it returns to the client. Front-ends use
IP multicast to perform web-service invocations on service
instances, allowing very rapid communication in the gen-
eral case; when multicast packets are dropped or delivered
at different orders across instances, gossip-based reconcil-
iation is used to repair gaps and errors in the TempestCol-
lections maintained by them.

3.1 Client Invocations

When a client request enters the datacenter at a front-end,
it’s tagged with a web service invocation identifier (wsiid)
consisting of a tuple containing the front-end node identifier
and sequence number. Front-end node identifiers are ob-
tained by applying the SHA1 consistent hash function over
the front-end’s IP address and port pair. Each Tempest re-
quest is thus uniquely identified by its wsiid.

3

148

As mentioned previously, Tempest differentiates be-
tween updates and queries or reads. For updates, Tempest
uses IP multicast to send the operation directly to the full
set of Tempest servers that hold replicas of the service for
which the requests were intended. A hashing mechanism
is employed to determine which server instance is respon-
sible for replying. In the absence of message loss, which
common, IP multicast within datacenters is reliable and or-
dered.

For read requests, front-ends use an adaptive querying
mechanism. Each front-end periodically multicasts a bea-
con to each service and waits for unicast responses from
each instance. It selects the k instances that respond first —
where k is the redundant querying parameter — and subse-
quently directs service read invocations to these instances.

3.2 The Tempest Gossip Mechanism

Tempest is designed under the assumption that the mul-
ticast protocol used might not be fully reliable or might re-
cover lost packets at high latencies. If some replicas miss an
update, they can become inconsistent. Tempest uses a gos-
sip protocol to repair these kinds of inconsistencies rapidly.
Servers use a custom tailored gossip protocol to reconcile
differences between the TempestCollection replicas.

Tempest keeps track of all the operations performed at
the data structure boundary — this is possible due to our
by-value semantics of altering the collections. When an ob-
ject is added to a collection, it is annotated with the web
service invocation identifier of the corresponding invoca-
tion; when an object is removed from a collection, a death
certificate for it is created and annotated with the wsiid. A
death certificate is simply a means of retaining the informa-
tion necessary to identify which objects were removed from
a collection. In particular each TempestCollection keeps a
history of the removed objects in an internal private data
structure not exposed via the standard interface.

The anti-entropy mechanism works by having each
server “gossip about” the sets of web service invocation
identifiers (wsiids) that annotated objects in TempestCol-
lections. Suppose for example that during one gossip round
we have two service replicas r1 and r2 respectively engaged
in an exchange; let their sets of wsiids be denoted by w(r1)
and w(r1). If w(r1) = w(r2) no action is taken, otherwise
some invocations were missed by one (or both) and a “rec-
onciliation” phase is triggered:

• If w(r1) ⊂ w(r2) then r1 missed invocations and
holds a stale version of the state – as a result r1 re-
trieves from r2 the objects and death certificates an-
notated with the wsiids from the set w(r2) \ w(r1).
Objects referred by the death certificates are removed,
newly received objects are added; also r1’s set of wsi-
ids is updated accordingly: w(r1)← w(r2).

• If w(r1) 6⊂ w(r2) and |w(r1)| 6= |w(r2)| (the sets
have different cardinality) both replicas have missed
at least one update each, therefore to make progress
it is safe for any of the replicas to assume the other
replica’s state – without violating the “eventual con-
sistency” guarantees offered by the system. Choose
the replica that has the smaller w set – let it be r1 with-
out loss of generality; r1 performs the following steps:

– For every identifier i in the set w(r1) \ w(r2),
if i annotates an object then the object is dis-
carded, otherwise if i annotates a death certifi-
cate the object referred by the death certificate is
“resurrected” (added back to the collection).

– Fetch from r2 all objects and death certificates
annotated with identifiers from the set w(r2) \
w(r1). Remove objects referred by the death
certificates, add the new objects, and update
w(r1) ← w(r2). Here we used the heuristic of
discarding the state of the replica that received
less invocations, however one can imagine other
criteria.

• If w(r1) 6⊂ w(r2) and |w(r1)| = |w(r2)| then the ini-
tiator of the gossip round between r1 and r2 “plays the
role” of the replica with the smaller w and performs
the same operations as in the previous case.

An upcall is provided such that the service developer is
notified when a gossip reconciliation was triggered.

If no new invocations are issued against the system, and
if no permanent network partition that splits the servers
into two or more disjoint communication parties occurs the
TempestCollection replicas will eventually contain identical
elements with probability 1.0 [9].

During a gossip round, there can never be more than
3 messages issued per process (by protocol design). Cur-
rently the sets of web service identifiers are monotonically
increasing as new invocations are issued, therefore gossip
messages size increases with time. We are working on a
method for garbage collecting the stale wsiids by append-
ing an epoch number at wsiid generation time — tempest
servers will discard wsiids that are more than δ epochs old
for some choice of parameter δ. Another option is to use
efficient set reconciliation methods like the ones in [20, 4].

The strength of gossip protocols lies in their simplicity,
the fact that they are robust (there are exponentially many
paths information can travel in between two endpoints), and
the ease with which they can be tuned to trade speed of
delivery against resource consumption. The epidemic pro-
tocols implemented in Tempest evolved out of our previ-
ous work on simple primitive mechanisms that enable scal-
able services architectures in the context of large-scale data-
centers. A more thorough description of the basic protocols
and some of the optimizations can be found in [19].

4

149

3.3 Membership and Failure Detection

Membership in Tempest is handled by the Group Mem-
bership Service (GMS), which maintains the mapping be-
tween servers and service replicas. In addition, it also
acts as a UDDI (Universal Description Discovery and In-
tegration) registry providing appropriate WSDL (Web Ser-
vices Description Language) descriptions for the services
deployed on Tempest servers. The GMS also fills the ad-
ministrator role for Tempest servers, monitoring the overall
stress and spawning new servers to match the load imposed
on the system. Finally, it monitors components to detect
failures and adapt the configuration.

Tempest assumes that processes fail by crashing and can
be reliably detected as faulty by timeout. Accordingly, Tem-
pest processes monitor the peers with which they interact
using a secondary gossip-based heartbeat mechanism. Pro-
cesses that are thought to be deceased are reported to the
GMS, which waits for f distinct suspicions before actu-
ally declaring it deceased. It then updates and dissemi-
nates group membership information to all interested par-
ties. While in our experiments the GMS is hosted on a
single high-end node, in a datacenter it could potentially
be replicated and partitioned across multiple machines for
scalability and fault-tolerance.

3.4 Node Recovery and Checkpointing

TempestCollections are automatically checkpointed. Pe-
riodically, each Tempest server batches the items in each
TempestCollection and writes them atomically to disk.
When a node crashes and reboots, upon starting the Tem-
pest server, the services are brought up to date with the state
that was last written to disk before the crash.

When a server is newly spawned, or when a server that
has been unavailable for a period of time missed many up-
dates, Tempest employs a bulk transfer mechanism to bring
the server up to date. In such cases, a source server is se-
lected and the contents of the relevant TempestCollections
are transmitted over a TCP connection. When multiple
services are collocated in a single server, the transfers are
batched and sent over a single shared TCP stream.

Newly spawned services and services that rebooted after
a crash will consequently “catch up” gracefully with the rest
of the service replicas by means of the epidemic protocols.

4 Experimental Evaluation

Tempest was implemented in Java, enhancing the
Apache Axis Soap [28] web services stack with a new trans-
port protocol that uses a multicast primitive, i.e. SOAP
over TempestTransport instead of SOAP over HTTP. The

Apache Tomcat

MySQL

Oracle TimesTen

Front-ends

Oracle TimesTen

Primary

Backup

Figure 3. Baseline configurations.

Tempest
Containers

Cluster

Front-ends

Figure 4. Tempest configuration.

deep cloning capability was implemented using the Java Re-
flection API. The system components are built with Java’s
non-blocking I/O primitives using a high performance event
driven model similar to the SEDA [29] architecture.

The evaluation is structured as follows: in subsection 4.1
we show that a single replicated Tempest service can pro-
vide rapid response to large numbers of concurrent front-
end requests. In subsection 4.2 we show that this is true
even when services are heavily loaded. Finally, in subsec-
tion 4.3, we show that the two knobs provided by Tempest
— number of replicas per service and number of redundant
queries — enable rapid predictable response for “service-
clouds” composed of many collaborating services with dif-
fering timing characteristics.

4.1 Scalability in the Number of Concur-
rent Connections – Micro bechmarks

We ran a set of micro benchmarks to compare Tempest
against four multi-tier baseline scenarios. In all configura-
tions we had the same set of front-ends interacting with the
ShoppingCart web service. On one hand we deployed
the service on top of the Apache Tomcat server. The ser-
vice stores the data using a relational database repository
as shown in figure 3. We stored the data using the Or-
acle TimesTen in memory database (configured in “high
performance cache-mode” for in-memory operations only)
first co-located with the Tomcat server, second on a remote
third-tier machine and lastly deployed in a primary-backup

5

150

configuration with the primary co-located with the Tomcat
container and the backup on the third-tier machine. The
primary-backup scheme provided by TimesTen that we used
is called return receipt, and it ensures that upon submitting
a request to the master the application is blocked until the
replication scheme confirms that the update has been re-
ceived by the backup. Since we configured TimesTen to
work without committing durably to disk every transaction,
the stronger return twosafe replication mode was not nec-
essary. We also use an ubiquitous on-disk database en-
gine, and for that purpose we relied on MySQL 5.0 with
the InnoDB storage engine configured for ACID compli-
ance — flushing the log after every transaction commit, and
the underlying operating system (Linux 2.6.15) with the
file system mounted in synchronous mode and with bar-
riers enabled. On the other hand we have deployed the
ShoppingCart service on 3 replicated Tempest servers
gossiping at a rate of once every 100 milliseconds (see fig-
ure 4) – we did not replicate Tomcat for load balancing since
all Tempest replicas were configured to receive every up-
date. The Tempest ShoppingCart service stores the data
inside a TempestMap.

The workload consists of multiple clients issuing 1024
byte requests at a rate of 100 requests per second against
the ShoppingCart service. Requests are issued in a closed
loop [25]. Every experiment had a startup phase in which
we populated the data repository with 1024 distinct objects.
Client requests were drawn from a Zipf distribution (with
s = 1) over the space of object identifiers – reads and
writes equally distributed. We report measurements of the
Web Service Interaction Time, i.e. the request latency as
observed by 1, 2, 4, 16, 32, 64, 128, 256, 512, 800 and 1024
concurrent clients. Results are averaged over 40000 runs
per client.

Figure 5 shows that Tempest latency is significantly less
– often by over an order of magnitude – than any of the
baselines, thus confirming that fault-tolerant services with
time-critical properties can be built on top of the Tempest
platform. The graphs also indicate that Tempest scales well
with the number of concurrent requests.

As can be seen from the breakdown of the latency, most
of the overhead comes from the round trip time and the
Tomcat container, which is to be expected since the work-
load consists of operations on small data records over the
database — we hypothesize that database lock contention
has not kicked in yet, the Tomcat container being the first
one to experience severe overload.

Looking more carefully at the breakdown of the latency
in figure 5 (the 1-to-32 concurrent clients spectrum) one can
notice that the time spent by a Tempest service manipulating
the data (i.e. performing object deep cloning, data structure
lock contention, web service invocation identifier tagging
and index maintenance) is small compared to the database

interaction — as a matter of fact it grows remains around 1
millisecond no matter what the number of concurrent clients
is — showing that fine grained data structures allow for bet-
ter performance under contention.

4.2 Graceful Recovery under Heavy Load

Next, we ran a set of experiments to report on Tem-
pest’s behavior in the face of failures. Node crashes turned
out not to be especially interesting since Tempest’s gossip
failure detection protocols quickly detect that the node has
failed, expel it from the group and shift work to other nodes.
More details on the timeliness of a variant of the gossip
based failure detector we used can be found in our previ-
ous work [19]. We did however identify a class of overload
scenarios that have a more visible impact on the Tempest
replicated services. These scenarios degrade some service
components without crashing them. The services become
lossy and inconsistent, and queries return results based on
stale data. Two questions are of interest here: behavior dur-
ing the overload, and the time required to recover after it
ends.

We replicated the ShoppingCart service on 6 Tempest
servers running on the Cornell cluster – each machine is
a 1.33Ghz Intel single CPU blade-server with 512MB of
RAM. We inject a single source stream of updates at a par-
ticular rate of one update every 20 milliseconds. The same
client perform query requests on 8 concurrent threads at the
same time. The query stream is at a higher rate than the
updates (in this case 4 times higher). Client requests were
drawn from a Zipf distribution (with s = 1) over the space
of object identifiers – reads and writes equally distributed.

The overload unfolds in the following way:

• At time t from the start of the experiment 128
“rogue” clients bombard with requests 3 of the Tem-
pest servers. Call the Tempest services victims.

• At time t + ∆ the rogue clients terminate.

In the experiments that follow, t is 10, and ∆ is 30 seconds.
The rogue clients bombard the victims with multiple

streams of continuous IP multicast requests in the attempt
to saturate their processing capacity. However, we found
that this was not enough to perturb the normal behavior of
the servers, hence at the same time we superimposed addi-
tional background load on the victim servers. These attacks
do not actually cause the servers to crash, but they do cause
them to become overloaded in processing incoming updates
and hence return stale results.

Server overloads will not influence the performance of
Tempest at non-attacked services, hence we report only on
the impact of the disruption at the affected replicas. Fig-
ure 6 shows the number of “stale” query results on the y-

6

151

 0

 10

 20

 30

 40

 50

 60

 70

tem
pest

ttlocal
tt ttrepl
m

ysql
tem

pest
ttlocal
tt ttrepl
m

ysql
tem

pest
ttlocal
tt ttrepl
m

ysql
tem

pest
ttlocal
tt ttrepl
m

ysql
tem

pest
ttlocal
tt ttrepl
m

ysql
tem

pest
ttlocal
tt ttrepl
m

ysql

La
te

nc
y

(m
s)

Number of concurrent clients

latency
data access

32168421

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800

tem
pest

ttlocal
tt ttrepl
m

ysql
tem

pest
ttlocal
tt ttrepl
m

ysql
tem

pest
ttlocal
tt ttrepl
m

ysql
tem

pest
ttlocal
tt ttrepl
m

ysql
tem

pest
ttlocal
tt ttrepl
m

ysql
tem

pest
ttlocal
tt ttrepl
m

ysql

La
te

nc
y

(m
s)

Number of concurrent clients

latency
data access

102480051225612864

Figure 5. Request latency. Each group of bars represent tempest (tempest), times ten on the local
machine with tomcat (ttlocal), times ten on a remote machine (tt), times ten in primary-backup mode
with the primary on the same machine as tomcat and the backup on a remote machine (ttrepl), and
mysql on a remote machine (mysql).

0 50 100 150 200 2500

10

20

30

40

50

Nu
m

be
r o

f s
ta

le
 re

pl
ie

s

Time (s)

Figure 6. Number of stale results.

axis against the time in seconds on the x-axis, binned in 2-
second intervals. The client issues an update every 20 mil-
liseconds and the Tempest gossip rate is set at once every 40
milliseconds. Throughout this period, the victim nodes are
overloaded and drop packets, while the Tempest repair pro-
tocols labor to repair the resulting inconsistencies. Mean-
while, queries that manage to reach the overloaded nodes
could glimpse stale data (not reflecting recent issued up-
dates since the updates were lost). Once the attack ends,
Tempest is able to gracefully recover.

The ratio of the gossip rate to the update rate will de-
termine the robustness of Tempest to this sort of overload
scenario. To quantify this effect, Figure 7 shows the incon-
sistency window as perceived by clients during the disrup-
tion. This is the period of time during which clients of a ser-

0.4 0.6 0.8 1 1.2 1.4 1.6
0

1

2

3

4

5

6

7

8

9
In

co
ns

ist
en

cy
 w

in
do

w
(s

)

Update rate / gossip rate ratio

Figure 7. Inconsistency window.

vice see more than one stale query result within a 2-second
interval. The inconsistency window is plotted against the
ratio between the update rate and the Tempest gossip rate,
with the update rate fixed at 1/20 milliseconds. The window
is minimized when the gossip rate is at least as fast as the
update rate.

4.3 Scalability in the Number of Services

To estimate how Tempest scales in different dimensions
— in particular size of the collaborating services, number
of front-ends and number of replicas — we built a synthetic
PetStore on top of Tempest and evaluated it on the Emulab
testbed. The application consists of a battery of front ends
issuing requests to a “cloud” of services.

7

152

0 10 20 30 40 50 60 7025

30

35

40

45

50

Replicas per service

La
te

nc
y

(m
s)

CPU, VAR
IO, VAR
CPU & IO, VAR

Figure 8. Large variance service latency.

0 10 20 30 40 50 60 7055

60

65

70

75

80

85

90

95

Replicas per service

La
te

nc
y

(m
s)

CPU
IO
CPU & IO

Figure 9. Small variance service latency.

The services have different response time characteristics:
some are IO intensive – for example an indexing service
may access disk much more often than the average service,
others are CPU intensive – for example a recommendation
service may require considerably more CPU cycles than the
average service, while other services are both IO and CPU
bound. We also consider the response time variances for
these types of services, in particular the PetStore services
have both small and large response time variance. We ob-
served that services performing multiple IO operations are
likely to suffer from scheduling delays. Lock contention
within Tempest may be another cause for large response
time variance.

We ran a set of baseline experiments to measure the be-
havior of each type of service individually, under normal
load. The experiment consisted of two front ends issuing
request streams (half updates half reads) of one query every
40 milliseconds in closed loop to a single replicated service.
Services have the gossip rate set for once every 100 mil-

0 200 400 600 800
0

20

40

60

80

100

120

140

Q
ue

rie
s

pe
r

bi
ns

 o
f 1

0
m

s

Latency (ms)
0 200 400 600 800

0

20

40

60

80

100

120

140

Q
ue

rie
s

pe
r

bi
ns

 o
f 1

0
m

s

Latency (ms)

Figure 10. Pet-store response time his-
tograms, left: no replicas, right: 8 replicas.

0 2 4 6 840

50

60

70

80

90

100

110

120

130

Services per call

La
te

nc
y

(m
s)

1 query, baseline
1 queries, adaptive
2 queries, adaptive
5 queries, adaptive

Figure 11. Pet-store latency, 5 replicas each.

liseconds. We repeated the experiment for various number
of replicas and for each of the types of services mentioned
above. Figure 8 shows the query latency for services with
large response time variance, and small response time vari-
ance respectively (figure 9). The error bars represent stan-
dard error. Note that even for services that we instrumented
to have small response time variance, if they are IO bound
they do exhibit large variance — in particular note the CPU
& IO bound service for 42 replicas and the IO bound service
for 56 replicas. We should note that for this client request
load, the service instances become overloaded if we drop
below about 3 replicas, and we don’t report those values
(response times are meaningless when the service isn’t able
to keep up with the request rate).

Next we evaluated the PetStore as a “cloud” of seven ser-
vices — the six with the characteristics presented in the pre-
vious experiments, along with another baseline service that
shows the overhead caused by Tempest. Four front-ends
perform multi-service requests (half queries half updates)
against the PetStore in a closed loop, each at a rate of once
every 50 milliseconds — we chose the rate so as to not com-
pletely overload the platform and observe queueing effects
instead.

8

153

0 2 4 6 840

50

60

70

80

90

100

110

120

130

Services per call

La
te

nc
y

(m
s)

1 query, baseline
1 queries, adaptive
2 queries, adaptive
5 queries, adaptive

Figure 12. Pet-store latency, 8 replicas each.

Figure 10 show response time distributions for multi-
service requests sent to all services — every request issued
by a front-end is sent in parallel to each service, the front
end returns when replies from every service is received. Re-
quests have the redundant querying parameter k = 2. Each
histogram shows the number of requests per bins 10 mil-
liseconds wide. We show the scenarios: the one in which
neither of the services is replicated, and the one in which
services have 8 replicas each. The graphs show that replica-
tion provides more opportunities for queries to be absorbed
by load balancing and that redundant querying pays off.

Figures 11 and 12 show response times for multi-service
requests (with standard error denoting the error bars). Ev-
ery multi-request issued by a front-end chooses at random
n distinct services, where n is the number of services per
query, presented on the x-axis. We used the adaptive query
algorithm with the k parameter set to 1, 2 and 5. For base-
line we used a simple query discovery algorithm by which
the first query for a service is multicast, and all subsequent
queries are sent to the one replica that replied the fastest
to the multicast. In figure 11 every service is replicated 5
times, while in figure 12 every service is replicated 8 times.
First we conclude that redundant querying does indeed im-
prove performance, with the largest payoff for k = 2. Sec-
ond, the adaptive querying algorithm pays off mostly in sce-
narios where the number of replicas is small.

5 Related Work

Soft state mechanisms have been used extensively in net-
work protocols [32, 12], as well as in large cluster-based
services like Porcupine [24] and others [14, 6, 26]. Propos-
als exist for extending the standard web-service model to
include soft state — a prominent example is the Grid Com-
puting standard [13]. Recovery-oriented computing [7] is
an alternative approach to providing fast failover and avail-

ability in the face of failures — however, it does not replace
replication as a mechanism for balancing heavy load across
multiple machines. Distributed data structures have been
proposed before [16] as building blocks for clustered ser-
vices. The work in [33] is very similar in spirit to Tem-
pest, but examines the orthogonal question of providing
customizable durability levels through a single storage ab-
straction; one of these levels is meant for soft state that
needs to be replicated for high availability. SSM [18] is
a system for managing and storaging a particular category
of soft state — user session information.

Clustered application servers like BEA WebLogic Ap-
plication Server [3] and IBM WebSphere [17] allow storage
of state in special containers that are typically stored within
persistent databases. There has been a large amount of work
in the field of fault-tolerant middleware, especially around
CORBA [2, 21, 11], but most of this work does not consider
interaction with a database third tier. DBFarm [23] is an ar-
chitecture for scaling a core of multiple databases through
the use of less reliable replicas.

6 Conclusion

Modern three-tier architectures achieve scalability and
responsiveness through the extensive use of soft state tech-
niques in the service tier. Availability and rapid fail-over re-
quires data replication, and Tempest provides programmers
with data structure abstractions for storing and managing
replicated soft state. Tempest scales well in key dimensions
— the number of front-ends contacting a service and the
number of services contacted by a front-end — and outper-
forms in-memory databases in realistic settings. As a result,
Tempest simplifies the construction of highly responsive
systems that seamlessly mask load fluctuations and faults
from end-users.

References

[1] M. K. Aguilera, A. Merchant, M. Shah, A. C. Veitch, and
C. T. Karamanolis. Sinfonia: a new paradigm for build-
ing scalable distributed systems. In SOSP, pages 159–174,
2007.

[2] R. Baldoni and C. Marchetti. Three-tier replication for FT-
CORBA infrastructures. Software Practice and Experience,
2003, 6 2003.

[3] BEA Systems, Inc. Clustering the BEA We-
bLogic Application Server, 2003. http://e-
docs.bea.com/wls/docs81/cluster/overview.html.

[4] J. Byers, J. Considine, and M. Mitzenmacher. Fast approx-
imate reconciliation of set differences. Boston University
Computer Science Technical Report 2002-019., 2002.

[5] L. Camargos, F. Pedone, and M. Wieloch. Sprint: a middle-
ware for high-performance transaction processing. In Eu-
roSys ’07: Proceedings of the ACM SIGOPS/EuroSys Eu-

9

154

http://e-docs.bea.com/wls/docs81/cluster/overview.html
http://e-docs.bea.com/wls/docs81/cluster/overview.html
http://e-docs.bea.com/wls/docs81/cluster/overview.html

ropean Conference on Computer Systems 2007, pages 385–
398, New York, NY, USA, 2007. ACM.

[6] G. Candea, J. Cutler, and A. Fox. Improving availability
with recursive microreboots: a soft-state system case study.
Perform. Eval., 56(1-4):213–248, 2004.

[7] G. Candea, S. Kawamoto, Y. Fujiki, G. Friedman, and
A. Fox. Microreboot - a technique for cheap recovery. In
OSDI, pages 31–44, 2004.

[8] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati,
A. Lakshman, A. Pilchin, S. Sivasubramanian, P. Vosshall,
and W. Vogels. Dynamo: amazon’s highly available key-
value store. In SOSP ’07: Proceedings of twenty-first ACM
SIGOPS symposium on Operating systems principles, pages
205–220, New York, NY, USA, 2007. ACM.

[9] A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson,
S. Shenker, H. Sturgis, D. Swinehart, and D. Terry. Epi-
demic algorithms for replicated database maintenance. In
Proceedings of the sixth annual ACM Symposium on Prin-
ciples of Distributed Computing, pages 1 – 12, Vancouver,
British Columbia, Canada, 1987.

[10] A. Demers, K. Petersen, M. Spreitzer, D. Terry, M. Theimer,
and B. Welch. The Bayou Architecture: Support for Data
Sharing among Mobile Users. In IEEE Workshop on Mobile
Computing Systems & Applications, 1994.

[11] P. Felber, X. Défago, P. Eugster, and A. Schiper. Replicat-
ing CORBA objects: a marriage between active and passive
replication. In Second IFIP International Working Confer-
ence on Distributed Applications and Interoperable Systems
(DAIS’99), pages 375–387, Helsinki, Finland, 1999.

[12] S. Floyd, C. Liu, S. McCanne, and L. Zhang. A reliable
multicast framework for light-weight sessions and applica-
tion level framing. IEEE/ACM Transactions on Networking
(TON), 5(6):784–803, 1997.

[13] I. Foster, K. Czajkowski, D. Ferguson, J. Frey, S. Graham,
T. Maguire, D. Snelling, and S. Tuecke. Modeling and Man-
aging State in Distributed Systems: The Role of OGSI and
WSRF. Proceedings of the IEEE, 93(3):604–612, March
2005.

[14] A. Fox, S. Gribble, Y. Chawathe, E. Brewer, and P. Gauthier.
Cluster-based scalable network services. Proceedings of the
sixteenth ACM symposium on Operating systems principles,
pages 78–91, 1997.

[15] J. N. Gray. A Conversation with Werner Vogels: Learning
from the Amazon technology platform. ACM Queue, 4(4),
May 2006.

[16] S. D. Gribble, E. A. Brewer, J. M. Hellerstein, and D. E.
Culler. Scalable, distributed data structures for internet ser-
vice construction. In OSDI, pages 319–332, 2000.

[17] IBM. WebSphere Information Integra-
tor Q replication, 2005. http://www-
128.ibm.com/developerworks/db2/library/techarticle/dm-
0503aschoff/.

[18] B. C. Ling, E. Kiciman, and A. Fox. Session state: beyond
soft state. In NSDI’04: Proceedings of the 1st conference on
Symposium on Networked Systems Design and Implemen-
tation, pages 22–22, Berkeley, CA, USA, 2004. USENIX
Association.

[19] T. Marian, K. Birman, and R. van Renesse. A Scalable Ser-
vices Architecture. In Proceedings of the 25th IEEE Sym-
posium on Reliable Distributed Systems (SRDS 2006). IEEE
Computer Society, 2006.

[20] Y. Minsky, A. Trachtenberg, and R. Zippel. Set rec-
onciliation with nearly optimal communication complex-
ity. IEEE Transactions on Information Theory, 49(9):2213–
2218, 2003.

[21] P. Narasimhan, L. E. Moser, and P. M. Melliar-Smith.
Lessons Learned in Building a Fault-Tolerant CORBA Sys-
tem. In DSN ’02: Proceedings of the 2002 International
Conference on Dependable Systems and Networks, pages
39–44, Washington, DC, USA, 2002. IEEE Computer So-
ciety.

[22] M. Pezzini. The Evolution of Transaction Processing in
Light of .NET and J2EE. Business Integration Journal On-
line, November 2005.

[23] C. Plattner, G. Alonso, and M. T. Özsu. Dbfarm: A scalable
cluster for multiple databases. In Middleware, pages 180–
200, 2006.

[24] Y. Saito, B. N. Bershad, and H. M. Levy. Manageability,
availability and performance in Porcupine: a highly scal-
able, cluster-based mail service. In SOSP ’99: Proceedings
of the seventeenth ACM symposium on Operating systems
principles, pages 1–15, New York, NY, USA, 1999. ACM
Press.

[25] B. Schroeder, A. Wierman, and M. Harchol-Balter. Open
vs closed: a cautionary tale. In Proceedings of the 3rd
Symposium on Networked System Design and Implementa-
tion (NSDI). Networked System Design and Implementation
(NSDI), 2006.

[26] K. Shen, T. Yang, L. Chu, J. L. Holliday, D. A. Kuschner,
and H. Zhu. Neptune: scalable replication management and
programming support for cluster-based network services. In
USITS’01: Proceedings of the 3rd conference on USENIX
Symposium on Internet Technologies and Systems, pages
17–17, Berkeley, CA, USA, 2001. USENIX Association.

[27] Sun Microsystems. The Collections Framework, 1995.
http://java.sun.com/docs/books/tutorial/collections/index.html.

[28] The Apache Software Foundation. Apache Axis, 2006.
http://ws.apache.org/axis/.

[29] M. Welsh, D. E. Culler, and E. A. Brewer. SEDA: An Ar-
chitecture for Well-Conditioned, Scalable Internet Services.
In Symposium on Operating Systems Principles, pages 230–
243, 2001.

[30] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad,
M. Newbold, M. Hibler, C. Barb, and A. Joglekar. An in-
tegrated experimental environment for distributed systems
and networks. In Proc. of the Fifth Symposium on Operating
Systems Design and Implementation.

[31] World Wide Web Consortium. Web Services Architecture,
2002. http://www.w3.org.

[32] L. Zhang, S. Deering, D. Estrin, S. Shenker, and D. Zappala.
RSVP: a new resource reservation protocol. Communica-
tions Magazine, IEEE, 40(5):116–127, 2002.

[33] X. Zhang, M. A. Hiltunen, K. Marzullo, and R. D. Schlicht-
ing. Customizable service state durability for service ori-
ented architectures. Sixth European Dependable Computing
Conference, 0:119–128, 2006.

10

155

http://www-128.ibm.com/developerworks/db2/library/techarticle/dm-0503aschoff/
http://www-128.ibm.com/developerworks/db2/library/techarticle/dm-0503aschoff/
http://www-128.ibm.com/developerworks/db2/library/techarticle/dm-0503aschoff/
http://java.sun.com/docs/books/tutorial/collections/index.html
http://ws.apache.org/axis/
http://www.w3.org

Dr. Multicast: Rx for Data Center Communication Scalability∗

Ymir Vigfusson
Cornell University

Hussam Abu-Libdeh
Cornell University

Mahesh Balakrishnan
Cornell University

Ken Birman
Cornell University

Yoav Tock
IBM Haifa Research Lab

Abstract

Data centers avoid IP Multicast because of a se-
ries of problems with the technology. We propose
Dr. Multicast (the MCMD), a system that maps
traditional IPMC operations to either use a new
point-to-point UDP multisend operation, or to a
traditional IPMC address. The MCMD is de-
signed to optimize resource allocations, while si-
multaneously respecting an administrator-specified
acceptable-use policy. We argue that with the re-
sulting range of options, IPMC no longer represents
a threat and could therefore be used much more
widely.

1 Introduction

As data centers scale up, IP multicast (IPMC) [8]
has an obvious appeal. Publish-subscribe and data
distribution layers [6, 7] generate multicast distri-
bution patterns; IPMC permits each message to be
sent using a single I/O operation, reducing latency
both for senders and receivers (especially, for the
last receiver in a large group). Clustered application
servers [1, 4, 3] need to replicate state updates and
heartbeats between server instances. Distributed
caching infrastructures [2, 5] need to update cached
information. For these and other uses, IPMC seems
like a natural match.

Unfortunately, IPMC has earned a reputation as
a poor citizen. Routers must maintain routing state
and perform a costly per-group translation[11, 9].
Many NICs can only handle a few IPMC addresses;
costs soar if too many are used. Multicast flow con-
trol is also a black art. When things go awry, a mul-
ticast storm can occur, disrupting the whole data
center. Perhaps most importantly, management of
multicast use is practically unsupported.

Our paper introduces Dr. Multicast (the
MCMD), a technology that permits data center
operators to enable IPMC while maintaining tight

∗This work was supported by grants from AFRL, AFOSR,

NSF, Cisco and Intel.

control on its use. Applications are coded against
the standard IPMC socket interface, but IPMC
system calls are intercepted and mapped into one
of two cases:

• A true IPMC address is allocated to the group.

• Communication to the group is performed us-
ing point-to-point UDP messages to individual
receivers, using a new multi-send system call.

The MCMD tracks group membership, using a
gossip protocol. It translates each send operation
on a multicast group into one or more send opera-
tions, optimized for system objectives. Finally, to
implement this optimization policy, it instantiates
in a fault-tolerant fashion a service that computes
the best allocation of IPMC addresses to groups
(or to overlapping sets of groups), adapting as use
changes over time.

Users benefit in several ways:

• Policy: Administrators can centrally impose
traffic policies within the data center, such as
limiting the use of IPMC to certain machines,
placing a cap on the number of IPMC groups
in the system or eliminating IPMC entirely.

• Performance: The MCMD approximates the
performance of IPMC, using it directly where
possible. When a multicast request must be
translated into UDP sends, the multi-send sys-
tem call reduces overheads.

• Transparency and Ease-of-Use: Applications
express their intended communication pattern
using standard IPMC interfaces, rather than
using hand-coded implementations of what is
really an administrative policy.

• Robustness: The MCMD is implemented as a
distributed, fault-tolerant service.

We provide and evaluate effective heuristics for the
optimization problem of allocating the limited num-
ber of IPMC addresses, although brevity limits us
to a very terse review of the framework, the underly-
ing (NP -complete) optimization question, and the
models used in the evaluation.

1
156

Number of groups joined

P
a
ck

et
m

is
s

ra
te

(%
)

350300250200100502010521

50

40

30

20

10

0

Figure 1: Receiver packet miss rate vs. number of IPMC

groups joined

2 IPMC in the Data Center

Modern data centers often have policies legislating
against the use of IPMC, despite the fact that multi-
cast is a natural expression of a common data com-
munication pattern seen in a wide range of applica-
tions. This reflects a number of pragmatic consid-
erations. First, IPMC is perceived as a potentially
costly technology in terms of performance impact
on the routing and NIC hardware. Second, appli-
cations using IPMC are famously unstable, running
smoothly in some settings and yet, as scale is in-
creased, potentially collapsing into chaotic multi-
cast storms that disrupt even non-IPMC users.

The hardware issue relates to imperfect filtering.
A common scheme used to map IP group addresses
to Ethernet group addresses involves placing the
low-order 23 bits of the IP address into the low-
order 23 bits of the Ethernet address [8]. Since there
are 28 significant bits in the IP address, more than
one IP address can map to an Ethernet address.
The NIC maintains the set of Ethernet mappings
for joined groups and forwards packets to the ker-
nel only if the destination group maps to one of
those Ethernet addresses. As a result, with large
numbers of groups, the NIC may accept undesired
packets, which the kernel must discard.

Figure 1 illustrates the issue. In this experiment,
a multicast transmitter transmits on 2k multicast
groups, whereas the receiver listens to k multicast
groups. We varied the number of multicast groups k

and measured the CPU consumption as well as the
packet loss at the receiver. The transmitter trans-
mits at a constant rate of 15,000 packets/sec, with
a packet size of 8,000 bytes spread across all the
groups. The receiver thus expects to receive half

of that, i.e. 7,500 packets/sec. The receiver and
transmitter have 1Gbps NICs and are connected
by a switch with IP routing capabilities. The ex-
periments were conducted on a pair of single core
IntelR© Xeon

TM

2.6GHz machines. Figure 1 shows
that the critical threshold that the particular NIC
can handle is roughly 100 IPMC groups, after which
throughput begins to fall off.

The issue isn’t confined to the NIC. Performance
of modern 10Gbps switches was evaluated in a re-
cent review [10] which found that their IGMPv3
group capacity ranged between as little as 70 and
1,500. Less than half of the switches tested were
able to support 500 multicast groups under stress
without flooding receivers with all multicast traffic.

The MCMD addresses these problems in two
ways. First, by letting the operator limit the num-
ber of IPMC addresses in use, the system ensures
that whatever the limits in the data center may
be, they will not be exceeded. Second, by optimiz-
ing to use IPMC addresses as efficiently as possi-
ble, the MCMD arranges that the IPMC addresses
actually used will be valuable ones – large groups
that receive high traffic. As seen below, this is done
not just by optimizing across the groups as given,
but also by discovering ways to aggregate overlap-
ping groups into structures within which IPMC ad-
dresses are shared by multiple groups, permitting
even greater efficiencies.

The perception that IPMC is an unstable tech-
nology is harder to demonstrate in simple experi-
ments: as noted earlier, many applications are per-
fectly stable under most patterns of load and scale,
yet capable of being extraordinarily disruptive. The
story often runs something like this. An application
uses IPMC to send to large numbers of receivers at a
substantial data rate. Some phenomenon now trig-
gers loss. The receivers detect the loss and solicit
retransmissions, but this provokes a further load
surge, exacerbating the original problem. A mul-
ticast storm ensues, saturating the network with
redundant retransmission requests and duplicative
multicasts. With MCMD the operator can safely
deploy such an application: if it works well, it will
be permitted to use IPMC; if it becomes problem-
atic, it can be mapped to UDP merely by chang-
ing the acceptable use policy. More broadly, the
MCMD encourages developers to express intent in
a higher-level form, rather than hand-coding what
is essentially an administrative policy.

3 Design

The basic operation of MCMD is simple. It trans-
lates an application-level multicast address used by

2
157

Figure 2: Overview of the MCMD architecture

an application to a set of unicast addresses and
network-level multicast addresses. MCMD has two
components (see figure 2):

• A library module responsible for the mecha-
nism of translation. It intercepts outgoing mul-
ticast messages and instead sends them to a set
of unicast and multicast destinations.

• A mapping module responsible for the policy
of translation. It determines the mapping from
each application-level address and a set of uni-
cast and network-level multicast addresses.

3.1 Library Module

The MCMD library module exports a <sockets.h>

library to applications, with interfaces identical to
the standard POSIX version. By overloading the
relevant socket operations, MCMD can intercept
join, leave and send operations. For example:

• setsockopt() is overloaded so that an invo-
cation with the IP ADD MEMBERSHIP or
IP DROP MEMBERSHIP option as a param-
eter results in a ‘join’ message being sent to
the mapping module. In this case, the stan-
dard behavior of setsockopt – generating an
IGMP message – is suppressed.

• sendto() is overloaded so that a send to a class
D group address is intercepted and converted
to multiple sends to a set of addresses from the
kernel.

The library module interacts with the mapping
module via a UNIX socket. It pulls the translations
for each application-level group from the mapping

Figure 3: Two under-the-hood mappings in MCMD, a di-

rect IPMC mapping on the left and point-to-point mapping

on the right.

module. Simultaneously, it pushes information and
statistics about grouping and traffic patterns used
by the application to the local mapping module.

3.2 Mapping Module

The mapping module plays two important roles:

• It acts as a Group Membership Service
(GMS), maintaining the membership set of
each application-level group in the system.

• It allocates a limited set of IPMC addresses
to different sets of machines in the data center
and orchestrates the IGMP joins and leaves re-
quired to maintain these IPMC groups within
the network.

The mapping module uses a gossip-based control
plane using techniques described in [13]. The gossip
control plane is extremely resilient to failures and
includes a decentralized failure detector that can
be used to locate and eject faulty, i.e. irresponsive,
machines. It imposes a stable and constant over-
head on the system and has no central bottleneck,
irrespective of the number of nodes.

The gossip-based control plane essentially repli-
cates mapping and grouping information slowly and
continuously throughout the system. As a result,
the mapping module on any single node has a global
view of the system and can immediately resolve an
application-level address to a set of unicast and mul-
ticast addresses without any extra communication.
The size of this global view is not prohibitive; for
example, we can store membership and mapping in-
formation for a 1000-node data center within a few

3
158

MB of memory. For now, we’re targetting systems
with a low enough rate of joins, leaves and failures
per second to allow for global replication of control
information. In the future, we’ll replace the global
replication scheme with a more focused one to elim-
inate this restriction.

Knowledge of global group membership is suffi-
cient for the mapping module at each node to trans-
late application-level group addresses into network-
level unicast addresses. To fulfill the second func-
tion of allocating IPMC addresses in the system, an
instance of the specific mapping module running on
a particular node in the system acts as a leader. It
aggregates information from other mapping mod-
ules (via the gossip control plane) and calculates
appropriate allocations of IPMC addresses to man-
date within the data center. The leader can be cho-
sen according to different strategies – one simple
expedient is to query the gossip layer for the old-
est node in the system. The failure of the leader is
automatically detected by the gossip layer’s inbuilt
failure detector, which also naturally updates the
pointer to the oldest node.

3.2.1 Gossip Control Plane

We first describe an implementation of the mapping
module using only the gossip-based control plane.
However, the Achilles heel of gossip at large system
sizes is latency – the time it takes for an update
to propagate to every node in the system. Conse-
quently, we then describe approaches to add extra
control traffic for certain kinds of critical updates
– in particular, IPMC mappings and group joins –
that need to be distributed through the system at
low latencies.

Gossip-based Failure Detector: The
MCMD control plane is a simple and powerful
gossip-based failure detector identical to the one
described by van Renesse [13]. Each node main-
tains its own version of a global table, mapping
every node in the data center to a timestamp or
heartbeat value. Every T milliseconds, a node up-
dates its own heartbeat in the map to its current
local time, randomly selects another node and rec-
onciles maps with it. The reconciliation function
is extremely simple – for each entry, the new map
contains the highest timestamp from the entries in
the two old maps. As a result, the heartbeat times-
tamps inserted by nodes into their own local maps
propagate through the system via gossip exchanges
between pairs of nodes.

When a node notices that the timestamp value for
some other node in its map is older than T1 seconds,
it flags that node as ‘dead’. It does not immediately

delete the entry, but instead maintains it in a dead
state for T2 more seconds. This is to prevent the
case where a deleted entry is reintroduced into its
map by some other node. After T2 seconds have
elapsed, the entry is truly deleted.

The comparison of maps between two gossiping
nodes is highly optimized. The initiating node
sends the other node a set of hash values for differ-
ent portions of the map, where portions are them-
selves determined by hashing entries into different
buckets. If the receiving node notices that the hash
for a portion differs, it sends back its own version of
that portion. This simple interchange is sufficient
to ensure that all maps across the system are kept
loosely consistent with each other. An optional step
to the exchange involves the initiating node trans-
mitting its own version back to the receiving node,
if it has entries in its map that are more recent than
the latter’s.

Gossip-based Communication: Thus far, we
have described a decentralized gossip-based failure
detector. Significantly, such a failure detector can
be used as a general purpose gossip communication
layer. Nodes can insert arbitrary state into their
entries to gossip about, not just heartbeat times-
tamps. For example, a node could insert the av-
erage CPU load or the amount of disk space avail-
able; eventually this information propagates to all
other nodes in the system. The reconciliation of
entries during gossip exchanges is still done based
on which entry has the highest heartbeat, since that
determines the staleness of all the other information
included in that entry.

Using a gossip-based failure detector as a control
communication layer has many benefits. It provides
extreme resilience and robustness for control traffic,
eliminating any single points of failure. It provides
extremely clean semantics for data consistency –
a node can write only to its own entry, eliminat-
ing any chance of concurrent conflicting writes. In
addition, a node’s entry is deleted throughout the
system if the node fails, allowing for fate sharing
between a node and the information it inserts into
the system.

Group Membership Service: The mapping
module uses the gossip layer to maintain group
membership information for different application-
level groups in the system. Each node maintains
in its gossip entry – along with its heartbeat times-
tamp – the set of groups it belongs to, updating this
whenever the library module intercepts a join or a
leave. A simple scan of the map is sufficient to gen-
erate an alternative representation of the member-
ship information, mapping each group in the system

4
159

to all the nodes that belong to it. If a node fails, its
entry is removed from the gossip map; as a result,
a subsequent scan of the map generates a groups-
to-nodes table that excludes the node from all the
groups it belonged to.

Mapping Module Leader: As mentioned pre-
viously, the gossip layer informs the mapping mod-
ule of the identity of the oldest node in the system,
which is then elected as a leader and allocates IPMC
addresses. To distribute these allocations back into
the system, the leader can just update its own en-
try in the gossip map with the extra IPMC infor-
mation. When a receiver is informed of a relevant
new mapping, it issues the appropriate IGMP mes-
sages required to join or leave the IPMC group as
mandated by the mapping module.

A “pure” gossip protocol can have large propa-
gation delays, resulting in undesirable effects such
as senders transmitting to IPMC groups before re-
ceivers can join them. To mitigate these latency
effects, the leader periodically broadcasts mappings
at a fixed, low rate to the entire data center. The
rate of these broadcasts is tunable; we expect typ-
ical values to be a few packets every second. The
broadcast acts purely as a latency optimization over
the gossip layer; if a broadcast message is lost at a
node, the mapping is eventually delivered to it via
gossip.

Latency Optimization of Joins: We are also
interested in minimizing the latency of a join to an
application-level multicast group; i.e., after a node
issues a join request to a group, how much time
elapses before it receives data from all the senders
to that group? While the gossip layer will eventu-
ally update senders of the new membership of the
group, its latency may be too high to support appli-
cations that need fast membership operations. The
latency of leave operations is less critical, since a
receiver that has left a group can filter out mes-
sages arriving in that group from senders who have
stale membership information until the gossip layer
propagates the change.

In MCMD, we explore two options to speed up
joins. The first method is to have receivers broad-
cast joins to the entire data center. For most data
center settings, this is a viable option since the rate
of joins in the system is typically quite low. This ap-
proach is drawn on figure 2. The second method is
meant for handling higher churn; it involves explic-
itly tracking the set of senders for each group via the
gossip layer. Since each node in the system knows
the set of senders for every group, a receiver joining
a group can directly send the join using multiple
unicasts to the senders of that group. The second

option incurs more space and communication over-
head in the gossip layer but is more scalable in terms
of churn and system size.

Switching between these two options can be done
by a human administrator or automatically by a
designated node, such as the mapping module, sim-
ply by observing the rate of membership updates
in the system via the gossip layer. Once again, the
broadcasts or direct unicasts do not have to be reli-
able, since the gossip layer will eventually propagate
joins throughout the system.

3.3 Kernel Multi-send System Call

Sending a single packet to a physical IPMC group
is cheap since the one-to-many multiplexing is done
on a lower level by routing or switching hardware
in the network. However, when IPMC resources are
exhausted, the group-address mapping in MCMD
will map a logical IPMC group to a set of unicast
addresses corresponding to its members. Thus a
single sendto()-call at the interface would produce
a series of sends at the library and kernel level of
identical packets to a number of physical addresses.
We modified the kernel to help alleviate the over-
head caused by context-switching during the list of
sends. We implemented a multi-send system call on
the Linux 2.6.24 kernel with a sendto()-like inter-
face that sends a message to multiple destinations.

4 Optimizing Resource Use

Beyond making IPMC controllable and hence safe,
the MCMD incorporates a further innovation. We
noted that our goal is to optimize the limited use of
IPMC addresses. Such optimization problems are
often hard, and indeed the optimization problem
that arises here we have proven to be NP -complete
(details omitted for brevity). Particularly difficult
is the problem of mapping multiple application-level
groups to the same IPMC address: doing so shares
the address across a potentially large set of groups,
which is a good thing, but finding the optimal pat-
tern for sharing the addresses is hard.

A topic is a logical multicast group. Our algo-
rithm can be summarized as follows.

• Find and merge all identically overlapping top-
ics into groups, aggregating the traffic reports.

• Sort groups in descending order by the product
of the reported traffic rate and topic size.

• For each group G, assign an IPMC address to
topic G, unless the global or user address quota
for ≥ 3 members have been exceeded.

5
160

• Enlist all remaining users in G for point-to-
point communication over unicast.

Thus a large topic with high traffic is more likely
to be allocated a dedicated IPMC address. Other
groups might communicate over both IPMC and
point-to-point unicast for members that have ex-
ceeded their NIC IPMC capacity, and yet others
might perform multicast over point-to-point unicast
entirely.

5 Related Work

Brevity prevents a detailed comparison of our work
with previous work of [14, 15]; key differences stem
from our narrow focus on data center settings. Our
mathematical framework extends that of [12], but
instead of inexact channelization we investigate zero
filtering.

6 Conclusion

Many major data center operators legislate against
the use of IP multicast: the technology is perceived
as disruptive and insecure. Yet IPMC offers very at-
tractive performance and scalability benefits. Our
paper proposes Dr. Multicast (the MCMD), a rem-
edy to this conundrum. By permitting operators to
define an acceptable use policy (and to modify it at
runtime if needed), the MCMD permits active man-
agement of multicast use. Moreover, by introducing
a novel scheme for sharing scarce IPMC addresses
among logical groups, the MCMD reduces the num-
ber of IPMC addresses needed sharply, and ensures
that the technology is only used in situations where
it offers significant benefits.

References

[1] BEA Weblogic. http://www.bea.com/

framework.jsp?CNT=features.htm&FP=

/content/products/weblogic/server/,
2008.

[2] GEMSTONE GemFire. http://www.

gemstone.com/products/gemfire/

enterprise.php, 2008.

[3] IBM WebSphere. http://www-01.ibm.com/

software/webservers/appserv/was/, 2008.

[4] JBoss Application Server. http://www.jboss.
org/, 2008.

[5] Oracle Coherence. http://www.oracle.com/

technology/products/coherence/index.

html, 2008.

[6] Real Time Innovations Data Distribution Ser-
vice. http://www.rti.com/products/data_

distribution/, 2008.

[7] TIBCO Rendezvous. http://www.tibco.

com/software/messaging/rendezvous/

default.jsp, 2008.

[8] Deering, S. Host Extensions for IP Multicas-
ting. Network Working Request for Comments
1112 (August 1989) (1989).

[9] Fei, A., Cui, J., Gerla, M., and Falout-

sos, M. Aggregated multicast: an approach
to reduce multicast state. Global Telecommu-
nications Conference, 2001. GLOBECOM’01.
IEEE 3 (2001).

[10] Newman, D. Multicast performance
differentiates across switches. http:

//www.networkworld.com/reviews/2008/

032408-switch-test-performance.html,
2008.

[11] Rosenzweig, P., Kadansky, M., and

Hanna, S. The Java Reliable Multicast Ser-
vice: A Reliable Multicast Library. Sun Labs
(1997).

[12] Tock, Y., Naaman, N., Harpaz, A., and

Gershinsky, G. Hierarchical clustering of
message flows in a multicast data dissemina-
tion system. In IASTED PDCS (2005), S. Q.
Zheng, Ed., IASTED/ACTA Press, pp. 320–
326.

[13] van Renesse, R., Minsky, Y., and Hay-

den, M. A gossip-based failure detection ser-
vice. In Middleware’98, IFIP International
Conference on Distributed Systems Platforms
and Open Distributed Processing (England,
September 1998), pp. 55–70.

[14] Wong, T., and Katz, R. An analysis of
multicast forwarding state scalability. In ICNP
’00: Proceedings of the 2000 International
Conference on Network Protocols (Washing-
ton, DC, USA, 2000), IEEE Computer Society,
p. 105.

[15] Wong, T., Katz, R. H., and McCanne,

S. An evaluation on using preference clustering
in large-scale multicast applications. In INFO-
COM (2) (2000), pp. 451–460.

6
161

http://www.bea.com/
http://www
http://www-01.ibm.com/
http://www.jboss
http://www.oracle.com/
http://www.rti.com/products/data_
http://www.tibco
http://www.networkworld.com/reviews/2008/

Antiquity: Exploiting a Secure Log for Wide-Area
Distributed Storage

Hakim Weatherspoon
∗

Cornell University
hweather@cs.cornell.edu

Patrick Eaton⋆

EMC Corporation
eaton_patrick@emc.com

Byung-Gon Chun and John Kubiatowicz
University of California, Berkeley

{bgchun,kubitron}@cs.berkeley.edu

ABSTRACT

Antiquity is a wide-area distributed storage system designed to
provide a simple storage service for applications like file systems
and back-up. The design assumes that all servers eventually fail
and attempts to maintain data despite those failures. Antiquity
uses a secure log to maintain data integrity, replicates each log on
multiple servers for durability, and uses dynamic Byzantine fault-
tolerant quorum protocols to ensure consistency among replicas.
We present Antiquity’s design and an experimental evaluation with
global and local testbeds. Antiquity has been running for over
two months on 400+ PlanetLab servers storing nearly 20,000 logs
totaling more than 84 GB of data. Despite constant server churn,
all logs remain durable.

Categories and Subject Descriptors

C.2.4 [COMPUTER-COMMUNICATION NETWORKS]:
Distributed Systems—Peer-to-peer applications; D.4.3
[OPERATING SYSTEMS]: File Systems Management—
Distributed File Systems; D.4.5 [OPERATING SYSTEMS]:
Reliability—Fault-tolerance; D.0 [SOFTWARE]: General—
Distributed wide-area storage systems

General Terms

Reliability, Performance, Design, Experimentation, Security

Keywords

Distributed Storage System, wide-area, archival storage systems,
data integrity, data durability

∗Work done while authors were graduate students at University of
California, Berkeley.

This research was supported by the National Science Founda-
tion under Cooperative Agreement No. ANI-0225660, http://
project-iris.net/. Hakim Weatherspoon was supported in
part by an Intel Foundation PhD Fellowship.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EuroSys’07, March 21–23, 2007, Lisboa, Portugal.
Copyright 2007 ACM 978-1-59593-636-3/07/0003 ...$5.00.

1. INTRODUCTION
Many new distributed systems—like PlanetLab [5], the Global

Information Grid (GIG) [3], and GRID—are composed of ma-
chines from multiple autonomous organizations that are geograph-
ically dispersed. In these systems, servers cooperate to provide
services such as persistent storage. Systems designed in this man-
ner exhibit good scalability and resilience to localized failures such
as power failures or local disasters. Unfortunately, distributed
systems involving multiple, independently-managed servers suffer
from new challenges such as security (including malicious compo-
nents), automatic management (reliable adaptation to failure in the
presence of many individual components), and instability. In Plan-
etLab, for example, typically less than half of the active servers are
stable (available for 30 days or more) [35].

Providing secure, consistent, and available storage in these sys-
tems that exhibit extremely high levels of churn, failure, and even
deliberate disruption is a challenging problem. Existing wide-area
distributed storage systems, however, are not well-suited for such
environments. They often support only immutable (read-only) data,
do not provide consistent access to mutable (modifiable) data, do
not protect and secure access to data, or are not designed for the
target environment (e.g. assume fail-stop failures).

Antiquity is a distributed storage system designed to maintain
data securely, consistently, and with high availability in a dynamic
wide-area environment. It uses a secure log structure to maintain
the integrity of stored data. It replicates data on multiple servers
so that data can be retrieved later even when some replicas fail. It
integrates fault-tolerance protocols to handle faults ranging from
server outages to Byzantine attacks.

To test our solutions, we deployed a prototype on PlanetLab,
a surprisingly volatile environment [35]. Antiquity has been run-
ning in the wide-area for over two months on 400+ PlanetLab [5]
servers maintaining nearly 20,000 logs containing more than 84 GB
of data. Despite the volatility of the underlying system, all logs are
durable; that is, no data is lost and all logs can be read. However,
tests using periodic random reads reveal that, at any given time,
6% of the logs are not modifiable since they do not have a quorum
(threshold) of replicas available temporarily due to server failure on
PlanetLab. All eventually become modifiable again due to Antiq-
uity’s quorum repair protocol. Antiquity’s quorum repair protocol
replaces lost replicas while maintaining data consistency.

Antiquity was developed in the context of OceanStore [38]. In
particular, a component of OceanStore was a primary replica im-
plemented as a Byzantine agreement process. This primary replica
serialized and cryptographically signed all updates. Given this to-
tal order of all updates, the question was how to durably store and
maintain the order. Antiquity’s implementation of the interface and
structure of a secure log assisted in durably maintaining the order

162

mailto:hweather@cs.cornell.edu
mailto:eaton_patrick@emc.com

over time. When data is later read from Antiquity, the secure log
and repair protocols ensure that data will be returned and that re-
turned data is the same as stored.

The contributions of this paper are as follows.

• The design and analysis of a secure log interface that can be
easily implemented in a distributed, fault-tolerant fashion.

• Design and implementation of a dynamic Byzantine fault-
tolerant quorum repair protocol that maintains consistency
and durability in the face of recurring server failure.

• Evaluation of an operational system that combines these fea-
tures and is currently running in the wide-area.

This paper presents Antiquity’s design and evaluates how effec-
tively it can maintain data. In Section 2, we present an overview
of Antiquity’s goals, design, and assumptions. We describe the de-
sign in detail in Sections 3 and 4. In Sections 5 and 6, we evaluate
Antiquity’s ability to maintain data and discuss our experiences.
Section 7 describes related work; Section 8 concludes.

2. OVERVIEW
Antiquity is a generic wide-area storage system that provides se-

cure, durable storage. It is designed to serve as the storage layer
for a variety of applications such as file systems [11, 34] and back-
up [36, 38]. Antiquity stores application data in a secure log to
protect data integrity. It simultaneously supports many applica-
tions where application state is stored as separate logs. It provides
to applications a limited interface by which they can create new
logs, append data to the head of an existing log, and read data at
any position in the log. It guarantees fault-tolerance through repli-
cation, consistency via dynamic Byzantine fault-tolerant quorum
protocols, and efficiency by aggregation.

We describe how Antiquity integrates the above design points
into one cohesive system in Sections 3 and 4, but first we discuss
the goals, system model, and assumptions used to design Antiquity.

2.1 Storage System Goals
The design of Antiquity was guided by the following goals.

• Integrity: Only the owner can modify the log. Any unau-
thorized modifications to the log, as in substitution attacks,
should be prevented.

• Incremental Secure Write and Random Read Access: A
client can add data to a log securely as it is created, without
local buffering. Further, the client can read arbitrary blocks
without scanning the entire log.

• Durability and Consistency: The log should remain acces-
sible despite temporary and permanent server failure. The
system should ensure that logs are updated in a consistent
manner.

• Efficiency/Low overhead: Protocols should limit the number
of cryptographic operations and the amount of communica-
tion needed across the wide area. The infrastructure should
amortize the cost of maintaining data and verifying certifi-
cates when possible.

2.2 System Model
The storage system stores logs on behalf of clients. The types

of clients storing data in the system can vary widely as shown in
Figure 1. The client may be the end-user machine, the server in a

����������
����������
����������

����������
����������
����������

��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��

��������
��������
��������

��������
��������
��������

App
Storage System

App

Server

App

Replicated
Service

Figure 1: A log-structured storage infrastructure can provide

storage for end-user clients, client-server systems, or replicated

services.

client-server architecture, or a replicated service. In any case, the
storage system identifies a client and its secure log by a crypto-
graphic key pair; only principals that possess the private key can
modify the log. Requests that modify the state of the log must in-
clude a certificate signed by the principal’s private key. Although a
log is non-repudiably bound to a single key pair, multiple instances
of the principal may exist simultaneously. If multiple devices pos-
sess the same private key, then they can directly modify the same
log.

Storage resources for maintaining the log are pre-allocated in
chunks. When a new chunk, or extent, needs to be allocated, the
system consults the administrator. The administrator authenticates
the client needing to extend its log and selects a set of storage
servers to host the extent. The newly-allocated portion of the log
is replicated on the set of selected storage servers. To access or
modify the extent, clients interact directly with the storage servers.

Applications interact with the log through a client library that
exports a thin interface—create(), append(), and read().
To create a new log, a client obtains a new key pair and invokes the
create() operation. The administrator authenticates the request
and selects a set of servers to host the log.

After a log has been created, a client uses the append() oper-
ation to add data to the head of the log. The client library commu-
nicates directly with the log’s storage servers to append data. The
interface ensures that data is added to the log sequentially by pred-
icating each write on the previous state of the log. If conflicting
append() operations are submitted simultaneously, the predicate
ensures at most one is applied to the log1.

Data written to a log cannot be explicitly deleted. Instead, Antiq-
uity supports implicit deletion based on an expiration time. The ex-
piration time is set by the administrator when the extent is created.
After the expiration time passes, the system can reclaim resources
belonging to the extent. A client can prevent the expiration of an
extent by extending the expiration time, though we do not discuss
that feature further in this paper.

2.3 Assumptions
We assume that clients follow specified protocols, except for

crashing and recovering. A malfeasant client, whether due to soft-

1We assume a storage server atomically handles each request. That
is, a server processes requests one at a time, even though multiple
requests may have been received at the same time.

163

H(PK)

H(Dn)

V0

H(D0)

V1

H(D1)

Vn

Figure 2: To compute the verifier for an extent, the system uses

the recurrence relation Vi = H(Vi−1 + H(Di)). V−1 = H(PK)
where PK is a public key.

ware fault or compromised key, can prevent the system from ap-
pending data to a log. It cannot, however, affect data already stored
in its log or logs belonging to other principals. If a principal’s pri-
vate key should be compromised, an attacker could append data to
the log, but it cannot destroy data previously stored in the log. A
principal can retrieve data from a log until the log’s expiration time.

We assume that the administrator, tasked to select sets of stor-
age servers to host logs [29], is trusted and non-faulty. The design,
however, includes several mechanisms to mitigate the cost and con-
sequences of this assumption. While each log uses a single admin-
istrator, different logs can use different administrators. By allowing
multiple instances, the role of the administrator scales well. Sec-
ond, the administrator’s state can be stored as a secure log in the
system. Thus, the durability of the state can be assured like any
other log. Third, the state of the administrator can be cached to re-
duce the query load on an administrator. Finally, the administrator
can be implemented as a replicated service to improve availability
further.

Storage servers may exhibit Byzantine faults. We assume that,
in the set of storage servers selected by the administrator to host a
particular extent, a maximum threshold number of servers is faulty.

3. ANTIQUITY’S SECURE LOG
Antiquity supports a secure, append-only, log abstraction where

a single log is owned by a single principal and identified by a cryp-
tographic key pair. Only the owner of the log can append() to it.
This narrow interface helps reduce the complexity of implementing
Antiquity where consistency and durability need to be maintained
efficiently. Though a single log is bound to a single cryptographic
key pair, Antiquity maintains many logs associated with many sep-
arate key pairs.

Antiquity stores a log as an ordered sequence of container ob-
jects called extents. Similar to log segments in a log-structured file
system [30], extents have a finite maximum size; however, each
extent contains an ordered collection of variable-sized application-
level blocks of data. Further, all data in an extent belongs to the
same log owned by a single principal. To guard data integrity, indi-
vidual log elements (blocks), whole extents, and the entire log itself
are all self-verifying, which means the name of an object verifies
its content.

In the following two subsections we describe the secure log
structure and usage semantics. We conclude the section with a
description an example file system application built on top of the
secure log interface.

3.1 Secure Log Structure
A secure log is composed of two types of extents. The log head

is a mutable, key-verified extent; all other extents are immutable
hash-verified extents. The key-verified log head is named by a se-
cure hash of the public key associated with the log. To verify the

c =0−>E0prev
c =1currEF c =−1−>

c =0curr
prevABCH G prevc =0−>E1

currc =2

Log Head
(Key−Verified Extent H(PK))

Hash−Verified ExtentE1 Hash−Verified ExtentE0

Figure 3: In two-level naming, each block is addressed by a

tuple (extent_name, block_name). A block_name is simply the

secure hash of the block. The extent_name for the log head is

the secure hash of the public key H(PK). The extent_name for

a hash-verified extent is the verifier.

contents of the log head, a server compares the data to the verifier

included in the certificate (after confirming the signature on the cer-
tificate). A verifier is a cryptographically-secure hash that asserts
the integrity of both the content and append-order of an extent.

We assume the mutable key-verified extent at the log head has
a finite maximum size. When it becomes full, the system copies
the content of the log head into an immutable hash-verified extent.
A hash-verified extent is named by a function of the content of
the extent. Specifically, the extent is named by the verifier in the
extent’s most recent certificate. A server can verify the integrity
of a hash-verified extent by comparing an extent’s contents to its
name. These self-verifying techniques were made popular by the
Self-certifying Read-only File System [16].

Making Extents Self-Verifying.
An extent verifier is computed from the names of the blocks in

the extent using the chaining method [24] shown in Figure 2. As-
sume an extent contains a sequence of data blocks, Di. Each data
block is named with a secure, one-way hash function, H(Di). The
verifier is computed using the recurrence relation Vi = H(Vi−1 +
H(Di)), where + is the concatenation operator. We bootstrap the
process by defining V−1 to be a hash of the public key that signs
the extent’s certificate. This convention ensures that the names of
extents owned by different principals do not conflict.

Creating verifiers in this manner has several advantages. When
a block is appended to the log, the client can compute the verifier
incrementally. This means it must hash only the new data, not all
data in the log, to compute the running verifier. Additionally, a
given verifier can be produced by only one particular sequence of
append() operations. Thus, chaining creates a verifiable, time-
ordered log recording data modifications. Furthermore, requiring
the latest verifier as a predicate in subsequent append() opera-
tions assures servers maintain a consistent state of the log. Finally,
when the log head is copied from a key-verified extent to a hash-
verified extent, the verifier can be used as the new hash-verified
name without modification.

Two-Level Naming.
To provide random access to any element in the log, Antiquity

implements two-level naming. In two-level naming, each block is
addressed not by a single name, but by a tuple. The first element of
the tuple identifies the enclosing extent; the second element names
the block within the extent. Retrieving data from the system is
a two-step process. The system first locates the enclosing extent;
then, it extracts individual application-level blocks from the extent.
Both blocks and extents are self-verifying. Figure 3 illustrates two-
level naming.

Two-level naming introduces added complexity in computing the
address of a block of data. When an application writes a block to
the log, the block is stored in the mutable extent at the head of the
log. Because the log head is a mutable extent, the system cannot
know the name of the hash-verified extent where the block will
eventually and permanently reside.

164

Interface for Aggregation:

status = create(H(PK), cert);
status = append(H(PK), cert, predicate, data[]);
status = snapshot(H(PK), cert, predicate);
status = truncate(H(PK), cert, predicate);
status = put(cert, data[]);
status = renew(extent_name, cert);

cert = get_cert(extent_name);
data[] = get_blocks(extent_name, block_name[]);
extent = get_extent(extent_name);

data = get_head(extent_name);
mapping = get_map(extent_name);

Table 1: To support aggregation of log data, we use an ex-

tended API. A log is identified by the hash of a public key

(H(PK)). Each mutating operation must include a certificate.

The snapshot() and truncate() operations manage the

extent chain; the renew() operation extends an extent’s expi-

ration time. The get_blocks() operation requires two ar-

guments because the system implements two-level naming. The

get_*(extent_name) operations return either the entire extent

or items stored within an extent such as the certificate, map-

ping, or various blocks (e.g. head). The extent_name is ei-

ther H(PK) for the log head or verifier for hash-verified extents.

To resolve this problem, each extent is assigned an integer corre-
sponding to its position in the chain. When data is appended to the
log, the address returned to the application identifies the enclosing
extent by this counter. Each extent records the mapping between
counter and permanent, hash-verified extent name for the previous
extent. Both the mapping to the previous extent and position in the
extent chain are stored in a metadata block (first block) within each
extent; a call to get_map()returns the mapping (extent_counter,
extent_name) of the previous extent (e.g. get_map(E1) in Fig-
ure 3 returns mapping (0, E0)).

Aggregating blocks into extents and extents into a log improves
the system’s efficiency in several ways. First, breaking a log into
extents enables servers to intelligently allocate space for extents.
Extents have a maximum size while the log itself can grow to be
arbitrarily large. Second, extents decouple the infrastructure’s unit
of management from the client’s unit of access. As a result, the
storage infrastructure can amortize management costs over larger
collections of data. Third, two-level naming reduces the query load
on the system because clients need to query the infrastructure only
once per extent, not once per block. Assuming data locality—that
clients tend to access multiple blocks from an extent—systems can
exploit the use of connections to manage congestion in the network
better. Finally, clients writing multiple blocks to the log at the same
time need only to create and sign a single certificate.

3.2 Using a Secure Log
To interact with the log, a client relies on a library that com-

municates with Antiquity using the interface shown in Table 1.
The interface extends the create()/append() interface used
by applications to support extents. All mutating operations require
a certificate signed by the client for authorization. The certificate
includes the verifier of the new version of the extent. The inter-
face ensures that updates are applied sequentially by predicating
each operation on the previous state of the extent. Upon com-
pletion of the operation, the certificate is stored with the extent.
The snapshot() and truncate() operations help manage the
chain of extents. The renew() operation extends the expiration

Certificate contents:

verifier token that verifies contents of log
num_blocks the number of blocks in the container
size the size of data stored in the container
seq_num certificate sequence number
timestamp creation time of certificate
ttl time the certificate remains valid

Table 2: A certificate is contained within each operation and

stored with each log. It includes fields to bind the log to its

owner and other metadata fields.

state
new

state
predicate

state
new

state
predicate

Request FailsRequest Succeeds

append()

Log After:

Log Before:

append()

B A

C

C A

A

B

B A

A

A

Figure 4: The interface ensures that data is added to the log

in a sequential fashion by predicating each write on the pre-

vious state of the log. If conflicting append() operations are

submitted simultaneously, the predicate ensures at most one is

applied to the log, leaving the log in a consistent state.

time of an extent; we will not discuss renew() further.
Two of the operations enumerated in Table 1—create() and

snapshot()—create new replicas. Each of these operations re-
quires that the system contact the administrator for a configuration,
set of servers, to host the new replicas. The most common opera-
tion, append(), does not require any interaction with the admin-
istrator.

Adding Data via append().
To append() data to the log, a client creates a request and

submits it to the storage servers. A request has three arguments: the
predicate is a verifier that securely summarizes the current state of
the log, the new data to append to the log, and a new certificate that
includes a new verifier and new sequence number. The verifier in
the certificate summarizes the next state of the log after appending
data. The sequence number is a monotonically increasing number.
Table 2 shows the contents of a certificate.

When a server receives an append() request, it determines if
a request succeeds or not. It performs several checks using local
knowledge. The certificate contained in the request must include
a valid signature. Also, the predicate verifier contained in the re-
quest must match the current state of the log recorded by the stor-
age server. Additionally, the verifier in the certificate must match
the new verifier after appending new data to the log. Further, the
sequence number in the certificate must be greater than the one cur-
rently stored. If these conditions are met, the server writes the new
data to the log on its local store and returns success to the client.
Otherwise, the request is rejected and failure is returned. A client
receiving a failure response would need to update its local state (via
get_cert(), get_head(), and get_blocks()) and submit
a new append() request based on updated state.

165

If conflicting append() operations are submitted simultane-
ously, the predicate ensures at most one is applied to the log leav-
ing the log in a consistent state. For example, in Figure 4, a storage
server applies a workstation’s request even though a laptop simul-
taneously submitted a (conflicting) request. As a result of the order
the server handles the requests, the workstation’s predicate matches
the state of the log and the request succeeds. Success is returned to
the workstation. However, the laptop’s predicate does not match,
the request fails, and failure is returned. Since the laptop’s request
failed, it would need to update its local state and submit a new
append() request based on updated state.

Reading Data via get_blocks().
To read data, the client library first accesses the mappings stored

in the log to determine the name of the extent holding the data. It
then uses the get_blocks() operation to retrieve the requested
blocks from that extent. To accelerate the translation between
counter and extent name, the client library caches the immutable
mappings. Also, as an optimization, each extent contains not just
the mapping for the previous extent, but a set of mappings that al-
low resolution in a logarithmic number of lookups.

Managing the Extent Chain.
The chain of extents is managed via the snapshot() and

truncate() operations. To prevent the extent at the log head
from growing too large, the client library converts the log head
to hash-verified form using the snapshot() operation. If the
system must copy the extent to a new storage server, the trans-
fer occurs directly between storage servers without client interac-
tion. After data has been copied to a hash-verified extent, the li-
brary uses the truncate() to reset the log head and point to the
previous extent created via snapshot(). While snapshot()
and truncate() are typically used together, we have elected to
make them separate operations for ease of implementation. Indi-
vidually, each operation is idempotent, allowing the library to retry
the operation until successful execution is assured. Further, each
operation requires a predicate that prevents conflicting concurrent
changes. The library uses the append(), snapshot(), and
truncate() sequence to add more data to the log.

3.3 Example Application: A Versioning File
System

To demonstrate the use of the secure log interface, consider the
implementation of a versioning file system application. Figure 5(a)
shows a sample file system to be stored. We ignore inodes for this
example and assume that files and directories are stored as a sin-
gle block. The application translates the file system into a Merkle
tree [31] where the secure pointer to a child file or directory is the
(extent_counter, block_name) tuple. This file system structure is
similar to others [11, 38, 36] and was implemented on top of a se-
cure log interface in less than a week by one graduate student [15].
We illustrate the state of the log after initially archiving the file
system (Figure 5) and after modifying two files (Figure 6).

To archive the file system, the application first creates a secure
log using the create() operation. create() initializes the
map block (first block of the log head) with the values ccurr = 0
and cprev = −1 → φ (current extent_counter and mapping to pre-
vious extent, respectively). Next, the application traverses the file
system in a depth first manner calling append(), snapshot(),
and truncate(). In particular, the application calls append(
budget, sched) and records the verifiable pointers—(c = 0,
H(budget)) and (c = 0, H(sched)), respectively—in the proj1
directory. Then, it calls append(proj1) and records the ver-

/

proj1

budget

proj2

report reqs

docs

sched

(a) file system

docs:

/: (c=1, H(docs))

(c=1, H(proj2))(c=0, H(proj1))

schedbudget

(c=0, H(sched))(c=0, H(budget))proj1:

report reqs

proj2: (c=0, H(report)) (c=0, H(reqs))

(b) Merkle Tree

Hash−Verrified Extent

budgetschedreqs

c =0−>E0prev

c =−1−>
c =0curr

c =1curr

prev

Log Head − (Key−Verified Extent H(PK))
/ docs proj2

report proj1

E0
(c) Secure Log

Figure 5: (a) An example file system. (b) The application trans-

lates the file system into a Merkle tree. The verifiable pointers

are of the form (extent_counter, block_name). (c) The Merkle

tree is stored in two extents. The first extent, E0, is filled and

has been converted to a hash-verified extent. The second ex-

tent, the log head identified by H(PK), is a partially-filled key-

verified extent.

ifiable pointer in the docs directory (c = 0, H(proj1)). Simi-
larly, the application calls append(report,reqs) and records
the verifiable pointers in the proj2 directory. However, before
calling append(proj2), the client library calls snapshot()
which creates a hash-verified extent with the extent_name E0. The
hash-verified extent mirrors the log head. The client library then
calls truncate() which removes all the blocks from the log
head and updates the mapping block by incrementing the current
extent_counter to ccurr = 1 and setting the mapping of the previ-
ous extent to cprev = 0 → E0. The application, then, continues
by calling append(proj2) and records the verifiable pointer
(c = 1, H(proj2)) in the docs directory. Notice that the ex-
tent_counter is c = 1 instead of c = 0. Finally, the application calls
append(docs), records the verifiable pointer in the / directory,
and calls append(/). Figures 5(b) and 5(c) show the resulting
Merkle tree and secure log, respectively. In a similar fashion, Fig-
ures 6(a) and 6(b) show the modified Merkle tree and secure log,
respectively, after writing new versions of the report and reqs
documents (report’ and reqs’).

To read a particular file, the application reads the root of the
file system stored at the head of the log and follows the pointers
to the desired file. For example, assume the client wants to read
the sched file. The application first calls get_head(H(PK))
which returns the root of the file system /’. The root contains a
verifiable pointer to the docs’ directory (c = 2, H(docs’)). The
application resolves the extent_counter c = 2 to the log head by
calling get_map(H(PK)). The call returns the log head’s current
extent_counter value and map to the previous extent c = 1 → E1
which can be cached for later use. Next, the application calls
get_blocks(H(PK), H(docs’)) which returns the docs’

166

(c=1, H(report’))

report’ reqs’

proj2’:

(c=0, H(proj1)) (c=1, H(proj2’))

(c=1, H(reqs’))

/’:

docs’:

(c=2, H(docs’))

(a) Merkle Tree

Hash−Verified Extent

Hash−Verified Extent

Log Head − (Key−Verified Extent H(PK))
docs’/’

budgetreqs

/ docs proj2c =0−>E0prev

c =−1−>
c =0curr

c =1curr

prev

prev

c =2curr

report proj1sched

proj2’ reqs’ report’

c =0−>E1

E1

E0
(b) Secure Log

Figure 6: (a) The Merkle tree resulting from translating the

updated file system. The dashed pointer indicates a reference

to a block from the previous version. (b) The contents of the

secure log after storing blocks of the updated file system.

directory. The docs’ directory contains a verifiable pointer to
the proj1 directory (c = 0, H(proj1)). The application re-
solves the extent_counter c = 0 to extent_name E0 by calling
get_map(E1). The call returns the map to the previous extent
c = 0 → E0. Notice that the mapping from c = 1 → E1 was cached
from the first get_map() call on the log head. Finally, the ap-
plication calls get_blocks(E0,proj1) to retrieve the proj1
directory and get_blocks(E0,sched) to retrieve sched.

4. ANTIQUITY’S REPLICATION, CON-

SISTENCY, AND DURABILITY

STRATEGIES
Antiquity replicates a secure log on multiple servers to provide

durability. A log is durable if it persists over time. To maintain
durability and ensure that progress can be made (that is, new data
can be written to the log), the system must maintain consistency
across replicas. The system must maintain consistency despite a
variety of server and network failures and conflicting update re-
quests. Server failures include transient failure such as reboot, per-
manent failure such as disk failure, and erroneous failure such as
database corruption or machine compromise. Network failures in-
clude dropped connections, temporary partitions, and transmission
failure such as message drop, reorder, delay, or corruption.

Antiquity employs a dynamic Byzantine fault-tolerant quorum
protocol to satisfy the durability and consistency requirements. A
quorum is a threshold, taking into account that some members may
be faulty or malicious. For instance, Malkhi and Reiter [26] demon-
strated that with self-verifying data, a configuration with n > 3 f

servers and a quorum q = n− f servers can make progress when
up to f servers are faulty. In that work, configurations were static
for the lifetime of the system. Martin and Alvisi [29] extended the
protocol to maintain consistency in a dynamic environment. They
utilize quorums to maintain two properties, soundness and time-

liness, that guarantee consistency in a dynamic environment. In-
formally, soundness ensures data read by a client was previously
written to a quorum of servers; timeliness ensures the data read is

the most recent value written.
We have adapted the dynamic Byzantine quorum protocols to

tolerate the failures and arbitrary behavior experienced on an envi-
ronment such as PlanetLab. In particular, Antiquity creates a new
configuration when a quorum in the old configuration is no longer
available. We discuss the consistency via sound writes and durabil-
ity via repair.

4.1 Consistency Semantics
The client interacts with many replicas to complete a single oper-

ation. Operations that modify replicated state result in one of three
states: sound, unsound, or undefined.

• The result of an operation is sound if the client receives a pos-
itive acknowledgment from a threshold of servers. A sound
response means that the request succeeded and the data is
durable.

• On the other hand, the result of an operation is unsound if
the client receives a negative acknowledgment from enough
servers such that positive acknowledgment from a thresh-
old is no longer possible (e.g. sizeof(negative acks) ≥

sizeof(server set)− threshold+1). A request fails if the result
is unsound. The storage system does not maintain unsound
results; thus, unsound writes are not durable.

• Finally, the result is undefined if it is neither sound or un-
sound. An undefined result means the client did not receive
sufficient acknowledgment from servers perhaps due to net-
work or server failure. In the case of an undefined result,
a timeout occurs and the client does not know whether the
request is sound or unsound.

After a timeout, the client performs a get_cert() on all the
servers and waits to receive acknowledgment from a threshold. If
the state stored in the system has changed (another client updated
the log), then the request is unsound. If the get_cert() fails to
receive acknowledgment from a threshold of servers, then the client
may trigger a repair audit that will determine the latest consistent
state of the log (described in the next section). The client continu-
ally sends the request, reads the state of the system, then triggers a
repair audit until the request is either sound or unsound.

4.2 Consistency Example
Figure 7 illustrates the notions of sound, unsound, and undefined

writes. Assume a log is replicated on seven servers. A threshold
required for consistency and a sound response is five positive ac-
knowledgments. The number required for an unsound response is
three negative acknowledgments (total minus a threshold plus one,
7− 5 + 1 = 3). The initial value stored on all the log replicas is
A. Further, assume two clients, a workstation and laptop, simulta-
neously submit conflicting operations. The workstation attempts to
append the value B and receives five positive acknowledgments and
two negative, thus the response is sound since a threshold acknowl-
edged positively. The laptop, on the other hand, attempts to append
the value C and receives five negative acknowledgments and two
positive, thus the response is unsound. With this scenario, the stor-
age system should maintain the workstation’s appended value B

over time. Furthermore, in the above example, if the workstation
receives one less positive acknowledgment (four instead of five),
possibly due to network transmission error, then the result would
be undefined and timeout. The workstation could read the latest
replicated state of the secure log, trigger a repair audit that will re-
pair the distributed secure log if necessary, and resubmit the request
until it receives sufficient server acknowledgment.

167

Server 5

���
���
���

���
���
���

Server 7

���
���
���

���
���
���

Server 2
���
���
���

���
���
���

Server 1

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

Server 6 Server 4

Server 3

A B

A C

A B

A C

A B

A B

A B

(a) Storage System

predicate
verifier

new
verifier

predicate
verifier

new

(c) Request Fails(b) Request Succeeds

A

VCA

append() append()

verifierVBA

VA V

B C

Figure 7: Semantics of a Distributed Secure Log. (a) A secure

log with the value A is initially replicated on to seven servers.

In (b), a workstation attempts to append() the value B, pred-

icated on A already being stored. The result of the request is

sound since it reaches a threshold of servers (servers 3-7). In

(c), a laptop, which possess the same private key as the work-

station, simultaneously attempts to append() value C, pred-

icated on A already being stored. The result of the request is

unsound since the predicate fails on a threshold servers. Note

that the two servers (server 1-2) apply C since the predicate

matches local state. However, the system should return value B

in any subsequent reads.

Alternatively, if both requests received unsound responses (e.g.
both received three negative acknowledgments), then the log repli-
cas would be in an inconsistent state since a threshold of the log
replicas state do not agree. When the log replicas are in an incon-
sistent state, new data cannot be added to a threshold of the log
replicas. When no progress can be made, the replicas need to be
repaired to a consistent state. The quorum repair protocol is dis-
cussed next.

4.3 Quorum Repair
The repair protocol restores log replicas to a consistent state such

that the latest sound write is the last write stored by a threshold of
log replicas. It may be used when a client cannot make progress
because replicas of the log are in an inconsistent state or a quorum
is not available due to server failures. Figure 8 shows the repair
process.

When a storage server receives a repair audit, it attempts to read
the latest replicated state (latest sound write) from the other servers
in the configuration. If a quorum responds and the data is in a
consistent state, the storage server takes no action. If, however,
a quorum does not respond or the replicas are in an inconsistent
state (wedged), then the storage server will create a repair request,
record it in local stable storage, and submit it to the administrator.
If the server observes that it already stores a signed repair request

T

Admin Storage
Servers

Storage
Servers

Audit
Repair

Time

create_configT
Tquorum (new config)

Trepair_audit
Tf +1 repair_req +1 upto 2 failuresf f

Figure 8: When a storage server believes that repair is needed,

it sends a request to the administrator. After the administrator

receives at least f +1 requests from servers in the current con-

figuration, it creates a new configuration and sends message to

servers in the set. The message describes the current state of the

log; storage servers fetch the log from members of the previous

configuration.

(a) Soundness proof contents

cert certificate
config configuration
ss_sigs[] 2 f +1 or more signatures

<H(cert+config)>ss_priv

(b) Configuration contents

object_id cryptographically secure name of object
client_id hash of client’s public key: H(PK)
ss_set[] set of storage servers: set of H(ss_PK)
f fault servers tolerated
seq_num configuration sequence number
timestamp creation time of configuration
ttl time the configuration remains valid

Table 3: (a) A soundness proof can be presented by any ma-

chine to any other machine in the network to prove that a write

was sound. To provide this guarantee, the proof contains a set

of q storage server signatures over an append’s certificate (Ta-

ble 2) and the storage configuration (Table 3(b)). (b) A configu-

ration defines a set of storage servers that maintain a replicated

log.

on its local disk, it will forward the same request to the administra-
tor. Once a storage server is in the repair state, it does not accept
updates until a new configuration is created.

Martin and Alvisi demonstrated that when the administrator re-
ceives 2 f + 1 repair requests, it can create a new configuration to
host the log while maintaining consistency (the latest sound write)
between the old and new configurations [29]. Servers in the new
configuration fetch the state from servers in the previous configu-
ration. The administrator can reduce the amount of data that must
be transferred during repair by retaining servers across configura-
tions. After acquiring a copy of the log, a storage server in the new
configuration responds to the administrator with a signature over
the certificate (from the latest sound write) and the new configura-
tion. The repair protocol is done after the administrator receives a
quorum of responses from servers in the new configuration.

The Martin and Alvisi protocol can invoke a repair protocol
when a quorum of servers is available. This, however, means that
repair cannot be initiated when it is needed most—when less than
a quorum of servers are available. Essentially, a quorum in the old
configuration is required to agree to trigger a repair protocol that
will create a new configuration. We adapted the protocol to allow
repair to be triggered when less than a quorum is available while
still maintaining consistency.

168

To ensure that no successful (sound) writes are lost during repair
when less than a quorum is available, we base the repair protocol
on a data structure called a soundness proof . Table 3(a) shows
the contents of a soundness proof. A soundness proof includes a
certificate (Table 2), a configuration (Table 3(b)), and a quorum q

of server signatures over a hash of the certificate and configuration.
It can be stored by and presented to any server as proof that a write
was sound.

The new protocol is similar to the old, except the new protocol
requires each server to store a soundness proof for successful opera-
tions and include the latest soundness proof in a repair request. We
describe the base write protocol that creates the soundness proof
below. The administrator then uses the latest soundness proof from
the received repair requests to create a new configuration and ini-
tialize the configuration to the latest sound write.

To create soundness proofs required for repair, the base write
protocol works as follows. There are two rounds; however, the sec-
ond round is often sent with a subsequent operation. The client
library does not report success to the application until the second
round completes successfully. First, a client submits a request to
the storage servers. When a storage server receives the message,
it checks the request against its local state. If the request satisfies
all conditions, the server stores the data to non-volatile storage and
responds to the client with a signed positive acknowledgment. The
client combines signed positive acknowledgments from a quorum
of servers to create a soundness proof. Next, in the second round,
the client sends the soundness proof to the servers, often as part of
a subsequent operation. Each server stores the soundness proof to
a stable storage and responds to the client. The client can be cer-
tain the log has been written successfully after sending the sound-
ness proof to all servers and receiving responses from a quorum of
servers [45].

4.4 Utilizing Distributed Hash Table (DHT)
Technology for Data Maintenance

Antiquity uses distributed hashtable (DHT) technology to un-
derly and connect the storage servers. It uses the DHT as a dis-
tributed directory; that is, the DHT does not store data, but rather
it stores pointers that identify servers that store the data. A dis-
tributed directory provides a level of indirection that allows flexible
data placement which can increase the durability and decrease the
cost of repairing a given replica [8, 44]. The storage servers use the
distributed directory to publish and locate extents and other stor-
age servers. The storage servers also use the DHT in the traditional
manner to cache soundness proofs to ensure they are available for
all interested parties.

Antiquity also relies on the DHT to help monitor server liveness
to determine when repair is necessary. Using a DHT to monitor the
liveness of each extent separately is not efficient. Instead, Antiq-
uity uses the DHT to monitor server availability and uses that met-
ric as a proxy for extent availability. To monitor server availabil-
ity, Antiquity periodically broadcasts a heartbeat message through
a spanning tree defined by the DHT’s routing tables [8]. A mon-
itoring node receives liveness information from each node with a
frequency depending on its distance in the spanning tree. If it fails
to receive an expected heartbeat. it sends a repair audit.

Each server in Antiquity also serves as a gateway. A gateway
accepts requests from a client and works on behalf of that client,
determining the configuration to handle the request and multicas-
ting the request to the appropriate storage servers. The use of a
gateway lowers the bandwidth requirements of the client. Because
all requests are signed and all data is self-verifying, inserting the
gateway in the path between the client and the storage servers does

not affect security. If the client believes a failure is due to a faulty
gateway, it can resend the request through a different gateway. To
make the soundness proof available to storage servers earlier, the
gateway combines responses from the storage servers to create a
proof and publishes that proof in the DHT.

Gateways perform other tasks to reduce load on the administra-
tor. Gateways propose configurations; the administrator needs only
to verify the configuration before signing it. Currently, Antiquity
uses neighbor lists from the underlying DHT to determine configu-
rations. To limit the number of configuration queries that an admin-
istrator must handle, other machines in the system can cache valid
configurations. The administrator forwards its message to the gate-
way that handles the new configuration request, and the gateway
multicasts the message to servers in the new configuration.

4.5 Discussion
Maintaining the consistency of data replicated across the wide-

area is a challenging endeavor. Using a secure log structure and
interface, however, significantly reduces the complexity of the de-
sign.

1. Most of the log is immutable and stored in hash-verified ex-
tents. The order and data integrity of those extent replicas are
immediate—the extent name verifies both the order and con-
tent of a hash-verified extent. It is not possible for any server
to corrupt a hash-verified extent in an undetectable manner.

2. The log head is the only extent in each log that is mutable
and key-verified. The order and data integrity of the log head
can be verified using the verifier contained in the certificate.
This verifier ensures the order and data integrity of the entire
log. There is only one sequence of appends that results in a
particular verifier. The verifier provides a “natural” predicate
that can be used to ensure the consistency of a log. Each
storage server checks that the predicate verifier matches local
state before applying any operation.

3. The secure log structure reduces the complexity of maintain-
ing sound writes over time. Storage servers need to maintain
only the latest soundness proof because all previous writes
contribute to the verifier of the current state of the log. Dur-
ing a transient failure, a server needs only to retrieve sound-
ness proofs from other servers. Once the server determines
the latest sound write, it can then fetch any blocks that it is
missing from an up-to-date server.

In summary, the secure log structure and its interface simplify
the Antiquity design by reducing complexity of managing integrity
and consistency.

5. EVALUATION
In this section, we evaluate the Antiquity design using a proto-

type running on PlanetLab and a local cluster. We focus our evalua-
tion on the primitive operations provided by the storage system, but
we also describe our experiences with a versioning archival back-
up application.

5.1 Experimental Environment
The Antiquity prototype is written in Java using an event-driven

programming style. It uses the Bamboo distributed hashtable [39]
to locate storage servers and extents.

We are currently running two separate Antiquity deployments.
Both deployments are configured to replicate each extent on a con-
figuration of seven storage servers. Thus, each deployment can

169

 0

 100

 200

 300

 400

 500

 600

 700

 800

 4 8 16 32 64 128 256 512

Th
ro

ug
hp

ut
 K

B
/s

Update Size (KB)

Throughput (Cluster Deployment)

Base Case - 4 KB put()
Using Append Interface

Figure 9: Aggregation increases system throughput by reduc-

ing computation at the client and in the infrastructure. The

base case shows the throughput of a client that stores 4 KB

blocks (and a certificate) using put() operation, as in a tra-

ditional DHT.

tolerate two faulty servers in each configuration. Both deployments
are hosted on machines shared with other researchers, and, conse-
quently, performance can vary widely over time.

The first deployment runs on 60 nodes of a local cluster. Each
machine in the storage cluster has two 3.0 GHz Pentium 4 Xeon
CPUs with 3.0 GB of memory and two 147 GB disks. Nodes are
connected via a gigabit Ethernet switch. Signature creation and
verification routines take an average of 3.2 and 0.6 ms, respectively.
This cluster is a shared site resource; a load average of 10 on each
machine is common.

The other deployment runs on the PlanetLab distributed research
test-bed [5]. We use 400+ heterogeneous machines spread across
most continents in the network. While the hardware configuration
of the PlanetLab nodes varies, the minimum hardware requirements
are 1.5 GHz Pentium III class CPUs with 1 GB of memory and a
total disk size of 160 GB; bandwidth is limited to 10 Mbps bursts
and 16 GB per day. Signature creation and verification take an
average of 8.7 and 1.0 ms, respectively. PlanetLab is a heavily-
contended resource; the average elapsed time of the cryptographic
computations can be more than 210 and 10 ms.

We apply load to these deployments using 32 nodes of a differ-
ent local cluster. Each machine in the test cluster has two 1.0 GHz
Pentium III CPUs with 1.0 GB of memory and two 36 GB disks.
Signature creation and verification takes an average of 6.0 and 0.6
ms, respectively. The cluster shares a 100 Mbps link to the external
network. This cluster is also a shared site resource, but its utiliza-
tion is lower than the storage cluster.

Parts of the evaluation have been presented in earlier work. In
particular, the cluster deployment improves upon the preliminary
performance presented by Eaton et al. [14]. Together, the perfor-
mance and deployment evaluations demonstrate the efficacy of a
system such as Antiquity.

5.2 Cluster Deployment
In addition to serving as a tool for testing and debugging, the

Antiquity deployment on the cluster also allows us to observe the
behavior of the system when bandwidth is plentiful and contention
for the processor is relatively low.

Figure 9 shows how aggregation improves write performance.
In this test, a single client submits synchronous updates of vari-
ous sizes to Antiquity. The client library translates the requests
into append(), snapshot(), and truncate() commands.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100 1000

Fr
ac

tio
n

of
 O

pe
ra

tio
ns

Latency (ms)

CDF of Operation Latency (Cluster Deployment)

Null
Truncate
Append
Create
Snapshot

Figure 10: Different operations have widely varying latency.

The latency is dependent on the amount of data that must be

transferred across the network and the amount of communi-

cation with the administrator required. The latency CDF of all

operations (even the null()RPC operation) exhibit a long tail

due to load from other, unrelated jobs running on the shared

cluster.

We record the write throughput observed by the client. The x-axis
shows how much data the client writes with each request. The ex-
tent capacity is set to 1 MB. For comparison, we show the through-
put of a client that stores data using synchronous put() operations
with payload of 4 KB of application data, as in typical in a DHT.

Aggregation increases system throughput. At the client, aggre-
gation reduces the cost of interacting with the system by amortizing
the cost of creating and signing certificates and transmitting net-
work messages over more data. In the storage system, aggregation
reduces the number of quorum operations that must be performed
to write a given amount of data to the system. The put() through-
put is lower than append() operations of equivalent size because
put() operations require the administrator to create a new config-
uration for each request.

Next, we measure the latency of individual operations. In this
test, a single data source issues a variety of operations, including in-
cremental writes of 32 KB using the append() interface. Extents
are configured to have a maximum capacity of 1 MB. Figure 10
presents a Cumulative Distribution Function (CDF) of the latency
of various operations. The latency of different operations varies
significantly. The append() and truncate() operations are
the fastest because they transfer little or no data and do not require
any interaction with the administrator. The create() operation is
slightly slower because, though it contains no application payload,
it must contact the administrator to obtain a new configuration. Fi-
nally, the snapshot() operation is the slowest; it transfers large
amounts of data and must contact the administrator to find a suit-
able configuration of storage servers. The latency distribution of
all operations exhibit a long tail due to load from other unrelated
processes running on the same machines; note, even the null()
RPC call can take longer than one second, due to delay caused by
load from unrelated jobs running on the cluster.

Table 4 decomposes the median latency into its component
phases for different types of operations. Notice that interacting with
the DHT consumes a significant fraction of time (publish() and
lookup() are DHT operations). In particular, append() and
truncate() interact with the DHT one time to publish()

the soundness proof to support repair. However, operations that
create extents (create() and snapshot()) interact with the
DHT multiple times (locate/publish coordinating gateway, lookup

170

Time (ms)
No Admin Admin

Phase trunc append cr- snap-
Phase eate shot

Treq
Signs Req 6.0 6.0 6.0 6.0
Send Req 1.8 4.2 1.8 1.8
Verify Req 0.6 1.0 0.6 0.6
lookup() Locations (cached) (cached) 13.2 13.2
publish() Gateway (cached) (cached) 7.2 7.2
subtotal 8.4 11.2 28.8 28.8

Tcreate_config
lookup() Neighbors N/A N/A 6.6 6.6
Send Config Req N/A N/A 1.6 1.6
Verify Config Req N/A N/A 0.6 0.6
Create New Config N/A N/A 8.2 8.2
Sign New Config N/A N/A 3.2 3.2
Reply w/ New Config N/A N/A 1.6 1.6
subtotal 0.0 0.0 21.8 21.8

Tquorum

Send Req 1.8 6.6 1.8 1.8
Verify Req 0.6 1.0 1.2 1.2
Fetch Extent 98.4
Disk 4.1 5.9 4.1 61.9
publish() Location 7.2 62.3
Sign Result 3.2 3.2 3.2 3.2
Send Reply 1.6 1.6 1.6 1.6
Verify Replies 4.2 4.2 4.2 4.2
publish() Proof 7.2 7.2 63.3 63.3
subtotal 22.7 29.7 86.6 297.9

Tresp

Reply w/ Proof 1.7 1.7 1.7 1.7
Verify Proof 4.2 4.2 4.2 4.2
subtotal 5.9 5.9 5.9 5.9

Total – Median 37.0 46.8 143.1 354.4
(Min) (31.0) (38.0) (62.0) (137.0)

Table 4: Measured breakdown of the median latency times for

all operations. The average network latency and bandwidth

between applications on the test cluster and storage cluster is

1.7 ms and 12.5 MB/s (100 Mbs), respectively. The average

latency and bandwidth between applications within the stor-

age cluster is 1.6 ms and 45.0 MB/s (360 Mbs). All data is

stored to disk using BerkeleyDB which has an average latency

and bandwidth of 4.1 ms and 17.3 MB/s, respectively. Signa-

ture creation/verification takes an average of 6.0/0.6 ms on the

test cluster and 3.2/0.6 ms on the storage cluster. Bandwidth of

the SHA-1 routine on the storage cluster is 80.0 MB/s. Finally,

DHT lookup() /publish() take an average of 4.2/7.2 ms.

replica locations, publish replica location, and publish soundness
proof). Furthermore, multiple publish() operations to the same
identifier often take longer than expected since publish() some-
times competes with other BerkeleyDB operations for use of the
disk (e.g. BerkeleyDB log cleaning).

5.3 PlanetLab Deployment
In this section, we present results from the Antiquity deploy-

ment on PlanetLab. For reasons illustrated in Figure 11, the focus
of our evaluation of the PlanetLab deployment is not on its perfor-
mance. That graph plots the CDF of the latency of more than 800
operations that append 32 KB of data to logs in the systems. The
accompanying table reports several key points on the curve. Given
the best of circumstances, the latency of an append() operation

 0

 0.25

 0.5

 0.75

 1

 0 20 40 60 80 100 120

Fr
ac

tio
n

of
 E

ve
nt

s

Latency (s)

CDF of Operation Latency (PlanetLab Deployment)

Latency of Append Operations

Min 25% 50% 90% 95% 99% Max

1.08 4.41 10.2 63.1 124.5 302.1 615.9

Figure 11: The latency of operations on PlanetLab varies

widely depending on the membership and load of a configu-

ration. As an example, this graphs illustrates the CDF of the

latency for appending 32 KB to logs stored in the system. The

table highlights key points in the curves.

is one second. However, when configurations include distant or
overloaded servers or bandwidth is restricted on some path, the la-
tency increases considerably. Because of the characteristics of the
PlanetLab testbed, many operations are very slow [37].

Instead, with the PlanetLab deployment, we focus on how the
design maintains data over time, especially as machines fail. We
built a simple test application that writes logs to the system and
periodically reads them to check that they are still available. Each
log consists of one key-verified extent (the log head) and an average
of four hash-verified extents (the number of hash-verified extents
vary uniformly with an average of four). Key-verified extents vary
in size uniformly up to 1 MB; all hash-verified extents are 1 MB.
The average size of a log is 4.5 MB (0.5 MB log head and 4 x
1MB hash-verified extents). The test application stores 18,779 logs
(18,779 log heads and 75,085 hash-verified extents) totaling 84 GB.
We stopped writing new data to Antiquity because we reached the
PlanetLab-enforced storage quota. After writing an extent to the
system, this test application records a summary of the extent in a
local database.

We perform various tests to measure the efficacy of the Antiq-
uity deployment. First, we measure the percent of extents with at
least a quorum of replicas available and in a consistent state in Sec-
tion 5.3.1. This test measures the number of logs that can accept
new writes from their owner. Next, in Section 5.3.2, we measure
the cost of maintaining secure logs in terms of replicas created. In
particular, we measure the average number of replicas created per
unit time and the total number of replicas created. This test mea-
sures the systems ability to maintain sufficient replication levels in
response to server failure.

5.3.1 Quorum Consistency and Availability

We compute quorum availability and consistency in two differ-
ent ways. The first approach uses a test application that periodi-
cally reads a random extent. Every 10 seconds, the tester selects a
random entry from the database and attempts to contact a quorum
of the servers hosting that extent. It reports whether it was able
to reach a quorum of servers. It also verifies that the replicas are
in a consistent state and that state matches what was written. The
second approach uses a server application availability trace, server
database log, and extent configuration to compute the metrics. The
first approach is an experimental method that includes intermittent
effects such as server load and network performance. The sec-

171

 0

 0.25

 0.5

 0.75

 1

 0 1 2 3 4 5 6 7 8 9

P
er

ce
nt

ag
e

Time (Weeks)

Quorum Availability and Consistency (PlanetLab Deployment)

Percent of Quorums Available and Consistent
Percent of Failures Due to Timeouts

(a) Periodic Application Read

 0

 0.25

 0.5

 0.75

 1

 0 1 2 3 4 5 6 7 8 9

P
er

ce
nt

ag
e

Time (Weeks)

Quorum Availability and Consistency (PlanetLab Deployment)

Percent of Quorums Available and Consistent

(b) Server Application Availability Trace

Figure 12: Quorum Consistency and Availability. (a) Periodic

reads show that 94% of quorums were reachable and in a con-

sistent state. Up to 90% of failed checks are due to network

errors and timeouts. (b) Server application availability trace

shows that 97% of quorums were reachable and in a consis-

tent state. This illustrates the increase in performance over (a)

where timeouts reduced the percent of measured available quo-

rums.

ond approach ignores such experimental effects and, instead, uses
server availability to compute the metrics.

Figure 12(a) shows the percentage of quorums that were avail-
able and consistent over time, as measured by the first approach
over a two-month period. The top curve shows the percentage
of successful quorum checks. A software bug between week 1
through the middle of week 2 caused over half the servers not to
respond to RPC requests. Periodic server application reboot tem-
porarily masked the bug. But the performance continued to de-
grade until the problem was solved during the middle of week 2. A
stale network file system handle prevented the test application from
probing the system properly between weeks 6 and 7. Over the life
of the test (including the period between week 1 through the middle
of week 2 interruption), an average of 94% of checks reported that
a quorum of servers was reachable and stored a consistent state.
Even though, at any given time, 6% of the of the checks may not
have a quorum of replicas available, later checks reveal that a quo-
rum eventually becomes available and is consistent due to the repair
protocol.

The observed availability matches computed estimates. Using a
monitor on the remote hosts, we measured the average availability
of machines in PlanetLab to be 90%. Note, this figure indicates that
the node is up, not necessarily that the node can be reached over the
network. Given that measurement, we would expect a quorum of
servers to be available 94% of the time.

The lower curve on the plot shows the percentage of checks that

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450
 500

 0 1 2 3 4 5 6 7 8 9A
va

ila
bl

e
S

er
ve

rs
 a

nd
 F

ai
lu

re
s

pe
r H

ou
r

Time (Weeks)

Available Servers and Server Failure (PlanetLab Deployment)

Available Servers
Server Failures

Figure 13: Number of servers with their Antiquity application

available per hour. Additionally, number of servers with An-

tiquity application failures per hour. Most failures are due to

restarting the unresponsive Antiquity instances. As a result,

a single server may restart its Antiquity application multiple

times per hour if the instance is unresponsive.

failed due to RPC failures, network disruptions, and other timeouts.
We attempt to reach a quorum through five different gateways be-
fore marking a check failed. Our measurements show that up to
90% of the failed checks may be caused by components outside
of Antiquity. This percentage increases as the load on PlanetLab
increases. Furthermore, the high load causes a number of Antiq-
uity processes to be terminated due to resource exhaustion. Thus,
the actual percentage of consistent quorums (shown next) is higher
than the 94% measured from the application.

Figure 12(b) plots quorum availability and consistency computed
by the second approach. The server application availability trace
used in this approach ignores the software bug; as a result, until the
middle of week 2, 100% of the extents had at least a quorum avail-
able and consistent. After the middle of week 2, however, server
churn increased, tripling from 24 server failures per hour to 76.
The cause for the increase in server churn is a watchdog timer that
restarts a server’s Antiquity application when it is unresponsive for
over six minutes. Figure 13 shows the number of servers available
and server failures during each hour of the test.

5.3.2 Quorum Repair

Antiquity’s repair process maintains the availability of a quorum
of servers for each extent. Figure 14 plots the cumulative number
of replicas created in the PlanetLab deployment. During the period
of observation, Antiquity initially created a total of 657,048 extent
replicas (each of the 93,864 extents were initially created with 7
replicas). The replicas initially accounted for 577 GB of replicated
storage (84 GB of unique storage).

In order to maintain the availability of a quorum of servers, An-
tiquity triggers the repair() protocol when less than a quorum
of replicas are available. Each repair() replaces at least three
replicas since that is the least number of unavailable servers re-
quired to trigger repair() with f = 2. The deployment experi-
enced an average of 114 (Antiquity application) failures per hour.
In response to failures, Antiquity triggered repair() 92 times
per hour. As the number of unavailable servers accumulated, nearly
every failure triggered a repair(). Each repair() replaced
an average of four replicas. As a result, Antiquity created a total
of 653,028 replicas due to repair() during the two month pe-
riod of observation. Repair required less than 0.31 KB/s (320 Bps)
per server. Coupled with maintaining the availability and consis-
tency of up to 97% of the extents, this demonstrates that Antiquity
is capable of maintaining sufficient replication levels in response to

172

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 1 2 3 4 5 6 7 8 9

C
um

ul
at

iv
e

R
ep

lic
as

 C
re

at
ed

 (
10

00
s)

Time (Weeks)

Repair (PlanetLab Deployment)

total
create
repair

Figure 14: Number of replicas created over time due to storing

new data and in response to failure.

server failure.
Another metric of concern is the time to repair an extent with

less than a quorum of replicas available. On average, when a server
failed, it took the system 30 minutes to detect and classify the
server as failed (value of timeout) and three hours to replace repli-
cas stored on the failed server with less than a quorum of remaining
replicas available. Once repair completed for a particular extent, at
least a quorum of servers were again available.

5.4 A Versioning Back-up Application
Finally, we have built a versioning back-up application that

stores data in Antiquity. The application translates a local file sys-
tem into a Merkle tree as shown in Figure 5 and used in similar pre-
vious systems [32, 11]. The application records in a local database
when data was written to the infrastructure. It checks the local
database before archiving any new data. This acts as a form of
copy-on-write, reducing the amount of data transmitted. The file
system we implemented is described fully in [15].

We stored the file system containing the Antiquity prototype
(source code, object code, utility scripts, etc.) in PlanetLab. The
file system is recorded in 15 1-MB extents. The system has re-
paired two of the 15 extents while ensuring both consistency and
durability of the file system.

6. EXPERIENCE AND DISCUSSION
Putting it all together, Antiquity maintained 100% durability and

97% quorum availability of 18,779 logs broken into 93,864 extents.
Reflecting on our experience, the structure of the secure log made
this an easier task for three reasons.

First, maintaining the integrity of a secure log is easier than other
structures since the verifier for the log (and each extent) defines
the order of appends and cryptographically ensures the content. In
particular, there is only one sequence of appends that results in a
particular verifier. This verifier is used as a predicate to ensure that
new writes are appended to the log in a consistent fashion. Further-
more, this verifier is used by the storage system to ensure that each
replica stores the same state. In the deployment, this verifier was a
critical component used to ensure the consistency and integrity of
the log and all of its extents. Furthermore, it is cheap to compute,
update, and compare.

Second, a storage system that implements a secure log is a layer
or middleware in a larger system. The secure log abstraction
bridges the storage system and higher level applications together.
In fact, the secure log interface implemented by Antiquity is a re-

sult of breaking OceanStore into layers. In particular, a component
of OceanStore was a primary replica implemented as a Byzantine
Agreement process. This primary replica serialized and crypto-
graphically signed all updates. Given this total order of all updates,
the question was how to durably store and maintain the order? Fur-
thermore, what should be the interface to this storage system? An
append-only secure log answered both questions. The secure log
structure assists the storage system in durably maintaining the order
over time. The append-only interface allows a client to consistently
add more data to the storage system over time. Finally, when data
is read from the storage system at a later time, the interface and
protocols ensure that data will be returned and that returned data is
the same as stored.

Finally, self-verifying structures such as a secure log lend them-
selves well to distributed repair techniques. The integrity of a
replica can be checked locally or in a distributed fashion. In partic-
ular, we implemented a quorum repair protocol where the storage
server replicas used the self-verifying structure. The structure and
protocol provided proof of the contents of the latest replicated state
and ensured that the state was copied to a new configuration.

7. RELATED WORK
Antiquity builds on the experience of many prior systems.

7.1 Logs
The log-structured file system [30] used a log abstraction to im-

prove the performance of local file systems. Zebra [20] uses a sim-
ilar abstraction to improve the performance of a network file sys-
tem. Schneier and Kelsey [41] and SUNDR [24] demonstrated how
to use a secure log to store data on an untrusted remote machines.
They do not address how to replicate the log.

7.2 Byzantine Fault-Tolerant Services
Byzantine fault-tolerant services have been proposed to help

meet the challenges of unsecured, distributed environments. Far-
Site [2], OceanStore [38], and Rosebud [40] built distributed
storage systems using Byzantine fault-tolerant agreement proto-
cols [21, 7]. Abd-El-Malek et al. [1], Goodson et al. [18],
the COCA project [46], Fleet [27], and Martin and Alvisi [29]
built reliable services using Byzantine fault-tolerant quorum proto-
cols [26]. Martin and Alvisi define a protocol that allows the con-
figuration to be changed with the help of an administrator. HQ [10]
has a hybrid structure that is similar to Antiquity’s use of an ad-
ministrator. During normal operation, clients interact using an effi-
cient Byzantine quorum voting protocol. Under write contention or
failures, a separate Byzantine agreement (or administrator for An-
tiquity) is invoked to resolve conflicts and possibly reconfiguring
the set of servers. None of these systems trigger reconfiguration
reactively.

7.3 Wide-area Distributed Storage Systems
Many researchers have used distributed hash table (DHT) tech-

nology to build wide-area distributed storage systems. Notable
examples are Carbonite [8], CFS [11], Glacier [19], Ivy [34],
PAST [13], Total Recall [6], and Venti [36]. Carbonite and To-
tal Recall optimize for the wide-area by reducing the number of
replicas created due to transient failures. Glacier uses aggrega-
tion to reduce storage overheads. Ivy uses a log structure simi-
lar to Antiquity; however, the log is block-based instead of extent-
based. In particular, to grow the log, Ivy creates new blocks that
incur high overheads since each block is individually maintained;
whereas,extents reduce these overheads since Antiquity supports
aggregation via a secure-append operation. None of these systems

173

implement a Byzantine fault-tolerant consistency algorithm. Chain
Replication [44] and Etna [33] both implement consistency proto-
cols, but assume fail-stop failures.

7.4 Replicated Systems
Systems like GFS [17], Harp [25], Petal [22], Frangipani [43],

and XFS [4] replicate data to reduce the risk of data loss. GFS and
XFS also use aggregation. These systems target well-connected
environments.

Distributed databases [12], the Amoeba distributed operating
system [42], the Myriad online disaster recovery system [23], and
EMC storage systems [9] use the wide-area replication to increase
durability. Myriad and EMC replicate data between a primary and
backup site. Wide-area recovery is initiated after site failure; single
disk failure is repaired locally with RAID.

7.5 Digital Libraries
Digital libraries such as LOCKSS [28] preserve journals and

other electronic documents. The documents are read-only and can-
not be updated. They are replicated at many sites for durability.
Many documents in a digital library do not have an “owner”; thus,
the system uses voting to maintain the integrity. Antiquity, in con-
trast, assumes that all logs have an owner and only the owner can
make changes to the log.

8. CONCLUSION
We described the design of the Antiquity wide-area distributed

storage system. The design is tailored for dynamic environments
where server failure is common. Antiquity combines a secure
append-only log interface with dynamic Byzantine fault-tolerant
quorums and quorum repair to maintain data integrity, consistency,
and durability. Evaluation of a prototype running on PlanetLab
demonstrates that the design is effective. The prototype stores 84
GB of data on 400+ servers under constant churn and all logs re-
main durable. At any given moment, however, 6% of the logs do
not have a quorum (threshold) of replicas available temporarily due
to server failure on PlanetLab. All eventually become available—
Antiquity successfully repaired all quorums to an available and
consistent state with its quorum repair protocol.

9. AVAILABILITY
The Antiquity source code is published under the BSD license

and is freely available http://antiquity.sourceforge.net.

10. ACKNOWLEDGMENTS
We would like to thank Ken Birman whose comments and advice

have greatly improved the presentation of this work. We are grate-
ful to Anthony Joseph who has provided valuable input on the de-
sign and implementation of Antiquity. Also, Robbert van Renesse
and Einar Vollset have provided valuable feedback on the presen-
tation of Antiquity. Finally, we would like thank Mike Howard
for maintaining the cluster at Berkeley and all of the groups that
have contributed to making PlanetLab available. Without these two
testbeds, this work would not have been possible.

11. REFERENCES

[1] M. Abd-El-Malek, G. Ganger, G. Goodson, M. Reiter, and
J. Wylie. Fault-scalable byzantine fault-tolerant services. In
Proc. of ACM SOSP, Oct. 2005.

[2] A. Adya, W. J. Bolosky, M. Castro, G. Cermak, R. Chaiken,
J. R. Douceur, J. Howell, J. R. Lorch, M. Theimer, and R. P.

Wattenhofer. Farsite: Federated, available, and reliable
storage for an incompletely trusted environment. In Proc. of

USENIX OSDI, Dec. 2002.

[3] N. S. Agency. Global information grid (gig).
http://www.nsa.gov/ia/industry/gig.cfm.
Last accessed September 2006.

[4] T. Anderson, M. Dahlin, J. Neefe, D. Patterson, D. Roselli,
and R. Wang. Serverless Network File Systems. In Proc. of

ACM SOSP, Dec. 1995.

[5] A. Bavier, M. Bowman, B. Chun, D. Culler, S. Karlin,
S. Muir, L. Peterson, T. Roscoe, T. Spalink, , and
M. Wawrzoniak. Operating system support for
planetary-scale network services. In Proc. of USENIX NSDI,
Mar. 2004.

[6] R. Bhagwan, K. Tati, Y. Cheng, S. Savage, and G. Voelker.
Totalrecall: Systems support for automated availability
management. In Proc. of USENIX NSDI, Mar. 2004.

[7] M. Castro and B. Liskov. Practical Byzantine fault tolerance.
In Proc. of USENIX OSDI, 1999.

[8] B. Chun, F. Dabek, A. Haeberlen, E. Sit, H. Weatherspoon,
M. F. Kaashoek, J. Kubiatowicz, and R. Morris. Efficient
replica maintenance for distributed storage systems. In Proc.

of USENIX NSDI, San Jose, CA, May 2006.

[9] E. Corp. Symmetrix remote data facility. http://www.
emc.com/products/networking/srdf.jsp. Last
accessed February 2007.

[10] J. Cowling, D. Myers, B. Liskov, R. Rodrigues, and
L. Shrira. Hq replication: A hybrid quorum protocol for
byzantine fault tolerance. In Proc. of USENIX OSDI, Nov.
2006.

[11] F. Dabek, M. F. Kaashoek, D. Karger, R. Morris, and
I. Stoica. Wide-area cooperative storage with CFS. In Proc.

of ACM SOSP, October 2001.

[12] A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson,
S. Shenker, H. Sturgis, D. Swindhart, and D. Terry. Epidemic
algorithms for replicated database maintenance. In Proc. of

ACM PODC, pages 1 – 12, Aug. 1987.

[13] P. Druschel and A. Rowstron. Storage management and
caching in PAST, a large-scale, persistent peer-to-peer
storage utility. In Proc. of ACM SOSP, 2001.

[14] P. Eaton, H. Weatherspoon, and J. Kubiatowicz. Efficiently
binding data to owners in distributed content-addressable
storage systems. In 3rd International Security in Storage

Workshop, Dec. 2005.

[15] P. R. Eaton. Improving Access to Remote Storage for Weakly

Connected Users. PhD thesis, EECS Department, University
of California, Berkeley, January 11 2007.

[16] K. Fu, M. F. Kaashoek, and D. Mazières. Fast and secure
distributed read-only file system. In Proc. of USENIX OSDI,
Oct. 2000.

[17] S. Ghemawat, H. Gobioff, and S. Leung. The google file
system. In Proc. of ACM SOSP, pages 29–43, Oct. 2003.

[18] G. R. Goodson, J. J. Wylie, G. R. Ganger, and M. K. Reiter.
Byzantine-tolerant erasure-coded storage. Technical Report
CMU-CS-03-187, Carnegie Mellon University School for
Computer Science, Sept. 2003.

[19] A. Haeberlen, A. Mislove, and P. Druschel. Glacier: Highly
durable, decentralized storage despite massive correlated
failures. In Proc. of USENIX NSDI, May 2005.

[20] J. H. Hartman and J. K. Ousterhout. The zebra striped
network file system. In Proc. of ACM SOSP, 1993.

174

[21] L. Lamport, R. Shostak, and M. Pease. The Byzantine
Generals Problem. ACM TOPLAS, 4(3):382–401, 1982.

[22] E. K. Lee and C. A. Thekkath. Petal: Distributed virtual
disks. pages 84–92, 1996.

[23] S. A. Leung, J. MacCormick, S. E. Perl, and L. Zhang.
Myriad: Cost-effective disaster tolerance. In Proc. of

USENIX FAST, Jan. 2002.

[24] J. Li, M. Krohn, D. Mazières, and D. Shasha. Secure
untrusted data repository SUNDR. In Proc. of USENIX

OSDI, pages 121–136, Dec. 2004.

[25] B. Liskov, S. Ghemawat, R. Gruber, P. Johnson, L. Shrira,
and M. Williams. Replication in the harp file system. In
Proc. of ACM SIGOPS, 1991.

[26] D. Malkhi and M. Reiter. Byzantine quorum systems. In
Proc. of ACM STOC, pages 569 – 578, May 1997.

[27] D. Malkhi, M. K. Reiter, D. Tulone, and E. Ziskind.
Persistent objects in the fleet system. In DISCEX II, 2001.

[28] P. Maniatis, M. Roussopoulos, T. Giuli, D. S. H. Rosenthal,
and M. Baker. The lockss peer-to-peer digital preservation
system. ACM Trans. Comput. Syst., 23(1):2–50, 2005.

[29] J.-P. Martin and L. Alvisi. A framework for dynamic
byzantine storage. In Proc. of the Intl. Conf. on Dependable

Systems and Networks, June 2004.

[30] J. Matthews, D. Roselli, A. Costello, R. Wang, and
T. Anderson. Improving the performance of log-structured
file systems with adaptive methods. In Proc. of ACM SOSP,
Oct. 1997.

[31] R. Merkle. A digital signature based on a conventional
encryption function. pages 369–378. Springer-Verlag, 1988.

[32] S. J. Mullender and A. S. Tanenbaum. A distributed file
service based on optimistic concurrency control. In Proc. of

ACM SOSP, pages 51–62, Dec. 1985.

[33] A. Muthitacharoen, S. Gilbert, and R. Morris. Etna: A
fault-tolerant algorithm for atomic mutable dht data.
Technical Report MIT-LCS-TR-993, MIT Laboratory for
Computer Science, June 2004.

[34] A. Muthitacharoen, R. Morris, T. Gil, and B. Chen. Ivy: A
read/write peer-to-peer file system. In Proc. of USENIX

OSDI, 2002.

[35] L. Peterson, A. B. E. Fiuczynski, , and S. Muir. Experiences
building planetlab. In Proc. of USENIX OSDI, Nov. 2006.

[36] S. Quinlan and S. Dorward. Venti: A new approach to
archival data storage. In Proc. of USENIX FAST, Jan. 2002.

[37] S. Rhea, B. Chun, J. Kubiatowicz, and S. Shenker. Fixing the
embarrassing slowness of opendht on planetlab. In Proc. of

USENIX Workshop on Real, Large Distributed Systems

(WORLDS), Dec. 2005.

[38] S. Rhea, P. Eaton, D. Geels, H. Weatherspoon, B. Zhao, and
J. Kubiatowicz. Pond: the OceanStore prototype. In Proc. of

USENIX FAST, 2003.

[39] S. Rhea, D. Geels, T. Roscoe, and J. Kubiatowicz. Handling
churn in a dht. In Proc. of USENIX, June 2004.

[40] R. Rodrigues and B. Liskov. Rosebud: A scalable
byzantine-fault-tolerant storage architecture. Technical
Report MIT-LCS-TR-932, MIT Laboratory for Computer
Science, Dec. 2003.

[41] B. Schneier and J. Kelsey. Cryptographic support for secure
logs on untrusted machines. Jan. 1998.

[42] A. S. Tanenbaum, R. van Renesse, H. van Staveren, G. J.
Sharp, S. J. Mullender, J. Jansen, and G. van Rossum.
Experiences with the Amoeba distributed operating system.

Communications of the ACM, 33(12):46–63, 1990.

[43] C. Thekkath, T. Mann, and E. Lee. Frangipani: A scalable
distributed file system. In Proc. of ACM SOSP, 1997.

[44] R. van Renesse and F. B. Schneider. Chain replication for
supporting high throughput and availability. In Proc. of

USENIX OSDI, May 2004.

[45] H. Weatherspoon. Design and Evaluation of Distributed

Wide-Area On-line Archival Storage Systems. PhD thesis,
EECS Department, University of California, Berkeley,
October 13 2006.

[46] L. Zhou, F. Schneider, and R. van Renesse. Coca: A secure
distributed on-line certification authority. ACM Trans.

Comput. Syst., pages 329–368, Nov. 2002.

175

Fireflies: Scalable Support for
Intrusion-Tolerant Network Overlays

Håvard Johansen
University of Tromsø

Norway

André Allavena
University of Waterloo

Canada

Robbert van Renesse
Cornell University

USA

ABSTRACT
This paper describes and evaluates Fireflies, a scalable pro-
tocol for supporting intrusion-tolerant network overlays.1

While such a protocol cannot distinguish Byzantine nodes
from correct nodes in general, Fireflies provides correct nodes
with a reasonably current view of which nodes are live, as
well as a pseudo-random mesh for communication. The
amount of data sent by correct nodes grows linearly with
the aggregate rate of failures and recoveries, even if pro-
voked by Byzantine nodes. The set of correct nodes form
a connected submesh; correct nodes cannot be eclipsed by
Byzantine nodes. Fireflies is deployed and evaluated on
PlanetLab.

1. INTRODUCTION
Network overlays provide important routing functionality

not supported directly by the Internet. Such functionality
includes multicast routing, content-based routing, and re-
silient routing, as well as combinations thereof. In recent
years, Distributed Hash Tables (DHTs) have been proposed
to support network overlays. While it is often straight-
forward to support network overlays on DHTs, this choice
can be questioned. DHTs dictate routes that are not op-
timal [25], and DHTs are hard to secure [30]. As network
overlays are starting to be deployed for critical applications,
efficiency and security are becoming important attributes.

In this paper we present an alternative support structure
called Fireflies. Fireflies provides each of its members with
a complete view of its live peers.2 A small subset of these

1This work is supported by the DARPA/IPTO SRS pro-
gram, the AFRL/Cornell Information Assurance Institute,
NSF grant 0430161, and the Research Council of Norway
IKT 2010 program.
2Fireflies, the beetles, model not only the on/off behavior of
members, but like Byzantine members they are also known
for their aggressive mimicry in order to dupe and devour
related species.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EuroSys’06, April 18–21, 2006, Leuven, Belgium.
Copyright 2006 ACM 1­59593­322­0/06/0004 ...$5.00.

peers are marked as neighbors. With high probability, the
mesh formed by the members and their neighbor links has
a diameter logarithmic in the number of live members and
connects all the reachable members that are not Byzantine.

An obvious disadvantage of providing members with a
view of the full membership, compared to only a partial view
as provided by a DHT, is decreased scalability. Memory re-
quirements per member will grow linearly in the number of
members. Given the availability of cheap memory this is not
necessarily a problem. More alarmingly, the rate of mem-
ber join and leave events will likely grow linearly with the
number of members as well, possibly leading to an unman-
ageable amount of network bandwidth or latency. Many of
these concerns have been addressed previously [2, 14, 15,
28]. We believe Fireflies can scale easily to thousands of
members and that this is sufficient for many applications.

Providing each member with membership is a form of
agreement. Previous works on Byzantine fault-tolerant agree-
ment establish invariants that are impossible to invalidate.
Even the most practical of these protocols (e.g., [5, 19]) re-
quire several rounds of all members broadcasting state to
all other members, and can consequently not scale up to
more than perhaps a few dozen members. In order to scale
to thousands or more members, we had to come up with
a radically different approach. Fireflies makes use of epi-
demic techniques to form a probabilistic agreement, which
can only establish invariants that hold with a certain prob-
ability. Because invariants never hold for certain, defense
against adversaries trying to break agreement can never rest.
The main contribution of this paper is this novel approach
towards tolerating intrusions. A formal specification and
correctness proof has been completed as well and is the sub-
ject of a future publication.

We distinguish three states of members: correct, stopped,
and Byzantine. Correct members execute the protocols de-
scribed in this paper faithfully. Stopped members are not
executing any protocol steps. Byzantine members are not
bound to the protocols. For convenience, we also refer to
members that are either correct or Byzantine as live mem-
bers. Members can switch between states at any time, which
is commonly referred to as churn. Informally, Fireflies pro-
vides its correct members with a membership view that in-
cludes all members that have been correct for sufficiently
long and excludes all members that have been stopped for
sufficiently long.

A group membership protocol that tolerates Byzantine
behavior of its members is said to be intrusion-tolerant.

176

There are limitations to group membership, particularly if
intrusions are allowed. Correct members may be unreach-
able and appear stopped to other members. Recently stopped
members may not yet have been detected and appear cor-
rect. A Byzantine member can disguise itself as a flaky
correct member. Nonetheless, intrusion-tolerant network
overlay routing protocols may be built using Fireflies as a
building block. Fireflies currently supports a DHT and a
multicast protocol, both of which are intrusion-tolerant as
well.

We start with a description of related work in Section 2.
Section 3 presents an informal specification of Fireflies. The
membership protocol is the subject of Section 4. Section 5
describes the epidemic protocol that supports the member-
ship protocol. An evaluation of Fireflies appears in Sec-
tion 6. We discuss current applications of Fireflies in Sec-
tion 7. Section 8 concludes.

2. RELATED WORK
The first paper that describes concrete defenses against

Byzantine behavior in peer-to-peer (P2P) network overlays
is [4]. While this paper addresses the problem of imper-
sonation attacks, many of the problems discussed have to
do exclusively with overlay routing table maintenance and
message forwarding. In our protocol, the members do not
need to route messages, while in [4], the problem of mem-
bership is not considered.

Some peer-to-peer storage services like OceanStore [18]
and FARSITE [1] use traditional Byzantine consensus pro-
tocols among small groups of machines. These groups do
not protect the integrity of the peer-to-peer network as a
whole, but protect Byzantine failures among replicas of in-
dividual files or meta-files. Also, as the system scales up,
the likelihood that one of these groups fail as a whole grows,
potentially endangering the entire system. Recent work [10]
on FARSITE attempts to isolate such groups from one an-
other, at the cost of weakening the system’s semantics.

In [12], the authors propose a mechanism called Link At-
testation Groups to increase the robustness of overlay net-
works. A link attestation is a certificate stating that a par-
ticular participant x trusts that it has a good path to an-
other participant y. Using a link-state protocol, groups of
dozens of participants are formed. The authors argue that
by providing access to the graph of attestations, applications
will be able to build more reliable protocols, but so far none
of these have been evaluated.

The problem of impersonation attacks was first considered
in [9]. The paper proposes secure identifier generation as a
solution, and both our protocol and [4] have embraced this
solution.

The problem of intrusion-tolerant membership in P2P pro-
tocols is considered in [29]. The Eclipse attack is an attack
where malicious members isolate correct members by filling
the neighbor table of a correct member with addresses of
malicious members. The paper suggest thwarting this at-
tack by enforcing bounds on the in- and out-degrees of P2P
members.

Many group membership protocols are based on providing
members with consensus on membership views. Note that in
such systems views may still be stale. Versions that tolerate
Byzantine members have been designed and implemented
(e.g., [26, 27]), but the overhead of consensus renders such
systems unscalable beyond a few dozen members.

In [28], Rodrigues and Blake argue that in many environ-
ments multi-hop routing is not cost-effective, and full mem-
bership maintenance is both possible and desirable. One-
hop peer-to-peer routing protocols that maintain full mem-
bership for fail-stop environments are presented in [14, 15].
CONGRESS [2] is a non-P2P solution based on a scalable
server hierarchy. Neither tolerates Byzantine behavior.

Most closely related to our work is the SWIM protocol [7].
As in Fireflies, SWIM has a separate failure detection pro-
tocol and an epidemic dissemination protocol. Unlike Fire-
flies, SWIM’s failure detection protocol does not adapt to
varying message loss, and SWIM is not tolerant of Byzantine
behavior.

The SCAMP protocol [13] is another epidemic-style mem-
bership algorithm that, like Fireflies, uses a small number of
gossip partners per member in order to increase scalability.
SCAMP is not intrusion-tolerant, and does not have a fail-
ure detection component. Members have to leave the group
explicitly by gossiping a message. SCAMP may converge to
a non-random graph. CYCLON [32] presents an improve-
ment over SCAMP, maintaining randomness even with high
node churn.

There has been a variety of work on intrusion-tolerant epi-
demic protocols, apparently starting with [21]. These pro-
tocols consider the problem of correct members not accept-
ing any malicious updates without using unforgeable signa-
tures, and use a form of voting instead. Perhaps the earli-
est epidemic membership protocol is reported in [31], while
epidemic dissemination was pioneered in the Clearinghouse
system [8].

Drum [3] is a DoS-resistant multicast protocol. It uses a
combination of gossip techniques, resource bounds for cer-
tain operations, and random UDP ports in order to fight
DoS attacks, especially those directed against a small subset
of the correct members. These techniques are orthogonal to
the ones used by Fireflies, and can be used to make Fireflies
less susceptible to DoS attacks.

3. MEMBERSHIP SPECIFICATION
Each member m has a unique identifier m.id. A member

cannot choose nor modify its identifier. Each member m has
a state that is either correct, stopped, or Byzantine.

Each correct member has a view m.view, which is a subset
of all members. Informally, m2 ∈ m1.view means that m1

believes that m2 is, at least until recently, not stopped. As
well, m2 /∈ m1.view means that m1 believes that m2 is, at
least until recently, not live.3

A correct member also has a set of neighbors m.neighbors,
which is a subset of its view. The number of neighbors is
logarithmic in the size of the view, i.e., |m.neighbors| =
O(log |m.view|). The mesh consisting of correct members
and the links to their correct neighbors is connected and
logarithmic in diameter, and thus forms a usable routing
substrate.

We also want, again informally, that all correct members
send a limited amount of data in that Byzantine members
cannot cause correct members to send large amounts of data
rendering the protocol unscalable. We cannot prevent a
Byzantine member from sending large amounts of data.

3We do not provide Virtual Synchrony properties such as
consensus on views among correct members.

177

Fireflies does not exactly provide these properties, as it
is a probabilistic protocol. For example, it is possible that
long time correct members are sometimes evicted from the
views of other correct members, and it is possible that long
time stopped members are included in the views of correct
members. Also, correct members may be partitioned. The
Fireflies protocol makes such inconsistent states infrequent,
with probabilistic guarantees.

4. MEMBERSHIP PROTOCOL
In this section we describe the membership protocol that

correct members4 follow. For now we will assume that mem-
bers have at their disposal a gossip channel that reliably
broadcasts a message to all members within a time ∆. Sec-
tion 5 will present a protocol that provides such a guarantee
with high probability.

The basic idea of the membership protocol is that mem-
bers monitor one another and use the gossip channel to dis-
seminate accusations (failure notices). When a member m1

receives an accusation for a member m2, m1 waits a time pe-
riod of length 2∆ before removing m2 from its view. Should
m2 receive, through gossip, an accusation about itself, then
m2 has the opportunity to gossip a rebuttal before 2∆ ex-
pires. There is an overhead associated with gossip, so we
have to prevent Byzantine members from submitting fre-
quent accusations about correct members. This is a com-
plicated issue because correct members may accidentally
accuse other correct members due, for example, to tran-
sient link failures. Thus not every false accusation is from a
Byzantine member.

4.1 Assumptions
While we allow the network to lose messages, we do as-

sume that all correct members can run a ping protocol effec-
tively and apply a gossip-style broadcast protocol that can
deliver messages to all correct members in a timely fash-
ion. Details on the ping protocol appear in Section 4.6,
while details on the implementation of the gossip protocol
are presented in Section 5. While we do not require clocks
to be synchronized, we do assume that clock rates among
correct members are identical, although rates only need to
be “similar” in practice.

Byzantine members have few restrictions. They know the
exact state of every other member, and have zero-latency
connections between each other. However, they do not have
sufficient computational power to break cryptographic build-
ing blocks, and in particular they cannot forge public key
certificates, or public key signatures of correct or stopped
members.

We assume that there is a bounded probability Pbyz that a
live member is Byzantine. Note that this is a stronger con-
dition than a bound on the probability that any member is
Byzantine. Such a weaker condition would not suffice, as
in the case that most non-Byzantine members are stopped,
the few remaining correct members could be overwhelmed
by Byzantine members. Nonetheless, the assumption that
among all live members only a fraction is Byzantine is rea-
sonable, particularly since we do not limit the fraction of
stopped members among all members.

We assume that each member m has a unique identifier
m.id (e.g., tax identifiers, passport numbers, etc.), and that

4We shall omit the adjective “correct” where obvious.

note most recently known note of the peer
accusations accusations, at most one per ring
nPings #pings sent since last “pong” response
avgLoss smoothed average of #pings lost + 1

Table 1: Fields in an info structure, one for each
peer. The last two entries are used only for successor
peers.

a shared Certificate Authority (CA) does a thorough back-
ground check on each potential member before handing the
member m a private key m.priv and a corresponding pub-
lic key certificate m.cert that binds the member’s identifier
and network address to its public key.5 Correct and stopped
members never reveal their private key.

We also assume that trivial Denial-of-Service attacks by
flooding can be detected and suppressed (see [3] for how this
might be accomplished).

4.2 Data Structures
The members are organized on 2t + 1 rings, which are

circular address spaces (the value t is discussed below). Each
member m attains a position on each ring by evaluating a
secure collision-resistant hash function H:

m.pos[ring] = H(m.id || ring)

(where ‘||’ is the concatenation operation). The ordering of
members on each ring is different (with high probability) as
a result. Member m ranks members on each ring clockwise,
with itself being 0, its first successor being rank 1, and so
on. The basic idea of the protocol is that each member m1

monitors, on each ring, the lowest ranked successor m2 that
m1 believes to be live.

The members use two data structures that are gossiped:
notes and accusations. A member creates notes in order to
notify and convince the other members that it is live. A note
is a tuple (cert, epoch, enabled), signed using the private
key of the member. Here cert is the public key certificate
of the member, epoch a number used to order its notes, and
enabled a bitmap with 2t + 1 bits, controlling which of the
2t + 1 predecessors are allowed to issue accusations against
the member.

If a member m1 suspects a successor m2 on a particular
ring of having stopped, then m1 accuses the note of m2 last
known to m1 by creating an accusation. An accusation is
a tuple (note, ring, accuser), signed by m1, where note is
the note of m2, ring is the ring on which m2 is a successor
of m1, and accuser is the identifier of m1. A requirement
on the accusation is that note.enabled[ring] is set. Thus a
member can use the enabled bitmap in the notes it generates
to restrict which predecessors can accuse the member, an
ability that we will use to defeat repeated false accusations
by Byzantine members.

The value t governs the number of Byzantine predecessors
a member can tolerate. We choose t so that the probability
of a member having more than t out of 2t + 1 live predeces-
sors being Byzantine is small (see Section 4.5). Members set
exactly t+1 bits in their notes’ enabled bitmaps. If a mem-
ber m has at most t Byzantine predecessors, then m can
disable all Byzantine predecessors that make repeated false

5Note that the CA can provide access control as well.

178

A B C

G

B
D

E E

C

G

G

F C

D

B

D

E

F

A

AF

Figure 1: 3 rings with 7 members A through G.
Valid accusations are shown with solid arrows, while
invalid ones are shown in dashed arrows.

accusations while m is live. If, by mistake, m disables only
correct predecessors and leaves t Byzantine predecessors en-
abled, then there is still at least one correct predecessor that
can accuse m should m fail.

Each member m maintains a mapping m.info of peer iden-
tifiers to information about these peers. (m1.info(m2) =⊥
means that m1 does not have any information about m2.)
The fields in the info structure are listed in Table 1. The
Fireflies protocol strives to ensure that the set of accusa-
tions is empty for a correct member and non-empty for a
stopped member.

4.3 Valid Accusations
As we have not bounded the probability that a member is

stopped, all predecessors of a member may be stopped with
non-negligible probability. In order to allow such members
to be accused in case they fail as well, a member must be able
not only to accuse its immediate successor, but must also be
able to make accusations skipping over stopped successors.
Doing so may allow a Byzantine member to accuse any of
its successors simply by claiming that it believes that the
more immediate successors are all stopped.

In order to counter such attacks, we create rules that gov-
ern which accusations are considered valid. Informally, m1

only allows the highest ranked live member to make valid
accusations of m2, and only on those rings that are enabled
by m2. Validity is defined recursively. Member m1 considers
an accusation for m2 valid iff

• the accusation is correctly signed; and

• the note contained in the accusation corresponds to
m1.info(m2).note; and

• the ring in the accusation is enabled in the note’s en-
abled bitmap; and

• m1 holds valid accusations for all members it ranks
(on the given ring) between the accuser and m2 itself,
if any.

In Figure 1, we show a schematic depiction of how one of
the members observes a group with 7 members, A through
G. In this case, t = 1, and for simplicity we ignore ring
deactivation. An accusation of B by D on the middle ring

is a valid accusation (assuming the accusation refers to the
note of B and is correctly signed by D) because there are
no nodes in between D and B. This accusation is valid
even though the accuser D is validly accused by C. The
accusation by A of C on the outer ring is valid because
there is a valid accusation against B, the node in between
A and C. The accusation of A by E is invalid as there is no
valid accusation of F .

A Fireflies member only maintains accusations that it
considers valid, and associates a timer with each valid accu-
sation that is set to 2∆ when the member first learns of the
accusation. A valid accusation may depend on other valid
accusations, and in case such a dependency changes, the
timer needs to be reset. When the timer expires, the accu-
sation leads to the removal of the accusee from the member’s
view.

4.4 Protocol Steps
Each correct member runs the same protocol. There are

four events that trigger protocol transitions.

m1 receives a note for a peer member m2. If m1 has a
note for m2 that is as recent as the one that arrived, then m1

ignores it. Otherwise m1 updates its note for m2, removes
any accusations that it has for m2, cancels m2’s view removal
timer if any, and includes m2 in its view. In addition, the
removal of accusations for m2 may invalidate accusations
that m1 holds for other members. These accusations are
removed as well.

m1 suspects m2. On each ring, m1 monitors the lowest
ranked successor m2 for which m1 does not hold valid accu-
sations (unless m2 has disabled the ring, in which case m1

does not monitor anybody on that ring). Should m1 sus-
pect that m2 has stopped, then it creates an accusation of
m2 that is subsequently gossiped to the other members.

m1 receives an accusation for m2. If m1 does not con-
sider the accusation valid, then m1 ignores it. If m2 = m1,
then m1 replaces its note with a new one to act as a rebut-
tal, which is subsequently gossiped to the other members. If
m2 6= m1 and m1 already has an accusation for m2 on the
same ring as the new accusation, then m1 replaces its accu-
sation only if the new one is from a higher ranked accuser.

At m1, the timer of an accusation of m2 expires. m1

removes m2 from its view.

4.5 Calculating t

We now turn to calculating a suitable value for t. If there
are too few rings, correct members may not be able to fight
Byzantine behavior. However, more rings result in higher
overhead. Since we cannot give deterministic bounds on the
number of Byzantine predecessors, we use a probabilistic
approach. We want the minimum value of t so that the
probability of a member having more than t out of 2t + 1
live predecessors being Byzantine is smaller than ε:

min
t

: B(t; 2t + 1; 1 − Pbyz) < ε

where B(x;n; p) is a cumulative binomial distribution. We
may want to make ε smaller for larger N so that the expected
number of members for which this condition is violated does

179

0

5

10

15

20

25

30

1 10 100 1000 10000 100000

t

members

Pbyz = .25
Pbyz = .20
Pbyz = .15
Pbyz = .10
Pbyz = .01

Figure 2: The magnitude of t for various N and Pbyz.

-0.1
 0

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 3 5 7 9 11 13 15

%
 b

lo
ck

ed

t

N = 100
N = 300
N = 1000
N = 3000
N = 10000

Figure 3: The likelihood of blocked accusations (99%
confidence intervals) as a function of t for various N .

not grow linearly with N . For example, if we set ε = 1/N ,
then the expected number of such unfortunate members is
1, independent of N altogether. In Figure 2 we used the
normal approximation to the binomial distribution to solve
this equation for various N and Pbyz, using ε = 1/N .

The protocol described above assumes a static t, imply-
ing that a maximum membership should be anticipated and
enforced. It is, however, possible for a member to specify a
number of rings that depends on the size of its view. Care
should be taken to deal with Byzantine members specifying
an enabled map in their note with a very large number of
rings in order to try to consume all memory of correct mem-
bers. The resulting extensions to the protocol are trivial
and are not discussed in this paper.

Even if a stopped member m1 has fewer than t+1 Byzan-
tine live predecessors, it is possible that an enabled correct
live predecessor m2 cannot accuse m1. Consider the stopped
members between m2 and m1 on the corresponding ring and
call them s1, . . . , sm. If the ring is enabled for all si, then m2

can accuse all si and thus m1. Assume there is a member
sj that disabled the ring. Then m2 cannot accuse m1 until
m2 has received a valid accusation for sj on a different ring.
We say that the accusation of m1 is blocked by sj . Unfortu-
nately, m2 may never receive an accusation for sj . Member

sj may have fewer than t+1 correct live predecessors, all of
which being disabled. It may even be that the accusation
of sj is blocked by m1, thus creating a loop preventing both
m1 and sj of being accused.

Fortunately, it can be shown that the probability of blocked
accusations is negligible. Formally, the probability of a
stopped node not being accused is upper bounded by:

P ≈ Pbyz + (1 − Pbyz)P
lnn
stopped)t+1

While the proof is outside the scope of this paper, a simula-
tion bears this out as well. In Figure 3, we show the results
of the following simulation. Initially, all members are cor-
rect and are present in all the views. At time T = 0, 75%
of the members stop, 20% of the remaining members be-
come Byzantine. In order to generate a worst-case scenario,
the correct members disable as many correct predecessors as
possible, and the Byzantine members do not emit any accu-
sations. The graph shows that even for large N , a relatively
small value for t makes blocked accusations highly unlikely.

4.6 Pinging
Members use pinging to detect failures. Essentially, a

member m1 monitors a member m2 by sending “ping” mes-
sages to m2 at regular intervals. Member m2 returns a
“pong” message for each ping that it receives. If m1 does
not receive pong messages from m2 for more than some time
period, m1 considers m2 stopped and issues an accusation.

A tricky detail is determining how long to wait before is-
suing an accusation. Using a static global timeout is not a
good choice, as this will not scale well and can cause correct
members to accuse other correct members more often than
necessary. In particular, the timeout period has to adapt to
the message loss characteristics between monitor and mon-
itoree.

In Figure 4, we present a simple but effective protocol
based on unreliable message passing. The members individ-
ually estimate the probability of message loss. We model
pinging as a negative binomial experiment with parame-
ters r = 1 and the probability of success p. Then the
expected number of consecutively failed ping exchanges is
E(X) = (1 − p)/p. It follows that p = 1/(E(X) + 1). We
estimate E(X) + 1 by avgLoss using exponential smooth-
ing. (The smoothing factor α is set to .999 in our current
implementation.)

Having p, we can calculate the probability of making τ
mistakes: (1 − p)τ . We want this probability to be smaller
than a configured constant Pmistake. It follows that τ >
log(Pmistake)/ log(1 − p).

If message loss is very low, τ would be set unrealistically
low, and if p = 1, the expression would be undefined. We
address both problems by having a minimum threshold τmin.

It follows that p should be set no higher than 1 − P
1/τmin

mistake.
Byzantine members could potentially prevent detection

of stopped members by forging pong messages. This is pre-
vented by having each ping message contain a nonce that
has to be signed by the monitoree and returned in the cor-
responding pong message. This strategy prevents both forg-
ing of pong messages and replay attacks, and this is why we
chose pinging over a heartbeat protocol.

Byzantine members can, however, generate a modest amount
of overhead on the system by not responding to ping mes-
sages from correct members, and rebutting the ensuing ac-
cusations. Such “nuisance attacks” are easily identifiable,

180

on time to ping m on ring r:

p = min(1/info(m).avgLoss, 1 − P
1/τmin

mistake); // est. probability of successful ping exchange
τ = log(Pmistake)/ log(1 − p); // calculate threshold
if (info(m).nPing > τ)

info(m).accusation = new Accusation(info(m).note, r, self.id);
else

send(m,new Ping(self.id));
info(m).nPing + +;

on receive Pong(m):
info(m).avgLoss = (α ∗ info(m).avgLoss + (1 − α) · (info(m).nPing));
info(m).nPing = 0;

Figure 4: Pinging protocol. Pmistake (probability of making a mistake), τmin (minimum threshold), and α
(smoothing factor), are configuration constants.

and such members can be manually removed by revoking
their public key certificates.6

5. GOSSIP PROTOCOL
A gossip protocol is a simple group communication proto-

col whereby each member periodically picks a random mem-
ber from its view and exchanges state information. Such
protocols are known to be highly robust, as they are es-
sentially flooding protocols. But unlike flooding protocols,
they are efficient with probabilistic bounds on delivery la-
tency [17]. In our particular situation, we have to concern
ourselves with Byzantine members.

Say we have two members m1 and m2 exchanging notes
and accusations. All notes and accusations are signed, and
because we assume that Byzantine members cannot break
the cryptographic building blocks, we do not have to worry
about impersonation attacks [9]. We have also assumed that
trivial Denial-of-Service attacks can be detected and sup-
pressed.

Byzantine members can still attack the gossip protocol in
the following two ways. In order to slow down dissemination,
they can neglect to forward recent updates. This slow-down
can be incorporated in the calculation of ∆. Byzantine mem-
bers can also pretend that they have no information, causing
correct members to transmit their entire state to them and
thus causing unnecessary load on the correct members and
on the network. In order to reduce the opportunities of
Byzantine members to launch this attack, we will consider
gossip protocols in which each member can only gossip with
a small subset of the membership.

5.1 Partial Membership Gossip
Kermarrec et al. [17] shows that it is possible to build ef-

fective gossip protocols if each member only has a small set
of uniformly chosen members it gossips with. Each member
m selects k gossip neighbors from its view uniformly at ran-
dom where k be large enough to create a connected graph of
correct nodes. A classic result of Erdös and Rényi [11] shows
that in a graph of n nodes, if the probability of two nodes
being connected is pn = (log n+c+o(1))/n, then the proba-
bility of the graph being connected goes to exp(− exp(−c)).

6Not discussed in this paper, a CRL can be reliable dissem-
inated using the gossip protocol.

The number of correct nodes in the view, n, is expected
to be at least (1−Pbyz) ·N , where Pbyz is a configured upper
bound on the probability that a live node is Byzantine, and
N is the total of the correct and the Byzantine nodes. Then
the probability that one node is connected to another is
1 − (1 − 1/N)k ≈ k/N . Thus pn ≈ 2k/N .7

In order for the correct nodes to be connected with prob-
ability ϕ, we obtain

k ≥
N

2n
·

„

log
−n

log ϕ
+ o(1)

«

Next we determine the resulting ∆, the time to dissemi-
nate an update in this random graph. To better preserve re-
sources, each member does not update all its k gossip neigh-
bors in each round, but instead selects one neighbor for each
round in a round-robin fashion. In order to simplify calcula-
tions, we will assume conservatively that it takes k rounds to
update all gossip neighbors, and thus the dissemination runs
a factor k slower than if all neighbors were updated in each
round. If dn is the diameter of the graph of correct nodes,
then the expected amount of time to disseminate an update
reliably among the correct nodes is therefore ∆ = k ∗ dn.

An asymptotic value for dn can be determined. A recent
result of Chung and Lu [5] shows that if npn → ∞ (which in
our case it does), then the expected diameter of our graph
is (1 + o(1)) log n

log npn

. Unfortunately, it does not provide the
constants needed to tune the gossip protocol.

In order to find suitable constants, we ran simulation ex-
periments with N ranging from 16 to 16, 384 for varying Pbyz

and with k chosen as above (ignoring the o(1) term), to de-
termine if the resulting graphs of correct nodes are indeed
connected and to obtain values for ∆. We ran each exper-
iment 100 times. We encountered no disconnected graphs
in any of our 3000 experiments. In Figure 5 we report the
maximum ∆ we observed for each N and Pbyz.

5.2 Pseudo-Random Mesh
The analysis of the gossip protocol above tacitly ignores

the possibility of a Byzantine member selecting more than k
neighbors in order to increase the overall load on the correct

7We assume here that every correct node can connect to
every other correct node. This assumption can be relaxed,
but pn has to be adjusted accordingly.

181

0

20

40

60

80

100

10 100 1000 10000

ro

un
ds

members

Pbyz = .25
Pbyz = .20
Pbyz = .15
Pbyz = .10
Pbyz = .00

Figure 5: The maximum of 100 simulation experi-
ments of the number of rounds required to dissemi-
nate an update to all correct members as a function
of the total number of live members for various Pbyz.
In these experiments, ϕ = .99999.

members. Also, Byzantine members could “gang up” on
a small set of correct members, overwhelming them with
gossip load [3]. In order to fight such attacks, we introduce
a rule that determines who can gossip with whom. We use
the same technique that we used in Section 4.2 to determine
who monitors whom, except that we use k rings.

On each ring, a member initiates gossip only with the first
successor in its view. For ring i, a member m sets up a secure
mutually authenticated connection with the successor mi

using their private and public keys. Member m then sends
m.note and i to mi, so that mi can add m to its view if
necessary and possible (existing accusations of m.note may
prevent this). Member mi checks that 1 ≤ i ≤ k and that
mi is m’s successor in mi’s view.

One complication is that even when m and mi are both
correct, they may have different views. In particular, mi

may know a “better” gossip neighbor ni for m that is not
in m’s view. If such is the case, mi sends ni’s note to m.
Should m have plausible accusations for ni, then it returns
those to mi and terminates the attempt to gossip. If no such
accusations exist, then m was unaware of ni. In that case
m adds ni to its view and tries to gossip with ni instead.

If at any point in time m should determine a better gos-
sip neighbor for ring i than mi, then m terminates the ex-
isting connection. Note that newly joining and recovering
members should gossip with at least t+1 different members
before they can be reasonably certain that they will be in-
tegrated into the “true” membership (as opposed to a fake
membership created by Byzantine members [29]).

The neighbors thus chosen form a convenient low-diameter
mesh that connects the correct members. Fireflies exposes
the set of neighbors in its API, so that applications can
gossip about information other than membership or use the
mesh for multicast dissemination (as discussed in Section 7.2).

6. EVALUATION
With some moderate assumptions, such as having the

graph of correct nodes be connected, we can formally prove
that all correct nodes will be included in the view of correct

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 50 100 150 200 250 300

no
te

s
/ h

ou
r

members

Ploss=.00
Ploss=.05
Ploss=.10
Ploss=.20

Figure 6: Number of notes sent per correct member
per hour as a function of the number of members
for various Ploss.

members and that stopped nodes will almost certainly be re-
moved from the views. In this section, we present the results
of experiments that validate the performance of Fireflies.

Our prototype implementation is written in Python. The
code can run both on a simulated network, or on a real net-
work. In all experiments below, we used t = 12, resulting in
25 rings. We used k = 8 (corresponding to ϕ = .999), mean-
ing that each member had about 16 neighbors for gossiping.
Each member gossiped once every 3.75 seconds on average
(resulting in one gossip per minute with every neighbor), al-
though the Fireflies code randomizes the intervals at which
a member gossips in order to prevent synchronized “waves”
of gossip. The probabilistic upper bound on the time for
gossip to spread, ∆, was chosen to be 5 minutes. Members
pinged each of their monitorees every 30 seconds.

We will first describe some experiments performed on the
simulated network, and then present experience gained from
a deployment of the code on PlanetLab [24].

6.1 Simulation
In order to trigger frequent mistaken failure detections,

we set Pmistake to .001. Both the MTTF (Mean Time To
Failure) and MTTR (Mean Time To Recovery) of the correct
members was set to 6 hours. The intervals between stopping
and going were exponentially distributed. The total number
of members N ranged from 16 to 256. Each experiment
ran for six simulation hours, and each experiment was run
at least eight times. The graphs below show averages and
95% confidence intervals, except where the intervals were
too small.

First we looked at the overhead in the absence of Byzan-
tine members. Figure 6 shows the average number of notes
sent (created or forwarded) per correct member per hour as
a function of the number of members for various Ploss, the
probability of message loss. In each case, we see a clear linear
trend as a function of the number of members, as expected.
Without loss, the expected number of notes is N/12, as on
average there is one recovery every 12 hours. With loss,
mistakes are made, leading to an increase in the number of
notes generated. Due to adaptive pinging this is almost, but
not completely, independent of Ploss. For example, for 5%
loss the rate of notes sent is higher than for 10% loss. The

182

 0

 50

 100

 150

 200

 250

 300

 0 50 100 150 200 250 300

ac
cu

sa
tio

ns
 /

ho
ur

members

Ploss=.00
Ploss=.05
Ploss=.10
Ploss=.20

Figure 7: Number of accusations sent per correct
member per hour as a function of the number of
members for various Ploss.

 0

 100

 200

 300

 400

 500

 0 50 100 150 200 250 300

ac
cu

sa
tio

ns
 /

ho
ur

members

Pbyz=0
Pbyz=.1 pass
Pbyz=.1 aggr
Pbyz=.2 pass
Pbyz=.2 aggr

Figure 8: Number of accusations sent per correct
member for various Pbyz and styles of attack.

differences are due to rounding of τ , the pinging threshold
above which a failure is assumed. The effect is that sig-
nificantly fewer mistakes may be made than specified with
Pmistake.

Figure 7 shows the average number of accusations sent
per correct member per hour as a function of the number of
members for various Ploss. Because accusations can be made
on multiple rings, these rates are higher than for notes, but
they do not depend much on the message loss probability.
Partially this is due to the success of our adaptive pinging
protocol, but it is also due to the dissemination of a mistaken
accusation being squelched by the ensuing rebuttal.

Next we introduced Byzantine members. We varied Pbyz

from 0 to 0.2. We looked at two types of attacks. One is
an “aggressive attack,” where Byzantine members accused
other members at any opportunity, and refrain from for-
warding notes (rebuttals) from these members. The other
is a “passive attack,” where Byzantine members never ac-
cuse stopped members, and do not forward accusations of
stopped members, in an effort to make stopped members
appear correct. Neither style of attack was successful in any
of our tests. Figure 8 shows the average number of accusa-

tions sent by correct members for various Pbyz and styles of
attack. The attacks had a moderate effect on traffic gener-
ated, but the amount stayed well within a factor of two of
the case in which there were no Byzantine attacks.

6.2 Experience on PlanetLab
PlanetLab [24] is a world-wide collection of over 600 ma-

chines at over 275 sites connected to the Internet in 30 coun-
tries. PlanetLab can be used to test new scalable protocols
and to deploy novel distributed services. We first deployed
Fireflies on PlanetLab in early February 2005, and found
the experience useful to find pragmatic problems and test
solutions. However, the overheads we measured, some of
which are presented below, are specific to PlanetLab only.

In this section we describe our experiments and indicate
where further work on Fireflies is needed. Our prototype
implementation uses TCP for gossip but UDP for pinging
as our adaptive pinging protocol needs to determine when
messages get lost.

While the majority of PlanetLab nodes tend to be fairly
well-connected, some of the nodes are very heavily loaded,
to the point of making some of these nodes effectively un-
reachable. Other nodes are only partially reachable, either
due to configuration problems or due to heavy packet loss.
For example, some nodes cannot send or receive UDP mes-
sages. This has two consequences for Fireflies. First, a node
that cannot receive UDP packets will accuse its successors,
even if they are correct. This is not a problem, as these
successors will use their enabled bitmaps to disable the cor-
responding rings. Second, such a node will be accused by
its predecessors. The accusations are effectively rebutted,
and this accused member is not removed from the views as
long as it is able to gossip new notes (using TCP). Unfor-
tunately, the member cannot disable all rings (which would
have its own problems), leading to a continuous background
gossip of accusations and rebuttals. Besides a communica-
tion overhead on the network, these superfluous messages
increase the load on machines.

6.3 Measurement Study
We now describe the results of one of our recent Planet-

Lab experiments, run February 24, 2006. The parameters
were set the same as in the simulations above, except that
Pmistake was set to a more sensible .00001. For signatures we
used SHA1 and RSA with 1024 bit keys. This resulted in a
public key certificate of 163 bytes, a note of 49 bytes, and
an accusation of 52 bytes.

Each time a member m1 gossips with member m2, they
first exchange a collision-resistant hash of their sets of notes
and accusations. If they are different, a full state reconcili-
ation is done using the algorithm described in [22].

The experiment started with Fireflies agents running on
280 PlanetLab machines. During the experiment about 10
of those machines became unresponsive and fell out of the
experiment. 10% of the Fireflies agents were configured
to mount false accusations aggressively (chosen randomly),
while another 10% where configured to mount a passive at-
tack, not accusing and not forwarding accusations for failed
members. At 7pm, we terminated 80 of the Fireflies agents,
chosen randomly. At 7am, we restarted the agents.

Each agents writes a checkpoint to its log every 10 sec-
onds. If an agent has not written a checkpoint to its log
during a 2 minutes period of the experiment it is considered

183

 160

 180

 200

 220

 240

 260

 280

 300

00:00
26 Feb

18:0012:0006:0025 Feb18:0012:0006:0000:00
 24 Feb

m

em
be

rs

time (EST)

(a)

 0

 0.04

 0.08

 0.12

 0.16

 0.2

 0.24

 0.28

00:00
26 Feb

18:0012:0006:0025 Feb18:0012:0006:0000:00
 24 Feb

ac
cu

sa
tio

ns
 /

s

time (EST)

total
Byzantine

(b)

 0

 100

 200

 300

 400

 500

 600

00:00
26 Feb

18:0012:0006:0025 Feb18:0012:0006:0000:00
 24 Feb

ba
nd

w
id

th

time (EST)

max
mean

(c)

Figure 9: PlanetLab results: (a) size of the membership; (b) # accusations / second; (c) # bytes written per
member per second.

failed in that period. The number of live agents in each time
period is shown in Figure 9(a). We can observe that there
is a fair bit of membership churn not under our control.

Figure 9(b) shows the aggregate rate of accusations cre-
ated per second, divided into total and false accusations
from Byzantine members. Two peaks can be clearly distin-
guished: when the agents are terminated, and when they
are restarted. The first peak is obvious: the terminated
agents are accused. The second peak is caused by several
rejoining agents becoming unresponsive due to some heavily
loaded PlanetLab machines’s inability to accommodate the
extra CPU and network overhead incurred when reintegrat-
ing the recovering agents into the membership. Accidental
accusations from correct members gives aggressive Byzan-
tine members opportunities to issue new false accusations,
adding to the temporary flurry of communication.

Figure 9(c) shows the mean and maximum number of
bytes sent per correct member per second. The bandwidth
follows the rate of accusations, but is never above 500 bytes
per member per second. The various peaks are caused by
real failures. We have witnessed in our experiments various
unexpected behavior on PlanetLab nodes. Sometimes the

local file system on a node disappears or runs out of disk
space, preventing logs to be written. Sometimes nodes are
wrongly configured with an unroutable IP address. Some-
times nodes become unaccessible due to network outages,
CPU overload, or, rarely, actual crashes. There have even
been bugs in Fireflies agents causing them to crash or be-
have erratically. But the Fireflies infrastructure as a whole
has survived all of these problems.

7. CURRENT APPLICATIONS
There are clear limitations to what Fireflies can offer.

Byzantine members can disguise themselves as correct mem-
bers by executing the protocol, or as stopped members by
not executing at all, and so a correct member cannot de-
termine which members are Byzantine unless they reveal
themselves by sending messages that prove that they are
not following the protocol. Also, views trail membership
changes, and may be stale at any time. The question then
is how Fireflies can be useful.

In this section, we provide examples of using Fireflies for
building intrusion-tolerant network overlays. In particular,

184

we show how Fireflies is used to support a Distributed Hash
Table and a multicast protocol.

7.1 DHT
DHTs that are intrusion-tolerant are increasingly neces-

sary. For example, the P6P overlay protocol is an IPv6 tun-
neling technology built over a DHT, and requires that links
between correct members are fair [33]. An intrusion-tolerant
DHT can be trivially implemented on Fireflies, simply by
routing messages for an object identifier to the member in
the view with the closest member identifier (assuming object
and member identifiers are chosen from the same identifier
space). Such an implementation is called a One Hop DHT
(OHDHT),8 as messages are not routed through intermedi-
ate members.

Other DHTs provide its members with only a partial view
of the membership in order to increase scalability, and mes-
sages sent between members often take multiple hops. In a
OHDHT, messages are less likely to get lost or intercepted
along the way and encounter lower latency.

7.2 Multicast
A more interesting use of Fireflies is to build an intrusion-

tolerant multicast protocol. For example, the Vigilante worm
containment system [6] assumes a hypothetical intrusion-
tolerant multicast primitive. Our protocol is heavily based
on Chainsaw [23], which floods each message on the neighbor
mesh. Flooding is done efficiently: when a member receives
a large message, it notifies its neighbors only of the message
identifier. Each member collects such notifications from its
neighbors and requests the message from one. If no response
is received within a short period of time, another neighbor
is selected (see below). Measurements on Chainsaw have
shown that this protocol is as efficient as the best multicast
protocols based on DHTs [23], and the measurements of our
version of the protocol support this as well.

Because the neighbor mesh connects all correct members,
a message from a correct member is guaranteed to be deliv-
ered to all correct members. In order to prevent forging and
prevent forwarding of illicit traffic, members sign messages
and check signatures before accepting received messages.
Correct members prefer uploading messages to neighbors
from which they recently received a message. This strategy
has two positive effects. First, it avoids using links to Byzan-
tine members that are not forwarding messages. Second, it
discourages freeloading. A paper that describes and eval-
uates our multicast protocol in the presence of Byzantine
members and free-loaders is forthcoming.

As an alternative to using a pseudo-random mesh, Fire-
flies’ complete membership information could be used to
build Harary graphs [16], which can tolerate a fraction of
Byzantine nodes and can thus form the basis of a secure
broadcast protocol [20].

8. CONCLUSION
We presented Fireflies, a weakly-consistent, scalable pro-

tocol that supports network overlays and tolerates Byzan-
tine members with high probability. Fireflies may be used
to support an intrusion-tolerant Distributed Hash Table, or
for building intrusion-tolerant overlay routing networks, or

8Not to be confused with an O(1) hop DHT, although OHD-
HTs are a member of that class.

simply to organize computer resources in, say, a wide-area
computational or storage grid.

Fireflies consists of three subprotocols. First, an adap-
tive pinging protocol makes the probability of a mistaken
failure detection independent of message loss. Second, an
intrusion-tolerant gossip protocol disseminates information
between correct members within a probabilistic time bound.
Third, the membership protocol uses accusations and rebut-
tals to implement the membership information that Fireflies
provides, and which in turn induces a pseudo-random mesh
that can be used for overlay routing.

Our evaluation shows that, at least for moderately sized
memberships, Fireflies performs well. As the rate of fail-
ures and recoveries tends to grow linearly with the size of
membership, the amount of information received per mem-
ber has to grow at least linearly as well. We show that the
amount sent (point-to-point) per correct member grows lin-
ear with the churn rate, almost independent of the behavior
of Byzantine members (with a relative membership of up to
20%). The observed overheads for memberships up to about
280 members are low, and we believe that Fireflies will be
able to scale up to another order of magnitude without dif-
ficulty.

Availability
The code (including the simulation code) is available on
SourceForge (http://sourceforge.net/projects/fireflies).

Acknowledgements
The paper was significantly improved using suggestions from
the anonymous Eurosys reviewers, from Dag Johansen, and
from our shepherd, Christof Fetzer.

9. REFERENCES
[1] A. Adya, W.J. Bolosky, M. Castro, G. Cermak,

R. Chaiken, J.R. Douceur, J. Howell, J.R. Lorch,
M. Theimer, and R.P. Wattenhofer. FARSITE:
Federated, Available, and Reliable Storage for an
Incompletely Trusted Environment. In Proc. of the
5th Symp. on Operating Systems Design and
Implementation, Boston, MA, December 2002.
USENIX.

[2] T. Anker, G.V. Chockler, D. Dolev, and I. Keidar.
Scalable group membership services for novel
applications. In M. Mavronicolas, M. Merritt, and
N. Shavit, editors, Proc. of the Workshop on Networks
in Distributed Computing, pages 23–42. DIMACS,
1998.

[3] G. Badishi, I. Keidar, and A. Sasson. Exposing and
eliminating vulnerabilities to Denial of Service attacks
in secure gossip-based multicast. In Proc. of the
International Conference on Dependable Systems and
Networks (DSN), pages 201–210, June – July 2004.

[4] M. Castro, P. Druschel, A. Ganesh, A. Rowstron, and
D.S. Wallach. Secure routing for structured
peer-to-peer overlay networks. In Proc. of the 5th
Usenix Symposium on Operation System Design and
Implementation (OSDI), Boston, MA, December 2002.

[5] F. Chung and L. Lu. The diameter of random sparse
graphs. Advances in Applied Math, 26(4):257–279,
May 2001.

[6] M. Costa, J. Crowcroft, M. Castro, A. Rowstron,
L. Zhou, L. Zhang, and P. Barham. Vigilante:

185

http://sourceforge.net/projects/�re
ies

End-to-end containment of Internet worms. In Proc.
of the 20th ACM Symp. on Operating Systems
Principles, Brighton, UK, October 2005.

[7] A. Das, I. Gupta, and A. Motivala. SWIM: Scalable
Weakly-consistent Infection-style process group
Membership. In Proc. of the Int. Conf. on Dependable
Systems and Networks DSN O2, pages 303–312,
Washington, DC, June 2002.

[8] A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson,
S. Shenker, H. Sturgis, D. Swinehart, and D. Terry.
Epidemic algorithms for replicated database
maintenance. In Proc. of the 6th ACM Symp. on
Principles of Distributed Computing, pages 1–12,
Vancouver, BC, August 1987.

[9] J. Douceur. The Sybil attack. In Proc. of the 1st Int.
Workshop on Peer-to-Peer Systems, Cambridge, MA,
March 2002.

[10] J.R. Douceur and J. Howell. Byzantine fault isolation
in the Farsite distributed file system. In Proc. of the
5th Int. Workshop on Peer-To-Peer Systems, Santa
Barbara, CA, February 2006.

[11] P. Erdös and A. Rényi. On the evolution of random
graphs. Magyar Tud. Akad. Mat. Kutato Int. Közl,
5(17):17–61, 1960.

[12] M.J. Freedman, I. Stoica, D. Mazières, and
S. Shenker. Group therapy for systems: Using link
attestations to manage failures. In Proc. of the 5th
Int. Workshop on Peer-To-Peer Systems, Santa
Barbara, CA, February 2006.

[13] A.J. Ganesh, A.-M. Kermarrec, and L. Massoulié.
SCAMP: Peer-to-peer lightweight membership service
for large-scale group communication. In Proc. of the
3rd International Workshop on Networked Group
Communication, London, UK, November 2001.

[14] A. Gupta, B. Liskov, and R. Rodrigues. One hop
lookups for peer-to-peer overlays. In Proc. of the 9th
Workshop on Hot Topics in Operating Systems
(HotOS-IX), pages 7–12, Lihue, HI, May 2003.

[15] A. Gupta, B. Liskov, and R. Rodrigues. Efficient
routing for peer-to-peer overlays. In Proc. of the 1st
Symp. on Networked Systems Design and
Implementation, San Francisco, CA, March 2004.

[16] F. Harary. The maximum connectivity of a graph. In
Proc. of the National Academy of Sciences, volume 48,
pages 1142–1146, 1962.

[17] A.-M. Kermarrec, L. Massoulié, and A.J. Ganesh.
Probabilistic reliable dissemination in large-scale
systems. IEEE Transactions on Parallel and
Distributed Systems, 14(3), March 2003.

[18] J. Kubiatowicz, D. Bindel, Y. Chen, P. Eaton,
D. Geels, R. Gummadi, S. Rhea, H. Weatherspoon,
W. Weimer, C. Wells, and B. Zhao. Oceanstore: An
architecture for global-scale persistent storage. In
Proceedings of the 9th International Conference on
Architectural Support for Programming Languages and
Operating Systems. ACM, November 2000.

[19] C.S. Lewis and L. Saia. Scalable byzantine agreement.
Technical report, CS Dept., University of New Mexico,
2004.

[20] M.-J. Lin, K. Marzullo, and S. Masini. Gossip versus
deterministically constrained flooding on small
networks. In Proc. of the 14th Int. Conf. on

Distributed Computing, volume 1914 of Lecture Notes
in Computer Science, pages 253–267. Springer, 2000.

[21] D. Malkhi, Y. Mansour, and M.K. Reiter. On diffusing
updates in a Byzantine environment. In Symposium
on Reliable Distributed Systems, pages 134–143,
Lausanne, Switzerland, October 1999.

[22] Y. Minsky, A. Trachtenberg, and R. Zippel. Set
reconciliation with nearly optimal communication
complexity. IEEE Transactions on Information
Theory, 49(9):2212–2218, September 2003.

[23] V. Pai, K. Kumar, K. Tamilmani, V. Sambamurthy,
and A.E. Mohr. Chainsaw: Eliminating trees from
overlay multicast. In Proc. of the 4th Int. Workshop
on Peer-To-Peer Systems, Ithaca, NY, February 2005.

[24] L. Peterson, S. Shenker, and J. Turner. Overcoming
the Internet impasse through virtualization. In Third
Workshop on Hot Topics in Networking (HotNets-III),
San Diego, CA, November 2004.

[25] P. Pietzuch, J. Shneidman, J. Ledlie, M. Welsh,
M. Seltzer, and M. Roussopoulos. Evaluating
DHT-based service placement for stream-based
overlays. In Proc. of the 4th Int. Workshop on
Peer-To-Peer Systems, Ithaca, NY, February 2005.

[26] K. Potter Kihlstrom, L.E. Moser, and P.M.
Melliar-Smith. The SecureRing protocols for securing
group communication. In Proc. of the the 31st Hawaii
Int. Conf. on System Sciences, volume 3, pages
317–326, Kona, HI, January 1998.

[27] M.K. Reiter. A secure group membership protocol.
IEEE Transactions on Software Engineering,
22(1):31–42, January 1996.

[28] R. Rodrigues and C. Blake. When multi-hop
peer-to-peer routing matters. In Proc. of the 3rd Int.
Workshop on Peer-to-Peer Systems, La Jolla, CA,
February 2004.

[29] A. Singh, M. Castro, P. Druschel, and A. Rowstron.
Defending against Eclipse attacks on overlay networks.
In Proc. of the 11th European SIGOPS Workshop,
Leuven, Belgium, September 2004. ACM.

[30] E. Sit and R.T. Morris. Security considerations for
peer-to-peer distributed hash tables. In Proc. of the
1st Int. Workshop on Peer-To-Peer Systems,
Cambridge, MA, March 2002.

[31] R. van Renesse, Y. Minsky, and M. Hayden. A
gossip-style failure detection service. In Proc. of
Middleware’98, pages 55–70, The Lake District, UK,
September 1998. IFIP.

[32] S. Voulgaris, D. Gavidia, and M. van Steen.
CYCLON: Inexpensive membership management for
unstructured P2P overlays. Journal of Network and
Systems Management, 13(2), June 2005. Special issue
on Self-Managing Systems and Networks.

[33] L. Zhou and R. van Renesse. P6P: A peer-to-peer
approach to Internet infrastructure. In Proc. of the
3rd Int. Workshop on Peer-To-Peer Systems, San
Diego, CA, February 2004.

186

SecureStream: An Intrusion-Tolerant Protocol

for Live-Streaming Dissemination

Maya Haridasan

Department of Computer Science, Cornell University

Robbert van Renesse

Department of Computer Science, Cornell University

Abstract

Peer-to-peer (P2P) dissemination systems are vulnerable to attacks that may im-
pede nodes from receiving data in which they are interested. The same properties
that lead P2P systems to be scalable and efficient also lead to security problems
and lack of guarantees. Within this context, live-streaming protocols deserve spe-
cial attention since their time sensitive nature makes them more susceptible to the
packet loss rates induced by malicious behavior. While protocols based on dissem-
ination trees often present obvious points of attack, more recent protocols based
on pulling packets from a number of different neighbors present a better chance of
standing attacks. We explore this in SecureStream, a P2P live-streaming system
built to tolerate malicious behavior at the end level. SecureStream is built upon
Fireflies, an intrusion-tolerant membership protocol, and employs a pull-based ap-
proach for streaming data. We present the main components of SecureStream and
present simulation and experimental results on the Emulab testbed that demon-
strate the good resilience properties of pull-based streaming in the face of attacks.
This and other techniques allow our system to be tolerant to a variety of intrusions,
gracefully degrading even in the presence of a large percentage of malicious peers.

Key words: Content dissemination, multicast, live-streaming, intrusion-tolerance

1 Introduction

Access to multimedia contents over the network now accounts for a large

fraction of Internet traffic. This has been possible in great part because of

peer-to-peer (P2P) content distribution tools, which allow the distribution

of popular data to a large number of interested users. One popular style of

Preprint submitted to Elsevier 31 March 2007187

content distribution maps the problem to file sharing, where data is fully

available prior to the dissemination. The main goal in file sharing is that all

nodes receive the entire data within as little time as possible.

In this work, we are focused on a second scenario, P2P live-streaming, where

data should be disseminated as it is generated. This style of distribution is

useful to broadcast live events in close to real time and also to broadcast tele-

vision over the web. In China, for example, live-streaming has become very

popular, where participating peers’ upload bandwidth is used to simultane-

ously propagate several channels to thousands of users [1].

Streaming to a large number of clients would be prohibitively expensive if

the service provider should have enough bandwidth to satisfy all the clients.

Several P2P multicast protocols which rely on users’ upload resources have

been proposed and widely studied as an appealing alternative to IP multicast,

and previous work has shown that it can indeed be as efficient as IP multicast

[2–5,1,6,7]. By having peers contribute to the streaming, anyone may start

their own streaming session to any number of clients. Significant progress has

been made, but little attention has been dedicated to the issue of security in

such systems.

In this paper we target live-streaming, where malicious behavior can prevent

nodes from receiving correct packets in time, and can therefore be severely

disruptive. To illustrate the problem, we looked into the effects of one par-

ticular type of attack when using a single dissemination tree with varying

branching factors and when using the more elegant SplitStream approach [4].

SplitStream is a robust and fair P2P system in which data is broken into

several slices and each slice is propagated through a different dissemination

tree.

As a measure of resilience, we compute the continuity index of a streaming

session, which is the ratio of packets received by a peer within acceptable

time. Through simulation we computed the minimum continuity index across

participants for sessions with a thousand homogeneous nodes and varying

ratios of malicious peers not forwarding packets.

In Figure 1, we present simulation results of the average and minimum conti-

nuity index across nodes for sessions with a thousand homogeneous nodes and

various ratios of malicious peers not forwarding packets. In these experiments,

attackers download data from their parents but do not forward it to their chil-

dren. In the case of single trees, most certainly malicious behavior will prevent

individual nodes from receiving any packet even with as low as 5% malicious

members. SplitStream presents better resilience, but the damage incurred to

individual nodes is still very visible.

We built SecureStream, which employs several techniques that reduce the

2 188

 0

 0.2

 0.4

 0.6

 0.8

 1

0.250.200.150.100.050.0

C
on

tin
ui

ty
 In

de
x

Ratio of malicious peers

BF = 2
BF = 4
BF = 8

BF = 16

(a) Single Tree - Average CI

 0

 0.2

 0.4

 0.6

 0.8

 1

0.250.200.150.100.050.0

C
on

tin
ui

ty
 In

de
x

Ratio of malicious peers

2 slices
4 slices
8 slices

16 slices

(b) SplitStream - Average CI

 0

 0.2

 0.4

 0.6

 0.8

 1

0.250.200.150.100.050.0

C
on

tin
ui

ty
 In

de
x

Ratio of malicious peers

BF = 2
BF = 4
BF = 8

BF = 16

(c) Single Tree - Minimum CI

 0

 0.2

 0.4

 0.6

 0.8

 1

0.250.200.150.100.050.0
C

on
tin

ui
ty

 In
de

x
Ratio of malicious peers

2 slices
4 slices
8 slices

16 slices

(d) SplitStream - Minimum CI

Fig. 1. Expected minimum and average continuity indices across all correct members
under omission attacks.

opportunity for an attacker to compromise the quality of a streaming ses-

sion, without incurring a high computational or network overhead. To repel

forgery attacks, we employ an efficient packet authentication technique based

on computing and distributing verification digests. To prevent attacks on the

overlay structure (the membership protocol on top of which multicast systems

operate), SecureStream is built upon Fireflies, a scalable one-hop Byzantine

membership protocol [8]. Fireflies is a probabilistic protocol, in which mem-

bers are presented with a reasonably current view of which members are live

or not.

To achieve tolerance to denial-of-service attacks, SecureStream uses a pull-

based packet dissemination approach, similar to the one used by the Cool-

Streaming [1] and Chainsaw protocols [6]. This approach is attractive because

it offers participants a choice among multiple candidate packet sources. Be-

cause participants are not dependent on any particular peer and can immedi-

ately react to failures or attacks, attacks are less damaging.

Finally, we explore the use of auditing techniques that applied to SecureStream

can help further alleviate the effects of malicious behavior, while incurring

limited additional costs. We propose employing a variable threshold for node

contribution, punishing peers who do not upload at least as much data as

defined by the threshold.

This paper makes a few important contributions. We present a highly scalable

3 189

live-streaming P2P protocol that can tolerate end system attacks. We leverage

previous work and present a comparison of different authentication protocols

for signing and verifying packets efficiently in the context of application level

multicast. We also evaluate the effects of pull based protocols in the presence

of internal malicious peers. Finally, we study the potential of auditing as a

mechanism for encouraging node contribution.

The rest of the paper is organized as follows. In Section 2, the system model

and assumptions are presented, including a list of possible attacks to P2P

streaming systems. A description of the main techniques we employed in build-

ing SecureStream is presented in Section 3. In Section 4 results of the exper-

imental evaluation of the resilience to malicious behavior are presented and

analyzed. Section 5 presents related work, and Section 6 concludes.

2 System Model

Our model of the system assumes the existence of one source, assumed non-

compromised, disseminating data at a fixed rate to a set of receivers with

limited buffering capacity. All nodes have similar download and upload ca-

pacities, slightly larger than the download rate. The desired behavior is that

the streamed data be received within a fixed latency relative to the source’s

original transmission.

The term security in the context of content dissemination protocols requires

further definition. According to [9] multicast systems may have different re-

quirements: secrecy means that only multicast group members (and all of

them) should be able to decipher transmitted data; authenticity means that

each group member can recognize whether a message was sent by a group

member and make sure that the data was not modified in any way; anonymity

implies that identity of group members should be kept secret from outsiders

or from other group members; non-repudiation states that receivers of data

should be able to prove to third parties that the data has been transmitted;

access control means that it should be possible to control the group member-

ship; and finally, service availability means that the system should be always

up.

Not all applications require secrecy and anonymity of data, hence we are not

concerned with these properties. On the other hand, we believe authenticity,

non-repudiation and access-control are essential. We assume that the origi-

nal data is non-compromised, and therefore implicitly achieve data integrity

through authenticity. Our primary focus is on guaranteed availability, namely

mechanisms that prevent nodes from being isolated or severely harmed during

a streaming session. We expect the system to repel external attacks and tol-

4 190

erate a limited fraction of internal Byzantine nodes, and to degrade gracefully

as the fraction of Byzantine nodes increases.

SecureStream is an application-level streaming system, and only attacks to

the end system hosts are addressed in this work. Attacks on the underlying

network infrastructure and low-level denial-of-service attacks are thus beyond

the scope of this work.

2.1 Byzantine Behavior

We model all forms of deviation from the original protocol as byzantine behav-

ior. These deviations may be due to node failures, node selfishness or purely

malicious intents. Attacks may originate outside the system or be internal,

and attackers may compromise nodes and then work in cooperation with these

faulty internal peers. One important observation is that we opted for modeling

selfishness as a byzantine behavior, and to assume that most nodes typically

follow the given protocol.

To the best of our knowledge, there has been no evaluation on the percentage

of selfish behavior in live-streaming systems, unlike with file sharing systems,

and the properties of these systems are significantly different. Since nodes are

only required to upload while the streaming session is occurring, it is our belief

that few nodes would opt for deviating from the proposed protocol.

The simplest form of internal attacks are those in which a single node is

compromised. The extent of harm that results depends on many factors, such

as the multicast protocol being used and the location of the malicious node

in the overlay. These effects can be localized and minimized if the protocol in

use has no single points of failure. On the other hand, vulnerable systems like

those based on a single dissemination tree can be crippled if a node high in

the tree is compromised.

Collusion attacks pose much more complex problems; in these, an attacker

compromises a set of nodes and exploits them to perform a coordinated attack

to the system, and may orchestrate the attack to confound whatever defensive

mechanisms are built into the dissemination infrastructure.

For the work presented here, we make several assumptions about compromised

members. They do not have sufficient computational power to break crypto-

graphic building blocks, and cannot forge public key certificates or signatures

of correct or stopped members. A classification of the types of attacks that we

address in our system is presented below.

Membership attacks: The system may be attacked by compromising the

5 191

underlying overlay or membership protocol on which it runs. For example,

systems that run on top of ring-based overlays are vulnerable to eclipse

attacks [10], in which an attacker controls a large fraction of the neighbors

of correct nodes, preventing correct overlay operation. Malicious nodes may

also mimic flaky but correct members, or accuse other correct members of

being down.

Forgery: In this category we include all attacks that involve fabrication and

tampering of data being streamed in the system. Given time, these attacks

can be easily avoided by use of a public key infrastructure. However, in the

context of streaming the cost of signatures can become prohibitively high,

forcing us to consider other kinds of data authentication protocols.

Denial-of-service (DoS) Attacks: Attacks in which malicious nodes over-

load peers with requests for packets or large amounts of duplicate packets,

or other attacks that might compromise their ability to contribute to the

streaming session.

Omission Attacks: Given our emphasis on low-latency data delivery, send-

omission is an especially serious type of attack. By not forwarding all or part

of the packets, a malicious node may disrupt overall system’s availability.

The main problem with this kind of attack is that a node’s guilt cannot be

easily proved.

3 Steps to Intrusion-Tolerant live-streaming

SecureStream employs a set of techniques to achieve resilience to the attacks

previously mentioned. We use an intrusion-tolerant membership protocol to

tolerate attacks to the membership layer. We also employ an efficient technique

for avoiding forgery of packets by malicious peers. By employing a pull-based

streaming protocol and imposing a structure to define what peers are allowed

to communicate with one-another, we can avoid high-level DoS attacks and

tolerate omission attacks. We also explore the potential of auditing as a tool

for detecting malicious behavior. In this section, we describe these main com-

ponents in further detail.

3.1 Presenting nodes with a correct view of live members

Peers in SecureStream use the membership knowledge provided by the Fire-

flies protocol to track the status of other peers. Fireflies is composed of three

subprotocols: a pinging protocol is used to detect failures of nodes with an

accuracy independent of message loss; an intrusion-tolerant gossip protocol is

used for dissemination of information between correct members with proba-

bilistic time bound ∆; and a membership protocol uses accusations and rebut-

6 192

E

F

CA

A

A B

B

C

C
D

D

D

E

E

F

F

G

G

G

B

A

AA

B

D

F

F

E

G

Fig. 2. In Fireflies multiple rings are used to define which peers monitor each other:
A monitors B, D and F, and is monitored by E, F and G.

tals to implement the membership information that Fireflies provides. These

components are briefly described below.

Members monitor each other for failure using an adaptive pinging protocol.

Members do not use a static global timeout when waiting for the replies of

ping messages, but rather estimate the probability of message loss and try to

adapt to the message loss characteristics between monitor and monitoree.

Members are organized into rings, and their position on each ring depends on

their identifier. These rings determine which nodes monitor, and are allowed to

accuse, which other nodes (Figure 2). On each ring, each member mi monitors

the lowest ranked successor mj that it believes to be live, and if it detects a

failed node, it issues an accusation for that node.

When an accusation for a member mi is received by a member mj, mj waits a

time period of length 2∆, and then removes mi from its view if the accusation

is valid. This time period is established so that an accused member may issue

a new note (a rebuttal) to an accusation against itself. In order to avoid ma-

licious nodes from abusively accusing its correct neighbors in the rings, nodes

may invalidate up to t rings, implying that accusations issued by its neigh-

bors on those rings will not be accepted as valid by any correct member. All

notes and accusations are signed, and a certification authority is responsible

for issuing private/public key pairs and public key certificates.

The dissemination of information such as accusations and rebuttals is per-

formed using a robust gossip protocol. Each member periodically picks a ran-

dom member from its view to exchange state information. The multiple ring

structure induces a gossip mesh resilient to malicious attacks.

3.2 Ensuring Integrity of Data

One second important aspect which needs to be satisfied is that the data being

distributed is correct. Several authentication protocols have been proposed for

7 193

P1 P2 P3 Pn

Digest

Hash 2(P)Hash 1(P) Hash 3(P) Hash n(P)

{ }
Sender key

Fig. 3. In the linear digests’ approach, packets’ hashes are computed and combined
into a single digest packet, which is then signed by the sender.

the general multicast paradigm, originally intended for IP Multicast. The stan-

dard point-to-point mechanism of appending a message authentication code

(MAC) computed using a shared key does not meet the security requirements

of a multicast session. If receivers and sender share the same key, any receiver

would be able to forge messages. On the other hand, signing every packet

using a traditional asymmetric cryptographic protocol induces high overhead,

and is therefore not feasible.

Signing a packet consists of computing the hash of the contents of the packet

using a secure hash function, and then signing the hashed value using the

sender’s private key. Variations in the packet size do not significantly con-

tribute to the costs since computing the hash of packets is a cheap operation

compared to the signature/verification operation. The choice of key size to be

used is directly related to how crucial it is that the key be secret for a long

time, and it is often recommended that keys of size 2048 or larger be used.

To avoid signing and verifying every packet, we group the hashes of n packets

into a special message, and have it signed by the source (we call this approach

linear digests)(Figure 3). The signed message needs to be sent to the receivers

prior to the dissemination of data that it corresponds to. This implies in

buffering of content on the source prior to the dissemination of data. The

advantage is that this approach incurs the minimal network overhead of one

hash per packet, while amortizing the cost of a single signature/verification

operation over n packets.

Other approaches have been proposed to address the high costs of authenti-

cating packets in a flow [11–15]. Wong and Lam [11] propose that the source

compute the hashes of a limited number n of consecutive packets in the stream,

and use them as leaves in a Merkle Tree where each internal node consists of

the hash of its children. Each packet is verifiable upon receipt, since it is ap-

pended with the signed root node and the hashes of all needed interior nodes

in the path from the root to itself in the Merkle Tree.

In graph-based authentication [13,16,17,14], the source only signs one packet,

and the following packets in the stream are linked to it through hash chains

that allow them to be verifiable. To tolerate packet loss, a graph is used instead

of a single chain. Packets are represented by vertices in the graph, and a

8 194

 0

 500

 1000

 1500

 2000

10521

Si
gn

at
ur

e
ov

er
he

ad
 (m

s)

Packet Size (Kb)

Full signature/verification
Linear digests

Merkle tree digests
Graph based digests

(a) Signature overhead

 0

 50

 100

 150

 200

 250

 300

 350

10521

V
er

ifi
ca

tio
n

ov
er

he
ad

 (m
s)

Packet Size (Kb)

Full signature/verification
Linear digests

Merkle tree digests
Graph based digests

(b) Verification overhead

Fig. 4. Computational overheads per second when transmitting 300 Kb/s using
varying packet sizes.

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

10521

N
et

w
or

k
ov

er
he

ad
 (K

B
/s

)

Packet Size (Kb)

Full signature/verification
Linear digests

Merkle tree digests
Graph based digests

Fig. 5. Overheads per second when transmitting 300 Kb/s using varying packet
sizes.

directed edge between nodes that represent packets Pi and Pj indicates that

packet Pj contains the hash of packet Pi. A packet corresponding to a node

can be authenticated if there is a path of already verified packets between the

node and the source node of the graph.

The computational costs at the source and receivers are presented in Fig-

ures 4(a) and 4(b) and the network overheads for different authentication

approaches when streaming 300 Kb/s are presented in Figure 5. We compared

4 techniques: signing and verifying every packet, linear digests, Merkle tree

digests and a simple scheme of graph-based authentication. The code used for

the evaluation was written in Python and executed on a Linux-based Pentium

III 850 Mhz with 256 Mb RAM. Linear digests yield the lowest computational

costs. Although the Merkle Tree approach is appealing due to its immediate

verifiability, its network overhead is the highest, since one signature and a few

hashes need to be appended to each packet in the flow.

When the packet sizes are large, which reduces the rate of packets per second,

the computational costs of the three latter techniques are not significantly

different. We therefore used linear digests since it minimizes network overhead

and is the simplest technique. Our experience indicated that when using pull

based streaming, keeping the rate of packets per second larger or equal to 30

yields good results, and reducing it further affects the quality of the streaming.

9 195

3.3 Allowing nodes to recover from malicious neighbors

We employ a pull-based approach to disseminate packets, following ideas used

in the Chainsaw protocol [6]. The same rings used in Fireflies are used to

determine a fixed set of neighbors with which each peer can exchange packets.

This imposed mesh structure and the use of authenticated channels between

neighbors allows the system to avoid high-level DoS attacks.

Initially, the source sends notifications to its neighbors as soon as it has avail-

able packets to disseminate. These notifications are small messages used only

to inform neighbors of availability of packets. Each neighbor requests missing

packets according to some pre-specified policy, to avoid overloading the source.

As peers receive packets, they propagate notifications to their neighbors, and

so packets get disseminated along the mesh. This pull-based approach to ac-

quisition of packets yields a highly resilient multicast, since failure or misbe-

havior of one neighbor does not impede a peer from fetching packets from

other neighbors. The predetermined set of neighbors for each peer also makes

it hard for malicious peers to attack individual peers, since attackers lack a

deterministic means of acquiring control of all of its neighbors.

Each member stores packets and forwards them to other peers while the packet

is within its availability window. It also maintains an interest window, smaller

than the availability window, which represents the set of packets in which the

peer is currently interested. Different policies can be employed by peers about

what packets to pick from each of its neighbors, and the choice of the appropri-

ate policy is crucial to achieving best overall performance. Random selection

of neighbors is usually a good candidate, leading to fair load balancing.

There is a predefined limit l on the number of outstanding requests to any

neighbor. This policy not only improves the flow of packets in the absence of

malicious behavior, but also makes it harder for malicious peers to overrequest

packets from their neighbors. Peers maintain a queue of non-satisfied requests

for packets, and if more than l requests by the same neighbor are present in

the queue at any time, only the l most recent ones are maintained.

The protocol is simple and yet highly resilient to failures and attacks. The

overhead incurred by notifications is not significant if large packets are used,

and the protocol avoids receipt of duplicate packets. Since it is completely

decentralized, the protocol does not present any single points of failure, an-

other important consideration when building an intrusion-tolerant streaming

protocol.

To ensure non-repudiation, peers may only forward packets once they have

verified its authenticity. If peers are allowed to forward packets optimistically

before ensuring that the packet has not been tampered with, it becomes in-

10 196

feasible to later identify the peer responsible for the tampering. This can be

explored by malicious nodes, who may overload the system with incorrect

packets without being accountable for them. In the linear digest approach,

the packet that contains the digest is critical to the verifiability of packets,

and therefore should be received by all nodes. Furthermore, it should ideally

be received prior to other packets for which it contains hashes, so that they

can be immediately verified.

In our streaming protocol, simply treating the digest packet as a regular packet

would not yield the desired results. We proposed the following optimization

to ensure immediate verifiability: each peer, when requesting a packet, uses a

special bit in the request messages that indicates whether the digest packet

for the current session has been received or not. Since digest packets are small,

they can be appended to the packet sent in reply to the request. This would

ensure that all packets are immediately verifiable, incurring a small overhead

caused by duplicate digests.

3.4 Punishing Malicious Nodes

Despite the resilience of pull-based streaming to malicious behavior, we can

provide further guarantees to correct peers by auditing their behavior. In this

Section, we explore a simple auditing approach: to ensure that all nodes in

the system contribute more than a particular specified threshold. Violations

to this invariant may lead system nodes who contribute less than a particular

threshold to suffer some type of punishment, such as being expelled from the

system. Independent of the punishment, implementing an auditing component

requires caution, and in this subsection we present some of the techniques we

employ to achieve this goal.

As part of the auditing approach, each peer should group packets it receives

from each neighbor every δ seconds. At the end of every interval, each peer

generates and sends one signed receipt for all packets received from each of its

neighbors during that interval, and collects receipts received from them. Peers

are encouraged to forward receipts to their suppliers to guarantee that future

requests for packets continue to be satisfied.

Auditing may be performed by dedicated external auditors, whose role is solely

to identify misbehaving nodes. We propose a decentralized approach, which

combines local auditors, executing at the participating peers, and global au-

ditors, who react to violations reported by the local peers. A local auditor has

two main roles. First, it acts as a representative of its local node, querying it

for the set of packets it received and the set of receipts collected (packets it

sent) over any particular time interval. The auditor publishes this information

11 197

to an assigned subset of its neighboring nodes, from whom other auditors may

obtain it. This level of indirection is used to guarantee that each node provides

the same information to all auditors.

The second role consists of periodically auditing information about the nodes

with whom their local node exchanges packets. For instance, if node A ex-

changes packets with nodes B, C and D in the live-streaming protocol, node

A’s auditor monitors information regarding these three nodes. This involves

ensuring that: (1) the amount of data sent by these nodes satisfies the min-

imum threshold; and (2) the set of packets they claim to have received from

node A corresponds to the set of packets A claims to have sent to them.

In our hybrid model of auditing, global auditors only respond and act upon

violations flagged by the local auditors. In order to avoid delayed detection,

local auditing works continuously within small groups of nodes. We argue that

a variable threshold yields better results than a static one, leaving it to the

global auditors to decide what this value should be. Therefore, besides act-

ing on information provided by local auditors, global auditors also constantly

sample the amount of packets sent and received by randomly chosen individ-

ual nodes, and use this information to decide what the threshold should be at

any point in time.

4 Evaluation

We originally evaluated the resilience of pull-based streaming in the presence of

attacks through simulation. We also implemented SecureStream using Python,

and we validated the simulation results by running experiments with the real

system on the Emulab testbed [18]. Emulab is a network testbed containing

hundreds of nodes, in which real applications may be executed and evaluated.

It allows arbitrary network topologies to be specified, leading to a controllable

and repeatable environment.

4.1 Simulation

We built an event-driven simulator and simulated 200 node networks with

50ms inter-node latency. It would be possible to simulate and present results

for networks with larger numbers of nodes, but a set of experiments on in-

creasing numbers of nodes revealed that the behavior remains the same for

networks as large as 5000 nodes. We opted for a smaller size but repeated each

experiment 100 times to obtain better confidence in our results.

12 198

The target streaming rate in the experiments was fixed to 300 Kb/s, and

packets of 10 Kb were used. Higher streaming rates yielded similar results

as long as the packet size is accordingly increased to maintain a rate of 30

packets/s. Each streaming session lasted for 200 seconds. In the basic setting,

the seed’s upload capacity was fixed to twice the streaming rate while other

peers had a fixed maximum upload capacity of 1.2 times the streaming rate.

These values are used as our baseline since they are the lowest upload rates at

the seed and non-seed nodes respectively that lead to good throughput when

the system is not under attack.

For each streaming session we computed the average and minimum download

and upload rates across all correct members. We repeated each experiment

100 times, and we present the median and 95 percentile intervals across these

repetitions.

We considered four types of malicious behavior. In the first type of attack

malicious peers act as failed, neither requesting nor satisfying requests. In

attack 2 they request packets but do not forward any packets. In attack 3 they

overrequest packets from their neighbors, requesting as many distinct packets

as possible from every neighbor. Finally, in attack 4 they overrequest packets

and do not forward packets. The fourth type of attack is the most disruptive

type and therefore the most likely, while the other three are considered mainly

for comparison purposes.

Figure 6 presents results for the basic setting under each of the attack types.

We are interested in minimizing the overall damage to the streaming session.

Damage is quantified by the impact on average download rates to healthy

nodes, and the minimum download rate for any single healthy node.

As would be expected, the results show that peer failure does not significantly

affect the download rates since peers can still request packets from other cor-

rect neighbors (Figure 6(a)). Since malicious peers do not request packets in

this mode, they do not disrupt the total overall upload capacity. Even though

upload rates are limited, overrequesting attacks are also not significantly dis-

ruptive, due to the random policy used by peers when satisfying neighbors’

requests for packets and the upper limit on the number of outstanding requests

by any neighbor (Figure 6(c)).

Figures 6(b) and 6(d) show that attacks in which peers consume packets from

their neighbors, but do not forward packets, inflict the most harm. There are

two main reasons for this vulnerability. First, since peers upload at a maximum

rate of 1.2 times the streaming rate, the overall upload capacity of the system

gets compromised from peers consuming and not contributing to the system.

Second, malicious nodes neighboring the seed might impede some packets from

ever being received by any other peer other than itself.

13 199

 0

 0.2

 0.4

 0.6

 0.8

 1

0.250.200.150.100.050.0

C
on

tin
ui

ty
 in

de
x

Ratio of malicious peers

Average
Minimum

(a) Malicious peers completely fail

 0

 0.2

 0.4

 0.6

 0.8

 1

0.250.200.150.100.050.0

C
on

tin
ui

ty
 in

de
x

Ratio of malicious peers

Average
Minimum

(b) Malicious peers do not forward any
packets

 0

 0.2

 0.4

 0.6

 0.8

 1

0.250.200.150.100.050.0

C
on

tin
ui

ty
 in

de
x

Ratio of malicious peers

Average
Minimum

(c) Malicious peers overrequest packets

 0

 0.2

 0.4

 0.6

 0.8

 1

0.250.200.150.100.050.0

C
on

tin
ui

ty
 in

de
x

Ratio of malicious peers

Average
Minimum

(d) Malicious peers overrequest and do
not forward packets

Fig. 6. Resilience under different types of Byzantine behavior and varying ratios of
attackers

The latter effect causes the 95 percentile interval bars to be wide: there is a lot

of variation depending on the number of compromised peers near the seed. To

make this point clear, in Figure 7 we show the percentage of packets received

by increasing numbers of peers during sample streaming sessions with varying

ratios of Byzantine peers. The metric to focus on here is the fraction of packets

only received by one peer, which is an indicator of malicious nodes neighboring

the seed. Packets received only by malicious peers at the first hop will never be

disseminated in the system. To confirm this hypothesis, we executed the same

set of experiments and restricted the malicious attackers to being located at

least 2 hops away from the seed. The obtained medians were very close to

the medians obtained in the previous experiments. The main difference was

that the percentile intervals were significantly reduced when the seed had no

immediate malicious neighbor, which is an important result since the intervals

are significant in the original experiments with attacks 3 and 4.

To improve the resilience, we can vary parameters to improve the overall

upload capacity of the system, or to avoid situations in which malicious peers

can isolate certain packets. First, we considered the upload capacity of the

members. In Figure 8(a) we varied the value from 1.0 to 2.0 times the streaming

rate and verified the improvements to resilience under attack 4. This graph

presents the average and minimum download rates when the system has 25%

14 200

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 40 80 120 160 200
Fr

ac
tio

n
of

 p
ac

ke
ts

Number of nodes

No Byzantine
10% Byzantine
15% Byzantine
25% Byzantine

Fig. 7. CDF: Fraction of packets received by given number of nodes

 0

 0.2

 0.4

 0.6

 0.8

 1

2.01.81.61.41.21.0

C
on

tin
ui

ty
 in

de
x

Upload capacity of members (times streaming rate)

Average
Minimum

(a) Download Rates

 0

 0.5

 1

 1.5

 2

2.01.81.61.41.21.0

U
pl

oa
d

R
at

e
C

on
su

m
ed

Upload capacity of members (times streaming rate)

Maximum
Average

Minimum

(b) Upload Rates

Fig. 8. Download and upload rates across nodes when maximum upload capacity is
varied

of Byzantine members. The results show that the higher the upload capacity

at non-seed peers the more resilient the system becomes. From Figure 8,

which presents the minimum, average and maximum upload rates of members,

we can see that as a consequence of increasing the upload capacity of peers

the system becomes more unfair, with an increased difference between the

maximum upload rate and minimum upload rate across peers. For the next

few experiments we fixed the upload capacity of non-seed members to 1.4

times the streaming rate.

To improve the packet loss ratio at the first hop from the seed, we varied the

upload capacity of the seed from 1.0 all the way to 6.0 times the streaming

rate. Our results indicated that this naive approach to increasing the upload

rate at the seed does not significantly affect the resilience of the system. We

also observed that the number of neighbors of the seed is a more significant

parameter than the upload capacity of the seed. We fixed the ratio of malicious

nodes at 25%, the upload rate at non-seed nodes to 1.4 times the streaming

rate and at the seed to 4.0 times the streaming rate, and varied the seed’s

number of neighbors from 4 to 20. The median slightly improves as the num-

ber of neighbors is increased, but more important, the percentile intervals are

significantly reduced. In Figure 9(a) we present the absolute sizes of the 95

percentile intervals varying with the number of neighbors of the seed. The

results show that a larger number of neighbors at the seed is desirable. This

15 201

 0

 0.1

 0.2

 0.3

201816141210864

V
ar

ia
tio

n
of

 C
on

t.
In

de
x

Number of neighbors of the source

Average
Minimum

(a) Source node

 0

 0.2

 0.4

 0.6

 0.8

 1

65432

C
on

tin
ui

ty
 In

de
x

Number of rings

Average - No attack
Minimum - No attack

Average - Attack 4
Minimum - Attack 4

(b) All other nodes

Fig. 9. Sensitivity to number of neighbors

happens because with a higher number of neighbors the percentage of mali-

cious neighbors of the seed tends to be closer to 25% across runs, and therefore

there is less variation in the ratio of packets that are contained at the first

hop from the seed.

Finally, to study the influence of the number of neighbors for each non-seed

peer in the system, we evaluated the resilience with a varying number of rings

used to define neighbors. The upload capacities at the seed and non-seed

members were fixed to 4.0 and 1.4 times the streaming rate, respectively, and

the seed had 16 neighbors. In Figure 9 we present the performance of the

system using between 4 and 12 neighbors per node, both under no attacks

and under attacks of type 4. The results surprisingly show that the use of

larger numbers of neighbors does not improve resilience of the system, and

even reduces when the system is under attack. Even though larger numbers of

neighbors would lead to better connectivity between correct members, it also

presents malicious members with more potential to overrequest packets and

unbalance the system.

4.2 Emulab Testbed

In order to validate our simulation results, we ran experiments on a 200 node

LAN on the Emulab testbed using our Python implementation of the Secure-

Stream system. We performed extensive experiments under various parameter

configurations, observing that the tendencies observed were similar to those

verified through simulation.

To illustrate the behavior of the real system in execution, we present results

of a sample streaming session in which 25% of the nodes are malicious, overre-

questing packets and not forwarding them to neighbors. During the first 100

seconds all nodes act correctly, after which the malicious nodes start overre-

questing and not forwarding packets. We fixed the upload capacity of the seed

and non-seed members to 4.0 and 1.4 times the streaming rate respectively,

16 202

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200

C
on

tin
ui

ty
 In

de
x

Time (s)

Average
Minimum

(a) Download Rates

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4

 0 50 100 150 200

U
pl

oa
d

fa
ct

or

Time (s)

Maximum
Average

Minimum

(b) Upload Rates

Fig. 10. Sample streaming session on Emulab

and the number of neighbors of the seed and non-seed members to 12 and 8

respectively.

Figure 10(a) presents the minimum and average continuity indices of correct

peers throughout the sample session. Around the hundredth second, the aver-

age and minimum continuity indices decrease with the insertion of malicious

peers. The minimum, average and maximum upload factors across all correct

peers is presented in Figure 10(b). At the point when malicious nodes are

inserted, the upload factors across correct peers increases to compensate for

the malicious peers consuming the scarce resources from the system.

We also observed the effect of the system in the latency of packets. In Fig-

ure 11(a), a slight increase in the overall average and maximum delays per

packet in the presence of attackers may be observed. Furthermore, an inter-

esting behavior can be observed in Figure 11(b), which presents the minimum,

average and maximum packet delays for each node in the system, relative to

the time of origin of the packet at the source.

Unlike our initial suspicion, all nodes presented similar packet delays over

the streaming session. This indicates that being close to the source does not

imply in receiving packets faster than other nodes, since not all packets will

be requested from the source, because of the limit in number of outstanding

requests. To verify if this behavior might vary when the system scales to larger

numbers of nodes, we simulated networks with up to five thousand nodes.

The maximum latency used for bigger networks needs to be increased, but the

average latency per node is still similar.

We also looked into the number of hops taken by packets before reaching all

nodes. For the same streaming session, we registered the number of hops taken

by each packet before reaching each node. In Figure 12 we present the CDF

of the average and maximum number of hops taken by packets. This graph

shows that for our sample session with 200 nodes, the average number of hops

mostly varies between 3 and 5, while the maximum number of hops taken by

each packet varies between 8 and 22. This large variation in the maximum

17 203

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 0 1000 2000 3000 4000 5000 6000

La
te

nc
y

(s
)

Packet Number

min
avg

max

(a) Latency Per Packet

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 0 50 100 150 200

La
te

nc
y

(s
)

Node #

min
avg

max

(b) Latency Per Node

Fig. 11. Latency of packets on Emulab

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30

Fr
ac

tio
n

of
 p

ac
ke

ts

Number of hops

Maximum
Average

Fig. 12. CDF of average and maximum number of hops taken by packets

number of hops is also verified by the large variation in maximum latency

observed in Figure 11(a).

4.3 Auditing

We also explored the potential of employing auditing in our simulations. Au-

diting ensures that nodes contribute more than a particular threshold factor

t of upload capacity. A threshold of 0.5 during a 300 Kb/s streaming session,

for instance, implies that nodes uploading less than 150 Kb/s will be removed

from the system. To evaluate the effect of applying such thresholds both in the

absence and presence of freeloading nodes (nodes that voluntarily contribute

less than what is expected from them), we simulated audited sessions with

1000 nodes.

Figure 13 presents a detailed set of results on applying different thresholds to

different freeloading profiles. The ratio of freeloading nodes was fixed to 30%,

and their contribution factor (ratio relative to the streaming rate) is varied

between 0, 0.25, 0.50, and 0.75 (0 meaning they do not contribute at all). We

also consider a final profile named mix, where freeloading nodes have different

contribution factors, uniformly distributed among 0, 0.25, 0.50 and 0.75.

Columns are clustered based on the threshold used to punish nodes (t). Within

18 204

0

20

40

60

80

100
0.

00
0.

25
0.

50
0.

75 M
ix

0.
00

0.
25

0.
50

0.
75 M
ix

0.
00

0.
25

0.
50

0.
75 M
ix

0.
00

0.
25

0.
50

0.
75 M
ix

0.
00

0.
25

0.
50

0.
75 M
ix

0.
00

0.
25

0.
50

0.
75 M
ix

0.
00

0.
25

0.
50

0.
75 M
ix

0.
00

0.
25

0.
50

0.
75 M
ix

0.
00

0.
25

0.
50

0.
75 M
ix

t=0.0 t=0.1 t=0.2 t=0.3 t=0.4 t=0.5 t=0.6 t=0.7 t=0.8

Contribution of Freeloaders (% of Stream Rate)

Pe
rc

en
ta

ge
>98% >95% falsePos Others

Fig. 13. Quality of streaming, measured by the percentage of correct nodes that
receive over 95% and 98% packets, and percentage of nodes unfairly punished by
the auditing system (falsePos). All experiments contain 30% freeloading nodes. Each
cluster corresponds to a different threshold t being applied by the auditor. Within
each cluster we considered 5 rates of contribution by freeloaders: 0, 0.25, 0.5, 0.75,
and a mix of these values. Correct nodes contribute at a rate of 1.1.

each column we present the percentage of correct nodes that have an average

upload factor of more than 98%, between 95% and 98%, false positives and

others. False positives are correct nodes who get incorrectly punished by the

auditing system. Notice that a threshold of 0 is equivalent to a system without

auditing.

To help understand the graph, let us consider, for instance, the set of bars

when t = 0.4. A threshold of 0.4 will detect and remove all freeloaders with an

upload factor of 0 or 0.25. This may be confirmed in the first two bars, which

indicate that the streaming quality is good, with almost all nodes receiving

more than 95% of the data. The third bar, in which freeloaders have an upload

factor of 0.5 presents unsatisfactory results, with no node receiving over 95%

of the data. This was expected, since a threshold of 0.4 is not able to detect

freeloaders that contribute with a factor of 0.5.

In the fourth bar, even though freeloaders do not get detected, they also do

not disrupt the system significantly, since they contribute at a factor of 0.75,

which is close to the ideal factor of 1.0. This is confirmed by the fact that

even when there is no auditing (threshold is 0), the quality of the stream is

satisfactory . The same observation holds for the mix configuration.

Two metrics are important when deciding the right threshold to apply: the

quality of the streaming, captured by the percentage of nodes receiving over

95% of data; and the ratio of false accusations, which should be ideally null.

From Figure 13 it is reasonable to assume that opting for a threshold such as

t = 0.6 is the best approach, since it provides satisfactory streaming quality

under the 5 different configurations. However, the goal of minimizing the ratio

of false positives motivates the use of a dynamic threshold value, adjusted

19 205

by global auditors based on sampling the current stream quality and upload

factors of nodes across the system. One possibility consists in maintaining a

null threshold (t = 0) while the actual download rates across the network are

satisfactory, that is, not punishing nodes unless the performance of the session

is compromised. As the system starts to degrade, global auditors may slowly

increase the threshold until the performance improves again.

5 Related Work

Recent work on peer-to-peer streaming systems has focused on improving

fairness among peers and resilience to churn, and have not addressed behavior

in the presence of malicious peers. Splitstream [4] breaks the data into stripes

and disseminates each stripe through a different dissemination tree. Ideally,

each peer is an internal node in only one these trees, and therefore the system

as a whole is fair. Figures 1(b) and 1(d) present SplitStream’s resilience to

omission attacks. Bullet [5] is another protocol which attempts to improve

fairness by breaking the stream into packets and sending them to peers through

different dissemination paths. Packets are pushed down a tree to certain peers

and then exchanged between peers through random connections.

The pull-based style of streaming used in our system was previously used

in CoolStreaming [1] and Chainsaw [6]. Coolstreaming breaks the data into

packets and peers organized into a mesh request packets from their neighbors

using a scheduling algorithm to identify the best sources of packets. Chainsaw

uses a simpler policy for requesting packets from neighbors, randomly fetching

packets from neighbors with available packets respecting only a limit on the

number of outstanding requests. Chainsaw presents smaller delays for the

receipt of packets compared to the Coolstreaming protocol.

Omission attacks are often characterized as rational behavior and there has

been a lot of work regarding incentives for peer-to-peer systems. Most work

on incentives has focused in file sharing systems such as Bittorrent [19], which

present significantly different properties, and cannot be directly transferred to

streaming protocols. Some more recent work has focused on rational behavior

in live-streaming systems.

Ngan et al. [20] consider fairness issues in the context of tree-based peer-

to-peer streaming protocols. The authors present mechanisms that can dis-

tinguish peers according to their level of cooperation to the system. One of

their techniques involves the reconstruction of trees as a way of punishing

freeloading nodes. Most of their mechanisms require peers to keep track of

their parents’ and children’s behavior.

20 206

PULSE [21] is a P2P live-streaming system that tries to reward nodes that

contribute resources and discourage peers from contributing an insufficient

amount of resources. The main idea consists in using a pull-based dissemi-

nation protocol and moving nodes that contribute more closer to the source,

therefore having a smaller lag for packets received. The system makes a few

assumptions which could be compromised by malicious nodes present in the

system, such as requiring that nodes have some knowledge of other nodes in

the system. Also, the system is only evaluated in heterogeneous settings, show-

ing that nodes with higher upload capacity have a smaller latency compared

to less favored nodes. Results in a homogeneous setting are not presented.

In [22], the use of incentives is explored as a way of avoiding the presence

of selfish nodes in the Chainsaw protocol [6]. This work argues why some

naive approaches to enforcing incentives do not work, similar to the analysis

presented in our work, and propose and evaluate the use of a technique that

relies on preferential uploading to neighbors. Nodes that contribute more are

more prone to receiving data back, but in a not so fixed manner as a tit-for-tat

approach. Only preliminary results are presented, and malicious behavior is

not the focus of the work.

Even though incentives encourage nodes to contribute and avoid nodes from

acting selfishly, they do not extend the effect to nodes who are in the system

with malicious intentions.

Drum[23] targets DoS attacks on gossip-based multicast protocols, eliminating

vulnerabilities to such attacks. The main idea in Drum is to have half of the

links of each peer be picked by the peer itself, and half be picked by other

peers. That way, even if only malicious peers connect to a peer, the peer

can still get correct data from the peers that it picks. The authors showed

that the approach works well for multicast protocols which do not have time

delays, but have not studied its performance for multicast systems where a

high throughput of packets is desired and the upload capacities are limited.

BAR Gossip [24] is a live-streaming approach that tolerates the existence of

selfish and malicious nodes. Time is divided into rounds, in which each peer

communicates with another peer selected using a pseudo-random function. In

each round, peers exchange their current history containing the identifiers of all

the current data, as basis for the next exchanges. Nodes also perform a phase of

optimistic push, forwarding useful updates to another pseudo-randomly picked

peer with no guarantee of useful return. The approach requires that the broad-

casting seed has full knowledge of all members in the system and always uni-

casts each update to 5% of the nodes, a limitation on scalability.

21 207

6 Conclusions

We presented the design and evaluation of SecureStream, a P2P live-streaming

protocol tailored to handle byzantine attacks. We described the main compo-

nents of SecureStream and the main techniques employed to resist against

DoS, forgery, membership and omission attacks. Furthermore, we considered

the benefits of employing an auditing system to avoid the damage incurred by

freeloading behavior of nodes. We evaluated our system through simulation

and emulation. Our results indicate that SecureStream tolerates a limited per-

centage of malicious nodes in the system, and that with the aid of an auditing

component, it is able to provide satisfactory quality in the face of even larger

attacks.

References

[1] X. Zhang, J. Liu, B. Li, T.-S. P. Yum, CoolStreaming/DONet: A Data-Driven
Overlay Network for Efficient Live Media Streaming, in: Proceedings of the 2005
Conference on Computer Communications, Miami, FL, 2005.

[2] Y.-H. Chu, S. G. Rao, H. Zhang, A Case for End System Multicast, in:
Proceedings of ACM Sigmetrics, Santa Clara, CA, 2000.

[3] J. Jannotti, D. K. Gifford, K. L. Johnson, M. F. Kaashoek, J. O. Jr., Overcast:
Reliable Multicasting with an Overlay Network, in: Proceedings of the 4th
Symposium on Operating Systems Design and Implementation, San Diego, CA,
2000.

[4] M. Castro, P. Druschel, A.-M. Kermarrec, A. Nandi, A. Rowstron, A. Singh,
SplitStream: High-Bandwidth Multicast in Cooperative Environments, in:
Proceedings of the Nineteenth ACM Symposium on Operating Systems
Principles, Bolton Landing, NY, 2003.

[5] D. Kostić, A. Rodriguez, J. Albrecht, A. Vahdat, Bullet: High Bandwidth Data
Dissemination Using an Overlay Mesh, in: Proceedings of the 19th Symposium
on Operating Systems Principles, Bolton Landing, NY, 2003.

[6] V. Pai, K. Kumar, K. Tamilmani, V. Sambamurthy, A. E. Mohr, Chainsaw:
Eliminating Trees from Overlay Multicast, in: Proceedings of the 4th
International Workshop on Peer-to-Peer Systems, Ithaca, NY, 2005.

[7] V. Venkataraman, P. Francis, J. Calandrino, Chunkyspread: Multitree
Unstructured Peer to Peer Multicast, in: Proceedings of the 5th International
Workshop on Peer-to-Peer Systems, Santa Barbara, CA, 2006.

[8] R. van Renesse, H. Johansen, A. Allavena, Fireflies: Scalable Support for
Intrusion-Tolerant Network Overlays, in: Proceedings of the 1st ACM EuroSys,
Leuven, Belgium, 2006.

22 208

[9] R. Canetti, J. Garay, G. Itkis, D. Micciancio, M. Naor, B. Pinkas, Multicast
Security: A Taxonomy and Some Efficient Constructions, in: Proceedings of
IEEE INFOCOMM, Orlando, FL, 1999.

[10] A. Singh, M. Castro, A. Rowstron, P. Druschel, Defending against Eclipse
Attacks on Overlay Networks, in: Proceedings of the 11th ACM SIGOPS
European Workshop, Leuven, Belgium, 2004.

[11] C. K. Wong, S. S. Lam, Digital Signatures for Flows and Multicasts,
IEEE/ACM Transactions on Networking IEEE Communications Society 7.

[12] R. Gennaro, P. Rohatgi, How to sign digital streams, in: Proceedings of the
17th Annual International Cryptology Conference on Advances in Cryptology,
London, UK, 1997.

[13] S. Miner, J. Staddon, Graph-Based Authentication of Digital Streams, in:
Proceedings of the 2001 IEEE Symposium on Security and Privacy, Washington,
DC, 2001.

[14] D. Song, J. D. Tygar, D. Zuckerman, Expander Graphs for Digital Stream
Authentication and Robust Overlay Networks, in: Proceedings of the 2002 IEEE
Symposium on Security and Privacy, Washington, DC, 2002.

[15] A. Perrig, R. Canetti, D. Tygar, D. Song, The TESLA Broadcast
Authentication Protocol, Cryptobytes 5 (2).

[16] A. Perrig, R. Canetti, D. X. Song, J. D. Tygar, Efficient and Secure Source
Authentication for Multicast, in: Proceedings of the Network and Distributed
System Security Symposium, The Internet Society, San Diego, CA, 2001.

[17] A. Perrig, R. Canetti, J. D. Tygar, D. X. Song, Efficient Authentication and
Signing of Multicast Streams over Lossy Channels, in: IEEE Symposium on
Security and Privacy, Berkeley, CA, 2000.

[18] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad, M. Newbold,
M. Hibler, C. Barb, A. Joglekar, An Integrated Experimental Environment for
Distributed Systems and Networks, in: Proceedings of the Fifth Symposium on
Operating Systems Design and Implementation, Boston, MA, 2002.

[19] B. Cohen, Incentives Build Robustness in BitTorrent, in: 1st Workshop on the
Economics of Peer-to-Peer Systems, Berkeley, CA, 2003.

[20] T.-W. J. Ngan, D. S. Wallach, P. Druschel, Incentives-Compatible Peer-to-Peer
Multicast, in: Second Workshop on the Economics of Peer-to-Peer Computing,
Cambridge, MA, 2004.

[21] F. Pianese, J. Keller, E. W. Biersack, PULSE, a Flexible P2P Live Streaming
System, in: Proceedings of the Ninth IEEE Global Internet Workshop,
Barcelona, Spain, 2006.

[22] V. Pai, A. E. Mohr, Improving Robustness of Peer-to-Peer Streaming with
Incentives, in: Proceedings of the 1st Workshop on the Economics of Networked
Systems, Ann Arbor, MI, 2006.

23 209

[23] G. Badishi, I. Keidar, A. Sasson, Exposing and Eliminating Vulnerabilities to
Denial of Service Attacks in Secure Gossip-Based Multicast, in: International
Conference on Dependable Systems and Networks, Philadelphia, PA, 2004.

[24] H. C. Li, A. Clement, E. L. Wong, J. Napper, I. Roy, L. Alvisi, M. Dahlin,
BAR Gossip, in: Proc. of the 7th Symposium on Operating Systems Design
and Implementation (OSDI), Seattle, WA, 2006.

24 210

Enforcing Fairness in a Live-Streaming System∗

Maya Haridasana, Ingrid Jansch-Portob and Robbert van Renessea

aDept. of Computer Science, Cornell University

Ithaca, New York
bInstitute of Informatics, Federal University of Rio Grande do Sul

Porto Alegre, Brazil

maya@cs.cornell.edu, ingrid@inf.ufrgs.br, rvr@cs.cornell.edu

ABSTRACT

We describe a practical auditing approach designed to encourage fairness in peer-to-peer streaming. Auditing
is employed to ensure that correct nodes are able to receive streams even in the presence of nodes that do not
upload enough data (opportunistic nodes), and scales well when compared to previous solutions that rely on
tit-for-tat style of data exchange. Auditing involves two roles: local and global. Untrusted local auditors run on
all nodes in the system, and are responsible for collecting and maintaining accountable information regarding
data sent and received by each node. Meanwhile, one or more trusted global auditors periodically sample the
state of participating nodes, estimate whether the streaming quality is satisfactory, and decide whether any
actions are required. We demonstrate through simulation that our approach can successfully detect and react to
the presence of opportunistic nodes in streaming sessions. Furthermore, it incurs low network and computational
overheads, which remain fixed as the system scales.

1. INTRODUCTION

Video and audio streaming account for a large percentage of content accessed over the web. One popular style
of streaming on the web is on demand, in which users access pre-stored content at will. Another style requires
streams to be generated and disseminated in real-time. This may be the case with important social, political, or
sporting events. An important property of live-streaming is that data is not available in advance, being generated
just before transmission at the sender. Furthermore, interested users ideally want to receive the stream without
much delay from its original transmission.

Several practical live-streaming systems now allow large numbers of interested users to receive streamed data
in near real time, without requiring extensive amounts of resources. These systems are based on the peer-to-peer
(P2P) paradigm, where nodes interested in receiving data also help disseminate it to each other, alleviating the
bottleneck at the source. Initial protocols were based on building a tree-based overlay of nodes through which
data would be pushed.1–3

More recent systems, such as Chainsaw and Coolstreaming, have shown that the use of a mesh of connected
nodes and a pull-based data dissemination approach can provide similar results with better resilience to failures
and churn (nodes joining and leaving the system).4–7 In Chainsaw, for example, nodes notify each other of receipt
of data packets, and request packets from their neighbors based on the received notifications. Practical systems
based on pull-based streaming now exist in China, where they are used to disseminate television channels to
thousands of users.8

Even though the P2P paradigm allows systems to scale with the number of users, it also leaves them vulnerable
to opportunistic behavior. Opportunistic nodes attempt to receive a stream without uploading their fair share
of data, reducing the overall upload capacity of the system. Despite the damage that they may cause, not much
work has been done in studying mechanisms to avoid their presence in live-streaming systems. The goal of this

∗The authors were supported by AFRL award FA8750-06-2-0060 (CASTOR), NSF award 0424422 (TRUST), AFOSR award

FA9550-06-1-0244 (AF-TRUST), DHS award 2006-CS-001-000001 (I3P), and Intel Corporation. The views and conclusions herein

are those of the authors.

211

mailto:maya@cs.cornell.edu
mailto:ingrid@inf.ufrgs.br
mailto:rvr@cs.cornell.edu

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30

Number of Nodes (in thousands)
D

ow
nl

oa
d

F
ac

to
r

Chainsaw - Avg
Chainsaw - Min
BAR Gossip - Avg
BAR Gossip - Min

Figure 1. Minimum and average download rates across all nodes when using the BAR Gossip and Chainsaw protocols.

paper is to propose and evaluate a mechanism that can defend against this problem, whithout incurring large
overheads.

The approach that most closely relates to our work is the BAR Gossip protocol,9 which employs a tit-for-tat
approach for encouraging nodes to contribute: a node only sends as much data to another node as it receives
back. It provides an elegant solution shown to tolerate both opportunistic behavior and other malicious attacks.
However, reliance on tit-for-tat does present a few undesirable requirements. To be efficient, the data source
should ensure that packets are evenly spread across the system by sending data to a fixed proportion of nodes,
and by sending different packets to different nodes. Furthermore, it requires the source and all nodes to have
full membership knowledge. These restrictions affect scalability when the data source has bounded upload
bandwidth.

To illustrate this problem, we fixed the upload capacity of a data source at 5 Mbps and simulated BAR Gossip
when streaming 500 Kbps with increasing numbers of receivers, varied between one and thirty thousand nodes.
We compare its scalability against the Chainsaw protocol,4 for which we fixed the source’s upload bandwidth
to 2 Mbps. In Figure 1, we present the average and minimum download rates (as ratios of the stream rate)
of both protocols when the number of nodes is increased. As observed, BAR Gossip is not able to sustain
its performance without scaling the upload capacity of the source proportionally with the size of the system.
Meanwhile, Chainsaw is able to scale well even with a fixed lower upload bandwidth at the source, but cannot
handle the presence of opportunistic nodes.

We propose to use auditing to encourage data-sharing in live-streaming systems like Chainsaw. Our auditing
approach establishes a minimum threshold for the amount of data sent by any node in the system, and removes
nodes that upload less data than the threshold. Instead of relying on a tit-for-tat mechanism, we focus on
encouraging nodes to respect the established protocol. Nodes are forced to provide accountable information
regarding packets sent to and received from neighbors, and the auditing system is responsible for detecting and
removing misbehaving nodes.

Notice that identifying the misbehaving nodes is not a trivial task, since there is no fixed minimum amount
of data that nodes should contribute to the system. If we assume a model where misbehaving nodes simply did
not upload any data, detecting them would be an easier task. However, once we assume that misbehaving nodes
may adjust their contribution level based on the policy used by an auditing system, a more elaborate approach
is required. This paper presents and evaluates an auditing model based on sampling the system and using the
sampled information to build a global view of how the system is currently behaving. Based on it, auditors employ
strategies to identify the misbehaving nodes that should be punished.

The paper is organized as follows. In section 2, we state the exact problem that we aim to solve and the
assumptions considered in this work. In section 3, we review the pull-based streaming protocol employed in
our system, followed by a description of our novel auditing approach in section 4. In section 5, we evaluate the
proposed approach. We then discuss the costs of auditing, and briefly describe how to extend our model for
heterogeneous systems, in section 6. Finally, we present related work in section 7, and conclude in section 8.

212

2. PROBLEM STATEMENT

Our approach focuses on a target streaming system consisting of one data source (assumed non-compromised),
which disseminates data at a fixed rate to a dynamic set of receivers. The source has limited upload bandwidth,
and hence can only send data directly to a small subset of interested receivers. Participating nodes are conse-
quently required to forward packets to their neighbors, helping disseminate all packets across the system. The
streamed data should be received by all nodes within a fixed latency from the source’s original transmission,
even in the presence of opportunistic nodes.

For simplicity, we first assume a system in which all nodes, except the source, have similar upload and
download bandwidths; in Subsection 6.2, we briefly discuss how to extend our model to work in heterogeneous
scenarios.

We assume that malicious nodes exhibit Byzantine behavior, while correct nodes follow the protocol as
defined, requesting data as needed and sending data as requested from them. Altrustic nodes are a subgroup
of correct nodes that are willing to upload more data than required from them. Finally, we employ the term
opportunistic to refer to a subgroup of Byzantine nodes that attempt to give less data than they would if they
behaved as correct nodes, with the intention of obtaining as much data as possible at least feasible cost. These
may employ a simple strategy, such as refuse to contribute any upload resources, or a more elaborate strategy
that allows them to cheat without being easily detected.

Notice that our model diverges from the one used in BAR Gossip,9 in which nodes are classified as Byzantine,
Altruistic, or Rational. In that model, rational nodes attempt to maximize their utility while still following
the defined protocol. Our model is actually less lenient: nodes employing strategies to maximize their utility
are classified as Byzantine, so that we can build a practical punishment-based system in which any node not
contributing its fair share of data may be expelled from the system.

Throughout the paper we use the terms upload factor and download factor to refer to the ratio between an
upload or download rate and the original stream rate. For example, given a stream rate of 500 Kbps, a download
rate of 400 Kbps corresponds to a download factor of 0.8.

3. STREAMING SYSTEM MODEL

Our auditing approach is used over the Chainsaw protocol.4 All nodes participating in the system are organized
into a fully connected mesh overlay, where each node has the same number of neighbors. The source is randomly
connected to a small subset of the nodes.

The streaming process starts at the source, which breaks the data stream into packets and sends notifications
to its neighbors as soon as it has packets to disseminate. These notifications are small messages used only to
inform neighbors of the availability of new packets. Based on the received notifications, each node requests
missing packets, and the source satisfies as many requests as allowed by its upload capacity. Unlike BAR Gossip,
with Chainsaw the upload capacity of the source does not need to increase with the size of the system; even an
upload capacity of twice the stream rate is sufficient to ensure that the system performs and scales well.

As nodes receive packets, they mimic the role of the source, sending notifications to their own neighbors in
the mesh, allowing packets to be propagated through the system. This pull-based approach to acquisition of
packets (notify-request-send data) provides some resilience to failure or malicious behavior, since a participant
will have multiple possible sources for each packet. The mesh overlay defines a predetermined set of neighbors
for each peer, which also makes it hard for malicious peers to round up on individual peers since attackers lack
a deterministic means of acquiring control of all of its neighbors. All nodes with exception of the source have a
fixed upper limit on their upload contribution (e.g. 1.2 times the stream rate), defined by the protocol. Of course,
this upper limit is not respected by opportunistic nodes, who attempt to reduce it with the goal of uploading
less data.

On the course of a streaming session, each node stores packets and forwards them to other peers only while
the packet is within its availability window, usually spanning a few seconds. Each node also maintains an interest
window, which represents the set of packets in which the peer is currently interested. Nodes choose packets to
request from each of its neighbors, respecting a maximum limit l on the number of outstanding requests to each

213

0.6

0.7

0.8

0.9

1

0.90 0.95 1.00 1.05 1.10 1.15 1.20

Maximum Upload Factor

D
ow

nl
oa

d
fa

ct
or

Maximum
Average
Minimum

0.6

0.7

0.8

0.9

1

1.1

1.2

0.90 0.95 1.00 1.05 1.10 1.15 1.20

Maximum Upload Factor

U
pl

oa
d

fa
ct

or

Maximum
Average
Minimum

Figure 2. Download and upload factors of nodes in an ideal system where all nodes behave correctly.

neighbor. This limit not only improves the general flow of packets, but also makes it harder for malicious peers
to overrequest packets from their neighbors: peers maintain a queue of non-satisfied requests from its neighbors,
keeping only the l most recent ones.

3.1 Expected Behavior

Our first goal is to explore the typical signature of the system, since an understanding of the behavior of pull-
based dissemination in the absence of opportunistic nodes will turn out to be important when we set out to
introduce auditing. We conducted experiments using an event-based simulator, which is described in more detail
in section 5.

In Figure 2, we evaluate the performance of 1000 nodes during an ideal execution of Chainsaw, where all
the nodes behave correctly. We fixed the upload factor of the source at 4.0 (2 Mbps), and the stream rate to
500 Kbps. We varied the maximum upload factor of nodes to see how it affected both the download and upload
factors of nodes across the system. The maximum upload factor is a fixed parameter which defines the maximum
rate at which a node will upload data to all its neighbors. For fairness in nodes’ bandwidth consumption, we
would like all nodes to upload data at a factor as close as possible to 1.0. We varied the maximum upload factor
of nodes from 0.9 to 1.2.

The left graph shows the minimum, average and maximum download factors across the nodes when the
maximum upload factor of nodes is increased. As observed, by increasing the maximum upload factor of nodes,
we increase the global upload capacity of the system, leading to a better flow of packets. However, the discrepancy
among the upload factors of individual nodes also increases, as seen in the graph to the right. When the maximum
upload factor is increased, some nodes participate more actively in dissemination while others end up contributing
less, even though all of them are behaving correctly. This is an important consideration: when we introduce
auditing, we do not want to punish nodes that are willing to contribute but cannot do so because of factors such
as their physical positioning in the system. In all our future experiments we set the maximum upload factor to
1.1.

3.2 Effect of Opportunistic Behavior

Our next goal was to understand the expected behavior of correct nodes under different scenarios where oppor-
tunistic nodes compromise the system. We therefore studied how the download and contribution rates of correct
nodes are affected under these conditions. Opportunistic nodes may contribute with some data in an attempt to
disguise their opportunistic behavior. Therefore, we considered different rates of contribution for opportunistic
nodes: 0 (pure freeloaders), 100, 200, 300 and 400 Kbps.

Figure 3 presents the average and minimum download factors among all correct nodes under different config-
urations. The stream rate was fixed at 500 Kbps, and all correct nodes had a maximum upload factor of 1.1 (550
Kbps). We ran experiments with 1000 nodes and increasing percentages of opportunistic nodes in the system
(from 0 to 90%). On the x-axis, we vary the percentage of opportunistic nodes. As expected, we can observe
that the download factors of correct nodes decreases since the aggregated upload capacity in the system becomes

214

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60 70 80 90

% of Opportunistic Nodes

M
in

 D
ow

nl
oa

d
F

ac
to

r

400 Kbps
300 Kbps
200 Kbps
100 Kbps
0 Kbps

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60 70 80 90

% of Opportunistic Nodes

A
vg

 D
ow

nl
oa

d
F

ac
to

r

400 Kbps
300 Kbps
200 Kbps
100 Kbps
0 Kbps

Figure 3. Minimum and average download factors across all correct nodes when opportunistic nodes are present. Each
curve corresponds to a different contribution rate used by opportunistic nodes.

0

0.2

0.4

0.6

0.8

1

1.2

0 10 20 30 40 50 60 70 80 90

% of Opportunistic Nodes

M
in

 U
pl

oa
d

F
ac

to
r

400 Kbps
300 Kbps
200 Kbps
100 Kbps
0 Kbps

0

0.2

0.4

0.6

0.8

1

1.2

0 10 20 30 40 50 60 70 80 90

% of Opportunistic Nodes

A
vg

 U
pl

oa
d

F
ac

to
r

400 Kbps
300 Kbps
200 Kbps
100 Kbps
0 Kbps

Figure 4. Minimum and average upload factors across all correct nodes when opportunistic nodes are present. Each curve
corresponds to a different contribution rate used by opportunistic nodes.

insufficient to provide all nodes with all data. Nonetheless, the extent of the impact may be surprising: with
just 10% opportunistic nodes, performance drops by as much as 40%.

Figure 4 presents the average and minimum upload factors among all correct nodes. Once again, on the x-axis
we vary the percentage of opportunistic nodes, and on the y-axis we present the upload factors of nodes, which
can vary up to 1.1. It is interesting to note that the average upload factor among correct nodes initially increases,
and then starts falling when the percentage of opportunistic nodes increases significantly. This behavior can be
explained by the fact that, initially, correct nodes start contributing more to compensate for the lack of data
provided by a small percentage of opportunistic nodes; however, once the effect of opportunistic nodes becomes
significant, the system collapses and correct nodes are not able to keep contributing.

Another important point to note is that the minimum upload factor does not follow a clearly defined pattern,
making it hard to estimate the minimum contribution of correct nodes under compromised scenarios. Therefore,
by applying thresholds to punish opportunistic nodes, correct nodes may also be unfairly penalized.

4. AUDITING PROTOCOL

Our idea for auditing the described live-streaming system against opportunistic behavior is motivated by the
graphs presented in the previous section: we propose to employ auditing to ensure that all nodes in the system
contribute more than a particular specified threshold. In Figure 5, we illustrate the potential benefit from using
auditing in a system where 70% of the nodes are correct and 30% are opportunistic. The latter do not upload
any data. During the first 100 seconds, no punishment was applied in an attempt to simulate a system with no
auditing. At time t = 100s, auditing is enabled and opportunistic nodes start to be expelled from the system
for low contribution. For this experiment, the minimum upload factor for nodes to stay in the system was set to
0.5.

215

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200
Time (s)

D
ow

nl
oa

d
F

ac
to

r

Maximum
Average
Minimum

Without Auditing With Auditing

Figure 5. Download factor of correct nodes during a 200 second streaming session with 30% opportunistic nodes. Auditing
is enabled in the last 100 seconds.

We present the minimum, average and maximum download factors across correct nodes varying along 200
seconds. As observed in this particular example, auditing has the potential to improve the quality of streamed
sessions significantly, and at low cost. One important concern is that if the specified threshold is too high, more
opportunistic nodes may be caught, but correct nodes may also be unfairly punished. In this experiment, no
correct nodes were mistakenly expelled from the system.

4.1 Auditing components

We now give some additional details of the auditing architecture, focusing upon two aspects: (1) collecting
accountable information about the download and upload factors of individual nodes in the system; and (2)
establishing and applying the best threshold at any given time during execution. We employ two types of
components to perform these two roles: local and global auditors. Local auditors are executed on the nodes
participating in the system, and therefore cannot be trusted; if a node is malicious, it might report false data.
Global auditors are trusted components that run on dedicated external nodes. There can be just one or a few
global auditors. We describe their roles and interactions in detail below.

4.1.1 Local Auditors

Each node n runs a local auditor, which interacts with other local auditors and has two main roles:

Publish n’s data exchange history: n’s local auditor periodically compiles and distributes the history of
packets exchanged by n. To acomplish this, every δ seconds, it queries the local streaming application
running on n for the set of packets it sent and received using the streaming protocol in the most recent
time interval (Figure 6). The local auditor signs and publishes the collected history to an assigned subset
of its neighboring nodes, from whom other auditors may obtain it. This level of indirection is used to
prevent nodes from masking their real upload and download factors by presenting different information to
different auditors.

Audit n’s neighbors’ histories: n’s local auditor periodically audits the published histories of the nodes with
whom n exchanges packets. For instance, if node n exchanges packets with nodes p, q and r in the live-
streaming protocol, n’s local auditor compares these three nodes’ histories with n’s own history. This
involves ensuring that: (1) the amount of data sent by these nodes satisfies the defined minimum threshold
for the system; and (2) the set of packets they claim to have sent to and received from node n corresponds to
the set of packets n claims to have respectively received from and sent to them. If the first check comparison
fails, the local auditor issues an accusation against the node to a global auditor. In the second case, the local
auditor is not able to prove the neighbor’s misbehavior; instead, it instructs its local streaming application
to not further exchange packets with the misbehaving neighbor. More complex types of checks may also
be performed to address other types of Byzantine behavior.

216

������� ��� 	
������
 �	� ������

� ���
�
���� � ��������
���1������

���� ��������
���������

����2

�
�� �� ��
� � ����
����������
���� �

Figure 6. Local Auditing

 !"#$%&'()*!#%+,-.$/012&!-"*
3/-4$/012&!-"*

56789:;<=587>87
Figure 7. Global Auditing

There are two ways in which a node could pretend to be sending more or receiving less data than it actually
does. It could send different histories to each neighbor, always lying about its interactions with other neighbors.
For example, n could send a history to p pretending to send more data to q than it actually did, while it sends a
different history to q where it pretends to send more data to p than it actually did. n’s goal would be to send less
data while not being caught by any of its neighbors. The process of publishing a node’s history to a predefined set
of neighbors ensures that the node cannot send conflicting histories to different neighbors undetected, therefore
avoiding this problem.

A node could also lie about the set of packets sent to or received from a particular neighbor p. In this case, p

will be able to identify that the node has lied and will therefore stop exchanging packets with n. Given that an
opportunistic node’s goal is to maximize its utility, it should have no interest in losing data exchange partners.
Therefore, opportunistic nodes have no incentive to publish incorrect histories.

Summary: Local auditing ensures that correct information is available regarding the set of data sent and
received by any node, and allows nodes to monitor each other’s contribution rates.

4.1.2 Global Auditors

Global auditors are trusted components with global membership knowledge, who interact with one another and
with the local auditors. As shown in Figure 7, global auditors execute on nodes external to the system. Their
main roles are:

Define the minimum upload threshold: Global auditors periodically sample the state of the system by
querying local auditors. They then cooperate to analyze the collected samples, and on this basis compute
the minimum upload contribution threshold. Different strategies may be employed for choosing the best
possible threshold, given different scenarios. Once thresholds are varied, they are gossiped to all local
auditors, who then enforce the determined threshold.

Expurge nodes from the system: Global auditors are also responsible for verifying accusations issued by
local auditors against particular nodes, and after validating the accusation, expurging misbehaving nodes
from the system. Validation involves verifying that the accused node’s history indeed indicates that the

217

node is sending less data than the current threshold. Expurging a node involves informing the nodes’
immediate neighbors of its status and forcing the removal of the node from the overlay mesh.

The number of global auditors may vary according to different parameters, such as the size of the system. The
use of more global auditors distributes the load of sampling and improves efficiency in reacting to accusations
against nodes. Global auditors are also perfect candidates to perform membership tasks such as acting as entry
points to the P2P system, since they are required to have full membership knowledge of the system for performing
their auditing roles.

Summary: Global auditing monitors the global health of the system to identify the best value for the min-
imum upload threshold at any time during a streaming session, and makes final decisions regarding punishment
of nodes.

4.2 Adaptive Threshold Strategies

Choosing an upload threshold requires care: a low threshold may not be sufficient to identify opportunistic nodes,
while high thresholds may incorrectly punish correct nodes. We considered different strategies for the choice of
the minimum contribution t hreshold used for identifying misbehaving nodes.

The simplest strategy sets a fixed threshold (e.g., t = 0.5), independent of the current state of the system. In
this case, any node contributing at a rate of less than 50% of the stream rate would be removed. One downside
of using a fixed threshold is that opportunistic nodes that learn the threshold can simply contribute at the lowest
possible upload factor, thus avoiding detection. From the graphs in section 3, it is clear that such a stretagy
may disrupt the streaming session. Meanwhile, choosing a high threshold is not a practical option, since correct
nodes would get unfairly punished.

To avoid this problem, we have explored adaptive strategies. One simple strategy starts with a minimum
threshold (e.g., t = 0.5), increasing it only if the system is compromised. Global auditors sample the system
to identify the average download factor, and if this factor is lower than 0.98, increase the threshold. Once the
download factor reaches a satisfactory level again, the threshold may be reduced back to its initial value. This
stepwise approach allows the system to catch opportunistic nodes in case their presence starts affecting the
performance of the system, while avoiding incorrect accusations of correct nodes.

We also considered a second adaptive strategy (percentile-based) for computing the threshold based on peri-
odically sampled download and upload factors. The average download factors once again are used for detecting
whether the threshold should be varied or not. In this strategy, our initial threshold is set to null, and the thresh-
old is chosen from sampled upload factors. After each sampling, if the system seems to be in a compromised
state, the collected upload factors are ordered and the value dividing the lowest 10 percent is used as the new
threshold. This approach relies on efficiently sampling the system, and on fact that if the system’s performance
is not satisfactory, then at least 10 percent of the nodes are opportunistic.

5. EVALUATION

In this section, we evaluate the performance of our proposed auditing strategy over the original streaming
protocol. We built an event-driven simulator and used it to simulate streaming sessions on networks with 1000
nodes and an average of 50ms inter-node latency. The target streaming rate in the experiments was fixed to 500
Kb/second, and all our experiments were repeated 10 times. Confidence intervals were small, and for simplicity
are omitted from the graphs.

In all experiments, the source of the stream has an upload capacity of four times the stream rate (2 Mbps)
and is connected to 20 arbitrarily selected nodes. Other nodes have enough download capacity to receive the
stream, and upload factor of 1.1. We defined an availability window of 10 seconds and an interest window of 8
seconds. To evaluate the quality of each auditing strategy, we evaluate the average download factors of correct
nodes during a 100 second time interval after auditing is first applied to the system. For the sample-based
techniques, we considered that global auditors collected information from 100 nodes between each interval of 20
seconds. Notice that the sample size does not increase with the size of the system, which is a positive aspect of
the auditing approach. In subsection 6.1 we discuss the costs involved in collecting these samples.

218

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Threshold applied (t)

D
ow

nl
oa

d
fa

ct
or

0 Kbps
100 Kbps
200 Kbps
300 Kbps

0

10

20

30

40

50

60

70

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Threshold applied (t)

N
um

be
r

of
 F

al
se

 P
os

iti
ve

s 0 Kbps
100 Kbps
200 Kbps
300 Kbps

Figure 8. Quality of streaming when applying the fixed threshold strategy. Threshold is varied from 0 to 0.9 (x-axis),
and the contribution rate of opportunistic nodes is varied from 0 to 400 Kbps. The first graph (left) presents the average
download factors across all correct nodes. The second graph (right) presents the number of correct nodes incorrectly
punished (false positives).

In Figure 8, we consider the use of fixed thresholds. We studied the effects of using different values for t,
starting from 0 (no auditing) and increasing it until 0.9 (90% of the stream rate), and present a detailed set of
results on applying different thresholds to different scenarios. In each scenario, the ratio of opportunistic nodes
is fixed to 30%, but their contribution factor (profile) is varied among 0, 100, 200, and 300 Kbps. All other 70%
nodes follow the protocol, with a maximum contribution rate set to 550 Kbps (upload factor = 1.1). We present
the average download rates (left) and the number of correct nodes mistakenly removed from the system, termed
false positives (right), for each of these configurations. The threshold applied is presented on the x-axis. In the
left graph, as the threshold increases, higher download averages are observed, since more opportunistic nodes are
detected and punished. However, the number of nodes incorrectly accused also increases with higher thresholds,
as observed in the right graph.

Scenarios where opportunistic nodes contribute at higher rates (300 Kbps) are less disruptive to the system,
but they also require higher thresholds to be applied. Different thresholds yield best results under different
scenarios, but overall, from the results presented in Figure 8, we concluded that the best fixed threshold is
t = 0.6, providing the best compromise in terms of performance and false positives across all scenarios.

In Figure 9, we compare all three strategies proposed in subsection 4.2 against each other and against a
configuration with no auditing, under different scenarios. We set t = 0.6 for the fixed threshold strategy and
as the initial threshold in the stepwise adaptive strategy. We summarize the three strategies in Table 1. We
simulated sessions where 30% of the nodes were opportunistic and with varying ratios of contribution. In the
x-axis, the contribution rate of opportunistic nodes is varied from 0 to 450 Kbps. All other nodes are correct,
contributing at a maximum rate of 550 Kbps. We present both the average and the minimum download factors
across all correct nodes in the system. As the contribution rate of opportunistic nodes increases, the download
factors are expected to increase, which is clear from the curves presented.

Strategy Description

No auditing Fixed t = 0.0
Fixed threshold Fixed t = 0.6
Stepwise adaptive Minimum t = 0.6. If avg sampled download factor < 0.98, increase t by 0.1.

Decrease t back to 0.6 when avg download is satisfactory again.
Percentile-based adaptive Minimum t = 0.0. If avg sampled download factor < 0.98, t is chosen based on

sampled upload factors (t > lower 10% sampled values).

Table 1. Strategies used for defining the minimum upload threshold t

Figure 9 shows that all strategies yield significantly better results compared to an approach with no auditing.
While both adaptive strategies yield excellent download rates to correct nodes, the fixed threshold strategy’s
performance is not as good when opportunistic nodes are contributing with 300 or slightly more Kbps (near 0.6

219

contribution factor). At those rates opportunistic nodes are harmful to the system, yet the fixed threshold of
0.6 is not able to detect them.

Finally, in Figure 10, we consider a scenario where opportunistic nodes contribute with different rates. We
varied the percentage of opportunistic nodes in the system from 0 to 90%, and evenly assigned them different
contribution rates. The graphs present the average and minimum download rates for these scenarios. Once
again, no auditing performs significantly worse than any of the proposed strategies. Here, the stepwise adaptive
approach yields the best results when large percentages of opportunistic nodes are present in the system. It
is also simpler than the percentile-based approach, since it is based only on samples of the download rates of
nodes. In both sets of experiments, the number of false positives was practically null under all three strategies
considered (at most one in some cases).

6. DISCUSSION

6.1 Auditing Costs

The overheads imposed by auditing are an important consideration, which we address in this subsection. Most
of the work of auditing is performed by local auditors, which are executed on the user nodes. The overhead is
constant, independent of the size of the system, and is not significant, since nodes only exchange a small amount
of accounting data at pre-defined intervals of time (for example, 10 seconds). If we consider a packet rate of
50 packets/s, in 10 seconds the maximum number of packets received and sent by each node is 1000. For each
packet sent or received, the history needs to indicate which neighbor sent or received the packet. By using 4 bits
to identify each neighbor, the history’s size adds up to 4000 bits, or 500 bytes. This is not significant compared
to the amount of regular data exchanged in a streaming session.

We also analyzed the costs of the global auditors. Since they are dedicated and external to the system, the
overhead imposed by them is of higher concern. Global auditors’ main tasks consist of sampling the system to
collect download and upload rates of nodes, and of occasionally disseminating updates to the threshold value,
through gossip. The sample size remains fixed independent of the size of the population. We ran simulations
to estimate the worst-case standard deviation of the download rates across all nodes. Accordingly, we estimate
that a sample size of 300 nodes is sufficient to provide 95% confidence, independent of the population size. For
smaller systems, such as the ones simulated in this work, even a smaller number of samples was found to be
sufficient to yield satisfactory results. Therefore, centralized costs are fixed, and provide a clear advantage for
using auditing against tit-for-tat approaches in large-scale systems.

6.2 Heterogenous Systems

So far we considered the use of auditing to enforce node contribution in systems where all nodes are assumed to
have homogeneous bandwidth resources, enough to upload and download at a rate close to the stream rate. Pull-
based streaming may be extended to heterogenous systems by organizing nodes into multiple groups, according

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250 300 350 400 450

Upload Rate of Opportunistic Nodes (Kbps)

M
in

 D
ow

nl
oa

d
F

ac
to

r

No Auditing
Fixed Threshold
Stepwise
Percentile-Based

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250 300 350 400 450

Upload Rate of Opportunistic Nodes (Kbps)

A
vg

 D
ow

nl
oa

d
F

ac
to

r

No Auditing
Fixed Threshold
Stepwise
Percentile-Based

Figure 9. Minimum and average download factors across all correct nodes when using different strategies for choosing the
threshold. The upload contribution rate of opportunistic nodes is varied in the x-axis, and the number of opportunistic
nodes is fixed at 30%.

220

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Ratio of Freeloaders

M
in

 D
ow

nl
oa

d
F

ac
to

r

No Auditing
Fixed Threshold
Stepwise
Percentile-Based

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Ratio of Freeloaders

A
vg

 D
ow

nl
oa

d
F

ac
to

r

No Auditing
Fixed Threshold
Stepwise
Percentile-Based

Figure 10. Minimum and average download factors across all correct nodes when using different strategies for choosing
the threshold. Each session has mixed set of opportunistic nodes (contributing at different rates) and percentage of
opportunistic nodes is varied on the x-axis.

to their upload bandwidths: nodes able to upload at a rate higher than the stream rate are placed in higher-lever
groups, which are closer to the source. The source sends data to the highest level group only, who uses the
basic protocol to disseminate data among each other. Nodes in lower levels may receive data at smaller rates,
after some filtering is applied, and higher-level nodes may be used to act as sources to the lower-level nodes,
alleviating the burden at the source.

Auditing can be used to avoid the presence of opportunistic and lower bandwidth nodes in the higher-level
groups. It can ensure that the hierarchy of nodes is obeyed by all nodes, while allowing the system to leverage
additional resources from privileged altruistic nodes to forward data to lower level groups. We intend to explore
this further in future work.

7. RELATED WORK

Several P2P live-streaming protocols have been previously proposed. The first generation of systems (Overcast,2

Narada1) relied on approaches based on pushing data through a single dissemination tree. Later approaches
focused on improving fairness among peers and resilience to churn by breaking data into multiple substreams
and sending them along disjoing paths (SplitStream,3 Bullet10).

More recent systems like CoolStreaming5 and Chainsaw4 use a pull-based style of data dissemination. Cool-
streaming breaks the data into packets, and peers organized into a mesh request packets from their neighbors
using a scheduling algorithm. As we saw earlier, Chainsaw uses a simpler policy for requesting packets, ran-
domly fetching them while respecting a maximum limit on the number of outstanding requests to each neighbor.
Chainsaw presents smaller delays for the receipt of packets compared to the Coolstreaming protocol. In a more
recent work,11 mesh-based approaches are shown to present better performance over tree-based approaches.

Previous papers have considered a variety of possible mechanisms to encourage node contribution. Oversight12

is a framework proposed to enforce download rate limitations on P2P media streaming systems. The protocol
relies on a set of trusted nodes that store information on the data downloaded by each node receiving data.
Nodes only send an object after consulting the trusted nodes to verify if the nodes requesting the stream are not
overrequesting data. It is targeted to systems where nodes upload full media objects from each other, and not
for live-streaming systems where all nodes are interested in receiving the exact same data in close to real time.

Ngan et al.13 consider fairness issues in the context of tree-based peer-to-peer streaming protocols. The
authors present mechanisms that rank peers according to their level of cooperation with the system. One of
their techniques involves the reconstruction of trees as a way of punishing opportunistic nodes. Most of their
mechanisms require peers to keep track of their parents’ and children’s behavior.

Pai et al. studied the effect of different types of incentives on the Chainsaw protocol.14 After exploring
tit-for-tat and some variations, the authors propose an algorithm that sets up local markets at every node, where
neighbors compete for the node’s upload capacity. Nodes favor neighbors who contribute more. Experiments

221

were limited, with nodes classified as fast or slow nodes. The results indicate that the proposed algorithm
improves the performance of the system when the total upload capacity is not enough to supply all the nodes.
Pulse15 is another live-streaming system where nodes choose their neighbors based on their history of interaction.
Nodes are placed in the system according to their current trading performances, encouraging nodes to contribute
more and therefore be closer to the source.

BAR Gossip9 is a more recent live-streaming approach that tolerates the existence of opportunistic and
malicious nodes. Time is divided into rounds, in which each peer communicates with another peer selected using
a pseudo-random function. In each round, peers exchange their current history containing the identifiers of all
the current data they hold, as basis for the next exchanges. Nodes also perform a phase of optimistic push,
forwarding useful updates to pseudo-randomly picked peers with no guarantee of useful return.

8. CONCLUSION

We propose and evaluate a scalable auditing-based technique for enforcing fairness in a live-streaming system.
Our approach employs local auditors that execute on all nodes in a streaming session. They are responsible for
collecting auditable information about other neighbors’ data exchanges, and for verifying that neighbors upload
more data than a specified threshold. This threshold is defined by dedicated global auditors, which periodically
sample the state of the system to determine if the overall download rate is compromised by the presence of
opportunistic nodes. Global auditing determines the minimum threshold for uploads, and works with local
auditing to punish nodes that do not upload enough data. We study the efficiency of our auditing approach
through simulation, and show that it is able to maintain the throughput of the streaming system even in the
presence of a large number of opportunistic nodes.

REFERENCES

1. Y.-H. Chu, S. G. Rao, and H. Zhang, “A Case for End System Multicast,” in Proc. of ACM Sigmetrics,
(Santa Clara, CA), 2000.

2. J. Jannotti, D. K. Gifford, K. L. Johnson, M. F. Kaashoek, and J. O. Jr., “Overcast: Reliable Multicasting
with an Overlay Network,” in Proc. of the 4th Symposium on Operating Systems Design and Implementation
(OSDI), (San Diego, CA), 2000.

3. M. Castro, P. Druschel, A.-M. Kermarrec, A. Nandi, A. Rowstron, and A. Singh, “SplitStream: High-
bandwidth Content Distribution in Cooperative Environments,” in Proc. of the 19th ACM Symposium on
Operating Systems Principles (SOSP), (Bolton Landing, NY), October 2003.

4. V. Pai, K. Kumar, K. Kamilmani, V. Sambamurthy, and A. E. Mohr, “Chainsaw: Eliminating Trees
from Overlay Multicast,” in 4th International Workshop on Peer-to-Peer Systems (IPTPS), (Ithaca, NY),
February 2005.

5. X. Zhang, J. Liu, B. Li, and T.-S. P. Yum, “CoolStreaming/DONet: A Data-Driven Overlay Network
for Efficient Live Media Streaming,” in Proc. of the 24th Conference on Computer Communications and
Networking (INFOCOM), (Miami, FL), 2005.

6. M. Haridasan and R. van Renesse, “Defense Against Intrusion in a Live Streaming Multicast System,”
in Proc. of the 6th IEEE International Conference on Peer-to-Peer Computing (P2P), (Cambridge, UK),
September 2006.

7. N. Magharei and R. Rejaie, “PRIME: Peer-to-Peer Receiver-drIven MEsh-based Streaming,” in Proc. of the
26th Conference on Computer Communications (INFOCOM), (Anchorage, Alaska), April 2007.

8. “PPLive Homepage. Available: http://www.pplive.com.”

9. H. C. Li, A. Clement, E. L. Wong, J. Napper, I. Roy, L. Alvisi, and M. Dahlin, “BAR Gossip,” in Proc. of
the 7th Symposium on Operating Systems Design and Implementation (OSDI), (Seattle, WA), 2006.

10. D. Kostić, A. Rodriguez, J. Albrecht, and A. Vahdat, “Bullet: High Bandwidth Data Dissemination Using
an Overlay Mesh,” in Proc. of the 19th ACM Symposium on Operating Systems Principles (SOSP), (Bolton
Landing, NY), 2003.

11. N. Magharei, R. Rejaie, and Y. Guo, “Mesh or Multiple-Tree: A Comparative Study of Live P2P Streaming
Approaches,” in Proc. of the 26th Conference on Computer Communications (INFOCOM), (Anchorage,
Alaska), April 2007.

222

12. W. Conner, K. Nahrstedt, and I. Gupta, “Preventing DoS Attacks in Peer-to-Peer Media Streaming Sys-
tems,” in Proc. of the 13th Annual Multimedia Computing and Networking Conference (MMCN), (San Jose,
CA), 2006.

13. T.-W. Ngan, D. S. Wallach, and P. Druschel, “Incentives-Compatible Peer-to-Peer Multicast,” in 2nd Work-
shop on the Economics of Peer-to-Peer Systems, (Cambridge, Massachussetts), June 2004.

14. V. Pai and A. E. Mohr, “Improving Robustness of Peer-to-Peer Streaming with Incentives,” in Proc. of the
1st Workshop on the Economics of Networked Systems (NetEcon), (Ann Arbor, MI), 2006.

15. F. Pianese, J. Keller, and E. W. Biersack, “PULSE, a Flexible P2P Live Streaming System,” in Proc. of the
Ninth IEEE Global Internet Workshop, (Barcelona, Spain), 2006.

223

