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Abstract
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area such that the cost of the placement is mieitnighile the value of the obtained
information is maximised. In this report, we finstroduce a criterion that maximises
the value, or expected benefit, of using a sendoset for a given sensor model
relative to the environment. Defining the valugarms of the information obtained
allows the sensor layout problem to be represeadeth entropy optimisation
problem. This criterion is compared with other weaibwn criteria, both theoretically
and experimentally, the latter by comparing theowes criteria for optimal sensor
layout using data from an existing wireless semstwork. This is achieved by firstly
learning a spatial model of the environment usifagesian Network architecture,
then predicting the expected sensor data in theofeéke space, and lastly verifying
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1. Introduction

The vision of engineering structures of the futia®ing sentient properties was
outlined in the White Paper submitted to AOARD ptmthe commencement of this
work, and which is attached as an appendix torépert. One of the essential
requirements of a sentient structure is a disteithstensing capability that enables the
structure to sense its own state, and propertiégs ehvironment that may affect its
state or its required functions. Sensing is critioghe ability of the structure to be
aware of its state and its surroundings, and careggty to its ability to respond.

Distributed sensing is becoming increasingly im@otrin many areas of modern
society, even where the vision of the future dassemtend to sentient structures.
Sensing for environmental monitoring (on scalesiffgersonal spaces — rooms,
buildings, vehicles — to catchments, ecosystem#jreents and oceans), industrial
process monitoring, monitoring for security andesafhealth and well-being, and
structural health monitoring are examples of aneaghich distributed sensing is
becoming important.

Critical issues that must be addressed in the dpuatnt of a distributed sensing
system are what is to be sensed, where sensor sl®located, and how should the
data be communicated and processed. In many c#dsemation is required on
multiple scales, and a high density of sensors evbalrequired to provide small-
scale information over a large area or volume.ractice, limitations (sometimes
severe) are placed on the number of sensors thabendeployed by considerations
of cost, weight, sensor size, and the ability tmownicate and process the large
volume of data effectively. Therefore, it is imgnt to find methods to place a
limited number of sensor nodes in the area of @stesuch that theostof the
placement is minimised while tivalueof the obtained information is maximised.

As indicated in the White Paper (Appendix 1) atiahfocus of the work of

developing sentient structures will be the develepnof information-theoretic
techniques for determining optimal sensor denséreslayouts. This report describes
an initial examination of this problem for the simpase of the direct measurement of
discrete variables. There is much more to be dameyill be indicated in the final
section of the report.

1.1 Direct and indirect sensing

The work outlined in this report considers only iaple case of sensors that make a
direct, local measurement of a parameter of intexethe location of the sensor (e.g. a
thermometer). Sensors that make non-local measutsr(eg. a radiation sensor if
the quantity of interest is a remote radiation sewr the properties of a propagation
medium that perturbs the radiation), or sensonspitavide data from which the
quantity of interest must be inferred (indirectsag) are not considered in this report
and will be addressed in the next phase of the wamkexample of indirect sensing is
provided by a recent study of sensing of corrogiometallic structures, and
particularly at inaccessible locations such agavices or fastener holes, where
damage cannot be measured directly but can beedfénom the moisture and other
micro-climatic variables in the environment [Celeal., 2008].

When dealing with direct measurements, one typicahsiders a sensor layout
where sensors are placed over only a subset oip@$scations, leaving “the rest of
the space” without sensors. This is described bgs@inet al (2005) as: “not just
interested in [sensor measurement] at senseddosatbut also at locations where no



sensors were placed”. However, measuring the gyaoitinterest in “the rest of the
space” would still be a direct measurement.

1.2 Prior knowledge and environmental models

Finding an optimal sensor layout clearly requiraewledge (real or assumed) of the
sensors and the environment. A sensor such asradbeuple measures a quantity
(temperature) at the location of the sensor: at iscal measurement. The density and
locations of sensors required to map the tempexalistribution in an environment
depends on how this local measurement reflectgethperature in a region of the
environment surrounding the thermocouple. Thisim tdepends on properties of the
environment such as its physical structure, theprgperties and the nature and
locations of any heat sources and sinks.

Three approaches to acquiring and applying knovdexfghe environment to this

problem are as follows.

1. A naive approach to deciding the optimal placenoéniirect sensors in an
environment is to assume the sensors have sontededsing radius (i.e. the
sensor will indicate changes in the parametertefast that occur within a fixed
radius of the sensor position), and solve somemaof the art-gallery problem
[Gonzalez-Banost.al, 2001]. However, this is not realistic in praetias the
sensing area is rarely a perfect circle [Guestial, 2005].

2. Another approach involves learning a spatial modi¢he environment, such as a
Gaussian process [Guestahal, 2005, Krauset al,, 2008] or a graphical model
[Krause & Guestrin, 2005]. This approach may betrapgropriate in situations
where there is littl@ priori knowledge of the environment and its properties.

3. A third approach is to employ physical models & sensor and environment. In
this case the physical model encapsulates our kmiawledge of the structure or
environment, or we can use a hybrid of approactesd23 by starting from an
approximate physical model and refining its pararseby learning. This
approach may be more appropriate for an enginestreckture for which the
properties are known.

There have been previous studies of optimal sgrlaoement for damage
detection in structures based on physical modeiseo$ensor-structure system
[e.g. Staszewslat al, 2000, Lee & Staszewski, 2007], but these haveiticsed
information-theoretic criteria for optimisation tbfe placements.

In some cases, however, important issues in engidetructures depend on
unplanned and unpredictable features of the streickor example, corrosion in
well-designed and well-built structures such asraft may occur in places where
defects in corrosion prevention seals and coatiage been introduced
accidentally — perhaps near an ill-fitting seghiat that has been inadequately re-
fitted or re-sealed after maintenance, fatigue fiaséener coating, etc. Such
features will not generally be present in a physiwadel but may be detected by
sensing. A hybrid approach that incorporates |legrmto the physical model may
be more appropriate in such cases.

There is an important distinction between learatistical models, such as those
employed in approach 2, and physical models (agpr8 Statistical models will
generally be based on learning of sensor datawdhthus model the spatial
dependence of sensor outputs over the environniémieoest. They are data-driven



models, and will incorporate any effects of semsmse and bias, which may
subsequently influence the optimal sensor layoets/eld from the models.

On the other hand, physical models of the envirotmal generally model the state
of the environment, which is subsequently relategensor data through a model of
the sensor-environment interaction, which again begither deterministic or
statistical. The physical modelling approach waalldw evaluation of the effects of
sensor noise and bias on the results deduced fsensor layout. Probabilistic sensor
models are introduced in Section 2.2 below.

1.3 Sensor-environment scenarios

Two different sensor-environment scenarios areudsed in this report. The first is a
simple engineered structure, a thermal protectineld of a spacecraft, for which
sensors are required to monitor effects of damagesdunctional performance. Such
a structure is expected to be amenable to thefysteysical modelling (approach 3
above) to describe the sensor-environment progeifig@s scenario will be employed
as an exemplar for description of the theoretiocahiulation introduced in the next
sections, but we do not yet have experimental diataoutlined in Section 2.1.

The second scenario is the measurement of soituneisver an area of land on an
agricultural property in northern Australia. Expeental data from an existing
wireless sensor network has been obtained to etedilag and evaluation of the
optimal sensor layout methods discussed and deseliopthis report. In this case
there is relatively little knowledge of the relevatructure and properties of the
environment (e.g. spatial distribution of soil tgpnd structures, water transport
patterns, etc.), so approach 2 has been adoptBdyédsian Network model has been
constructed, and parameter values have been feamm@ set of test or training data,
as outlined in Section 4 below.

1.4 Cost and value

As indicated above, it is important to find methéalplace a limited number of

sensor nodes in the area of interest such thatabteof the placement is minimised
while the value of the obtained information is nmaiged. In this context, cost may
include the installation cost, the energy costahg the sensors, communication
costs, the cost of processing and using the dathaay additional cost of operating
the structure with the sensors deployed. Valuadetstood as the expected benefit of
using the sensor configuration (or layout) foregi sensor model relative to the
environment.

The cost and value of a sensor layout can be eaénlivith respect to the sensor-
environment models using appropriate metrics. Treaemultiplicity of metrics
available in the current literature to computedpémal sensor layout. These methods
draw from experiment design [Ramakrishredal., 2005], decision theory [Krause &
Guestrin, 2005a], and information theory [Guesgtial, 2005, Olssoet.al, 2004].

It is thus difficult to decide which metric is theost appropriate one, given a specific
practical setup.

In this work we first introduce a criterion that xiraises the value of using a sensor
subset for direct measurements, given sensor anbement models. This value is
defined as the difference between the optimal elegerost and the averaged optimal
expected cost after utilising the sensors. Defimrgected costs information-
theoretically allows us to represent the sensayuaproblem as an entropy



optimisation problem. This is then compared witheotcriteria, some of which are
decision-theoretic while others are also infornmatileeoretic. We compare the criteria
presented using data from an existing wirelessasaretwork (the second scenario
referred to in Section 1.3) by first computing timal configurations, then
predicting the sensor measurements in the resieafgace and verifying the results
using available ground truth.

This report is organised as follows. In Sectiow@,describe a general approach to
the optimal sensor layout problem. Section 3 byiefitlines several of the current
methods in the literature. Section 4 presents tpermental setups of the sensor
network and the environment model (i.e. graphicatlet of Bayesian Network) used
for testing. Section 5 discusses the results oéitperiment. Finally, Section 6
presents conclusions.

2. Formulation of the Optimal Design Problem

In this section, we formulate the sensor problech@mesent a general approach to
optimal sensor placement. Arguably, taking obs&suatis aimed at improving the
outcome of a future action. Consider the decisimblem where the cost incurred by
a future decision is described by the functOnA xX - 0O, whereA is the set of
possible decisions or actiorgs,and X is the set of possible world stat&sthat are
relevant to the decision problem. Th@a, x) is the cost of carrying out actien
when the system is in stateThere may be different costs for taking or fajlio take
a particular decision (to repair a defect, for eglgnwhen the environmental
conditions required it. Note that this cost is elént to that referred to in Section 1
above, which was the cost of deploying and opegatisensor: this is denoted Ky
(see Section 2.3). The value of the sensor deploy(®ection 1) is the reduced cost
of making an observation-assisted optimal actiangared with that which would
have been made without the assistance of the sensor

If the true statex 0 X is known, the optimal action is easily found by:

a’ =argmin C(a,x) (1)

However, for realistic systems, the stais often not known precisely. For example,
a sensor system may indicate the presence of damag&ructure but may not be
capable of detailing the exact nature and exteti@flamage: this uncertainty may
be significant for a decision to repair or not rieplae structure. Thus, it is necessary
to consider the state to be the random variable[xl,xz,...,ﬁx‘] with a given

probability distribution® defined byP =[P(x),P(x,)...., P()ﬁx\ )], where

P(x) =Pr(X =x). The distributionPX is called theorior belief, and defines a model

of the environment in which the sensor is locafiéds notation assumes, for
simplicity, that the state of the environment hsekte values, or can be
characterised by discrete parameters.

Now, since the state is not known, the actual abatparticular action cannot be
determined with certainty and the expected cosinadiction should be considered.
The expected cost of an action is given by:

J@?P,) =D P(xC(ax) (2)

xOX



with the optimal expected cost given by:
I (P,)=minJ(@P,) (3)

It is noted that this is a function of the givempprobability distributionPX . This
generic characterisation does not include actus¢ations.

2.1 Anillustrative scenario

For the sake of discussion and illustration offthrenulation, a simple scenario will be
adopted. This is not the scenario for which reakee data will be analysed in later
sections of this report (Sections 4 and 5): ihtsaduced here purely for discussion
purposes.

It will be assumed that the monitored environmsrthe heat shield of a space
vehicle. The property of interest is the thermals&nce shield, which may be
reduced by damage, and which may be monitored tsirsg the temperature on the
inner surface when a known thermal source is apptiehe external surface. Damage
to the shield may be classified as negligible 1§@)-critical (1) or critical (2).
Negligible damage means that no temperature risedetected when the thermal
source was applied. Non-critical damage means sethetion in the thermal barrier
property (i.e. a measurable temperature rise)insuifficient to put the vehicle in
jeopardy during re-entry: repair will be requirddtee next scheduled maintenance.
Critical damage means a sufficient reduction intte¥mal protection to require
immediate repair.

In this scenario we might have an initial prioribethat the shield has negligible
damage, i.eP(x=0) =L P(x=1) = P(x=2) = OHowever, if a potentially damaging
event has been detected (e.g. an impact on thiel shigace) some of these prior
beliefs may be modified depending on the locatiot severity of the impact. A light
impact, for example, might lead us to change tha fpelief to, say,
P(x=0)=02P(x=1)=05P(x=2)=03.

Possible actions can be defined as: do notlan@){ schedule maintenance on return
to base ¢=1); or immediate repaia€2). Other possibilities will be ignored in the
interests of keeping the model simple. Associatid these actions there may be a
cost matrix something like the following:

0 0 H
C=(L L H
M M M

where L, M, H indicate low, medium and high cosisd it is assumed that the cost of
maintenance at base is low, that of repair in spaogdium, and the cost of not
immediately repairing a critical damage is highrfaps the loss of the vehicle).
Assigning numerical values for L, M and H will all@) andJ’ to be calculated from
equations (2) and (3) respectively. Note i@=0x=1), the cost of taking no action
for a non-critical impact, has been assigned zest lsecause that is the immediate
outcome. However, longer-term costs may be sicamtiéf the damage develops
further.

If the probabilities of the three damage statedgr®; andP,, the expected costs of
the three possible actions, from equation (2), are:



J(a=0) =P, H
Ja=1) =Py L+P;L +P, H
J@a=2)=PoM+P1 M+ P, M

The optimal expected cost (equation (3)) is theglstvof these, which will depend on
the actual costs L, M and H, and the damage protedi Clearly, if H is very much
greater than M, then even a low probability oficat damageR,) may lead to a high
expected cost of not immediately repairing the dzena

Later it will be assumed that the shield can beswered to comprise a numbdrof
small areas. These may be individual tiles, or Eregions within a tile.

2.2 Inclusion of sensors and observations

Now consider a situation where a sensor can begeglprior to taking the action to
provide some information about the value of théestalt is expected that this will
lead to an improved final decision. Formally, theput of the sensor is denoted by

the random variablg, in the discrete domaig, i.e.Z = [zl, zz,...,az‘] , Where thezi

are possible values of the sensor output.
The dependence of the sensor readings on thexstateodelled using a conditional
probability distribution function.

Pz lx) -~ P(zlx,)

P ™| f @)

P(z|Z| |x1) P(zIZI |x|x|)
where P(z| x) = Pr(Z = z| X = x). In this notation, each value »findz represents
the set of values for the separate tiles. Theildigion PZlX is called thesensor model
and completely specifies the characteristics os#mesor.
After a specific measuremenhas been made, a new conditional distribu@lrzu,
defined as[P(xl | 2), P(x2 | 2),..., p(xl)<| |z )JwhereP(x|z) =Pr(X =x|Z =2z) for
the value oiX can be generated using Bayes rule:

P(z| X)P(x)

Y x P ¥P(x)

The distribution?’xIZ will be referred to as thegosterior beliefand is defined on the

P(x]|2) =

()

same domain ais’x . The optimal action, for this belief, has an expdaost of
I @)= Tﬂw% P(x| 2)C(a,x) (6)

This is aposteriormeasure, since it requires the value of the obsiervz. An a
priori measure can be constructed by considering thectatpn over all
observationsz[1Z of J* (PXlZ) and a distribution over the observatioh& : )



G’ (Px ’P2|x) = Z P(2)J" (PX|Z)
2z

(")
= Z.ZZ“ P(2) Tﬂ{p{% P(x| 2)C(a, x)}.

The functionG" is completely specified by the prior belﬂ,, and the sensor
model P

zZIx "

Now, if the functionJ” is concave (for example, § (Y) = zym, ylogl, for some
y

arrayY), then Jensen's inequality gives us:
G' (PP, ) =Y P@I P )<I O PDP)=I(P) (8
0z

20z
This means thaG" (P, ,PZlX i$ never greater thad" (P, ), or put another way, on

average utilising a sensor is never detriment#hédinal decision problem,
irrespective of the sensor model. We will proveddhat the functiond” is concave.
The difference betwee®" and J* can be used to determine the value or expected
benefit of using the sensor modelled ﬁzYx for a given prior belieﬂ9X :

VPP, )= P)-G @ P, )20 9)

Z|X Z|X
Here, the value of using a sensor with a given m@g; Is explicitly dependent on
the information that is already available, defirlw(?X :

2.3 Optimal sensor layout

The question that this paper attempts to explonétisere are multiple sensors (and
layouts) available, each associated with a diffesensor model, which is the best to
use?

We consider a general case of problems where dite st interest is defined as a set
of variablesX ={ X, X2,..., X™}, where the individual arrays of state values

X' may refer to sub-regions of the environment orcstme or perhaps to different
properties of the environment.

If there aren sensors, their outputs will be described by timeloan variables
z ={zt,z2,...,2"}, where each has an associated sensor nﬂz)gxel [If sensori

measures only the state associated with stateblajjahis sensor model will reduce
to Pzi|x1 . This assumption will be introduced later (Sect2o).]

The value of using a particular sensi;dir{l...,n} is given by its expected value,
defined in (9). Then, if thi" sensor has a cost i (the optimal sensor can be found
by simply maximising the net benefit, for the givyanor beIiefPX :

" =argmaxv (PP, )-K() (10)

10



This formulation explicitly captures the prior imfoation PX , the usage coK i (gnd
the characteristics of the sensor moﬁzelllx .

A reason why this process is not often used fos@elayout design tasks (such as
where to place temperature sensors in a buildsta difficulty it introduces in the
formulation of the final decision problem (whatl® temperature information going
to be used for?). In other words, the funct®a, x is dften not known in advance.
This problem is typically overcome by ignoring fiveal decision task and simply
reformulating the problem of optimal sensor layasitan inference problem that
selects the sensor layout which maximises thenmédion collected by the sensors
about the variable array. This will be described in the next section.

2.4 I nformation-theor etic measures

Information theory provides the tools required t@antify what is meant by
“information collected by the sensors”. Entropy\ides a measure of the uncertainty
associated with a belie® :

1
H(X) =) P(X)log——
% P(x)
This was first derived by Shannon (1948) from 3dasgioms that a metric of
uncertainty should satisfy. The base of the logaritletermines the unit of the
measure, with base 2 corresponding to “bits”.

(11)

Thus, to formulate the sensor selection problermnaisformation maximisation
problem, the optimal expected cakt of a distribution is replaced by the entrdiy
thatisJ"()=H () and J* ()= H (O Q. Further, the entropy is a concave function,
so the inequality in equation (8) is satisfiedultively, the information maximisation
criterion suggests the use of the sensor thatyerage, produces the least uncertain
posterior belief. It is noted that these two didietr criteria (generic and information
maximising) may select different optimal sensors.
SubstitutingJ " ()0 with H ([) in (7) transforms the functio@*(PX,PZIX into the
conditional entropy oK givenZ,

G (P, P,,) = L POH(X 2 12

ZIX

_ 1 (13)
= Z.ZZ P(z)g< P(x| z)log P12

=H(X|Z) (14)
where X, Z are now understood as the domains of the vari&#eXsandZ, and the
value of a configuration becomes the mutual infadromebetweerX andZ,

V(@,,P,)=3P)-G@.P,) (15)
=1(X;2) (16)

If each sensor has a different usage cost, thenapselection problem becomes ill-

posed since there is no direct method of tradifignédrmation with usage cost

without explicitly considering what the informatiewnll be used for (an information

theoretic approach was used to avoid this). Toaorae this problem it will be

11



assumed that the usage costs are constant angtilmalodesign problem can be
formulated as the maximisation, over all sensoof the mutual information between
X and Zi

i" = argmiaxl (X;Z") a7)

Alternatively, we can convert the information maigation problem into an entropy
minimisation problem when selecting the best sensor

i* =argmaxI (X;Z') (18)
:argmiax{H(X)—H(X|Zi)]:argmiinH(X|Zi) (19)

Note that the equivalence between (18) and (193 doescale to the selection of
multiple sensors (see Section 3.1).

2.5 Graphical representations of information theor etic quantities

A useful graphical representation of the relatigpstbetween different information-
theoretic functions of the variables is thgiagram [Yeung, 1991], which is similar to
the Venn diagram in set thedrfigure 1 shows the relationships between the
entropies oK andZ, and their mutual information Each area in this figure
represents an amount of entropy or uncertaintyekample, the blue area labelled
H(X |Z) represents the average uncertainty remaining abatier the sensor data
Z has been obtained. The overlap in the middle (gnegmmesents the mutual
information between the variables. The circulatgedabelledH(X) (i.e. blue +

green) is the uncertainty in the state variable

H(X) H(2)

Figure 1:I diagram for the random variablEsandZ.

For a sensor design problem it is the overlap re¢{o<;Z) that should be
maximised, or conversely the residual uncertaidiyx | Z mifimised. The
maximum value of the mutual information is the derabf H(X) andH(2).

If two sensors are now considered, and there aee ttandom variables
X,Z*andZ?, the situation may be as shown in Figure 2. In ¢thse

H(X|ZY) <H(X|Z?) andI(X;Z) >1(X;Z?)as depicted.

! However, unlike a Venn diagram some areas masepit negative quantities [Yeung, 1991,
MacKay, 2003].
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This representation allows the optimisation craeridefined in equations (17) and
(19), to be illustrated graphically. From thdiagram (Figure 2) it is clear that these
two formulations of the criterion are the samegasved algebraically.

H(X)

H(Z')

H(Z2)

Figure 2:1 diagram for the random variabl¥sZz" andZ>.

2.6 Optimal selection of a subset

At this stage, we apply this approach to directsneaments. In the simplest case of
selecting one optimal sensdy which is a deterministic function of the statethe
conditional entropy oZ givenX must be zero. This occurs because once theXtate
is known there is no uncertainty Zn(Figure 3).

H(X)

Figure 3:I diagram for a system where the sensor observagiena deterministic function of
the variableX.

It is clear then that the mutual informatidr(X;Z , between the observati@and
the stateX is equal to the entropy of the observatidiiZ . Uying this in the sensor
selection criterion (17) yields the optimal sergsfollows:

i* =argmaxl (X; Z') (20)
= argmiaxH (Z") (22)
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We now consider a slightly more specialised caggablems where the number of
sensors is the same as the number of state vari@lden = m). Thus, the state of
interestX is defined as a set of variabkes={ X1, X?2,...,X™} and it is assumed that

a set of sensorg ={Z*,Z2,...,Z™m} exists, where each can measure the value of an

associated variabb¢', which is the case of direct measurement as discusarlier.
This may be a thermal protection shield that isd#igt intom incremental areas

(perhaps individual tiles), each of which contaant®mperature sensor, or, in our
second scenario (Section 1.3) a sub-region mouitoyea single moisture sensor.

The design task becomes to select a subset ofrsan§b{12,...,m} to deploy. To
avoid the case of selecting all variables{12,...,m , ajconstraint is generally

imposed orv . For simplicity it is assumed this constraint irepe a maximum limit
on the number of elementsin To be able to refer to the elementaoéxplicitly,

this set will be denoted b|y={il,i2,...,ir} :

Now consider an abstract compound random varidblerepresenting the combined
output of all selected variables and defined as:

Zv ={X':0iOv} ={X}, X"2,..., X"},

This notation specialises the problem to one adalimeasurement with noiseless,
unbiased sensors, i.e. one in which the sensomdata a direct measure of the state
variable. Whether or not the sensors are noisaeledsinbiased (which will generally
not be the case) this assumption will still beasomable one for statistical data-
driven sensor-environment models (case 2 in Sedtidn This is because such
models learn from sensor data rather than frone st&rmation, and thus are models
that represent the spatial distribution of senspuats rather than of environmental
state variables. The experimental case discusskdralysed in Section 4 utilises
such a model, which is the reason this notatiorbleas introduced here.

Thus the optimal sensor selection task now becomes:

V' =argr‘n‘axl (X;Z") (22)
=argr‘n‘axl(X1,X2,...,Xm;ZV) (23)
=argmaxH (Z") (24)

vsr

3. Current Methods

The current literature discusses several othen@tsensor placement methods, three
of which will now be outlined.

3.1 Reward and entropy (RE)

Krause and Guestrin (2005a) introducddcal reward function Rwhich is defined
on the marginal probability distribution of the \doles inX. The local reward is set

for each variableX as the conditional entropy given the observatiamnable Z" ,
le..

R(P(X"[Zv))=-H(X"[Z") (25)

14



The objective of the optimisation then becomestir@misation of the sum of
conditional entropies:

m
* = 1 i v
v, argmlp; H(X|Z) (26)
This will be referred to later as the RE criterittris noted that in general this is not
the same criterion as the one developed in thequs\section, since it does not take
into account dependencies between the variaKlesThis can be demonstrated by
comparing with equation (23):

argmaxl (X1,...,Xm; Z") =argma){H(Xl,...,Xm)— H(X?,...,Xm |ZV)]
‘V‘_r ‘V‘_r Constant
=argminH(X?%,...,X™|Z")

[v|<r

=argmin{ZH(Xi [Zv)= (XL X2Zm | ZV) —-eo = [ (XL X m |ZV)}
visr|

Termsnotaccountedor in (26)

3.2 Mutual information (M1)

Guestrinet al (2005) proposed a metric that gives an optimubsstuof sensor
locations that minimises the uncertainty abouteastEmates in the “rest of the space”.
The problem is formulated by searching #r that reduces the entropy over the rest
of the spaceX \Zv = XV ={ X' :iv}. Formally, the optimal subset is:

|/*I =argmaxH (X”)-H (X" | Z")

M |v]<r

, (27)
=argmax| (X7;2v)

Thus this measure is equivalent to finding the mmaxn mutual information between
X7 andZv, and the criterion will be referred to below as M

This only takes into account the mutual informati@iween the observed and
unobserved variables and not the remaining unceytaf the unobserved variables.
As for the RE criterion, this can be demonstratgddimparing with equation (23):

[v|sr [v|<r

argmaxl| (X1,...,Xm;Z") =argma>{H(X1,...,Xm)— H(X?2,...,Xm |ZV)}
| S
Constant

:argr‘n‘zj){— H(X?%,...,Xm |Z")]

vi
=0 =0

= argma{H (X7) - H(X" | 2*) = H(X")]

[v|<r
=argmax | (XV;Zv) —H(X")
[v|<r —
Termnotaccountedor in (27)
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This work has been extended by Kraasal. (2008). Trendafilova et.al. (2001) also
utilised a mutual information criterion for sensayouts for damage detection. In this
case the aim was to minimise the average mutuadrirdtion between sensor data
(using data from accelerometers distributed orbeating plate), to ensure minimum
redundancy between the measurements of the sehsbis.

3.3 Information coverage (IC)

Olssonet al (2004) suggested a method that uses a combiratioitual
information and an information metric [CrutchfieltB90] to describe anformation
coveragecriterion:

Vi = argr‘rvl‘zsaerZ[wll (Z520)+w,(H(Z'|Z))+H(Z) |Z‘))J (28)

IC 4 -
iOv jOv
i#]

where the mutual informatioh(Z';Z1) is used as a measure for redundancy between

measurementZiandZ i, and the information metric (i.e. the informatidistance
between two sensorsij (Z' |Z1)+H(Z1 |Z"), is used as a measure for novebw,

and w, are the weights used to emphasise redundancyauattyn Greater

redundancy in this case improves the robustneteafensors against noise in the
environment. Novelty is the measure that captusasch different information as
possible from the environment. It is noted thathezi the model of the
environment?x, nor the sensor model’ﬁ’zlx, are used in this approach, which will be

referred to as IC below.

If we sew =w, =1, then equation (28) reduces to:

v = argmgerZ[H(Zi 1Z5)] (29)

- iy jv
Thus, it is important to choose the ratio betwegrandwz, to capture redundancy or

novelty in the system. Following Olssehal. (2004), in the analysis presented in
Section 5, we usemil =1 and\N2 =4 to put more emphasis on the novelty, but these

values can be varied arbitrarily.

4. Experimental Setup

This section describes an experiment in whichmeaélork data from soil moisture
measurements is used to derive optimal sensormkws using the four criteria
outlined above: the criterion introduced here tieduces to equation (24), and the
RE, Ml and IC criteria outlined above. Data fronmsars on an approximately
rectangular 4x4 grid is used to find the optimakliions on the grid if only 2, 3 or 4
sensors were used. The resulting sensor layoutsstesl using another set of data,
obtained from a different time.

4.1 Data

The data set used for this paper is obtained franri@nt wireless sensor network in
Belmont, Australia, some 670 km north of Brisbahlee network was set up as a test
bed for environmental and animal behaviour monigat Belmont Research Station.
The fixed environmental nodes used for this papesalar powered and has onboard
sensors for monitoring soil moisture, battery vgpdtaand solar voltage. Figure 4
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shows the configuration of the fixed nodes, the bers in brackets are the
replacement nodes.

-23.212
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~23.2125} © 115
(138) O 49
045
O 96 O 125
o ~23213F O e
© 34
= O 235
E 0 27
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S -23.2135¢ O 67 O 117
o o 111
I 5119
(88) O 124
0 176
—23214F © 8 4, o 71
o 15
(309) O 174
O 237
O 112
O 236
~23.2145} O 242

150.389 150.39 150.391 150.392 150.393 150.394 150.395
Latitude

Figure 4: The configuration of the sensor netwa&didescribed in this section. The numbers
shown are the sensor ID numbers, and the numbémsakets are replacement sensors
introduced during the period the data was taken.

We used approximately two months of the soil moestiata from January and
February 2008. Each node takes a sensor readinggtily one minute intervals,
independent of its neighbours. The data are pregsszl such that all the readings
occur at the same time on 0 seconds of a minutghéfidue to various
environmental and onboard issues, some nodes magcwd any data for a period
of time. The irregularity in the individual sensodfata time stamps combined with
drop-out in data recording of individual sensorsaanmgenot all sensor nodes in the
network will record a reading at a given time stamip other words, the data set
includes missing values. The data recorded byitseféur nodes in the network is
shown in Figure 5.
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Figure 5: The soil moisture data collected by ih& four sensors in the network during the
months of January and February 2008. The ‘X’ marksvalid readings, and the y-axis shows
raw data collected by the sensor. The gaps betwa&hdata points represent periods when
no data was communicated by the sensor.

4.2 Bayesian networks

As indicated in Section 1, a graphical model, dpsdly a Bayesian Network [Wang
et.al, 2008], was employed in this case to model thﬂ'arenment,Px. Figure 6

shows the structure of the Bayesian Network (BN)du©nly the nodes west of
150.392° latitude (i.e. one half, see Figure 4thefsensor network were used in
constructing the spatial model, i.e. data fromvilestern half of the network was used
as learning data to construct the model. Data ftrsame set of sensors for a later
time period was subsequently used for the compan$optimal sensor layout
criteria, which will be discussed in the next sexti

The network was constructed using the assumptiatmigighbouring nodes in the
sensor network are interdependent. Specificallgh emdeX'in the BN is a parent to
two neighbouring nodes, and a child to two neighimgunodes. The joint distribution
of the spatial model as described by the BN is:
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p(x) - P(Xl) El_l p(x k1 |x kl—l) El_l p(x k2 | Xk2—4) El_l p(x k3 | Xk3_4, xk3—1)’ (30)

wherekl= {234}, k2= {5913, andk3= {6,78101112141516} (see Figure 6).

Figure 6: The Bayesian Network (BN) model useddarning the sensor network. The
numbers on the top left side of each node denb&BN node number.

4.3 Learning and inference

In a Bayesian Network the aim of the learning pssds to estimate the parameters as
well as to find the structure of the network. Tlogeative in the learning is to find a
network that “best describes” the probability dmition over the training data [Pearl,
1988]. In this work, however, the structure of tiedwork was assumed to be known,
and only the parameters needed to be learnt. ThenMian Likelihood [MacKay,

2003, Myung, 2003] algorithm could not be usecdhis tase since the data contains
hidden values, that is, each sensor node has carided sensor readings at every time
stampt. Therefore, the Expectation Maximisation (EM) altion [Dempsteet.al,

1977, Cowelkt.al, 1999] was used. The EM algorithm provides a gragpproach

to maximum-likelihood parameter estimation whemiregy data is incomplete.

This learnt network can then be used to carry migrénce tests on new data. That is,
given the observed values of some of the noddseimétwork, compute the
probability distribution of the data for other ngdénference allows us to perform
predictionon the data, that is, the posterior probabilistrithution of the child node
can be computed given the values of the parentsprddiction results are then
compared with the ‘ground truth’ measured test tatzompare the performances of
the various sensor layout metrics.

As described in Section 4.1 the data set was diMidi® two, corresponding to nodes
in the western and eastern halves of the netwdr&.\Western half was used for
training and, for data from a subsequent time effiar testing. We further processed
the data to give a discretisation of 3 values, {lovedian, high}, to be used in the
discrete nodes. No other pre-processing was castied
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5. Results and Discussion

This section presents the results of our experisnaimed at finding optimal layouts
for two, three and four sensors respectively, uiiegmethods and criteria described
earlier. For each subsection, the optimal layofitss presented, followed by the
inference results for the other nodes in the ndtwbine learnt Bayesian Network was
used to find the optimal layout of the sensorsibglihg each probability distribution,
p(D, through marginalisation of the joint distributioh greedy search process was

employed, thus giving the best theoretically pdssibsults for the various criteria.

5.1 Two Sensors

Figure 7 shows the results of optimal layout foo tsensors using the four different
criteria. Each image shows the value of the respgectiterion for every combination
of locations for two sensors. Figure 5(a) showséselts of using théd (Z cyiterion

of Section 2.6. It can be seen that the cells$)lahd (13, 1) have the highest

entropy, that is, combining sensor locations aenbénd node 13 is the best choice
according to this criterion. Figure 4 shows thastntwo sensors are located at the top
two corners of the Bayesian Network, which seentotdirm the proposition of
Guestrinet.al (2005) that the entropy-based method “pushessémsors to the edges
of the network. Similarly, Figure 7(d) shows thatng information coverage gives

the same optimal layout even though not all cglea between Figures 7(a) and (d).

Figure 7(b) shows the results of using the RE woite(Section 3.1). In this case, the
optimum layout is obtained by finding the minimuifradl the values, which is given
by the combination of nodes 1 and 10. This comimndtas one node at the top left
corner and the other near the middle. Figure Hoys the results of using the Mi
criterion (Section 3.2). The optimum layout herelisained by finding the maximum
of all the values, giving the combination of no@esnd 6, which are the first and
second cells of the second row, thus one on the add the other near the middle of
the array. Table 4, first row, summarises the tesaflthe optimum placement for 2
sensors.

These sensor placements were evaluated by perfginferences on the rest of the
nodes, i.eX \Z", to compare their prediction results with theuatimeasurements
(ground truth). The results are represented iridima of a confusion matrix [Fawcett,
2003] because it gives an intuitive representadictme prediction performance. Since
the data values are discrete, prediction in thée ¢asimilar to classification, because
the considered prediction values can be interpraseciass labels. However, strictly
speaking, a prediction task has been performeenrétian a classification task. The
prediction results were evaluated by counting tinalmer of correct predictions for
every discrete value.

Table 1 presents results for the prediction reflts§ \ Zv given Zv = {113 , the
optimal layout obtained by using both thi§{Z and the IC criteria. The number of

ground truth data samples for each value is shoveolumn 2. It can be seen that
there is a near-perfect prediction result for lalee values, which suggests that the
sensors placed at the corners of the network dage@nough information to infer
the possible sensor measurement at other locations.
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Figure 7: The results of optimal layout for two sers for the four different criteria. For (a),
(c) and (d), the optimal layout is the combinatidrsensor locations that gives the maximum
value; for (b) it is the one with the minimum value

The number of valid measurements with which theligted values are compared
differ for the different nodes because of sensopduts, as indicated above. For this
reason the sum of the n values in the followindesbiffer significantly for different
sensor combinations.

Table 1: Inference results for sensor combinatiamde 1 and node 13.

Ground truth Prediction (%)
Value n 1 2 3

1 5542 100.0 0 0

2 12536 0 99.52 0.48

3 11220 0 1.78 08.22

Table 2 shows the prediction results where thentgdtlayout as suggested by the RE
criterion. Comparing with the results in Tabletlgan be seen that there is a slight
reduction in prediction performance for all thredues. A two-tailed hypothesis test
was used to compare these results statisticaklindgahe different sizes of the ground
truth data into account. The null hypothdsisis set to be the hypothesis that the
results in Table 2 were from the same distributisrthose results in Table 1 and the
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o-value was set at 0.05. The resultPwalues for comparison of the three values
were found to be all less thax102°, much smaller than thevalue, which means
the observed differences are significant, and theswull hypothesis can be rejected.
Therefore, the sensor combinati@gr = {113 deduced from the RE criterion has

slightly worse performance than the sensor comiinaZv = {113 .

Table 2: Inference results for sensor combinatiamde 1 and node 10.

Ground truth Prediction (%)
Value n 1 2 3
1 5851 91.06 8.94 0
2 10832 0 99.33 0.67
3 11379 0 2.02 97.98

Table 3 shows the prediction results giveén={2,6} , which is the optimal layout
results from the Ml criterion. Comparing with thesults shown in Table 1, it can be
seen that there is a large drop in prediction perémce for value 1, and a small
decrease in value 3. Using two-tailed hypothesistand settingly to be similar as
before, andx = 0.05 again, alP-values were again found to be near 0, and thus all
differences were significant. However, althoughisgtthe two sensors &V ={2,6}
gives slightly better performance for value 2,ashmuch worse performance for
values 1 and 3 than those results from settingssermtZ” = {113 .

Table 3: Inference results for sensor combinatiamde 2 and node 6.

Ground truth Prediction (%)
Value n 1 2 3
1 5928 78.93 21.07 0
2 9449 0 99.57 0.43
3 9309 0 6.03 93.97

The observation that the criterion deduced inwosk (Section 2.6) produced very
similar results to the information coverage craerof Olssoret al. (2004) is
interesting and requires further investigationinal funder what conditions this
similarity occurs. It would seem unlikely to be geally the case in view of the
arbitrary choice of redundancy and novelty valusoduced in the IC criterion, and
also because it does not depend on prior knowledgjee sensor model.

Table 4: Results of optimal layouts for multiplensers

No. of H (Z) criterion RE criterion MI criterion IC criterion
sensors
2 1,13 1,10 2,6 1,13
3 1,10, 13 1,10, 13 1,3,10 1,10, 13
4 1,8, 10,13 1,8,10,13 2,5,10, 13 1, 8,110,

! TheP-value, or significance value, is the probabilifyobserving the test statistic if the null
hypothesis is true.

22




5.2 Threeand Four Sensors

Similar heuristic searches were performed to flreldptimal layouts with three
sensors using the four different criteria, andrésilts are summarised in Table 4. In
this case, there are only two different configunasi given by the four criteria:

Zv = {1310 for the MI criterion andzv = {110,1l3 for the other three. Moreover, all

resulting layouts share the nodes 1 and 10, anktiee is near the middle of the
network. This does not agree with the conclusioGhgstrinet al. (2005) that using
the entropy criterion will result in sensors bepigced far apart along the boundary
of the space. Further, the results from the optimaluts with four sensors, shown
also in Table 4, indicates that this is not andaaial case. It is thought to be related
to the use of continuous rather than discrete bbasaby Guestriet al. (2005),

leading to a different (incorrect) definition oftewpy.

The prediction results from these two sensor lagdeduced for three sensors are
shown in Tables 5 and 6. Comparing the resultantbe seen that the sensor
combination ofZv = {110,1l3 has better performance for values 1 and 2 thasetho

from the combinatiorz” = {1310 . Conversely the latter performs better for value 3

Using two-tailed hypothesis tests, settiiganda as before, and taking into account
the different data set sizes, theralues were found to be 0 for all three valuessTh
means the performance differences are signifidémtv, Tables 5 and 6 show that the
differences between the prediction results of v@aiand 3 are small compared with

those of value 1. Therefore, the sensor combinatiat = {11013 gives a better
overall performance than that @¥ = {1310} .

Table 5: Inference results for sensor combinatfomooles 1, 10 and 13.

Ground truth Prediction (%)
Value n 1 2 3

1 2618 100 0 0

2 4460 0 99.57 0.43

3 5281 0 1.61 98.39

Table 6: Inference results for sensor combinatiomodles 1, 3 and 10.

Ground truth Prediction (%)
Value n 1 2 3
1 1514 93.39 6.61 0
2 2513 0 98.81 1.19
3 2634 0 0.53 99.47

The prediction results from the two sensor layaetuced for four sensors are shown
in Tables 7 and 8. These results show similar iffees as those for three sensors.
Similarly, two-tailed hypothesis tests show thekeences are statistically
significant. Thus, the sensor layout obtained lgyNH criterion (nodes 2, 5, 10 and
13) perform worse overall than the layout obtaifrech the other three criteria (nodes
1,8, 10, 13).
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Table 7: Inference results for sensor combinatiomoodle 1, 8, 10 and 13.

Ground truth Prediction (%)
Value n 1 2 3

1 921 100 0 0

2 1482 0 99.39 0.61

3 1437 0 1.46 98.54

Table 8: Inference results for sensor combinatifomode 2, 5, 10 and 13.

Ground truth Prediction (%)
Value n 1 2 3

1 1501 85.54 14.46 0

2 1368 0 99.85 0.15

3 2437 0 4.76 95.24

6. Discussion and Conclusions

This report describes the first stages of work aimtedeveloping a methodology for
determination of optimal sensor layouts: it hassidered methods for placing a
limited number of sensor nodes in an environmemtefest such that the cost of the
placement is minimised while the value of the atdiinformation is maximised.

The formalism developed allows for the incorponatud actual costs or cost functions
if and when they are known. These include the castsciated with deploying
sensors in the environmelt and the costs of carrying out (or not carrying) ou
specific actions as a result of the sensed infaomaT he approach presented here of
defining the optimal expected cost of a sensoeiims of the information it provides
has been shown to predict optimal sensor layoutsrately.

Specifically, this initial work has focused on diteneasurements, that is, sensor
layouts where sensors are placed in only a sulbgetssible locations, leaving the
rest of the space without sensors. Four criteri@wempared: the criterion developed
here that in this case reduces to maximum entrépgrisor measurements; minimum
aggregated residue entropy (maximum reward); maximmutual information (Ml)
between the sensors and the rest of the spacenaxichum information coverage
(1C).

Verification was carried out using data from arnsérg wireless sensor network. An
environment model was learnt as a Bayesian Netviakh criterion was applied
independently producing in general different optisensor layouts. It was found that
for three or more sensors deployed in a layoutpall criteria placed some sensors on
the edges and some near the middle of the aretindfonore, the maximum Mi
criterion was observed to be the only one thatgyavdifferent layout. Each layout
was used to predict sensor measurements in thefrdst space.

To verify the performance of the layouts, the semisda not utilised in learning was
used as the ground truth by comparing it with tresligted measurements. For all
sensor combinations it was found that those Idaont using the entropy and IC
criteria gave the best performance results.

It is interesting to note that the predictive dpibf the two-sensor combination at
nodes 1 and 13 (Table 1) is apparently very sinidddhat of the four-sensor
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combination at nodes 1, 8, 10 and 13 (Table 7)theeaddition of two additional
sensors at nodes 8 and 10 provided little tangibpgovement in the results. This
seems (intuitively) a little surprising in view thfe structure of the network (Figure 6).
The results outlined above focussed more on findptgnal layouts for a pre-
determined number of sensors than on the equapyitant issue of determining the
optimal number of sensors. This will be more expji@addressed in future work.

To differentiate between the entropy and IC critewe may compare their
computational complexities. Both criteria requie’! steps, wherd is the size oK
and|v| is the number of sensors, thus giving us a valueery combination gp/|

sensors. However, the IC criterion only requiresvgae entropies (entailing
marginalisations over at most two sensor modelg){H®e entropy criterion requires

entropy computation fo|v| sensors. Thus, these two criteria have the same

computational complexity for two sensors, but tGectiterion has less complexity as
the number of sensors increases. Therefore, anguabén using discrete variables
and direct measurements, the optimal sensor lagdagst found using the
information coverage criterion given both predintecccuracy and computational
complexity.

However, care must be taken before drawing gererailusions from a single data
set. As indicated in Section 5.1, further invedimais required of the conditions
under which the IC criterion produces similar rést the entropy criterion
suggested in this work.

It may be noted, perhaps trivially, that the marasors that are used the more similar
should be the optimal layouts deduced from theedhfiit criteria. For a full set of, in
the present case, 16 sensors, there can be needifgein optimal layouts.

In addition to further investigation of the gendyabr otherwise of the results
presented here, future work will include similangmarisons for situations using
indirect measurements and extensions to differemé@ networks and types of data.

A final comment concerns the future use of physieatiels to provide the prior
knowledge needed to define an optimal sensor laygiatistical models such as the
Bayesian Network used in the example of Sectioasd!5 make use of no prior
knowledge about the environment other than that@yed in deciding on the spatial
separation of the nodes of the full sensor grididsecollecting the training data
(Figure 4). This is appropriate in many cases,@aerly for monitoring of natural
structures, when prior knowledge of the environmeiitmited. However, we
generally have quite detailed knowledge of engie@structures when they are new,
though this knowledge may be incomplete in someomamt aspects. And of course
oura priori knowledge will be reduced as the structure ages.

A challenging aspect of future work will be devalgpa methodology for
incorporating the knowledge we have, which canxpgessed as a physical model of
the structure, with a method for learning wheredtae knowledge gaps due to
inadvertent manufacturing variations and effectagding, into the formalism for
identifying optimal sensor layouts. That is, we wendevelop a methodology that
incorporates appropriate aspects of both physiwdlsansor-based models into the
formalism presented in this report. The approadteteelopment of a hybrid model
outlined by Coleet al (2008) for corrosion monitoring is a promisingedition for the
future.
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Appendix 1

Sentient Structures
White Paper for US Air Force, Asian Office of Aepase R&D ’
. from _____CSIRO
Commonwealth Scientific & Industrial Resear ch Organisation
(CSIRO Australia)

Summary

Engineering structures of the future, whether tieyvehicles, buildings, infrastructure,
networks, etc., or heterogeneous groups of suahbtates, will be required to be perceptive
and responsive. Such structures will be referregsteentient structures. This White Paper
discusses the development of techniques and temfiigslby which sentient structures can
formulate perceptions, awareness and intelligesgalses to events and environments that
may cause, or have caused, damage to the structure.

The approach to be pursued is to distribute senairtiye response and computational
capabilities throughout the structure to form a ptax multi-agent network, and to develop
diagnostic, prognostic and decision-making functientirely by self-organizatiomf the
complex system, with no central control. Such aoreg@ch will yield robust, adaptive and
scaleable systems.

A key focus in the early stages of the work willthe development of information-theoretic
techniques for determining optimal sensor denséaslayouts, suitable for a fully
distributed environment, for specific damage foloragand propagation processes in real
materials. A hardware demonstrator has been deséltgpenable simulation on a real
distributed system, forming a bridge between compbased simulation and application-
specific prototypes.

I ntroduction

Structural health monitoring and management (SHM) inew approach to assuring the
fitness for purpose of critical structures. SHM éwoyp sensors built into a structure to
continuously monitor its state. It will initiallyeduce the need for, and may ultimately replace,
the current regime of periodic non-destructive awjon and evaluation (NDE).

Current SHM systems, which are essentially expertaieare relatively narrowly focussed

on particular damage “hot spots” in structures saghircraft. If SHM systems are to be more
broadly based, key requirements will be an abibtprocess data from a large number of
sensors in different parts of the structure, ancbttinue performing effectively in the
presence of damage.

The approach we have adopted to satisfy thesereggents is a distributed multi-agent
system, in which semi-autonomous local agents obatsuite of sensors and process their
data to obtain information about the state of thecture in its local region. These local
agents communicate with their neighbours, withabjective of the system as a whole
forming a diagnosis of the damage, and ultimatalysponse to it, by the process of self-
organisation. We have recently demonstrated fofitbetime an example of such a self-
organising SHM system. This is outlined in a reqartilication of ours (Hoschke et.al.,
2007), which is attached since it is not yet avdéda

! “Self-organization is a process in which pattertha global level of a system emerges solely from
numerous interactions among the lower-level comptmef the system. Moreover, the rules specifying
interactions among the system’s components areutegcising only local information, without
reference to the global pattern”, Camazt@l Self-Organization in Biological Systeniinceton
University Press (2001).
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The long-term aim of this approach is the develapnoeé sentient structures. Sentient
structures will be able to sense (or “feel”) damaget occurs, to evaluate the nature and
severity of damage, to infer its cause (diagnosis), to make a prediction (prognosis) of
damage development and its effect on the performahthe structure in the future. They will
have the capability to make decisions for remealitions, ultimately including self-repair.
They will be aware of environmental or operatioc@ahditions that may cause damage.
Sentient structures will fail only in extreme cinsstances, because many of the common
causes of failure will be detected and correcteahagarly stage.

Sentient structures will have a major impact in ynareas, including transportation (e.g.
space vehicles, aircraft, motor vehicles), heavghirgery (such as mining, manufacturing
and processing equipment), buildings and infrastinec(e.g. dams, bridges, pipelines and
networks), and the protection of critical infrastiwre. Sentient structures will be safer, will
greatly reduce maintenance costs, and, most signifiy, will allow the use of more efficient
structural designs.

The major benefits of the SHM approach will folltle development of materials that have
inherent sensory, and eventually self-healing, béiias, integrated communications and
processing elements, and robust, intelligent systespable of processing a vast amount of
data, learning, adapting, and formulating inteligeesponses to the threat or occurrence of
damage.

One of our immediate objectives is the developnoémt rigorous approach to the design of
optimal sensor layouts. Information and informatilmws are the key ingredients in the
design of distributed SHM systems, so informatiloeetretic and probabilistic inference
techniques will be applied to the problem of desigrefficient and effective sensing systems.
Attention will be focussed on the development ebtationary capabilities for diagnosis and
prognosis of the structure within a fully distribdtsensing and computational network, by
designing the self-organized response of the ndétvaspecific damage scenarios.

Much international research in SHM is either aiméthcremental developments for the
deployment of near-term technology, or is focussedpecific aspects of the problem (sensor
development, in particular). Incremental developtegand their near-term applications, are
very important for a variety of reasons (includagrumulation of domain knowledge, and
gaining of industry acceptance) but they are netftitus of this project.

CSIRO Capability for this Research

CSIRO is an Australian Government research andldprent organisation, with broad
interests and capabilities across many areas @fiseiand technology. It employs some 5000
technical staff in 20 research divisions, providangowerful ability to form strong multi-
disciplinary teams to tackle significant problerRarther details about CSIRO can be found at
http://www.csiro.au

CSIRO has a number of research activities thaeiher directly involved with or closely
relevant to the work proposed here. A collaborakietween groups in two Divisions, CSIRO
Industrial Physics (CIP) and the CSIRO ICT Cen@&XTC), has been working for some
four years on the development and demonstrati@oéepts for the intelligent systems
aspects of structural health management, in agrpgatially supported by NASA (Langley
Research Center) and The Boeing Company. The nlisltiplinary project team draws on
existing expertise in sensing, NDE, signal progegdielecommunications and intelligent
systems. A recent paper (Hoschke, et.al., 200T)thitines the approach adopted, current
progress and some recent results is attached.dwhae test-bed/demonstrator that contains
192 autonomous sensing agents that form a compldtcagent system has been developed
as part of this work.

CSIRO also has research activities and capabilitiise design and development of
functional composite materials (which includes cactt work for Boeing, with whom CSIRO
has an active R&D partnership), sensors and sensamgpscience, damage in metals and
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composites, intelligent textiles, processing ofMarge data sets, etc. The aim is to bring
some of these capabilities, along with those oéml partners, into the present project at a
later stage (see below).

Major Objectives and Approach

Ad hocnetworks and pervasive computing are active avéessearch worldwide, but the
detailed diagnostic and prognostic issues involne®HM have received little research
attention. There is as yet no general successfubaph to the engineering of complex
systems such as sentient structures to produceedesglf-organized outcomes.

In order to provide a revolutionary rather tharrémental advancement toward sentient
structures, we propose to develop the followingoemts implemented in a hardware concept
demonstrator:

1) a multi-cellular sensor and communication netwar&luding optimal sensor layouts,
flexible communication and coordination mechanisamg self-maintenance
capabilities, based on a novel evolutionary desigthodology;

2) a self-organizing response system, utilizing distiéd sensor data from the multi-
cellular network with results from internal damagedels (diagnostic, prognostic,
etc.), and supporting decentralised decision-fusiithin the network;

3) novel verification and validation techniques focedetralised distributed systems,
using information-theoretic metrics to quantitaliveeasure design outcomes and
performance of self-organizing systems with noredatnistic emergent behaviour.

1. Evolutionary design of a distributed sensinguoek

The purpose of the proposed multi-cellular netwierto provide a flexible, modular,
reconfigurable skin for a sentient structure, endiagl cells with multiple sensing modalities,
collectively capable of a wide range of self-ass®esd functions. The multi-cellular network
will deal with both simultaneous, real-time evefgsy. impacts), and long-horizon transients
(e.g. material degradation such as corrosion auej.

The transition from conventional “hot spot” monita, which uses relatively few sensors
and treats damage detection as a separate taskl&ananalysis and prognosis, to SHM that
will employ very large numbers of diverse sensatsgrated into the material microstructure,
will necessitate handling of massive amounts ch.dahese systems have to be designed
comprehensively, aiming at optimal sensor dens@ieslayouts, adequate information
transfer between the system’s components, andleliaference for diagnostics, prognostics
and response. Given the requirements of robustadagtability and scaleability, these tasks
cannot be achieved with traditional engineeringhmds that result in segmented, brittle
designs incapable of adapting to new situationsc@ytrast, biological systems are not built
out of separately designed parts attached togathetater stage — they evolve symbiotically.
Each component is reliant on other components arglolves to work even more closely
with the whole. The result is a dynamic system wtemponents can be reused for other
purposes and take on multiple roles, increasingsttess observed on multiple levels: from a
cell to an ant colony to social systems (Milleakt.2000).

In order to approach the required levels of robessnadaptability and scaleability in solving
the SHM problems, we propose a biologically-insgineulti-cellular sensor and
communication network, with self-monitoring andfsdihgnosing capabilities, aiming at self-
organizing response. Data will be processed locatig only information relevant to other
regions of the structure will be communicated.

The main network component is an autonomous ceflulti-layered hardware module,
including layers for external protection, embeddedsors, electronic data acquisition,
software for communications, power distribution agegnt behaviors. It has a limited number
of communication/power connections to neighborialisccovering a given surface. Cells in
the existing demonstrator, referred to above, hosva in Figure 1.
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Figure 1: The current CSIRO multi-cellular netwarkperimental test-bed/demonstrator. The
image on the left shows four cells attached tolamaium“skin” panel, while that on the
right shows the assembled demonstrator that canefst92 cells.

The inter-connected cells create a network witlvemntralized controllers. The cells can be
manufactured or retrieved independently without lamywledge of the network topology or
state, and can be added to the network anytimeylzemg, resulting in highly scaleable SHM
systems. The network is able to continue functignithen some individual cells are
destroyed or malfunction. This is achieved by l@eal algorithms, using only local behaviors
and communications. Without centralized controllesdls deal with regional failures,
resulting in highly robust reconfigurable SHM syste

In designing self-organizing systems we may drasoime degree from traditional
engineering top-down decomposition design methadssical Al planning and reasoning
techniques, bottom-up emergent behaviour engingé€sinch as reaction-diffusion,
amorphous computing, graph automata), but esslgntgjuire a methodology for a co-
evolution of multiple agents fitting selection eriia collectively — as a multi-agent system.
Typically, evolutionary design may employ genetgosithms in evolving optimal strategies
that satisfy given fitness functions, by explorlagge and sophisticated search-space
landscapes (Miller et.al., 2000). Neverthelessnvag approach evolutionary design in two
ways: via task-specific objectives or via genenitinsic selection criteria (Prokopenko et.al.,
2006a). The latter method — information-driven etiolhary design — essentially focuses on
information transfer within specific channels. Araenple of an information-theoretic
selection pressure is the acquisition of informafimm the environment: there is some
evidence that pushing the information flow to thisimation-theoretic limit (i.e.,
maximisation of information transfer) can give risdntricate behaviour, induce a necessary
structure in the system, and ultimately be resgmador adaptively reshaping the system
(Kluybin et.al., 2004).

In a distributed scenario the information-drivemlexionary design question becomes: what
are the co-evolving sensors, actuators, memorgsstahd behaviours which maximize the
information-transfer in a given dynamic environmentparticular, we intend to evolve

* optimal sensor layouts;

e optimal inference from observation to diagnosis;

» optimal inference from diagnosis to prognosis; and
e coordinated perception-action loops.

2. Self-organising response

The development of a self-organising response $el§repair or autonomous maintenance
scheduling)n a distributed multi-agent network is the immeeifocus of this project. The
nature of the response must be determined by tmagla diagnosis and prognosis: what is the
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nature of the past events, how does the damaget #ffefunctionality of the structure now
and in the future, and when might it become crifica

The purpose of our method is not to provide an edascription of damage processes and
possible reactions, but to provide a sufficiendglistic model to use for the development of a
response strategy. In this context the inheren¢émainty of diagnostics and prognostics
resulting from uncertainties in the knowledge bé past and the future operating conditions
is recognised.

Single cells may make fast and automatic respaieserdtical emergencies, while collections
of cells may solve more complex hierarchical tasisexample:

a) self-calibrate, discriminate among component amgaefailures;

b) form a dynamic network, characterizing the natdneassible damage and inferring a
self-organizing diagnosis and prognosis;

c) self-schedule secondary inspections, maintenancerogctive actions based on
information from the network, while issuing warnig

d) direct repair or recovery resources, human or ioptut the repair site.

The establishment of an adequate set of the infiom#heoretic criteria will support a set of
design guidelines for self-organizing sentientctutes, applicable to a large-scale model
system to be developed during the next stage gbrbject.

3. Verification and validation metrics

Condition-Based Maintenance (CBM) has become pofoatacomplicated multi-component
systems due to its cost and reliability advantamyes traditional scheduled maintenance
programs: for example, advanced reasoning schemeslfecting diagnostic/prognostic
information and reducing false alerts are beingetmped in

at Pennsylvania State University (ARL-PSU). Howeaecording to a NASA
Jet Propulsion Laboratory report on Prognosticshiddology for Complex Systems (Gulati
and Mackey, 2003), CBM is frequently difficult tp@ly to complex systems exhibiting
emergent behaviour and facing highly stochastigrenmental effects. A scalable solution
capable of providing a substantial look-ahead citipals required. The JPL solution
involves an automatic method to schedule maintemand repair, targeting the two
fundamental problems in autonomic logistics: (1ambiguous detection of deterioration or
impending loss of function and (2) determinationttaf time remaining to perform
maintenance or other corrective action based upimnmation from the system (Gulati and
Mackey, 2003). The solution based on the JPL wuoekertheless, does not account for self-
organization and is not directly applicable to ilgtted multi-agent networks.

Most engineering systems being designed todayexselarge, distributed, decentralised, and
complex. A distinguishing feature of complex syssémthe emergence of system-level
behaviour out of the interactions among local no@eaditional multi-component systems do
not exhibitself-organizationinstead, they rely on fixed multiple links amahg components

in order to efficiently control the system, haviiairly predictable and often pre-optimised
properties, at the expense of being less scalealoléess robust. Consequently, the traditional
verification methodology developed so far has \lenjted applicability with respect to
complex systems: it does not capture self-orgaiozatnd cannot fully measure resilience,
fault-tolerance and recovery.

A new, promising approach to verification of compystems suggests the use of
information-theoretic metrics in measuring selfamigation. Over the last 3 years we have
investigated various information-theoretic measijsesh as Shannon entropy of certain
frequency distributions), targeting response timevall as spatial connectivity, temporal
persistence and size of self-organising patternsk@®enko et.al. 2006b, 2005a, b, c,
Hoschke et.al., 2007). These metrics may form a obnew verification methodology
applicable to non-deterministic emergent behaviand measuring reliability and resilience
of complex distributed and decentralised systerherd are very few research groups world-
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wide that investigate the applicability of inforrwat-theoretic metrics to verification of
scalable networked systems: on one hand, the éféstused on theoretical aspects of the
emergent behaviour, while on the other hand, “pesttice” verification tools do not capture
emergent behaviour. The proposed intersectiondillamportant and well-defined niche and
will have a major impact on the development of meitstructures.

Benefits/payoff of the technology

Both the initial focus of self-organized diagnosigl prognosis, and the broader objective of
sentient structures, can clearly find importantli@gptions to many areas of defence assets and
operations. The initial target application for tteshnology is the structural health
management of vehicles and infrastructure, antighapplication area it would lead toter
alia, maintenance cost savings, improved structuralbiilia and efficiency, and enhanced
personnel safety. However, the technology has rbucader potential applications in areas in
which robust, distributed situational diagnosisigmosis and decision-making are required:
examples include emergency response advisory sgsfegsical security of structures,
networks, etc. All of these are of considerablevahce to Defence, and offer the possibility
of revolutionary Defence capabilities. It shouldrbeognised, of course, that significant
integration efforts will be required to produce gifeal systems (see, e.g., Prosser et.al.,
2004).

General Outline of Program, Costs and Duration

This proposal is for an initial 12-month “seed” jerct, which aims to develop a formalism for
designing optimum sensor distributions and laytaitsnable a system or a local agent to
efficiently acquire the information it needs for @ppropriate response to be developed. This
work will be based on information-theoretic prirlei, building on and extending the work of
Polani's group (e.g. Olsson et.al., 2004) by inooating Bayesian inference of the damage
state in a decentralised environment. Differentrapaghes to optimising the design will be
investigated. This is work that should ultimatetyliroadly applicable to distributed networks
in a range of applications.

This work could be carried out by a combinatioroof existing research team staff, one or
two PhD students or part of the time of a Postdatteellow. The make-up of the team will
depend on a number of factors, and will be decptét to the work commencing. The cost
for any of the staffing options is expected to ppraximately US$50k for a 12-month
project.

Expertise of the principal investigators

It is proposed that the effort is led by Dr MikhBilokopenko (CSIRO ICT Centre) and Dr
Don Price (CSIRO Industrial Physics).

Dr Mikhail Prokopenko has a strong internationglutation in the areas of complex multi-
agent systems and distributed intelligence (oveputlications and patents). He received a
PhD in Computer Science (Macquarie University, 2002stralia), MA in Economics
(University of Missouri-Columbia, 1994, USA), and3d in Applied Mathematics
(Azerbaijan Institute of Petroleum & Chemistry, 898SSR). Since joining CSIRO he has
led a number of R&D projects, including a CSIRO @tex Systems Science Emerging
Science Project on Directed Self-Assembly in MAlgient Networks (January 2003 — June
2004). In June 2002, Dr Prokopenko received tharkege Society for Artificial Intelligence
award for scientific contribution to the RoboCupn8iation League, for his work on entropy
of joint beliefs as a measure of multi-agent camaition potential. Dr Prokopenko has worked
on a number of international Program and Organi§iommittees; was a keynote speaker at
6th International Workshop on Agent-Based Simutat2005); co-chaired sessions on
Evolutionary and Self-Organizing Sensors, Actuatord Processing Hardware (International
Conferences on Knowledge-Based Intelligent Infoioma& Engineering Systems). He is an
adjunct Associate Professor at the School of Coergsitience and Engineering, the
University of New South Wales (see algtp://www.ict.csiro.au/staff/Mikhail.ProkopenRo/
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Dr Don Price is currently Research Group Lead€2 1RO Industrial Physics, and Project
Leader of the CSIRO-NASA Ageless Aerospace Velfelgect, a collaboration that is
developing and demonstrating systems conceptseahaigues for advanced structural health
management systems. He has an extensive reseatdrdaiand in condensed matter physics,
industrial applications of ultrasound (mainly inmdestructive evaluation of aerospace
materials and structures) and more recently in ¢exngelf-organizing systems. This work
has involved substantial collaborations wittter alia, AEA Technology (Harwell, UK),

Metal Manufactures (Port Kembla, NSW), the Boeirgrpany (Seattle and St.Louis, USA)
and NASA (Langley Research Center, Dryden Flightt€e USA). His work over the past
five years in structural health management hadtegbin 33 publications, 2 invitations for
keynote presentations at international workshopg,2ainvited book chapters. Dr Price was
invited to join the NASA Engineering & Safety CenMDE Super Problem Resolution
Team, which is investigating NDE issues for retirflight of the Space Shuttle, and the ISS.
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