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Numerical Simulation of the Evolution of Solidification Microstructure in Laser 
Deposition 
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Ruan1 and Joseph W. Newkirk2  
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Abstract 
A predictive model is developed to simulate the evolution of the solidification microstructure 
during the laser deposition process. The microstructure model is coupled with a 
comprehensive macroscopic thermodynamic model. This model simulates dendritic grain 
structures and morphological evolution in solidification. Based on the cellular automata 
approach, this microstructure model takes into account the heterogeneous nucleation both 
within the melt pool and at the substrate/melt interface, the growth kinetics, and preferential 
growth directions of dendrites. Both diffusion and convection effects are included. This 
model enables prediction and visualization of grain structures during and after the deposition 
process. This model is applied to Ti-6Al-4V.  
 
 
1. Instruction 

Laser deposition is an extension of the laser cladding process. This laser additive 
manufacturing technique allows quick fabrication of fully-dense metallic components directly 
from Computer Aided Design (CAD) solid models. The applications of laser deposition 
include rapid prototyping, rapid tooling and part refurbishment. As shown in Fig. 1, laser 
deposition uses a focused laser beam as a heat source to create a melt pool on an underlying 
substrate. Powder material is then injected into the melt pool through nozzles. The incoming 
powder is metallurgically bonded with the substrate upon solidification. The part is fabricated 
in a layer by layer manner in a shape that is dictated by the CAD solid model.  

 
The key to the mechanical strength of materials in the as-deposited condition is the 

microstructure. This study is to model and simulate the evolution of the solidification 
microstructures during the laser deposition process. In particular, the grain structure of the 
deposit (new layers) and the heat affected zone (HAZ) is the subject of this paper. The effect 
of flow velocity and macrosegregation on the formation of microstructure is considered. 
Cellular automaton (CA) method is adopted to investigate the microstructure evolution. The 
CA algorithm describes the discrete spatial and temporal evolution of complex systems by 
applying local (or sometimes long-range) deterministic or probabilistic transformation rules 
to the cells of a regular (or nonregular) lattice 1. Compared with other microstructure 
models, such as Monte Carlo models, front-tracking models, and phase field models, the 
strength of cellular automaton is such that it combines the computational simplicity and 
scalability with the physical stringency.  
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In this work the evolution of solidification microstructure is simulated on the basis of the 
physically based probabilistic cellular automaton method developed by Guillemot et al. 2. 
The method ensures that: (a) the simulation results are not affected by the type of calculation 
cells (cubic or hexagonal) used; (b) the dendrites grow preferentially in 10 directions; (c) 
the kinetics of dendrite-tip growth (primarily the effects of local undercooling, fluid flow and 
solute concentration) is properly taken into account. 
 
2. Mathematical Model  

  
2.1 Microscopic Model 
The microscopic model is used to simulated heterogeneous nucleation, dendrite growth and 
grain transport, etc during the laser deposition process. The model is almost identical to the 
one developed by Guillemot et al. 2 and hence some details of the model will be omitted. 
 
2.1.1 Nucleation 

The nucleation algorithm is based on an instantaneous nucleation law, that is, regardless 
of cooling rate, nucleation occurs as soon as the undercooling reaches a critical value. A 
Gaussian distribution is used to characterize grain density as a function of undercooling: 
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where TN is the mean undercooling, corresponding to the maximum of the undercooling 
distribution, T is the standard deviation, and nmax is the maximum density of nucleation 
sites (grains), given by the integral of total distribution (from zero undercooling to infinite 
undercooling). These three standard nucleation parameters must be determined 
experimentally for each melt by measuring the grain density and the corresponding maximum 
undercooling at recalescence under various cooling conditions [3]. Different nucleation laws 
are used for the bulk liquid and the substrate/melt-pool interface. Stereological relationships 
are used for 3D-2D conversion of maximum densities.  
 

Nucleation sites are randomly distributed among the CA cells. For a nucleation site, a 
critical nucleation undercooling is assigned randomly according to the prescribed Gaussian 
distribution, and a crystallographic orientation is also randomly chosen among the predefined 

Fig. 1. Schematic of a typical laser deposition system 
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classes. 
 
2.1.2 Growth 

The dendrite tip velocity is calculated by the following set of equations. Neglecting the 
kinetic and thermal undercooling, the total dendrite tip undercooling, T, is thesum of a 
chemical undercooling and a curvature undercooling: 
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where  is the Gibbs-Thomson coefficient (the ratio of solid/liquid interface energy to the 
melting entropy), kp is the solute partition coefficient (the ratio of solute concentration in 
solid to that in liquid) at the solid/liquid interface, m is the liquidus slope, D is the solute 
diffusion coeffcient in the liquid, Cl is the solute concentration in the bulk liquid far from the 
dendrite tip.  
 
In Eq. 2, m, kp, D, and  are all temperature dependent, and in addition, kp depends on the 
solidification front velocity, V, according to the relationship given by [4]: 
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where k0 is the equilibrium partition ratio, a0 is the length scale related to the interatomic 
distance and is estimated to be between 0.5 and 5 nm. Assuming equilibrium at the dendrite 
tip solid/liquid interface, the supersaturation,  cc,, is defined by: 
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where  CCss//ll is the solute concentration of the liquid at the solid/liquid interface.  CCss//ll is calculated 
with the phase diagram of the binary alloy accounting for the curvature effect: 
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The dendrite tip velocity, Vp and the radius of curvature at the dendrite tip, r, are linked by 
using the marginal stability criterion [5]: 
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wwhheerree  Dl is the diffusion coefficient of the solute element in the liquid, and * the marginal 
stability constant taken as 1/(42) [5,6]. 
  
The supersaturation,  cc,,  is calculated according to the boundary layer correlation [7]: 
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where 
pVPe ,, VPe ,,Sc, Re are the growth Peclet number, the flow Peclet number, the Schmidt 

number and theReynolds number, respectively. The angle  is defined by the primary growth 

direction of the dendrite tip and the bulk fluid flow velocity, V. For
pVPe [10-4, 10], 

VPe [10-2, 10], and Sc [50, 500], the parameters A, B, C are taken as 0.5773, 0.6596, 

0.5249, respectively. E1 is the integral exponential function given by [8]:
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Calculations of the velocity and radius of the dendrite tip are implemented by an iterative 
approach. Details refer to [7].  
 
2.1.3 Grain Transport 
Grain transport in the liquid due to liquid flow and sedimentation is considered. A cluster, 
defined as an assembly of grains contacting each other, is studied. The relative cluster 
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where CV


is the cluster velocity, V


is the fluid flow velocity surrounding the cluster, Ve is 

the volume of the cluster, Ae is the area projected in the direction of the relative velocity of 

the cluster, sm
Cf is the internal fraction of solid located in the cluster envelope, which is the 

average of the internal volume fraction of solid located in the cells defining the cluster, and 
CD is the drag coefficient, which is calculated using Ahuja’s correlation [9]. The grain 
transport algorithm will not be repeated here. 
 

2.1.4 Cellular Automaton Simulation of the Solidification Process 
The microscopic calculation domain is divided into square CA cells. Each cell is 

assigned a state index, which is zero when the cell is liquid and a positive integer if it is solid. 
This latter positive number corresponds to a given crystallographic orientation.  
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If a nucleation cell v is still liquid, and its temperature, Tv, interpolated from the 
macroscopic model falls below the critical nucleation temperature: Tv  Tm + mCv - Tv

nucl, the 
state index of the cell v is updated accordingly. Here (Tm + mCv) is the local liquidus 
temperature of the cell v, and Tv

nucl is the undercooling prescribed for the cell v. 
 

This newly nucleated grain is assigned a square shape with diagonals corresponding to 
the preferential directions of the dendrites stems. The initial length of the diagonals is set to 
zero. The dendritic growth is controlled by the increase in the length of the four 
half-diagonals. A decentered polygon algorithm [2] is adopted as the growth algorithm. The 
details of the growth algorithm are omitted here. The center of the growing shape of the 
newly nucleated grain is located at the center of the nucleation cell. The growing center of a 
cell which is not a nucleation cell is generally not in the center of this cell. The growing 
shape of a cell is generally not a regular square since the effect of the fluid flow on the 
growth kinetics of the four primary growth directions is considered independently. 
 
2.2 Macroscopic model 
 
Figure 2 shows a schematic diagram of the calculation domain, including the substrate, melt 
pool, remelted zone, deposited layer and part of the gas region. The governing equations for 
the macroscopic model are described in detail in reference [10] and are summarized in Table 
1. An important difference between the model used here and that described in reference [10] 
is that here the species conservation is included.  

melt pool

Deposited 
layer

Remelted 
zone

Substrate

Shielding gas Laser beam

Powder

  

 
 
The governing equations have been discretized using a finite volume scheme. The 
pressure-velocity coupling in the momentum equation is solved using a modified version of 
the SOLA-VOF algorithm [11]. The thermophysical properties (thermal conductivity, 
specific heat, etc) are taken as functions of temperature. The material for both metal powder 
and substrate, Ti-6Al-4V, is taken as a binary alloy. In this way, Ti and Al are considered as a 
mixed element X.  
 
 
 
 
 

Fig. 2. Schematic of the calculation domain for the macroscopic model 
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Table 1. Summary of the governing equations for the macroscopic model 
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22..33  Coupling between the macroscopic and microscopic models 

In the macroscopic model that has been described in the previous section, the 
temperature field is calculated using finite volume method (FVM) on a fairly coarse grid 
since the macroscopic model needs to deal with a larger computational domain. The 
solidification microstructure is simulated on a finer regular Cellular Automaton (CA) mesh. 
The FVM cells will be re-meshed into CA cells so that the temperature, enthalpy, velocity 
and solute concentration fields in the macroscopic model are interpolated into the 
microstructure model. Since the laser deposition process has the nature of rapid solidification 
and the cooling rates can be very high (as high as 1000-1500 K/s 12), an adaptive time step 
is used so that in each time step the peak temperature drop is at the scale of 0.5K.  Thus, the 
temperature, enthalpy, velocity and solute concentration fields are interpolated into the 
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microstructure model both in space and in time. The latent heat release in the microscopic 
model is interpolated back into the macrostructure model. 
 
3. Results and Discussion 

In this section, the results of application of the coupled CA model for the evolution of 
solidification microstructure and the finite volume model for calculation of temperature, fluid 
flow, solute concentration fields in laser deposition of Ti-6Al-4V are presented and 
discussed.  

 
Figure 3 shows some macroscopic simulation results: Volume-of-Fluid field and velocity 

field at t = 20ms, which is used as the starting moment of the microscopic simulation; 
temperature field at t = 95ms, which is used as the finishing moment of the microscopic 
simulation. The calculation domain of the microscopic simulation is isolated from the 
macroscopic calculation domain. At the starting moment of the microscopic simulation, the 
microscopic domain includes most of the melt pool, part of the gas area, and part of the 
Heat-Affected-Zone (HAZ). At the finishing moment of the microscopic simulation, the area 
corresponding to the microscopic domain has been fully solidified. The mesh size for the 
macroscopic simulation is 20m and the mesh size for the microscopic simulation is 4m. 

 

 
 

(a) Simulated Volume-of-Fluid field and 

velocity field from the macroscopic model (t = 

20ms) 

(b) Simulated temperature field from the 

macroscopic model (t = 95ms) 

 
 

 
 
 
The liquid/solid interface and gas/liquid interface (free surface) are keeping changing 

during the laser deposition process. From Fig. 4 it can be seen that both of these two types of 
interfaces are tracked for both macroscopic simulation and microscopic simulation.  
 

Fig.3. Macroscopic simulation results for laser deposition of Ti-6Al-4V using 
Nd: YAG laser, and isolation of the calculation domain (area delimited by the 
bold black rectangle) for the microscopic model. 
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(a) Temperature field of the microscopic calculation 

domain at t = 95 ms 

(b) Simulated solidification microstructure at t = 95 

ms  

Fig. 4. Macroscopic and microscopic simulation results 
 

Figure 5 shows the evolution of the microstructure during laser deposition. From Fig.5, 
we can see that grains initially nucleated in the vicinity of the substrate/melt-pool interface 
and the free surface. This is because that heat extract in these areas is much faster than in the 
bulk liquid. Also it can be seen that grains nucleated at the substrate/melt-pool interface and 
the free surface have final small size compared to those nucleated within the bulk liquid. This 
is because that grains transported into the bulk liquid do not melt and grow the most. So an 
area of large grains is generally located in the bulk liquid position. 

 

(a) Simulated microstructure at t = 35ms (b) Simulated microstructure at t = 55ms 

 

(c) Simulated microstructure at t = 75ms (d) Simulated microstructure at t =95ms 

Fig. 5. Simulation of the evolution of the microstructure during laser deposition 
  
The recent simulation results have not yet been compared with the experiments. Before doing 
so, the following needs to be done. Since the parameters used for the nucleation laws and 
dendrite growth are critical for the calculation of the grain density and grain size, experiments 
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of laser deposition for the investigated alloy and statistical analysis must be undertaken to 
determine those parameters.  

  
4. Conclusions 

The proposed model is able to simulate the evolution of the solidification microstructure 
during the laser deposition process, including heterogeneous nucleation, dendrite growth, 
etc. The effect of fluid flow in the melt pool and macrosegregation on the solidification 
microstructure is accounted for in the current model. The microscopic phenomena during 
laser deposition are fully coupled with the macroscopic solidification process.  
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