<table>
<thead>
<tr>
<th>Time</th>
<th>Presenter</th>
<th>Slides</th>
</tr>
</thead>
</table>
| 00 – 10 | Chuck Coutteau | 1. Title
 2. Mission and Vision
 3. Organizational Thrust Areas
 a. $$$ statement of ongoing and future work
 4. Needs & Requirements
 a. General statement drawn from FOC, Warfighter Outcome Statement, and Needs Chart
 5. How do I do business with TARDEC? |
| 10 – 25 | Mike Blain | 1. Platform Mobility
 a. POC
 b. Listing of follow-on subject areas / slides
 2. Hybrid Electric
 3. Energy Storage
 4. Track
 5. Suspension |
| 25 – 40 | Rocky Patel | 1. Power Systems
 a. POC
 b. Listing of follow-on subject areas / slides
 2. Prime Power
 3. Non-primary Power
 4. Power Management
 5. Thermal Management |
| 40 – 50 | All | 1. Questions?
 a. Repeat POC’s |
4. TITLE AND SUBTITLE
Advanced Planning Briefing to Industry (APBI), TARDEC Ground Vehicle Power & Mobility (GVPM)

6. AUTHOR(S)
Coutteau, Chuck

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
US Army RDECOM-TARDEC 6501 E 11 Mile Rd Warren, MI 48397-5000

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release, distribution unlimited

13. SUPPLEMENTARY NOTES
Advanced Planning Briefing to Industry (APBI)
TARDEC Ground Vehicle Power & Mobility (GVPM)
Chuck Coutteau – Associate Director

23 October 2008
UNCLAS: Dist A. Approved for public release
GVPM - Mission and Vision

VISION:
Be the Army’s “Center of Excellence” for technology and engineering expertise for research, development, testing and engineering of ground vehicle power and mobility technologies – today and tomorrow.

MISSION:
Provide technically sound and timely responses to the soldiers’ current and future needs for technology and engineering expertise in ground vehicle power and mobility technologies.

UNCLAS: Dist A. Approved for public release
TARDEC has 217 ongoing P&E projects with a total funding of $275M. Each year brings new funding of ~$100M. Most is already programmed, with more discretionary funding in out years.

UNCLAS: Dist A. Approved for public release
TARDEC’s Ground Vehicle Power and Mobility organization is striving to meet the requirement to provide enhanced worldwide operating agility to the current and future U.S. military ground vehicle force by reducing significantly the weight and volume of fuel required to power that force.

Combat platforms require significant increases in pulsed power and continuous power capabilities to enable superior tactical mobility, speed, firepower, an excess capacity for on and off-board power, while simultaneously making significant improvements in fuel economy.

The task is formidable, and TARDEC welcomes innovative solutions from new and existing industry partners.

UNCLAS: Dist A. Approved for public release
How do I do Business with TARDEC?

http://contracting.tacom.army.mil/opportunity.htm

Questions to answer before approaching TARDEC:
• What TRL is my technology at?
• Am I willing to disclose enough test data to make my case?
• Is there other funding that can be leveraged?
• Do I have other federal funding working this technology, and who are the POC’s?
• Does my accounting system restrict what federal contracts I can be awarded?
• Do I qualify for special consideration? (Small business, woman / minority owned, 8A, hub zone…)

Rules of Engagement:
• FAR (Federal Acquisition Regulation)
• DFARS (Defense Federal Acquisition Regulation Supplement)
• DODGARS (DoD Grants and Regulatory System)
• ITAR (International Traffic in Arms Regulations)
• EAR (Export Administration Regulations)

Where do I enter the acquisition cycle?

Federal employees do not sign NDA’s because federal law carries criminal penalties for disclosure

Army Research Lab / DARPA SBIR Core Funding ATO Demonstration PM / OEM

1 2 3 4 5 6 7
Technology Readiness Levels (TRL)

UNCLAS: Dist A. Approved for public release
Platform Mobility

Michael Blain
Deputy for Platform Mobility
586.574.8675
michael.blain1@us.army.mil

Areas of Responsibility Include:

• Hybrid Electric Technology
• Energy Storage Technology
• Track Technology
• Suspension Technology
Problem:
Hybrid electric systems for combat and tactical vehicles challenged to meet mobility requirements within the specified space and weight constraints.
The State Of the Art power electronics operate at low temperatures resulting in large cooling system which also requires a significant amount of power from the prime mover.
These challenges result in over sizing the engine/generator to gain power lost to the cooling system.

Research Challenges:
- Research high temperature / high frequency compact power electronics.
- Research high power / high torque density motor / generators.
- Research advanced power electronics and component thermal management.
Problem:
High power Li-Ion battery pack sized for combat hybrid electric vehicles is extremely costly.
High power Li-Ion batteries for combat hybrid vehicle application must be safer and more reliable.

Research Challenges:
- Research thermal runaway process and its control.
- Research power vs. energy trade-off design optimization.
- Research manufacturing process development and cost control.
- Research thermal management.
- Research cell & system, safety & reliability.
- Research system control & cell and battery management systems.
- Research alternative electrochemical improvements.
Problem:
Future combat vehicles desire lightweight track with no degradation in robustness or field supportability. Current lightweight track durability challenged at higher GVW vehicles. Current lightweight track prone to anti personnel mine blast damage. Elastomer components are track system life limiter of legacy track fleet.

Research Challenges:
- Research new lightweight metallic materials for track system application.
- Research understanding of mine blast event to improve track survivability.
- Research elastomers for improved life spans under high stress / high temperature conditions
Problem:

Research Challenges:
- Research novel suspension components with adaptive control.
- Research suspension components with adjustable weight carrying capacity.
- Develop suspension components for robust, passive default, outside armor application.
Areas of Responsibility Include:

- Prime Power (Engine) Technology
- Non-primary Power System Technology
- Power Management Technology
- Thermal Management Technology
Problem:
Current high power commercial engines are not compact enough for future manned ground combat platforms.
Future ground combat vehicles will require lighter and more efficient engines that occupy less space.
Current state of the art engines require significant development operate on one fuel and meet future vehicle power and mobility needs.

Research Challenges:
- Diesel combustion research to increase physical burn time.
- Propulsion system research to increase power density.
- Engine thermal management research.
- Research combustion optimization strategy for JP-8 military version of an emission compliant commercial engine.
Problem:
Current non-primary power approach in field is inadequate for silent watch.

Lead-acid batteries store insufficient energy to meet War Fighter requirements for vehicle silent watch (main engine off). Silent watch requirements vary from several hours to 24 hours. Current approach requires restarting of main engines during silent watch to recharge batteries, causing excessive fuel use, acoustic and thermal signatures.

Research Challenges:
- Research engine-generator technologies with high power densities and low acoustic signatures.
- Fuel cell power units need higher power densities and ruggedization for battlefield application.
- Research fuel cell hybridization with batteries and ultra-capacitors.
Problem:
Current and future force electrical power demands exceed power generation and energy storage capabilities. Advanced power generation systems depend on sophisticated control methodologies for safe operation. Limited fuel availability in the field. Increasing number and size of electrical loads on a vehicular platform increases the heat generation. Presently, no automated way to recover from faults and induced faults (i.e. Sympathetic tripping, chain tripping of loads). Current vehicular electrical architectures contain vehicle-unique electrical components which increase the logistics burden.

Research Challenges:
- Research ability to accurately monitor and control the power distribution and react to fluctuating loads and sources in real time through algorithm development.
- Research common architecture approach (plug & play) for future electrical power equipment insertion.
- Research power requirements of military equipment and load management strategy.

Power Management Technology

Software Standard
- Flex cable/PCU integration

Potential Applications
- APS
- C4ISR
- Environmental
- Propulsion Systems
- Radars

P&TM Technology

Potential Platforms
- Abrams
- Stryk
- FCS
- Bradley
- JLTV

Power and Thermal Management
Problem:
Cooling systems are not sufficient to meet future hybrid electric combat vehicles requirements. Increases in electrical power demand proportionately increase cooling systems’ volume and weight. Thermal degradation has direct impact on component life and reliability. Lack of intelligent control strategies for power system adds to thermal burden. Debris and contamination cause damage to vehicle power train components.

Research Challenges:
- Research heat transfer techniques for the military vehicle application.
- Research improvements in capabilities for filtration (liquid and air) without increasing the system physical size.
- Research compact high efficiency transmission systems
- Research intelligent thermal (heating/cooling) management system

Analogous flow network model
Computational fluid Dynamics (CFD) model
Questions

Chuck Coutteau
Associate Director
TARDEC Ground Vehicle Power & Mobility

Michael Blain
Deputy for Platform Mobility
586.574.8675
michael.blain1@us.army.mil

Rocky Patel
Deputy for Power Systems
586.574.5188
rakesh.patel@us.army.mil

UNCLAS: Dist A. Approved for public release