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Abstract: Feature extraction in bearing PHM involves extracting characteristic signatures from 

the original sensor measurements, which are sensitive to bearing condition and thus most useful 

in determining bearing faults. The quality of extracted features directly affects the performance 

and the effectiveness of bearing PHM. Feature extraction is therefore a critical component in 

bearing PHM. To optimally improve PHM effectiveness and minimize maintenance costs of 

bearings, a large amount research has been conducted in extracting salient features for PHM, 

which leads to a considerable number of feature extraction techniques. Our main effort in this 

paper is to survey some major techniques explored so far, focusing on more recent advancements. 

Our endeavor also includes pointing out the advantages and disadvantages of each of those 

techniques. This paper attempts to serve as a general reference for bearing PHM practitioners and 

as a general guide for choosing proper feature extraction methods for bearing PHM systems. 
 

Keywords: Bearing; Feature extraction; Diagnosis; Prognosis; Health Management; Vibration 

Analysis 

 

1. Introduction: Prognostics and health maintenance (PHM) is a new maintenance concept/ 

paradigm. PHM and its sibling, condition-based maintenance (CBM), are the result of 

maintenance industry’s “paradigm shift” from traditional time-based maintenance to support 

more cost-effective maintenance. While both PHM and CBM use machinery run-time data to 

determine asset condition, which is then used to schedule required repair and maintenance prior 

to breakdown, PHM differs CBM in that PHM has the capability of predicting future health, 

including remaining useful life (RUL) [21]. It is this predictive capability that makes PHM most 

effective in reducing operational and support (O&S) cost and life-cycle total ownership cost 

(TOC).  

 

Bearings are one of the most common components in modern rotating machinery. Bearing 

failures are considered to be the leading culprit of breakdowns in rotating machinery and have 

resulted in a significant increase of O&S cost. As a tool of effectively preventing unexpected 

bearing failures, meanwhile maximizing bearing uptime, bearing PHM can significantly reduce 

O&S cost and improves safety of machinery. As a result, bearing PHM technologies are evolving 

rapidly in recent years and have attracted tremendous research attention. 

 

Figure 1 illustrates the overall structure of a typical bearing PHM system. It consists of three 

essential modules, namely, sensing, feature identification, and PHM. The PHM module of 

bearing PHM systems typically consists of core functions, such as, anomaly detection, fault 

diagnosis, prognosis, and decision-making. Sensors in the sensing module of a bearing PHM 
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system can be several types, including vibration, temperature, chemical, acoustic emission, and 

sound pressure [12]. For real-world PHM systems, raw sensor measurements are rarely used 

directly by PHM functions. Instead, the raw sensor measurements are preprocessed (filtering, de-

noising etc); more importantly, signatures are always extracted from the raw sensor 

measurements and those signatures that are most sensitive to bearing condition and thus most 

useful in determining bearing faults are further selected for PHM functions. So preprocessing, 

feature extraction, and feature selection functions constitute feature ID module that essentially 

“converts” sensor measurements to information that are more effective, accurate and reliable for 

PHM functions. Thus feature ID module has been regarded as a critical part of bearing PHM 

systems.  

 

Identifying salient features for bearing PHM poses challenges. Firstly, various types of sensors 

with different characteristics (data type, sampling rate, signal-to-noise ratio, etc) may be involved 

in a bearing PHM system. Identifying salient features from such large amount of sensory data can 

be difficult. Then, individual functions (detection, diagnosis, and prognosis) of the PHM module 

have their own metrics for measuring feature goodness. Feature selection in the feature ID 

module thus needs to take into account the fact that a set of features that are good for one PHM 

function (e.g., diagnosis) may not necessarily be good for another (e.g., prognosis). That is, 

feature selection is PHM function-dependent. 

 

Figure 1: Overall structure of a typical bearing PHM system 

 

Both the importance and the challenges of identifying salient features in bearing PHM have 

inspired great research interest, thus resulting in a large number of feature extraction methods. 

For vibration data alone, a large number of feature extraction methods have been proposed, 

ranging from those using traditional spectral analysis, to those using wavelet analysis [23][24], to 

those using more advanced signal processing techniques [15][18][2].  

 

With such a large number of feature extraction methods in the literature, a proper categorization 

that serves as an overview of feature extraction methods and provides a general guidance on 

properly choosing FE method for specific applications is necessary. However, to the best of our 

knowledge, such categorization/review work devoted specifically to feature extraction for bearing 

PHM has not been done. The closest work in this context would be [25], where a subsection of 

the paper was devoted to summarizing waveform data analysis techniques. This paper attempts to 

survey some major feature extraction techniques, focusing on more recent development. 
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In this paper, due to space limitation, we limit our effort to vibration signal only. In other words, 

we focus on reviewing vibration-based feature extraction methods. It is our intention to publish in 

a separate paper on a more comprehensive review of techniques associated with all three feature 

ID functions (preprocessing, FE, and FS) and covering all types of bearing sensor measurements. 

 

The rest of this paper is organized as follows. Section 2 gives some fundamentals of bearings. 

Different feature extraction methods are discussed and categorized in Section 3. Section 4 

concludes the paper. 

 

2. Bearing fundamentals: One of the basic purposes of a bearing is to provide a frictionless 

environment to support and guide a rotating shaft. There are many different ways to classify 

bearing types, based on their application, material, and lubrication mechanism etc. Typically, 

bearings can be classified into three general categories based on their construction: fluid film, 

rolling element, and electromagnetic. This categorization excludes some bearing types, such as 

air bearings, which are only used in special applications.  Some of the feature extraction 

techniques we surveyed in this paper may be applicable to all types of bearings. Our focus in this 

paper, however, is on rolling element bearings only. 

 

Rolling element bearings often work well in non-ideal conditions, but sometimes minor problems 

cause bearings to fail quickly and mysteriously. For example, with a stationary load, small 

vibrations can gradually press out the lubricant between the races and rollers or balls, and 

eventually lead to bearing failure due to lack of lubrication. 

 

After nearly four decades of studies on bearing failure mechanism, the theoretical aspects of 

bearing failure modes are a well-undestood subject. There are three usual limits to the lifetime or 

load capacity of a bearing: abrasion, fatigue and pressure-induced welding [55][56]. Abrasion is 

when the surface is eroded by hard contaminants scraping at the bearing materials. Fatigue is 

when a material breaks after it is repeatedly loaded and released. Pressure-induced welding is 

when two metal pieces are pressed together at very high pressure and they become one.  

 

Although there are many other apparent causes of bearing failure, most can be reduced to these 

three. For example, a bearing which is run dry of lubricant fails not because it is "without 

lubricant", but because lack of lubrication leads to fatigue and welding, and the resulting wear 

debris can cause abrasion. Similar events occur in false brinelling damage. In high speed 

applications, the oil flow also reduces the bearing metal temperature by convection. The oil 

becomes the heat sink for the friction losses generated by the bearing. 

 
A rolling element bearing has four major components, outer race, inner racer, rolling elements 

(ball, roller, needle etc.), and cage. All four components might be damaged during operation. 

Generally, the signature of a damaged bearing consists of exponentially decaying ringing that 

occurs periodically at the characteristic frequency. The vibration signal of a defective bearing 

usually considers being amplitude modulated at characteristic defect frequency. Matching the 

measured vibration spectrum with the defect characteristic frequency enables defect detection and 

enables diagnosis on the defective area [52][53][54]. 

 

3. Feature extraction techniques: There is no unique way to categorize feature extraction 

methods used for bearing PHM. Figure 2 shows our taxonomy of vibration-based feature 

extraction methods. The primary division of vibration-based feature extraction methods is on 

weather or not the feature extraction method can deal with non-stationary signals. 
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Figure 2: Taxonomy of vibration-based feature extraction methods 

 
3.1. Stationary signals: Vibration signals acquired from bearings can be either stationary or non-

stationary. While stationary signals are characterized by time-invariant statistical properties, such 

as the mean value, statistical properties of a non-stationary signal change over time. Vibration 

signals from real-world bearings are almost always non-stationary since bearings are inherently 

dynamic (e.g., speed and load condition change over time). However, non-stationary signals are 

often approximated as stationary, especially within a short time window, for computational 

convenience. For stationary signals, there are time-domain and frequency-domain techniques for 

feature extraction. 

 

3.1.1. Time domain techniques: When rolling elements of bearing pass the defect location, wide 

band impulses are generated. And those impulses will then excite some of the vibrational modes 

of the bearing and its supporting structure. The excitation will result in the sensed vibration 

signals (waveforms) different in either the overall vibration level or the vibration magnitude 

distribution, comparing to those under fault-free condition. Time-domain feature extraction is to 

identify the signatures from the sensed time-domain waveforms (vibration signals and/or acoustic 

emissions), which are sensitive to bearing conditions. Depending on what underlying technology 

is used, time-domain feature extraction techniques can be further categorized into three groups: 

statistical-based, model-based, and signal processing-based approaches, all three of which are 

detailed as follows. 

 
a) Statistical-based approaches: One of the most traditional time-domain feature extraction 

methods is to calculate descriptive statistics of vibration signals, including those measuring power 

content of vibration signals, such as the root mean square (RMS); those measuring signal 

magnitude and pattern, such as, the peaks, the peak-to-peak intervals, the crest factor; and those 

measuring signal distribution, such as, the mean (1
st
 moment), the variance (2

nd
 moment), the 

skewness (3
rd

 moment), and the kurtosis(4
th
 moment). Definitions of those descriptive statistics 

can be found in many publications (e.g., [28]) and thus will not be provided here. 

 

These descriptive statistics can be calculated directly on raw signals. However, for the descriptive 

statistics to be more effective in bearing condition monitoring, they are frequently calculated on 
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filtered or processed signals.  In [28], the descriptive statistics of vibration signals were calculated 

for two different frequency bands. Realizing signal differences and sum (integrals) are equivalent 

to low-pass and high-pass filtering, respectively, [6][5] calculated the statistics on the derivatives 

and integrals of the signals. 

 
b) Model-based approaches: Model-based feature extraction involves treating vibration signals 

as time series data and fitting them to a parametric time series model. The model parameters are 

then used as features.  The most popular time series model used for bearing diagnosis is the 

autoregressive (AR) model. Poyhonen et al. [27] applied AR model to vibration signals collected 

from an induction motor and use the AR model coefficients as extracted features. Other time-

series models, such as the autoregressive moving average (ARMA) and other nonlinear models, 

such as neural networks and support vector machines, can also be used.  

 

Baillie and Mathew [8] compared three different autoregressive models, namely linear 

autoregressive models, back-propagation neural networks, and radial basis function networks, 

even though they used the three models for model-based bearing fault diagnosis, not explicitly 

feature extraction purpose. 

 

Recent direction for model-based feature extraction seems on extending model-based approaches 

that work for stationary signals to non-stationary signals. For example, Chen et al [26] used 

empirical mode decomposition (EMD) to decompose the non-stationary signals into a number of 

intrinsic mode function (IMF) components that are stationary. An AR model was then applied to 

each of the IMF components. 

 

c) Time-domain DSP approaches: Classical digital signal processing includes filtering, 

averaging, correlation, and convolution. Another popular DSP technique is Synchronous 

averaging [10]. More recently, several techniques rooted in chaos theory have been adapted to 

feature extraction. For example, fractal dimension [1][2], correlation dimension [14][15]. 

 

3.1.2. Frequency domain techniques: Time-domain features are generally considered to be good 

for fault detection, but less effective for fault isolation, i.e., to determine where the defect is 

located, inner race, outer race, rolling elements, and cage. For fault isolation, frequency-domain 

features are generally more effective. Frequency-domain feature extraction methods include 

spectral analysis, envelope analysis, cepstrum, and higher-order spectra. 

 

a) Spectral Analysis: The most popularly used method is the spectral analysis. A spectrum (more 

practically power spectrum) obtained from fast Fourier transform (FFT) of a vibration signal 

represents frequency characteristics of the signal. Either the entire spectrum or the frequency 

amplitudes at the bearing characteristic frequencies calculated from the power spectrum of 

vibration signals can be used as features.  

 

In Li’s work [3], to consider the energy leakage (spreading over a wide frequency band), features 

were calculated as the sum of the amplitudes over a frequency band of 5Hz centered at the defect 

frequencies. Instead of a fixed bandwidth, Saleh et al (2003) further proposed variable bands 

where bandwidths are determined as a percentage of the interested frequencies. The features at 

the interested frequencies were then calculated either as the average value of the banded 

components, or the maximum value of the banded components, or the energy within the 

frequency bands. 
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Descriptive statistics of spectra can also be used as features. For example, Wu and Chow (2004) 

[4] extracted the total power, average frequency, and dispersion indices (2nd and 3rd central 

moments) of the power spectra of vibration signals.  

 

Raw spectra for bearing vibration signals may not be appropriate for directly calculating features. 

Smoothing raw spectra may be necessary before calculating features. Power spectral density 

(PSD) is considered to be one of the spectra smoothing techniques. 

 

b) Envelope analysis: Envelope analysis, also known as amplitude demodulation or high 

frequency resonance technique (HFRT) [47], is another widely used frequency domain technique 

for bearing fault diagnosis. Envelope analysis consists of two steps: band-pass filtering and 

enveloping. During bearing operation, wide band impulses are generated when rolling elements 

pass over the defect. Certain vibration modes of the bearing and its supporting structure will be 

excited by the periodic impulses. Band-pass filtering allows keeping only signal components 

around the resonance frequency. Enveloping is then to remove the structural resonance and 

preserve the defect impact frequency.  Thus envelope analysis can be used for detecting incipient 

faults of bearings. The key for envelope analysis to be effective is intelligently selecting 

frequency band. 

 

c) Cepstral analysis: Cepstrum, defined as the power spectrum of the logarithm of the power 

spectrum of the signal, is used for detecting the periodicity of spectra. A defect in a bearing 

element (ball and races) generates impulses and the bearing and its structure respond to the 

impulses. Bearing vibration signals thus are the result of convolution between impulses and the 

system’s response to these impulses, which leads to harmonic series in the spectra. Cepstral 

analysis is to detect common spacing between the harmonics. Cepstrum analysis has been used 

for bearing fault detection and diagnosis, e.g., [48]. 

 

d) Higher order spectra: Higher order spectra typically refer to bispectrum and trispectrum. 

Higher order spectra are also called higher order statistics since bisprctrum and trispectrum are 

essentially the Fourier transform of the 3
rd-

 and 4
th
-order statistics of signals. Higher order spectra 

(i.e., bispectrum or trispectrum) have proved to have more diagnostic information. Advantages 

for using higher order spectra include additive Gaussian noise suppression, non-minimum phase 

system identification, nonlinear systems detection and identification [49]. Li et al [36] presented 

bicoherence signal analysis for detection of faults in bearings. The rationale behind the 

bicoherence analysis is that interactive coupling between various frequencies and existing bearing 

fault frequencies can be amplified and detected by monitoring the statistical dependence or 

correlations between the energies in the corresponding frequency-combinations.  

 
3.2. Non-stationary signals: For non-stationary signals, since the statistical properties change 

over time, traditional spectral analysis becomes ineffective. Techniques used for tackling non-

stationary signals include time-frequency techniques and wavelet analysis, which are detailed as 

follows. 

 

3.2.1. Time-frequency analysis techniques: Time-frequency analysis techniques analyze signals 

in both time and frequency simultaneously for identifying time-dependent variations of frequency 

components within the signal, which makes time-frequency analysis techniques a powerful tool 

for analyzing non-stationary signals. The most commonly used time-frequency analysis 

techniques are the short-time Fourier transform (STFT), the Wigner-Ville distribution, and the 

wavelet transform. In this paper we categorize wavelets as a separate group due to its popularity 

and various types. Other newly developed time-frequency analysis techniques include spectral 

kurtosis, empirical mode decomposition, and cyclostationary analysis. 
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a) Short-time Fourier transform (STFT): STFT tackles non-stationary signals by applying the 

conventional FFT to a sliding window of the signal, which can be assumed to be locally 

stationary.  The squared magnitude of the STFT, often referred as the spectrogram, provides the 

energy density spectrum of the signal as a function of time. Time resolution is determined by 

segment length. Thus the success of STFT is hinged on properly choosing window length, which 

often time is difficult. Using STFT for bearing monitoring and diagnosis have shown in many 

publications, for example, [22]. 

 

b) Wigner–Ville distribution: The afore-mentioned STFT is conceptually simple. However, this 

simple scheme has a severe drawback, that is, it cannot provide good resolution simultaneously in 

both time and frequency domains. Wigner-Ville distribution [50] is a bilinear transform, thus 

does not have the limitation of the spectrogram. However, bilinear transform gives the 

interference terms that make interpretation of the estimated distribution difficult. The Choi-

Williams time-frequency distribution [51] was developed to overcome this disadvantage.  

 

c) Spectral kurtosis: Spectral kurtosis (SK) was first introduced as statistical tool for detecting 

the presence of transients (non-stationary components) in a signal and their location in the 

frequency domain. Antoni and Randall [29] proposed a comprehensive formalization and 

introduced it into rotating machine diagnostics. They observed that SK and power spectral density 

(PSD) are supplementary each other: PSD can be thought of a measure of position (time-

average), whereas the SK as a measure of dispersion (time variance) of a time-frequency energy 

density [30]. Be definition, SK is large in frequency bands where the impulsive bearing fault 

signal is dominant and essentially zeros in the bands where stationary components are dominant. 

SK has often been used for selecting frequency bands for demodulation and filtering [31]. To use 

SK for feature extraction, one can simply follow what we did in spectral analysis for feature 

extraction, that is, calculating kurtosis at bearing characteristic frequencies. Other characteristics, 

such as maximum value, mean value, and even shape statistics, can also be calculated and used as 

features. 

 

d) Empirical mode decomposition: Proposed by Huang et al [35], empirical mode 

decomposition (EMD) is a new time-frequency domain signal analysis method. EMD 

decomposes a complicated signal into a finite number of intrinsic mode functions (IMFs). Each of 

those IMFs can then be analyzed to extract characteristic information of the original signal. In 

[16], so-called EMD energy entropy calculated from each of the IMFs were used as features for 

roller bearing fault diagnosis.  They even showed that EMD-based features could identify roller 

bearing fault patterns more effectively than those based on wavelet packet decomposition do. In 

[17], the non-stationary vibration signal of a roller bearing was first decomposed by EMD into 

IMFs that were stationary. An AR model was established for each IMF and the AR parameters 

were used as features for bearing fault diagnosis. 

 

e) Cyclostationary analysis: Realizing that rolling-element bearing vibrations are 

cyclostationary, [32] [33] introduced cyclostationary analysis (CA) to bearing vibration analysis 

as an alternative framework to other time-frequency analysis methods. The center part of CA is 

its spectral correlation function (also called cyclic spectral density (CSD)), which is obtained by 

performing 2D Fourier transform of the autocorrelation function of the vibration signal with 

respect to two time variables. CSD indicates how spectral content evolves periodically in time, 

thus can be a powerful tool for distinguishing different types of signals (stationary, nonstationary, 

and periodic) and can be used for identifying the source of faults [31]. It has been proved in [34] 

that integration of cyclic spectral density over all frequencies is equivalent to Fourier transform of 

the mean squared signal, thus linked the integrated CSD to envelope analysis.  
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f) Adaptive signal processing techniques: The goal of an adaptive representation algorithm is to 

find an approximation of a signal, in terms of a given over-complete dictionary of waveforms, 

that optimizes a desired characteristic. A number of methods for obtaining signal representations 

in over-complete dictionaries have been developed in recent years, for example, the matching 

pursuit [51] and the basis pursuit [19][20]. 

 

3.2.2. Wavelet Analysis techniques: Wavelets can be used to perform multiresolution analysis 

of the bearing vibration signal, which involves application of a cascade of adjacent band-pass 

filters to the signal. This ability is useful in assessing the signal content at varying frequencies. 

For the primary problem of detection, an increase in the energy of the high frequency signal can 

often indicate the presence incipient faults due to early spalls as well as lubrication problems.  

 

Multiresolution analysis is also useful for detecting the presence of bearing defect frequencies. 

Bearing defect frequencies result from the periodic impacts of the defective component; these 

impacts can transfer energy across a wide band of resonance frequencies. Since multiresolution 

analysis using wavelets preserves time information as well, all of the time-domain techniques and 

features can be applied to the signal constructed at an appropriate resolution. 

 

Features based on wavelets include values of wavelet coefficients, resolution-specific energy 

content. The ability to decompose a signal into components at varying frequencies also has the 

advantage for discriminating multiple types of faults since the contribution of each fault can often 

be different at different frequencies. Use of wavelet transform to extract defect features from 

vibration signals have been examined by various early works in literature, Cheung et al [45], 

Mori et al [42], Li et al [36], Yang et al [43], and Staszewski et al [44], to name a few. Peng and 

Chu [24] conducted a review on application of wavelet transform in machine condition 

monitoring and fault diagnostics. More recent works focus on the use of wavelets that are 

customized to either the bearing signature or to localize analyses on a resonant band with highest 

sensitivity, as well as from the supervised learning perspective, as in the embedding of wavelets 

into neural networks. 

 

Wavelets are also useful for transient analysis of signals and therefore for detection of faults that 

are amplified by analysis of transient vibration signals Wang and McFadden [37] and Wang [38] 

presented techniques for use of time-frequency representation in the analysis of transient 

vibration signals. Sahambi et al [40] presented the use of wavelets to characterize 

electrocardiograms (ECG) for online detection of relevant timing intervals in the ECG events that 

can be used for better interpretation of ECG signals. Holm-Hansen et al [41] presented the use of 

the actual impulse response of a ball bearing to construct a customized wavelet analytically and 

use it for the detection of defects in the bearing. The customized wavelet approach is shown to 

provide better sensitivity in the detection of bearing induced signatures compared to other 

standard mother wavelets for the same analysis. 

 

Shi et al [39] presented a wavelet-based technique to improve the sensitivity of the traditional 

enveloping. The make use of Shannon Entropy of wavelet-based spectra to identify the optimal 

scale and thus optimal resonance frequency to monitor bearing condition. 

 

Wavelet neural networks (WNNs) [46] provide a mechanism to avoid explicit extraction of 

features from the wavelet transforms. Rather, it is a technique by which the informative features 

can be tuned under the adaptive learning capabilities of classical neural networks to tune the 

parameters of the mother wavelet to best separate normal signals from known faulty-containing 

signals. 
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 Several types of features can be extracted from wavelet-based methods, which can be 

categorized roughly into wavelet coefficient-based, wavelet energy-based, singularity-based, and 

wavelet function-based methods [21].  

 
3.3. Other techniques:  In addition to afore-mentioned feature extraction techniques, there are 

other methods that utilize computation intelligence techniques for constructing features, for 

example, in [6] [7], genetic programming (GP) was used to construct better features. Other 

statistical transformation methods, such as principal component analysis (PCA) and linear 

discriminant analysis (LDA), can also be used for constructing higher-level features out of the 

original features.  

 

4. Conclusions: Identifying a set of salient signatures/features has always been an important and 

challenging task in multiple fields, such as, machine learning, pattern recognition, and data-

mining. Extracting good features from sensor measurements is also critical in design of bearing 

PHM systems. With increasing demand for more advanced bearing PHM technologies and 

continuously increasing research attention to feature extraction technologies, a large number of 

feature extraction techniques have been explored. This paper attempts to survey some of those 

feature extraction techniques, especially the recent developments. Even though our survey is not 

meant to be exhaustive, we hope that this work will be helpful to those who are interested in 

feature extraction in general and to those who are involved in choosing proper feature extraction 

methods for their own applications. 

Acknowledgement: This material is based upon work supported by the Defense Advanced 

Research Projects Agency, Defense Sciences Office (DSO), Engine System Prognosis, issued by 

DARPA/CMO under Contract Number: HR0011-04-C-0002. 

 

REFERENCES: 

 
1. Nelwamondo, F.V., Marwala, T., and Mahola, U. (2006), “Early classifications of bearing faults using 

Hidden Markov models, Gaussian mixture models, Mel-frequency cepstral coefficients and fractals”, 

International Journal of Innovative Computing, Information and Control, 2(6), pp1281-1299 

2. Yang, J., Zhang, Y., and Zhu, Y., “Intelligent fault diagnosis of rolling element bearing based on 

SVMs and fractal dimension”, Mechanical Systems and Signal Processing, 21, pp2012-24, 2007 

3. Li, B., Chow, M.Y., Tipsuwan, Y., and Hung, J.C., “Neural-network-based motor rolling bearing fault 

diagnosis”, IEEE Transactions on Industrial Electronics, 47(5), pp 1060-1069, October, 2000. 

4. Wu, S. and Chow, T., “Induction machine fault detection using SOM-based RBF neural networks”, 

IEEE Transactions on Industrial Electronics, 51(1), pp183-194, Feb. 2004. 

5. Samanta, B., Al-Balushi, K.R., and Al-Araimi, S.A., “Artificial neural networks and support vector 

machines with genetic algorithm for bearing fault detection”, Engineering Applications of Artificial 

Intelligence, 16 (2003), pp657-665. 

6. Zhang, L., Jack, L.B., Nandi, A.K., “Fault detection using genetic programming”, Mechanical Systems 

and Signal Processing, 19(2005), pp271-289. 

7. Guo, H., Jack, L.B., and Nandi, A.K., “Feature generation using genetic programming with application 

to fault classification”, IEEE Transactions on Systems, Man, and Cybernetics – Part B, 35(1), 2005, 

pp89-99. 

8. Baillie, D.C. and Mathew, J.,  “A comparison of autoregressive modeling techniques for fault 

diagnosis of rolling element bearings”, Mechanical Systems and Signal Processing 10 (1996), pp1–17. 

9. Lei, Y., He, Z., Zi, Y., and Chen, X., “New clustering algorithm-based fault diagnosis using 

compensation distance evaluation technique”, Mechanical Systems and Signal Processing, 22(2), 

February 2008, pp 419-435 

10. McFadden, P.D. and Toozhy, M.M., “Application of synchronous averaging to vibration monitoring of 

rolling element bearing”, Mechanical System and Signal Processing 14 (6) (2000), pp891–906. 



 10

11. Jardine, A.K.S., Lin, D., and Banjevic, D., “A review on machinery diagnostics and prognostics 

implementing condition-based maintenance”, Mechanical Systems and Signal Processing, 20 (2006), 

pp1483-1510. 

12. Zhou, W., Habetler, T.G., and Harley, R.G., “Bearing condition monitoring methods for electric 

machines: A general review”, Proceedings on IEEE International Symposium on Diagnostics for 

Electric Machine, Power Electronics and Drivers (SDEMPED 07), Sept. 6 – 8, 2007, Cracow, Poland, 

pp3-6. 

13. Baillie, D.C. and Mathew, J., “A comparison of autoregressive modeling techniques for fault diagnosis 

of rolling element bearings”, Mechanical Systems and Signal Processing, 10(1), 1996, pp1-17. 

14. Logan, D. and Mathew, J., “Using the correlation dimension for vibration fault diagnosis of rolling 

element bearings – I: Basic concepts”, Mechanical Systems and Signal Processing, 10(3), pp241-250, 

1996. 

15. Logan, D. and Mathew, J., “Using the correlation dimension for vibration fault diagnosis of rolling 

element bearings – II: Selection of experimental parameters”, Mechanical Systems and Signal 

Processing, 10(3), pp251-264, 1996. 

16. Yang, Y., Yu, D., and Cheng, J., “A roller bearing fault diagnosis method based on EMD energy 

entropy and ANN”, Journal of Sound and Vibration, 294, 2006, pp269-277. 

17. Cheng, J., Yu, D., and Yang Y., “A fault diagnosis approach for roller bearings based on EMD method 

and AR model”, Mechanical Systems and Signal Processing, 20, 2006, pp350-362. 

18. Gao, Q., Duan, C., Fan, H., and Meng, Q., “Rotating machine fault diagnosis using empirical mode 

decomposition”, Mechanical Systems and Signal Processing, 2007, article in press. 

19. Yang, H., Mathew, J., and Ma, L., “Basis pursuit-based intelligent diagnosis of bearing faults”, J. of 

Quality in Maintenance Engineering, 13(2), 2007, pp152-162 

20. Yang, H., Mathew, J., and Ma, L., “Fault diagnosis of rolling element bearings using basis pursuit”, 

Mechanical Systems and Signal Processing, 19, 2005, pp341-356 

21. Vachtsevanos, G., Lewis, F.L., Roemer, M., Hess, A., and Wu, B., “Intelligent fault diagnosis and 

prognosis for engineering systems”, John Wiley & Sons, Inc., Hoboken, New Jersey, pp124-125. 

22. Gao, R.X. and Yan, R., “Non-stationary signal processing for bearing health monitoring”, International 

J. Manufacturing Research, Vol. 1, No. 1, pp.18–40, 2006. 

23. Li, J.C. and Ma, J., “Wavelet decomposition of vibrations for detection of bearing-localized defects”, 

NDT&E International, Vol. 30, No.3, pp143-149, 1997. 

24. Peng, Z.K. and Chu, F.L., “Application of the wavelet transform in machine condition monitoring and 

fault diagnostics: a review with bibliography”, Mechanical Systems and Signal Processing, 18, 2004, 

pp199-221. 

25. Jardine, A.K.S., Lin, D., and Banjevic, D., “A review on machinery diagnostics and prognostics 

implementing condition-based maintenance”, Mechanical Systems and Signal Processing, 20,2006, 

pp1483-1510. 

26. Chen, J., Yu, D., and Yang, Y., “A fault diagnosis approach for roller bearings based on EMD method 

and AR model”, Mechanical Systems and Signal Processing, 20, 2006, pp350-362. 

27. Poyhonen, S., Jover, P., and Hyotyniemi, H., Signal processing of vibrations for condition monitoring 

of an induction motor, in: ISCCSP: 2004 First International Symposium on Control, Communications 

and Signal Processing, New York, 2004, pp. 499–502. 

28. Sun, Q., Chen, P., Zhang, D., and Xi, F., “Pattern recognition for automatic machinery fault 

diagnosis”, Journal of Vibration and Acoustics, Vol. 126, April 2004, pp307-316. 

29. Antoni, J. and Randall, R.B., “The spectral kurtosis: application to the vibratory surveillance and 

diagnostics of rotating machines”, Mechanical Systems and Signal Processing, 20 (2), 2006, pp308-

331. 

30. Antoni, J., “The spectral kurtosis: a useful tool for characterizing non-stationary signals”, Mechanical 

Systems and Signal Processing, 20 (2), 2006, pp282-307. 

31. Sawalhi, N., “Diagnostics, prognostics and fault simulation for rolling element bearings”, PhD 

Dissertation, School of Mechanical and Manufacturing Engineering, University of New South Wales, 

Australia, April 2007. 

32. McCormick, A.C. and Nandi, A.K., “Cyclostationary in rotating machine vibrations”, Mechanical 

Systems and Signal Processing, 12(2), 1998, pp225-242. 

33. Antoniadis, I. and Glossiotis, G., “Cyclostationary analysis of rolling element bearing vibration 

signals”, Journal of Sound and Vibration, 248(5), 2001, pp829-845. 



 11

34. Randall, R.B., Antoni, J., and Shobsaard, S., “The relationship between spectral correlation and 

envelope analysis in the diagnostics of bearing faults and other cyclostationary machine signals”, 

Mechanical Systems and Signal Processing, 15(5), 2001, pp945-962. 

35. N.E. Huang, Z. Shen, S.R. Long, “A new view of nonlinear water waves: the Hilbert spectrum”, 

Annual Reviews of Fluid Mechanics, 3 (1999), pp 417–457. 

36. C. James Li, J. Ma, B. Hwang, “Bearing Localized Defect Detection by Bicoherence Analysis of 

Vibrations,” Journal of Engineering for Industry, Transactions of ASME, Vol. 117, Nov.1995, pp 626-

629. 

37. Wang W.-I., and McFadden, P.D., 1996, “Application of Wavelets to Gearbox Vibration Signals for 

Fault Detection,” J. Sound Vib., 192(5), pp. 927-939. 

38. Wang, W. J., 2001, “Wavelets for Detecting Mechanical Faults With High Sensitivity,” Mech. Syst. 

Signal Process, 15(4), pp. 685-696. 

39. Shi D. F., Wang W. J., Qu L. S., “Defect Detection for Bearings Using Envelope Spectra of Wavelet 

Transform”, Journal of Vibration and Acoustics, Oct 2004, vol. 126, pp. 567-573. 

40. Sahambi, J. S., Tandon, S. N., Bhatt, R.K.P., “Using Wavelet Transforms for ECG Characterization,” 

IEEE Engineering in Medicine and Biology, Jan 1997, pp. 77-83. 

41. Holm-Hansen, B. T., Gao R. T., Zhang L., “Customized Wavelet for Bearing Defect Detection”, 

Transactions of the ASME, vol. 126, Dec 2004, pp. 740-745 

42. Mori K., Kasashima N., Yoshioka T., and Ueno, Y., 1996, “Prediction of Spalling on a Ball Bearing by 

Applying the Discrete Wavelet Transform to Vibration signals,” Wear, 195(1-2), pp. 162-168. 

43. Yang, J., Xiong X., and Xiong, S., 1999, “Damage Detection of Roller Bearing using Wavelet 

Transforms,” Proc. Of Int. Modal Analysis Conference-IMAC, vol. 2, Society for Experimental 

Mechanics, Bethel, CT, pp. 1980-1983. 

44. Staszewski, W., Ruotolo, R. and Storer, D., “Fault Detection in Ball Bearings Using Wavelet 

Variance,” IMAC Proc. Of 1999 17th Int. Modal Analysis Conference, Vol. 2, Society for 

Experimental Mechanics, Bethel, CT, pp. 1335-1339 

45. Cheung, C., Chui, C., and Chan, A., 1993, “Real-time detection of transient signals using Spline-

Wavelets,” Proceedings-ICASSP, IEEE Int. Conference on Acoustics, Speech and Signal Processing, 

Vol. 4, pp. 361-364. 

46. Zhang, Q. and Benveniste, A., “Wavelet Networks,” IEEE Transactions on Neural Networks, Vol. 3, 

No. 6, pp. 889-898. 

47. McFadden, P.D. and Smith, J.D., “Vibration monitoring of rolling element bearings by the high 

frequency resonance technique – a review”, Tribology International, 17, 1984, pp3-10. 

48. Zheng, G.T. and Wang, W.J., “A new cepstral analysis procedure of recovering excitations for 

transient components of vibration of signals and applications to rotating machinery condition 

monitoring”, Journal of Vibration and Acoustics, Vol. 123, April 2001, pp222-229. 

49. Arthur, N. and Penman, J., “Induction machine condition monitoring with higher order spectra”, IEEE 

Transactions on Industrial Electronics, 47(5), Oct. 2000, pp1031-1041. 

50. Cohen, L., Time–Frequency Analysis, Prentice-Hall, Englewood Cliffs, NJ (1995). 

51. Liu, B., Ling, S.F. and Gribonval, R., “Bearing failure detection using matching pursuit”, NDT & E 

International, Vol. 35 No. 4, 2002, pp. 255-62. 

52. Gustaffson, O.G. and Tallian, T., “Detection of damage of assembled rolling bearings”, ASME 

Transactions, 5 (1962), pp197–209. 

53. McFadden, P.D. and Smith, J.D., “Model for the vibration produced by a signal point defect in a 

rolling element bearing”, Journal of Sound and Vibration, 96 (1), 1984, pp69–82. 

54. Ho, D. and Randall, R.B., “Optimization of bearing diagnostic techniques using simulated and actual 

bearing fault signals”, Mechanical Systems and Signal Processing, 14 (5), 2000, pp763–788. 

55. Harris, Tedric A., Rolling Bearing Analysis, John Wiley, 2001.   

56. Johannes Brändlein, Paul Eschmann, Ludwig Hasbargen, Karl Weigand, Ball and Roller Bearings: 

Theory, Design and Application, Wiley, 1999. 

 

 

 

 

 


