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Abstract— Vehicle power management has been an active 
research area in the past decade, and has intensified recently 
by the emergence of hybrid electric vehicle technologies.  
Research has shown that driving style and environment have 
strong influence over fuel consumption and emissions. In order 
to incorporate this type of knowledge into vehicle power 
management, an intelligent system has to be developed to 
predict the current traffic conditions. This paper presents our 
research in neural learning for predicting the driving 
environment.  We developed a prediction model, an effective 
set of features to characterize different types of roadways, and 
a neural network trained for online prediction of roadway 
types and traffic congestion levels. This prediction model was 
then used in conjunction with a power management strategy in 
a conventional (non-hybrid) vehicle. The benefits of having the 
predicted drive cycle available are demonstrated through 
simulation. 
 

I. INTRODUCTION 
RIVING patterns exhibited in a real world driver are 
the product of the instantaneous decisions of the driver 
to cope with the (physical) driving environment.  

Research has shown that driving style and environment have 
strong influence over fuel consumption and emissions [1, 2].  
Specifically road type and traffic conditions, driving trend, 
driving style, and vehicle operation modes have various 
degrees of impacts on vehicle fuel consumptions. However 
most of the existing vehicle power control approaches do 
not incorporate the knowledge about driving patterns into 
their vehicle power management strategies. Only recently 
has the research community in intelligent vehicle power 
control began to explore the ways to incorporate the 
knowledge about online driving patterns into online control 
strategies [3, 4, 5, 6]. A comprehensive overview of 
intelligent systems approaches for vehicle power 
management can be found in [7]. 

One critical part of this research is the development of an 
intelligent system that can accurately predict the driving 
patterns in the near future.  This paper presents our research 
related to the development of a neural network system for 
the prediction of roadway type and traffic congestions. We 
developed innovative techniques to model the road 
environment of a driving trip, select features that effectively 

characterize roadway type and traffic congestion levels, and 
a neural network that is trained for online prediction of 
roadway type and traffic congestion level in the near future 
during a driving trip.    
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This paper is organized as follows.  Section II presents an 
intelligent system model for the prediction of roadway type 
and traffic congestion level, Section III presents the neural 
network we developed, Section IV presents the intelligent 
vehicle power management system that uses the neural 
network for online roadway prediction and its performances 
on three standard driving cycles and Section V concludes 
the paper. 

II.  PREDICTING ROADTYPE AND TRAFFIC CONGESTION 
LEVEL 

We model the road environment of a driving trip as a 
sequence of different road types such as local, freeway, 
arterial/collector, etc. augmented with different traffic 
congestion levels.  A set of 11 standard drive cycles, called 
facility-specific(FS) cycles, to represent passenger car and 
light truck operations over a range of facilities and 
congestion levels in urban areas was developed by the 
research center in [8, 9]. The 11 drive cycles can be divided 
into four categories, freeway, freeway ramp, arterial, and 
local.  More recently the data of FS cycles [9] have been 
updated to reflect the speed limit changes in the freeway 
category. In the model used, the two categories, freeway and 
arterial are further divided into subcategories based on a 
qualitative measure called level of service (LOS) that 
describe operational conditions within a traffic stream based 
on speed and travel time, freedom to maneuver, traffic 
interruptions, comfort, and convenience. Six types of LOS 
are defined with labels, A through F, with LOS A 
representing the best operating conditions and LOS F the 
worst. Each level of service represents a range of operating 
conditions and the driver’s perception of those conditions; 
however safety is not included in the measures that establish 
service levels [9, 10]. For the convenience of description we 
label the 11 classes of roadway types and congestion level as 
R[1], …., R[11].  Table 1 shows the most recent definition 
of these road types in [9] along with the labels we assigned. 

We formulate the problem of roadway type prediction as 
follows. Let SP[t] be the speed profile of a driver on the 
road, t = 0, 1, …, tc, where tc is the current time instance, 
and RT[t] be the roadway types the driver needs to go 
through to complete his trip, where 0 < t < te , te is the time 
when the trip ended.  At any given time tc, RT(tc ) ∈  { R[i] | 
i = 1, …,  
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TABLE I. 

STATISTICS OF 11 FACILITY SPECIFIC DRIVING CYCLES [9] 
Facility Cycles  

Cycle Vavg (mph) Vmax (mph) Amax (mph/s2) Length (sec) 
Freeway LOS A: R[1] 67.79 79.52 2.3 399 
Freeway LOS B: R[2] 66.91 78.34 2.9 366 
Freeway LOS C: R[3] 66.54 78.74 3.4 448 
Freeway LOS D: R[4] 65.25 77.56 2.9 433 
Freeway LOS E: R[5] 57.2 74.43 4.0 471 
Freeway LOS F: R[6] 32.63 63.85 4.0 536 
Freeway Ramps: R[7] 34.6 60.2 5.7 266 
Arterials LOS A-B: R[8] 24.8 58.9 5.0 737 
Arterials LOS C-D: R[9] 19.2 49.5 5.7 629 
Arterials LOS E-F: R[10] 11.6 39.9 5.8 504 
Local Roadways: R[11] 12.9 38.3 3.7 525 
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Figure 1. Illustration of segments of a speed profile.  The X axis represents time measured in seconds, and the Y axis represents speed measured in meters per 
second. 

 
 

11}. The roadway type in the near future needs to be 
predicted based on the short term history of the driver during 
the trip.  

Specifically, we attempt to develop a non-linear function 
F such that F(SP(t)|t ]),[( cc tt ω−∈ ) = R[j], 0< j ≤  11, 
whereω >0 is called window size that characterizes the 
length of the speed profile that should be used to explore 
driving patterns. The variable R[j] is the roadway type the 
driver will be on during the time interval [tc, (tc+ tΔ )], i.e. 
RT[t] = R[j] for t ∈  [tc, (tc+ )].  We refer to tΔ tΔ  > 1 as 
the time step.  To solve this problem we need to determine 
four  different aspects of the roadway type predictor:  

• select effective features that can be extracted from 
SP(t), cc ttt ≤<−ω  for the prediction of the 
current  roadway type. 

• determine the optimal window size ω  
• determine the optimal time step  tΔ

• develop a function F that has the capability of 
accurately predicting roadway types in sufficiently 
short time suitable for online driving prediction.  In 
this paper F is a neural network described in the 
next section. 

III. DEVELOPING A NEURAL NETWORK TO PREDICT ROAD 
TYPES AND TRAFFIC CONGESTION LEVELS 

In this section we describe how we developed the four 
aspects listed for predicting road types and traffic congestion 
levels. 

A. Feature Selection 
Roadway types and traffic congestion levels can be 

observed generally in the speed profile of the vehicle. The 
statistics used to characterize driving patterns include 16 
groups of parameters (62 total) suggested by the driving 
model used in [9], and parameters in 9 out of these 16 
groups critically affect fuel usage and emissions.  However 
it may not be necessary to use all these features for 

1st  
segment 3rd 

segment 
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predicting a specific drive pattern and additionally new 
features may be explored as well.  For example in [5], 
Langari and Won used only 40 of the 62 parameters and 
then added seven new parameters: trip time, trip distance, 
maximum speed; maximum acceleration; maximum 
deceleration; number of stops, idle time (percent of time at 
speed 0 km/h).  However, the use of additional parameters 
needs to be balanced with the "curse of dimensionality": too 
many features may degrade system performance. 
Furthermore, in onboard vehicle implementation more 
features imply higher hardware cost and/or more 
computational time. The problem of selecting a subset of 
optimal features is a classic research topic in pattern 
recognition and a NP problem.  Because the feature 
selection problem is computationally expensive, research 
has focused on finding a quasi optimal subset of features, 
where quasi optimal implies good classification 
performance, but not necessarily the best classification 
performance.  Interesting feature selection techniques can be 
found in [11, 12, 13].  However most of these feature 
selection algorithms were developed for 2-class 
classification problem, and extensions to K-class (K>2) will 
significantly increase the computational time. With this 
background in mind, we developed the following feature 
selection algorithm based on roadway types.  
 
Feature selection algorithm 

Step 1: Let X be the training data set, d an Ω  be the 
initial set of n features, which can be obtained from those 
suggested by the research community, as discussed earlier.   

Step 2: Re-labeling data in X with freeway samples as “1” 
and all others as “0”.  Denote this training data set as X1.  
Select the best features from that can classify all the 
freeway data against all other data in X1. Denote this feature 
set as F1. 

Ω

Step 3:  Re-labeling data in X with freeway ramp samples 
as “1” and all others as “0”.  Denote this training data set as 
X2. Select the best features from Ω  that are NOT in F1 and 
that can classify all the freeway Ramp data against all other 
data in X2. Denote this feature set as F2. 

Step 4:  Re-labeling data in X with Arterial data samples 
as “1” and all others as “0”.  Denote this training data set as 
X3. Select the features that are NOT in  and can 
best classify all the Arterial data against all other data in X3. 
Denote this feature set as F3. 

21 FF ∪

Step 5:  Re-labeling data in X with local roadway data 
samples as “1” and all others as “0”.  Denote this training 
data set as X4. Select the features that are NOT in 

 and can best classify all the local roadway 
data against all others in X4. Denote this feature set as F4. 

321 FFF ∪∪

Step 6:  Output feature set F =  4321 FFFF ∪∪∪
 

When the algorithm described above was applied to an 
initial set ( ) of 47 features suggested by Langari and Won 
in [5], we obtained the set (F) of 14 features shown in Table 
II. 

Ω

 

 
TABLE II. 

14 FEATURES SELECTED FOR ROADWAY TYPE PREDICTION 
 

Name of selected features: 
Trip distance; 
Maximum speed; 
Maximum acceleration; 
Maximum deceleration 
Average speed 
Average acceleration 
S. D. of acceleration 
Average deceleration 
% of time in speed interval 0-15 km/h 
% of time in speed interval 15-30 km/h 
% of time in speed interval >110 km/h 
% of time in deceleration interval (-10)-(-2.5) m/s2 
% of time in deceleration interval (-2.5)-(-1.5) m/s2 
Number of acceleration/deceleration shifts per 100m 
where the difference between adjacent local max-speed 
and min-speed was >2 km/h 

 
 

B. Optimal Window Size and Time Step in Online Predicting  
Since we are trying to predict the road type in the near 

future, the driving speed in the last segment, [tc - wΔ , tc], 
where tc is the current time,  is used to predict the road type 
the driver is on during time period, [tc, tc+ tΔ ]. The 
prediction is made at time steps, k , k = 1, 2, ….  The 
window size of the speed profile segments is 

tΔ
wΔ , where 

wΔ >0.  The time interval over which the prediction is 
ma  is tde Δ .  Figure 1 illustrates these two parameters on the 
speed profile of the UDDS (Urban Dynamometer Driving 
Schedule) drive cycle. The x-axis represents the time during 
a driving cycle and y-axis represents the vehicle speed in 
meters per second. The segments shown have the equal size 
of wΔ = 150 seconds and the time step,  = 100 seconds.  
Please note that 

tΔ
tΔ  = 100 seconds is chosen here only for 

the clarity of the illustration.  In reality, as we will show, 
tΔ  should be smaller than 100 seconds. The two parameters 

are important for the accuracy of prediction. Since features 
characterizing road types are extracted from the speed 
profile of the vehicle in the time interval [tc - wΔ , tc], if 

wΔ  is too small, the segment may be too small to contain 
useful information. If wΔ  is too big, the segment may 
contain obsolete information. Once is determined, the 
14 features presented in Table 2 are extracted from the speed 
profile within the time interval  [tc - , tc] and used as the 
input feature vector to the neural network described in the 
next section. The time step  also needs to be properly 
determined. If 

wΔ

wΔ

tΔ
tΔ  is too short, it would imply that the 

prediction routine would run often. If it is too long, the 



roadway type may change during the near future horizon, [tc, 
tc + ]. tΔ
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Figure 2.  Prediction accuracies from various window sizes and time steps. 
 

The optimal window size  and optimal time step are 
determined through a series of experiments by varying 

in a reasonable range such as  50, 100, 150, and wΔ tΔ = 3 
seconds, 5 seconds, 10 seconds, 15 seconds.  For every pair 
of window size and time step, a neural network system is 
trained (see detail in the next section) and tested on data sets 
extracted from the 11 drive cycles provided in [14] the 
software library. 

Figure 2 shows the results of this experiment.  Based on 
the analysis of the performances on both the training and test 
data, it appears that the performances between wΔ =100 
seconds and  = 150 are very close, so either one should 
work well.  It appears that = 3 seconds since this time 
step works well on all window sizes.  We want to point out 
that = 1, or 2 seconds worked equally well. Since 

wΔ
tΔ

tΔ tΔ = 3 
implies less frequent prediction, this is the time step we 
select.   
 
C. Training a neural network to predict road types 

We developed a multi-layered, multi-class neural 
network, NN_RT&TC, for the prediction of road types and 
traffic congestion levels.  The training data are obtained as 
follow. We segmented and labeled all 11 drive cycles in 
[14], UDDS, HWFET, US06, SC03, LA92, IM240, Rep05, 
NY City, HL07, Unif01, Arb02 for use as training and test 
data.  The simulation software in [14] is a "forward-looking" 
model that simulates fuel economy and performance in a 
realistic manner — taking into account transient behavior 
and control system characteristics. It can simulate an 

unrivaled number of predefined configurations 
(conventional, electric, fuel cell, series hybrid, parallel 
hybrid, and power split hybrid).  In this research project we 
use the "forward-looking" model software in [14] to 
simulate all facility specific drive cycles to generate 
numerical data such as fuel consumption and emissions, and 
vehicle performance, etc.  Each of the 11 drive cycles can be 
considered as a composite of the 11 classes of roadway 
types and traffic congestion levels.  Figure 3 shows an 
example of a labeled drive cycle, LA92 segmented 
according to the definition of the 11 classes as defined in 
[9].  The X axis indicates the time and the Y axis indicates 
the speed in meters/second. 

 Δt  

For a window size, wΔ , time step, , and a driving 
cycle DC(t) (0 ≤ t ≤ te), we generate DC segments on 
intervals, s0 = [t0,

tΔ

wΔ ), …, sk = [k , +ktΔ wΔ tΔ ), … ske = 
[te- wΔ , te ], where k ≥ 1.   

 Δt  

From the speed function of each segment, we extract a 
vector of the 14 features specified in Table I. The feature 
vectors are randomly sampled into training and test data 
with a ratio of 4:1.  For example, for = 50 seconds, wΔ

tΔ =3 seconds, we obtained a training data set of 2758 data 
samples, and a test set of 689 data samples. The feature 
vector extracted from every speed signal segment is labeled 
by the roadway type of its next segment since we are 
training the prediction function.   

A multi-class neural network, NN_RT&TC, of 14 input 
nodes and 11 output nodes with a hidden layer of 20 nodes 
has been trained for the roadway type prediction.  The 
output nodes correspond to the 11 class labels, {R[1], …, 
R[11]}.  The neural network is trained using the one-
against-all scheme [15].   

Based on the study results presented in the last section, 
we use wΔ =150 seconds, = 3 seconds.  The training 
and test data are generated from 11 data in [9] and 11 driving 
cycles in [14]. There are totally 4399 segments generated 
from these 22 driving cycles.  From each segment a vector 
of 14 features (see Table 2) is extracted. The separation of 
training and test data is through a random stratified sampling 
procedure. As the result the training data contain 3777 
feature vectors and the test data contain 622 feature vectors.  
The performance of the neural network is 95.87% on the 
training data and 95.18% on the test data. 

tΔ

When NN_RT&TC is used inside a vehicle to predict the 
roadway type at time tc, the vector of the 14 features is 
extracted from the vehicle speed during the time interval, [tc-
150seconds, tc]. The output from NN_RT&TC is the 
roadway type to be used by an intelligent vehicle power 
management to produce the optimal power distribution 
during time interval [tc, tc +3seconds].  Its online 
performance is discussed in the next section. 
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Figure 3: An example of labeled driving cycle, LA92.  X axis represents time measured in seconds, the Y axis represents speed measured in meter/second. 

 

IV. APPLICATION IN VEHICLE POWER MANAGEMENT 
The neural network described in section III, NN_RT&TC, 

has been fully integrated into an intelligent vehicle power 
management system, which will be called IPC [intelligent 
power controller]. Figure 4 shows the key components of the 
system. The vehicle system sends signals at time t such as 
the vehicle speed, v(t), the power required at the driveline, 
pd(t), and the power required by the electric loads, pl(t) to 
the IPC. The IPC has three major components:  
NN_RT&TC, Knowledge Base, and Intelligent Controller.   
 

 
 
Figure 4. IPC, an intelligent vehicle power controller that incorporates the 
knowledge about the road type and traffic congestion level predicted by a 
neural network into power management decisions. 
 

The NN_RT&TC is the neural network we presented in 
the last section.  The knowledge base contains the 
knowledge about the optimal alternator setpoint and torque 
compensation learned from the 11 drive cycles in [9].  Based 
on the prediction of the roadway type and traffic congestion 
level made by NN_RT&TC, vehicle system information, 
and the stored knowledge related to the predicted roadway 
type, the Intelligent Controller outputs the optimal setting of 
torque compensation and alternator setpoint for the vehicle 
system to use during time interval, [t, t+ ]. tΔ

We have implemented the IPC in simulation using a 
conventional vehicle model in [14] simulation software. The 
vehicle model is a commercial vehicle with a 95KW 1.9L 
liter Spark Ignition engine, 5 gear manual transmission and a 
12-14V 1.5 KW alternator, and a 66Ah/12V lead acid 
battery.   Experimental results for three driving cycles, 
UDDS, LA92 and UNIF01, are shown in Figure 5 and Table 
3.  UDDS is also sometimes called FTP72. The cycle 
represents city driving conditions in a urban area with 
frequent stops.  LA92 (also called Unified cycle) was 
constructed of segments of actual driving recording in Los 
Angeles. It is a more aggressive driving cycle than the FTP 
(Federal Test Procedure). It has higher speeds, higher 
accelerations, fewer stops per mile, and less idle time. The 
UNIF01 Cycle was developed for the California Air 
Resources Board [9] and is a modified form of the LA92.  
For the purpose of comparison we have used off-line 
Dynamic Programming (DP) to find the optimal operating 
points [16,17]. Since the DP algorithm requires full 
knowledge of the entire driving cycle to optimize the power 
management strategy, it is not applicable to online control.  
However the results generated by DP can be used as a 
benchmark for the performance of power control strategies.  
In Figure 5, we show the battery state of charge (SOC) for 
three different drive cycles using three different drive cycle 
prediction and control algorithms.  The red lines in the plots 
show the SOC when DP is used for optimal prediction and 
control (with full drive cycle knowledge).  The green lines 
show the SOC generated using the existing control strategy 
with no drive cycle prediction [14]. Finally, the blue lines 
show the results when the IPC prediction and control 
routine is used as described above.  

It can be observed that the SOC curves generated by the 
IPC for each drive cycle have similar behavior to the 
respective ones generated by the offline DP algorithm.  The 
SOC curves generated by the controller [14], on the other 
hand, are significantly different from the optimal curves. 

Table III presents the performance comparison with 
respect to fuel consumption.  We use the fuel consumed by 
the simulation vehicle with the conventional power 
management controller as the baseline [14].  For the UDDS 

NN_RT&TC Vehicle 
System 

v(t) 

pd(t) . 
. 
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Intelligent Controller 
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Knowledge 
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and LA 92 drive cycles, the IPC gives almost identical fuel 
consumption as the optimal (DP) controller.  On the UNIF01 
drive cycle, the IPC saved 2.68% fuel in comparison to 
software tool’s own controller [14].  Clearly by combining a 
prediction of the roadway type and congestion level with the 
power management strategy, we were able to realize a fuel 
economy improvement over the existing conventional 
strategy. 
 
 

 
(a) SOC compensation during driving cycle UDDS 

 
 

(b) SOC compensation during driving cycle UNIF01 
 

 
(c) SOC compensation during driving cycle LA92 

Figure 5. SOC comparison on three driving cycles.  The X axis represents 
time measured in seconds and the vertical represents the SOC measured in 

percentages. 
 

 
V. CONCLUSION 

We have presented a neural network designed and 
developed for in-vehicle prediction of 11 different roadway 
types and traffic congestion levels.  We presented the 
features and feature extraction algorithm we developed for 
the neural network. We also described the importance of the 
two parameters, , the signal window size, and wΔ tΔ , the 
prediction step, on the accuracy of prediction results.  Our 
simulation results using the IPC intelligent controller show 
that vehicle fuel consumption can be improved through the 
use of drive cycle and congestion level prediction.  
Currently we are applying the roadway prediction 
knowledge to a hybrid vehicle power management system.  
We anticipate more significant fuel reduction will be 
achieved in hybrid vehicle power systems. 
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