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ABSTRACT

We present a general approach for multi-modal sensor fusion 

based on nonparametric probability density estimation and 

maximization of a mutual information criterion.  We apply this 

approach to fusion of vector-magnetic and acoustic data for 

classification of vehicles.  Linear features are used, although the 

approach may be applied more generally with other sensor 

modalities, nonlinear features, and other classification targets.  For 

the magnetic data, we present a parametric model with 

computationally efficient parameter estimation. Experimental 

results are provided illustrating the effectiveness of a classifier that 

discriminates between cars and sport utility vehicles.

Index Terms— sensor network, classification, sensor fusion, 

mutual information.

1. INTRODUCTION 

Multimodal sensor networks are deployed in many scenarios 

where each node contains several sensor modalities, such as 

acoustic, magnetic, seismic, radar, electrostatic, infrared, optical, 

and others.  We focus on fusing two modalities, acoustic and 

magnetic, for the purpose of classifying civilian vehicles such as 

cars, sport utility vehicles (SUVs), and trucks.  In this work, the 

magnetic sensor is a vector magnetometer and the acoustic sensor 

is a single microphone, and the vehicle is moving along a road so 

that the range to the sensors is known approximately. 

For a magnetic source moving with constant velocity, a model 

for the vector magnetometer output signal is available based on 

linear combinations of Anderson functions.  We use this model to 

estimate the source speed and reduce the vector magnetic data to 9 

parameters.  A corresponding parametric model is not available for 

the acoustic signal from civilian vehicles, and models are not 

known for the joint statistical dependence between the magnetic 

and acoustic signals.  We address this by using nonparametric 

probability density estimation to learn the joint statistics from 

training data, and then the magnetic-acoustic data is fused by 

extracting features for classification that maximize an information-

theoretic criterion.  We apply the approach with measured data 

from civilian vehicles, demonstrating that fusion of magnetic and 

acoustic data using the information-theoretic criterion improves 

the ability to discriminate between cars and SUVs.  

2. VECTOR MAGNETIC SENSOR MODEL AND 

PARAMETER ESTIMATION 

We begin with a review of a parametric model for the vector 

magnetic field observed at a sensor in a time interval around the 

closest point of approach (CPA) of the source, then we present a 

computationally-efficient algorithm for estimating the parameters. 

2.1. Magnetic data model 

We assume that a magnetic dipole with moment vector m  passes 

CPA at time 0t , as illustrated in Figure 1.  The CPA range is 

denoted by , the source velocity vector is , and the speed 

is .  Then each component of the vector magnetic field can be 

expressed as a linear combination of the Anderson functions [1]  
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where the time-scale  is related to the speed and  as CPAR

CPAR
v  .   (2) 

The magnetic field components vary with time according to [1] 

tttBtBtBt zyx eCFB , (3) 

where tF  is a 1x3 vector of Anderson functions, 

tftftft 210F ,  (4) 

C  is a 3x3 matrix of coefficients, and  is a 1x3 vector that 

accounts for deviations from the ideal model due to noise, sensor 

motion, extraneous magnetic sources, and other effects. 

te

The model can be further elaborated to relate the elements of 

 to the magnetic dipole moment vector , the direction of 

motion , and the CPA range [1].  We do not include these 

detailed (and nonlinear) relationships here, but we note the 

following characteristics of  from the detailed model [1]: 

C m
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1. The  matrix is scaled by a factor that is proportional to C
3

CPARm , where  is the magnetic dipole moment 

magnitude.  Therefore the elements of  have magnitude 

that is proportional to  and decays rapidly with range. 

m

C

m

2. The variations from element to element in C  depend on the 

orientations of the magnetic dipole vector  and the 

direction of motion .

m/m

v/v

3. The source speed v  enters the model in (3) only through the 

time-scale parameter  in (2). 

These observations imply that the source speed can be estimated 

from  if the CPA range is known.  Also, C characterizes the 

magnetic dipole moment vector of the source if the sensor is 

placed near a road, because then the direction of motion  is 

fixed (except for a sign difference for left-to-right and right-to-left 

motion) and the CPA range is approximately known (within the 

width of the road).  However, the  matrix will be different for 

left-to-right and right-to-left motion.  Therefore we use C  to 

summarize the magnetic properties of the source for classification. 
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2.2. Parameter estimation 

The model in (3) contains 10 parameters in  and C , where 

 represents the measured vector magnetic sensor data.  The 

parameters may be estimated by minimizing the squared-error, 

)(tB

dttttt
T

CFBCFBC Tr   ,2
 (5) 

where superscript T denotes the transpose operation, Tr is the trace 

of the matrix, and the integration limits are from  to .  For 

fixed , the least-squares estimate of  is C

dttt
T

BFGCC
C

,minargˆ 2
, (6) 

where the 3x3 matrix G  can be expressed in closed-form as 
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Next, to find the least-squares estimate for , we substitute (6) 

into (5) to eliminate C , leading to

dtdsttss
TT

BFGFBTr   maxargˆ .(8)

An interpretation of (8) is that  is chosen to maximize the total 

energy in the orthogonal projections of the components of 

onto the subspace spanned by the Anderson functions.  The 

quantity inside the square brackets in (8) is a scalar function that 

can be evaluated as 
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so (8) may be expressed more directly as 

dtdstsBtsK ,;,  maxargˆ   (10) 

where

tBsBtBsBtBsBtsB zzyyxx, . (11) 

The operation in (10) may be viewed as a vector matched-filter on 

 to estimate )(tB CPARv .

In summary, the global solution to the least-squares 

minimization in (5) is obtained by first solving (10) for ˆ , and 

then using ˆ  in (6) to find C .  The continuous-time formulation 

facilitates the evaluation of the closed-form expressions in (7) and 

(9).  In practice, sampled data is used, so  is replaced by an 

Nx3 matrix, , containing N samples of each 

vector magnetic sensor data component with spacing  sec 

between samples.  Then the model in (3) becomes 

ˆ

)(tB

],,[ zyxN BBBB

sT

NNN eCFB ,   (12) 

where the Nx3 matrix NF  contains samples of the Anderson 

functions in (1).  We define the 3x3 matrix 

GFFG
1

N

T

NsN T  (13) 

and the NxN matrix 

KFGFK
T

NNNN  (14) 

where K  is an NxN matrix obtained by sampling the function 

in (9).  The approximations in (13) and (14) become exact as the 

sample spacing  and the processing time interval 0sT

The approximations reduce computations by eliminating the 

matrix products and inverse in (13) and (14).  The least-squares 

estimates for ˆ  and  with discrete-time data are then Ĉ
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and

N

T
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T

NNs TT BFGBFGC ˆˆˆˆˆ  (16) 

where the approximations in (13) and (14) are used to reduce 

computation.  The model-based estimate is then 

CFB ˆˆˆ
NN     (17) 

and  can be compared with the data B  to assess the fit of the 

model to the data.  Figure 2 shows a good fit between the model 

and measured data for a car traveling at 15 mph with CPA range 

19 ft.  The estimated speed is 15.2 mph, which agrees closely with 

the ground truth.  Similar fits to the source speed and model were 

obtained for 25 different vehicles in the measured data set. 

NB̂ N

3. JOINT MAGNETIC-ACOUSTIC FEATURES THAT 

MAXIMIZE MUTUAL INFORMATION 

In this section, we consider classification of vehicles by jointly 

processing vector magnetic field data measured with a 

magnetometer and single-channel acoustic data measured with a 

microphone.  The steps in our approach for linear feature 

extraction are described first, followed by an algorithm for finding 

features that maximize a mutual information criterion. 

3.1. Procedure for linear feature extraction 

(1)  Estimate the CPA time using the peak of the total field, 
2/1222

  maxarg)(  maxargˆ tBtBtBtBt zyx
tt

CPA .

Take a window of vector magnetic field samples  and acoustic NB

Figure 1:  Illustration of acoustic-magnetic source moving with constant velocity near a vector magnetometer and microphone.
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Figure 2: Comparison of the fit between measured vector-

magnetic data and Anderson function model (15)-(17) for a car. 

samples  with CPA at the center of the window, and redefine 

the time axis for the samples so that  at CPA. 

AX

0t

(2)  Process the window of vector magnetic field data  as in 

(15) and (16) to estimate the model parameters 

NB

ˆ  and .  The 

columns of C  are stacked into a 9x1 vector  that represents 

the magnetic data.  The source speed may be estimated from 

Ĉ

ˆ
MagX

ˆ

using (2) if the CPA range is known. 

(3)  The window of acoustic samples is placed into a vector 

with  samples.  Parametric models are not available for the 

acoustic signals corresponding to civilian vehicles at CPA, so it is 

not obvious how the acoustic data may be reduced to a few 

parameters that are analogous to  for the magnetic field data.

AX

1AN

MagX

(4)  The  and  vectors are stacked into a joint magnetic-

acoustic vector, .  We focus on magnetic and acoustic 

data in this paper, but other sensor modalities may be included. 

MagX AX

AX

X
X

Mag

(5)  The magnetic-acoustic data in  is processed by a linear 

transformation to extract a low-dimensional feature vector Y  with 

dimension ,

X

1YN

XAY
T     (18) 

where  is a matrix with dimension A YA NN9 .

Information-theoretic criteria for choosing  to maximize the 

classification information in Y  are described in Section 3.2. 

A

3.2. Maximum mutual information (MMI) features 

We begin with a review of several desirable properties of features 

that maximize a mutual information (MMI) criterion.  Then we 

review a particular algorithm [2] for extracting MMI features that 

uses nonparametric probability density function (pdf) estimation to 

learn the joint statistical dependence between the magnetic and 

acoustic measurements from the training data. 

The dimensionality-reducing feature extraction processing in 

(18) is not strictly necessary for classification, since the classifier 

can operate directly on the higher-dimensional data vector, X.

However, with small training sets, classifiers often generalize 

better when they are trained with low-dimensional features that 

retain the information for classification.  In addition, features 

derived from information-theoretic criteria have recently been 

found [4] to achieve lower classification error on several data sets 

than systems that jointly derive the features and the classifier, such 

as [5].  An advantage of designing the features independently from 

the classifier is that the features may be applied subsequently to 

any of a large number of classifiers [3]. 

A theoretical basis for using mutual information for feature 

extraction is provided by bounds on the probability of 

classification error, Pe. Suppose that S is a discrete random 

variable with alphabet {1, 2, …, M} representing the labels of M

classes.  The mutual information (MI) between the feature vector 

Y and the class label S is denoted by .  It has been shown 

that P

),( YSI

e is bounded above [6] and below [7] by functions of the MI, 

where the bounds are decreasing functions of the MI.  Therefore 

maximizing the MI in the features minimizes the bounds on Pe.

The upper and lower bounds in [6,7] are stated in terms of 

Shannon mutual information, but the bounds have recently been 

extended to Renyi mutual information in [8].  The MMI algorithm 

that we use from [2] maximizes a form of Renyi mutual 

information.  Further justification for mutual information as a 

metric for feature extraction has recently been presented in [9], 

where several commonly used linear feature extraction methods 

are formulated in a unified information-theoretic framework. 

The desirable properties of MMI features have been known 

for some time, but computational difficulties have prevented 

widespread use until recently.  As above, let S be a discrete 

random variable with alphabet {1, 2, …, M} that represents the 

class label, Y is the feature vector,  is the a priori probability 

that S = i,

ifS

if || ySY  is the probability distribution for the features 

in class i, and ififf
M

i SSYY yy
1 | |  is the distribution of 

all the classes.  The definitions of Renyi entropy with order  and 

Shannon entropy for a random vector  with probability 

distribution

X

xXf  are [11] 

1
log

1

1
  :Renyi XX XX fH  (19) 

XX XX fH log   :Shannon , (20) 

where 1,0 , and .  We will use 

Renyi’s quadratic entropy with 

XX HH
1

lim

2 .

The Shannon and Renyi entropies can be used to define the 

classical Shannon MI and Renyi’s quadratic MI, and both of these 

MI forms have been used for feature extraction.  In [4], Renyi’s 

quadratic MI is used and combined with the stochastic information 

gradient from [12] to reduce complexity.  In [13], Shannon MI is 

used to extract nonlinear MMI features via the “kernel induced 

feature space” (KIFS). Other recent works [14, 15] have connected 

information-theoretic learning with kernel methods. 

A different form of quadratic MI is defined in [2] for the 

purpose of extracting MMI features.  The quadratic mutual 

information in [2] is motivated from a quadratic divergence 

measure between ififif SSYSY yy |, |,  and iff SY y ,

M

i
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This same divergence measure is proposed and studied in [14, 15]. 

Nonparametric Parzen windows may be used to estimate the 

probability distributions in (21).  The Parzen window method 

places a “kernel function” around each training sample and adds 

the kernels to yield a continuous function.  We will use a Gaussian 

kernel function with dimension NY and diagonal covariance ,I
2

yyy
TYN

G
2

2/2

2
2

1
exp2 . (22) 

As in [2], the following notation is used for the features 

 corresponding to the training data.  Let  denote the 

number of training samples for class i, for , and let 

 be the total number of training samples.  The 

features corresponding to the training data for class i are denoted 

by  for  for .  The superscript is the 

class label and the subscript is the index of the vector within the 

class.  When the class label is not important, the training samples 

are indexed with a single subscript, , for .

XAY
T
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Mi ,,1

MTTT 1

i

ty iTt ,,1 Mi ,,1

ty Tt ,,1

Using (22) to estimate the pdfs in (21) yields the MMI 

criterion in [2],  
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We maximize (23) with respect to the matrix A to obtain the MMI 

features, with the constraint .  The maximization of 

quadratic MI can also be applied with nonlinear feature mappings 

, where  is a parameter vector. 

IAA
T

XgY ;

4. RESULTS USING MEASURED DATA 

We have applied the information-theoretic fusion of magnetic and 

acoustic data with measured data to classify vehicles.  The 

experiments consisted of cars, SUVs, and trucks traveling along a 

road in both directions, left-to-right (L2R) and right-to-left (R2L), 

with CPA ranges from 19 to 28 ft, and at speeds of 15 mph and 25 

mph.  The data set was too small to estimate the probability of 

classification error, so we examined scatter plots of three-

dimensional feature vectors to evaluate discrimination between 

cars and SUVs.  We observed the following results from 

processing the measured data. (1) The MMI features significantly 

improve discrimination compared with simple Fisher’s LDA [3] 

features.  (2) Fusion of magnetic and acoustic data allows 

discrimination, but using magnetic data alone does not allow 

discrimination. (3) Incorporation of simple information about the 

vehicle’s track (speed & direction) improves feature extraction for 

classification.  The magnetic signatures vary with the vehicle’s 

direction and the acoustic signatures vary with the speed, so 

features that are matched to the direction & speed perform better. 

Figure 3 contains a representative result, where CAR-L and 

CAR-R are training data for (different) cars moving L2R and R2L, 

respectively, and SUV-L and SUV-R are corresponding training 

data for SUVs.  The features are derived separately for vehicles 

moving L2R and R2L, giving rise to the top and bottom panels.  

The LSUV points in Figure 3 correspond to a new “light SUV” 

that is different than the SUVs in the training data, where LSUV-L 

and LSUV-R are traveling L2R and R2L, respectively.  Note that 

the LSUV-L is closely clustered with the SUV-L training data and 

LSUV-R is closely clustered with SUV-R, indicating 

discrimination of the SUV from the cars.
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Figure 3:  MMI features for new (non-training) magnetic-acoustic 

data from a light SUV (LSUV) moving L2R and R2L at 15 mph. 
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