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Abstract 

A three-dimensional Monte-Carlo (Potts) model was modified to incorporate the 
effect of grain-boundary inclination on boundary mobility. For this purpose, a 
straightforward geometric construction was developed to determine the local orientation 
of the grain-boundary plane. The combined effects of grain-boundary plane and 
misorientation on the effective grain-boundary mobility were incorporated into the 
Monte-Carlo code using the definition of the tilt-twist component (TTC). The modified 
code was validated by simulating grain growth in microstructures comprising equiaxed or 
elongated grains as well as the static recrystallization of a microstructure of deformed 
(elongated) grains.   
  
Key words: Recrystallization, Grain growth; Grain boundary inclination; Monte Carlo technique 
 
1.  Introduction 
 There is a growing demand for mesoscale models describing the evolution of 
microstructure and texture during the thermomechanical processing (TMP) of materials. 
In particular, grain growth in polycrystalline metals has been studied extensively using 
both analytical and computer-based models. Among the various numerical methods, the 
Monte-Carlo (MC) Potts method, developed originally for the two-dimensional case in 
the 1980s by Anderson et al. [1, 2], has found widespread use to quantify the temporal 
evolution of grain shape and size. During the last decade, a number of specific efforts 
have focused on the three-dimensional simulation of grain growth, including 
comparisons with observations of the actual kinetics of microstructure evolution [3-8].  
 Recently, refined models have been formulated to treat the simultaneous 
evolution of microstructure and texture during TMP [9, 10]. For example, anisotropic 
grain-boundary (GB) properties have been taken into account; in these cases, the driving 
force for the migration of a particular grain boundary depends on both its curvature and 
crystallographic features. In other work, relatively straightforward modification of the 
classic 3D MC Potts technique [1-6] has enabled simulations for modeling domains (MD) 
with dimensions as large as 250×250×250 points or model units (MU). In such cases, it is 
possible to preserve an adequate number of grains to obtain statistically significant 
textures and grain size/GB distributions. Due to the large variety of possible 
misorientations as well as orientations of the actual boundary planes, however, there is a 
huge number of GBs with different structures and thus properties. To simplify modeling 
procedures and save computational resources and time, therefore, it has frequently been 
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assumed in previous MC Potts models of microstructure evolution that GB energy and 
mobility depend on the misorientation between adjacent grains but not on the specific 
spatial orientation of the boundary plane.  

The assumption that GB properties depend only on misorientation is certainly not 
true. According to recent experimental measurements and molecular-dynamics 
simulations, GB energy and mobility are sensitive to not only the GB misorientation 
(GBM), but also to the orientation of the GB plane relative to the crystal lattices of the 
adjacent grains, i.e., the grain-boundary inclination (GBI). According to Reference 11, 
for example, the mobility of Σ5 [010] tilt boundaries in pure nickel is very dependent on 
GBI; in this work, it was determined experimentally that the mobility varied by a factor 
of 2 to 4 with GBI. It was also found experimentally that the relative energy of selected 
high-angle, non-special GBs in NiAl vary over a wide range (0.47 to 1) depending on 
GBI [12]. An additional confounding factor in the description of GB properties for real 
polycrystalline materials is the fact that the GBI changes along curved GBs, unlike GBM, 
and thus must be quantified locally.    
 Another important feature of real materials is the fact that not all possible GBIs 
are present in equal quantities [13, 14]. Hence, the probability distribution for the normal 
to the GB plane (so-called GB-plane textures) can be presented as pole figures. For Cu, 
Ni, and Ti-6Al-4V [13, 14], there can be very strong GB-plane textures which are only 
partially related to twinning and which persist even after long-duration, low-temperature 
annealing.   
 To improve the fidelity of 3D MC models for microstructure evolution, the local 
GBI must be introduced. This certainly makes the modeling routine more complex 
relative to earlier approaches [9] in which the GBM is presented in a simple scalar form. 
First, an exact matrix form which can be reduced to a three-component vector is needed 
to accommodate the introduction of the local GB geometry. Second, if successful, such 
model enhancements would require a database on GB properties for all possible 
combinations of GBM and GBI. Although such information is not currently available in a 
systematic form, substantial experimental and theoretical efforts are in progress. They 
have already provided experimental data which are sufficiently accurate to investigate 
model validity and performance.         
 The effect of GBI on boundary migration is easily introduced into analytical 
models of grain growth which utilize GB surfaces and triple-junction lines as analytical 
functions [15, 16]. Similar formulations in numerical approaches are usually restricted to 
2D cases or the 3D modeling of the evolution of grain topology. However, such methods 
are usually not suitable for the numerical modeling of texture evolution. For instance, in 
3D MC modeling, the analytical approach to GB tracking is not used because the GBI 
changes continuously as the GB migrates. Hence, information obtained during previous 
MC steps cannot be used for subsequent ones.  Therefore, it is not worthwhile to fit an 
analytical function to the GB geometry because one needs to repeat this time-consuming 
procedure after each elementary MC event.   
 The objective of the present work was to incorporate the locally-estimated GBI 
into a 3D MC Potts model of grain growth. GBI effects were examined recently using a 
2D cellular-automaton (CA) model for microstructure evolution [17], but cannot be 
extended for the 3D case. The present paper presents an initial attempt to meet this need 
for the 3D case. The discussion below deals with (1) the calculation of the local GBI and 

 2



an efficient procedure of its estimation within a 3D MC Potts code, (2) an optimization 
procedure for estimating GBI and an analysis of associated errors, and (3) model-
validation examples to establish how the inclusion of GBI affects predictions of grain-
growth and recrystallization kinetics. 
 
2. Approach for incorporating GBI into an MC Potts simulation                

The refinements presented in this section were incorporated into a previously 
developed 3D MC Potts model [9] which has been used to simulate simultaneous grain 
growth and texture evolution in polycrystalline materials. The model and associated 
software have also been used to describe abnormal grain growth [18]. Thus, only a brief 
description of the basic approach is given here.  

The model domain is formed by a 3D cubic array of MUs, each of which 
represents a point in a cubic lattice. Each MU is assigned an integer corresponding to its 
specific orientation in Euler space. As in previous work utilizing the MC approach [9, 
17], the model domain does not contain grain boundaries per se. Rather, grain-boundary 
positions are associated with the space between two sites having dissimilar orientations. 
The size of each grain is taken to be equal to the diameter of a sphere containing the same 
volume (i.e., number of MUs).  

During one Monte-Carlo Step (MCS), the number of elementary flip-simulation 
trials is equal to the number of sites in the model domain. Hence, the local velocity of a 
grain boundary is measured in terms of MU/MCS, and has the maximum possible value 
of 1 MU/MCS. In each elementary flip-simulation trial, the sampling neighborhood, or 
control volume, is characterized by a search radius equal to 2 MU. Thus, 124 nearest 
MUs are taken into account in the cubic 3D array. 

As mentioned above, it appears that only one prior attempt [18] has been made to 
introduce a dependence of GB properties on GBI in a mesoscale numerical model. In this 
former 2D CA work, GB displacements were allowed to occur as fractional increments 
of the size of an individual cell, thus emulating continuous, not discrete, tracking of the 
boundary location with time. The modified approach in Reference 18 yielded a better 
description of grain-growth phenomena, but required substantial additional data-storage 
resources. A correlation between the GB normal direction and the incremental (scalar) 
cell displacement was noted, albeit for the 2D case of interest in which merely one angle 
determines the normal.  Such an approach can not be extended to 3D because two 
independent angles for the GB normal direction can not be estimated from scalar 
displacement increments. Hence, an alternate procedure is required for 3D mesoscale 
simulations.  

For the present 3D case, the GB was represented by the function z = f(x,y). The 
local GBI at point Mo(x, y, z) was quantified using planar linear approximations for the 
two orthogonal Cartesian cross-sections through it lying parallel to the xz and yz planes 
(Fig. 1). The partial derivatives ∂ƒ/∂x and ∂ƒ/∂y define a tangential line for each cross-
section. The tangential plane for z = f(x,y) was thus defined by these two tangents 
forming angles α and β with the reference coordinate axes (Fig.1). The normal to the 
tangential plane, which characterizes the GBI at point Mo, is then  
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A special algorithm was developed to determine the local GBI within the MC 
code. For each cross-section, the nearest 48 MUs at the location of interest were utilized 
(Fig. 2a). Although two Cartesian cross-sections are sufficient for the linear 
approximations defining the GBI, there are instances for which the number of MUs 
within one of them is not enough (Fig 2b).  In such cases, three Cartesian cross-sections 
were used to guarantee that at least two were suitable for the linear approximation. 

The implementation of the exact GB description into the 3D MC code also 
required usage of an exact GB misorientation (GBM), instead of the usual scalar 
approximation. Previously, the single parameter ε consisting of the lattice misorientation 
between neighboring grains was used to define the relative grain-boundary energy and 
mobility [3-10]:  
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The use of the scalar parameter ε overlooks important GB features, such as the tilt-twist 
character. Hence, the MC routine was modified to incorporate the exact matrix 
misorientation S between grains having orientations g1 and g2 : 
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In Equation (4), the rotation matrices
1
and 

2
correspond to orientations g1 and g2 of 

the neighboring grains. From a computation standpoint, an evaluation of the matrix form 
of the misorientation would require a prohibitive amount of time if done for each MC 
trial, even if such calculations utilized an efficient scheme such as that based on 
quaternions [19]. Therefore, a database of S as a discrete function of g1 and g2 was pre-
calculated and loaded into the computer memory prior to executing model calculations. 
Thus, only a simple search operation was performed for each MC trial. 

gS gS

 
3.    Errors associated with GBI calculations 

The errors associated with the above procedure for calculating the GBI were 
assessed using a series of isolated, perfectly spherical grains of different initial radii R.  
Such trials ensured that all possible GBIs and curvatures would be evaluated for 
situations in which the exact GB tangent plane could be determined analytically.  

Fig. 3a illustrates the specific geometry, indicating the cross-section of a typical 
spherical grain and its normal estimated using the procedure described in Section 2. The 
acceptable average error, i.e., the angular difference between the exact and estimated 

 4



normals, was taken to be 2 degrees, a value comparable to the typical Euler-angle step 
size used in the representation of orientations in MC modeling procedures. This 
specification is somewhat more conservative than the usual angular step (5 degrees) used 
for orientation-distribution function (ODF) analysis. 

The GBI calculations for isolated grains of different sizes revealed errors which 
were acceptable for more than 99 pct. of the cases involving radii above 20 MU 
(Table 1). For small radii, the fraction of acceptable estimates dropped to 94 pct. For 
grain radii above 50 MU, the average GBI error remained essentially constant, i.e., the 
result did not improve with further increases in grain radius.  

Figures 3b, c illustrate the origin of errors in estimating the GBI for large and 
small radii of curvature, respectively. The procedure cannot quantify the GBI for small 
grains/GB segments because the whole GB/grain segment is smaller than the area shown 
in Fig. 2a. For fine microstructures, it is thus necessary to use a 5×5 MU working area, 
which still gives acceptable results. Furthermore, the procedure cannot be used to 
estimate the GBI for GB segments close to triple junctions because the specific GB 
segments here are also smaller than the working area. Hence, if M0 in an MC simulation 
is located close to a triple line or junction (Fig. 4a), it is impossible to derive the GBI due 
to the low resolution of the model grid.  More specifically, Figure 4b illustrates the 
spatial limitations for the determination of the GBI determination. Because at least 4 
MUs nearest to the GB point M0 must be present within each Cartesian cross-section, the 
procedure will not work with GB radii less then 4 MUs. To overcome the challenge 
associated with triple lines/junctions (indicated in black in Fig. 4b), a procedure was 
introduced to exclude such areas from the GBI calculation. Figure 4c illustrates the 
fraction of the GB network as a function of average grain size for which the GBI can be 
estimated correctly.   
 
4. Validation of the MC Potts model of grain growth using exact GB geometry 

To account for both GBM and GBI in the present simulations of grain growth and 
recrystallization, the effective grain-boundary mobility M, which is a function of these 
two quantities and is normalized to a maximum value of unity, was introduced. There is 
no systematic database for M. Nevertheless, the functional dependence of M can be 
assumed to consist of a surface with lower mobilities for low-angle boundaries (e.g., 
References 18 and 20) and a maximum at values of the so-called tilt-twist component 
(TTC) of ~0.1-0.3, per available experimental measurements [12, 21]; the specific surface 
used in the present simulations is given in Fig. 5. Per reference 12, the TTC component is 
defined as the dot product of the unit vector parallel to the GB misorientation rotation 
axis and the local GB plane unit normal. The GB-misorientation rotation axis can be 
derived from the misorientation matrix M (Eq. 4), i.e.,  
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 The value of the TTC varies from 0 for pure tilt GBs to 1 for pure twist GBs. The 
general case of 0 < TTC < 1 thus describes a mixed type of GB with the TTC 
representing the fraction of the twist component in the GB.  

4.1. Initial test case 

A relatively simple grain-growth example was used as an initial test of the MC 
model incorporating the description of GBI. To demonstrate the effect of GBI-dependent 
effective mobility on the evolution of grain structure, the problem consisting of the 
shrinkage of a spherical grain (initial R = 100 MU) was simulated; this problem is similar 
to that used in Reference 9 to validate the original 3D MC code. For this example, the 
misorientation between the matrix and grain was taken to be 35°. In the original 
simulation [9], in which the mobility depended only on the scalar misorientation, the 
grain remained essentially perfectly spherical until it disappeared. In present case, the 
GBI is well defined at every point on the grain boundary. Because the misorientation was 
constant, the effective mobility M = f (GBM, GBI) corresponded to the specific section 
indicated by the red line in Fig. 5. As expected, the variation of GBI resulted in the 
prediction of different GB migration rates for different local values of TTC (Fig. 6), 
resulting in distortion of the original spherical shape as the grain shrunk. 

4.2. Grain growth modeling using the exact GB geometry 

Three more detailed MC simulation cases (denoted A, B, C) were run to clarify 
the effect of GBI-dependent effective mobility on grain growth. For Case A, the GB 
effective mobility was assumed to be a function of GB misorientation only, while for 
Cases B and C the effective mobility dependence shown in Figure 5 was assumed. Two 
cases (A, B) were designed to elucidate the effect of grain-boundary mobility as function 
of GBI on grain-growth kinetics for an initial, nearly equiaxed microstructure (Figure 7a). 
This microstructure had 1000 grains within the 2503 MU domain and hence an initial 
average grain size of 31 MU. For the nearly equiaxed grain shape the GBI distribution 
was relatively wide (Cases A and B). The volumes were not textured initially; hence, the 
effect of GBM on GB motion for Cases A and B was the same.  

Case C was run to establish the specific influence of GBI on grain-growth kinetics 
via use of a microstructure with a non-equiaxed grain morphology (Figure 7c). In 
particular, the initial microstructure for Case C comprised grains with the same average 
grain size as for cases A and B, but having an aspect ratio of 1:3:3 (Figure 7c). In this 
instance, therefore, the initial GBI distribution was relatively narrow in comparison to 
that for the equiaxed microstructure. The initial grain-size distributions for the three cases 
are shown in Figures 7b, d.  

As expected, the kinetics for Case A (Figure 8) mimicked so-called normal grain 
growth for which the average grain size is proportional to the square root of time.  For 
Case B,  the initial growth stage  was  slower  than  for Case A  due to  the  lower 
effective GB mobility for boundaries whose inclination  varied  mostly around a pure  tilt 
direction.  After approximately 100 MCS, grain growth became faster for Case B due to 
the evolution of grain boundaries with higher effective mobility, but then slowed again. 
Further alternating periods of faster and slower grain growth could then be expected for 
longer times, a behavior similar to previous observations for strongly-textured materials 
[9].  
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For Case C, an initial increment of time was required for the first several smaller 
grains in the initial grain-size distribution (Fig. 7) to vanish. As a result, the initial rate of 
increase in the average grain size for this case was very small (Figure 8). In general, due 
to the specific GBI distribution, the grain-growth kinetics for a non-equiaxed 
microstructure were found to be much slower. Nevertheless, it was observed that the 
microstructure gradually transformed into an equiaxed one. After reaching an aspect ratio 
of 1:1:1 , the grain-growth kinetics for Case C were, as expected, similar to those for 
Cases A and B, although the delay at the beginning stage of the growth resulted in a 
smaller average grain size.  

4.3. MC Simulation of recrystallization 

MC simulations were also conducted to establish the effect of GBI distribution on 
the recrystallization kinetics of deformed textured materials. The initial, as-deformed 
microstructure had grains with an aspect ratio of 1:3:3 (Fig. 9), as in Case C, thus 
providing a narrow GBI distribution, and a sharp, single-component initial texture strong 
enough so that most grains were similarly oriented. The initial stored-energy distribution 
(Fig. 10) was assumed to be highest close to GBs and decrease toward the interior of the 
grains. Oriented, continuous nucleation of recrystallized grains was assumed. New grains 
were assumed to be misoriented 30 - 45 degrees to the deformed matrix, but the rotation 
axes were randomly selected. Furthermore, it was assumed that grain boundaries were 
preferred sites for nucleation of recrystallized grains. The nucleation rate within the 
unrecrystallized material was set as 10-4 nuclei per MU3 per MCS. Recrystallization 
nuclei were assumed to be equiaxed with an average volume of 15 MU3. The 
recrystallization front velocity was proportional to the local stored-energy density and the 
effective mobility. In Case D, the GB mobility was assumed to be a function of GB 
misorientation only, such that low-angle boundaries (LABs) were assumed to have low 
mobility relative to high-angle boundaries (HABs). For Case E, the mobility was a 
function of both misorientation and GBI using the dependence shown in Fig. 5.  

Microstructural changes during recrystallization for Cases D and E after an equal 
number of MCS are illustrated in Fig. 11. For the assumed stored-energy distribution and 
nucleation conditions, the average GBI for the recrystallization front was approximately 
the same as for the as-deformed material (Fig. 11b). Because recrystallization kinetics 
depend on the effective mobility, it would be expected that they would be slower when 
the mobility-dependence on GBI is taken into account. In fact, the MC simulation results 
for Cases D and E did show a noticeable effect in terms of the recrystallization rate and 
the time to complete recrystallization (Fig. 12). Fig. 13 shows the microstructures for 
Cases D and E after the completion of recrystallization. The predicted average grain size 
for Case E was about two times as large that for Case D; i.e., 32 and 18 MUs, 
respectively. 
 
5. Conclusions  
 A 3D Monte-Carlo (Potts) code was modified to quantify the effect of grain-
boundary inclination (GBI) on mobility and thus on microstructure evolution during 
recrystallization and grain-growth processes. The following conclusions were drawn from 
this work: 

1. The inclination of grain boundaries in MC simulations can be determined 
within 2 degrees by a relatively simple geometric construction except for very small 
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grains (< 20 MU radius) and near triple points/triple lines. In these cases, the fitting 
procedure should focus on a smaller neighborhood/number of MUs. 

2. Using realistic data for mobility as a function of misorientation and the tilt/twist 
component (TTC), which incorporates the GBI, grain-growth kinetics can be readily 
predicted. MC simulations incorporating the exact grain-boundary character reveal 
periods of fast and slow grain growth, a behavior qualitatively similar to that previously 
found for texture-controlled grain growth. 

3. MC simulations incorporating the effect of GBI on mobility reveal that static 
recrystallization kinetics can be noticeably retarded for realistic boundary properties and 
initial deformed grain shapes relative to simulations in which GBI is not taken into 
account.   
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Table 1. Error (angle between estimated and exact GB normal) as a function of GB radius 

of curvature (R) based on 200 measurements for randomly selected GB segments 
for each R 

 

Radius, R (MU): 100 50 30 25 20 15 10 8 

Average error 
(degrees) 

 
1.641 

 

 
1.687 

 

 
2.255 

 

 
2.536

 
2.423 

 
4.301 

 
6.562 

 
7.24 

Standard deviation 
(degrees) 

 
1.029 

 

 
1.039 

 

 
1.642 

 
1.77 

 
1.643 

 
3.002 

 
4.301 

 
4.167

Fraction of exact 
GBI determination 

(pct.) 

 
10.5 

 
13.0 

 
11 

 
11 

 
10 

 
8 

 
5 

 
6 

Unsuccessful  (pct.) 
(error > 2 pct.) 

 
N/A 

 
N/A 

 
0.5 

 
0.5 

 
1.0 

 
0.5 

 
4.0 

 
6.0 
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Figure Captions 
 
Fig.1. Geometry of two Cartesian cross-sections, namely xz and yz, for a grain boundary 

described by z = f(x,y) . 
Fig.2. Grain-boundary cross-sections illustrating: (a) 48 MUs (7 x 7 MU square field) 

neighboring the central M0 unit and the best linear fit with its associated normal 
direction and (b) the situation comprising a single MU in one of the section 
planes. 

Fig.3 Cross-sections generated using a test model to determine the accuracy of the GBI 
procedure: (a) Exact result for R = 50 MU and (b, c) the origin of errors for large 
and small grain-boundary radii, respectively. 

Fig.4. Determination of the GBI: (a) Cross-section showing the grain-boundary normal 
estimated at point M0 (projection within the section plane), (b) the same cross-
section with several more GB normals at and near locations (indicated by the dark 
patches) for which the GBI procedure is not possible (c) a plot showing the 
fraction of grain-boundary area for which the GBI can be estimated with 
acceptable accuracy.  

Fig.5. Dependence of effective grain-boundary mobility on misorientation angle and 
tilt/twist component (TTC). The bold black line corresponds to a 35° 
misorientation. 

Fig.6.  Predicted cross-sections from a 3D MC simulation of the shrinkage of an initially 
spherical grain (incorporating the dependence of effective grain-boundary 
mobility on GBI/TTC) : (a) Initial state, R = 100MU, (b) grain shape after 50 
MCS, and (c) grain shape after 100MCS.  

Fig.7. Initial microstructures and grain-size distributions for (a, b) Cases A and B and (c, 
d) Case C. 

Fig. 8. MC simulation predictions of the grain-growth kinetics for Cases A, B, and C. 
Fig. 9. Initial microstructure used for MC Cases D and E: (a) 3D image of selected 

deformed grains and some recrystallization nuclei and (b) a typical cross-section.  
Fig.10. Initial stored-energy distribution (dark gray = low, light gray = high) for Cases D 

and E: (a) for a transverse section (b) for an in-plane section, and (c) a 3D image 
showing several recrystallization nuclei and the unrecrystallized volume after 50 
MCS for Case D.  

Fig. 11.  MC predicted microstructures after 75 MCS:  (a) Case D (90 pct. recrystallized) 
and (b) Case E (80 pct. recrystallized).  

Fig. 12. Predicted recrystallization kinetics for Cases D and E. 
Fig. 13. Predicted microstructures after the completion of recrystallization: (a) Case D, 

100 MCS and (b) Case E, 250 MCS. 
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Fig.1. Geometry of two Cartesian cross-sections, namely xz and yz, for a grain boundary 
described by z = f(x,y) . 

 
 
 
 
 
 

           
  (a)         (b) 

 
Fig.2. Grain-boundary cross-sections illustrating: (a) 48 MUs (7 x 7 MU square field) 

neighboring the central M0 unit and the best linear fit with its associated normal 
direction and (b) the situation comprising a single MU in one of the section planes. 
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Fig.3 Cross-sections generated using a test model to determine the accuracy of the GBI 
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procedure: (a) Exact result for R = 50 MU and (b, c) the origin of errors for large 
and small grain-boundary radii, respectively. 
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(c) 

 

Fig.4. Determination of the GBI: (a) Cross-section showing the grain-boundary normal 
estimated at point M0 (projection within the section plane), (b) the same cross-
section with several more GB normals at and near locations (indicated by the dark 
patches) for which the GBI procedure is not possible (c) a plot showing the fraction 
of grain-boundary area for which the GBI can be estimated with acceptable 
accuracy. 
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Fig.5. Dependence of effective grain-boundary mobility on misorientation angle and 

tilt/twist component (TTC). The bold black line corresponds to a 35° 
misorientation. 

 

 

 

                             
 
                  (a)                                                    (b)                                                    (c) 

 
Fig. 6 Predicted cross-sections from a 3D MC simulation of the shrinkage of an initially 

spherical grain (incorporating the dependence of effective grain-boundary 
mobility on GBI/TTC) : (a) Initial state, R = 100MU, (b) grain shape after 50 
MCS, and (c) grain shape after 100MCS.                       
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(a) 

       
 

(b)     
 
      

                         
                              
                             (c)                                                                               (d) 

 
Fig.7. Initial microstructures and grain-size distributions for (a, b) Cases A and B and 

(c, d) Case C. 

 
Fig. 8. MC simulation predictions of the grain-growth kinetics for Cases A, B, and C. 
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(a) 
 

 
 

(b)     
  

 
Fig. 9.  Initial microstructure used for MC Cases D and E: (a) 3D image of selected 

deformed grains and some recrystallization nuclei and (b) a typical cross-section. 
 
 

 

     
                         (a)                                             (b)                                                    (c) 

 
 

Fig.10. Initial stored-energy distribution (dark gray = low, light gray = high) for Cases D 
and E: (a) for a transverse section (b) for an in-plane section, and (c) a 3D image 
showing several recrystallization nuclei and the unrecrystallized volume after 50 
MCS for Case D.  
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a) (b)  

Fig. 11. MC predicted microstructures after 75 MCS:  (a) Case D (90 pct. recrystallized) 
and (b) Case E (80 pct. recrystallized). 
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Fig. 12. Predicted recrystallization kinetics for Cases D and E. 

 

                                             
(a)                                                                          (b) 

Fig. 13. Predicted microstructures after the completion of recrystallization: (a) Case D, 
100 MCS and (b) Case E, 250 MCS. 
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	3.    Errors associated with GBI calculations

