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1.  Introduction 
 
Multi-frame blind deconvolution (MFBD) algorithms seek to estimate jointly an object being imaged along with all 
the system point spread functions (PSFs) present in the measured data frames.  It is well known that the quality of an 
object restoration improves as the number of data frames included in the restoration process is increased and as the 
support constraints used in the algorithm decrease in size (while still including the true support).  This improvement 
is due to both a greater likelihood of finding the global minimum of the MFBD cost function (when a cost-function 
based approach is used, of course) and the decreased noise levels in the restored image.  In this paper we report on 
results we have obtained while investigating the latter source of improvement.  Our interest in exploring the amount 
of noise reduction as a function of the number of data frames and the support constraint sizes is due to a desire to 
better understand the tradeoff between improved image quality and increased algorithm execution time.  We show 
that the amount of total noise reduction in the restored images is an increasing function of the number of data 
frames, and that the amount of relative noise reduction is greatest when adding including just a few data frames and 
is greater than might be expected.  We define the term “relative noise reduction” in Section 3.  We also discuss how 
the amount of relative noise reduction depends on the object and PSF support constraint sizes.  Because we desire to 
obtain answers that are algorithm independent, we employ a Cramér-Rao lower bound (CRB) approach in the 
analysis.  The outline of this paper is as follows:  Section 2 contains a description of the imaging model and CRB 
theory, results are given in Section 3, and conclusions are presented in Section 4. 
 
2.  Imaging model and Cramér-Rao lower bound theory 
 
The equation describing image formation is  
 
                                                          M,...,1m;nohi mmm xxxx  (1) 
 
where  denotes convolution, x is a two-dimensional spatial variable, im(x) is the mth  data frame, hm(x) is the mth 
PSF, o(x) is the object being imaged, nm(x) is the mth noise realization, and bold-faced type denotes vectors and 
matrices.  Because CRB theory requires a set of random variables, not stochastic processes, Eq.(1) must be rewritten 
in a vector form rather than as a continuous function.  To this end, let  be a square grid of spatial locations of the 
intensity values of im(x) and let ym, ψ, m and m be one-dimensional vectors that contain the values of im( ), o( ), 
hm( ), and nm( ), respectively, on the grid defined by .  The vectors ym, ψ, m and m can be generated from im( ), 
o( ), hm( ) and nm( ) by stacking their columns.  In addition, let Hm be the block-circulant matrix associated with 

m [1].  Then Eq.(1) can be rewritten as 
 
                                                                   M,...,1m;mmm ηψHy  (2) 
 
     Multi-frame blind deconvolution algorithms seek to estimate jointly the parameters contained in the vectors ψ 
and { m} given the data vectors {ym}, where the quantities in braces are the collection of vectors for all m.  
Although we could have carried out this analysis using sample statistics generated from restorations produced by a 



specific MFBD algorithm, we desired to generate algorithm-independent results.  Therefore, we chose to use CRB 
theory [2] for the analysis since it produces lower bounds to the variances of any unbiased estimates of a set of 

parameters.  The CRBs for any unbiased estimates of the elements of the concatenated vector 
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are the diagonal elements of the inverse of F, the FIM associated with ym and .  The element of F in the pth row and 
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where f(y; ) is the probability density function of {ym} parameterized by the vector  and ln denotes the natural 
logarithm.  Equation (3) gives the elements of F for the imaging model of Eq.(2) without the application of any 
constraints.  Support constraints are implemented by including in the vectors ψ and { m} only those elements that 
are inside their support constraint regions [3].  The unbiased CRBs of the parameters , CRB( ), are given by 
 
                                                                                1diagCRB Fθ  (4) 
 
where diag(F-1) denotes a vector containing the diagonal elements of F-1.  Because of the scaling redundancy of 
blind deconvolution, this expression for F is non-invertible.  We make F invertible by estimating only N-1 elements 
of ψ and Nm-1 elements of { m}, where N and Nm are the numbers of pixels in the support constraints applied to 
these vectors, and by requiring that all the Hm have full rank, which occurs when the Fourier transforms of {hm(α)} 
are non-zero. 
 
3.  Results 
 
We calculated CRBs using the object in Fig.1 for o(x) and zero mean white noise with variance σ

2 for nm(x). The 
PSFs {hm(x)} are related to atmospheric PSFs for D/ro = 8, where D is the telescope diameter and ro is the 
atmospheric correlation length [4].  We created {hm(x)} by creating D/ro = 8 PSFs, Fourier transforming them, 
cutting out a square portion of this Fourier transform centered at zero frequency and contained within the telescope 
OTF support, and then inverse Fourier transforming the results.  The resulting {hm(x)} are invertible, making F 
invertible.  We chose to do this to avoid the complications of calculating and interpreting biased CRBs. 
     A plot of the unbiased CRBs for ψ, CRBM(ψ), normalized to one for M=1, is given in Fig. 2 as a function of the 
number of data frames M included in the MFBD process.  For this plot, the true object support was used for ψ and a 
circular support that contained more than 99% of the energy of the {hm(x)} was used.  For each M, the 
corresponding point in the plot is the sum of CRBM(ψ), denoted sum(CRBM(ψ)).  Notice that sum(CRBM(ψ)) is a 
decreasing function of M, as expected.  Simplistically, one might expect sum(CRBM(ψ)) to decrease as 1/M since 
the noises are statistically independent from frame to frame.  This 1/M behavior is present, for example, when using 
speckle imaging techniques to estimate the energy spectrum of an object [4].  To investigate this expectation, we 
plotted the function 1/M in Fig. 2 as well.  Notice that the sum(CRBM(ψ)) plot decreases more rapidly than 1/M for 
small values of M.  We refer to the magnitude of the slope of sum(CRBM(ψ)) as the amount of relative noise 
reduction.  This implies that MFBD image restorations benefit more than might be expected from adding just a few 
frames to the estimation process as compared to carrying out blind deconvolution using only one data frame.  We 
have seen this behavior in restorations obtained using field data as well.  Notice also that the slopes of the 
sum(CRBM(ψ)) plot and the 1/M plot appear to be equal for larger values of M.  This means that the expected 1/M 
relative noise reduction in the restored images occurs for larger values of M. 
 

 
    (a) (b) (c) (d) (e) 

 
Fig. 1.  Computer-simulated satellite model (a), and support constraints used for CRB calculations:  (b) true, (c) blur2, (d) blur 5, and (e) blur 7. 



 
Fig. 2.  Plots of the normalized sum(CRBM(ψ)) values (solid 
line) and 1/M (dashed line) as a function of M 

Fig. 3.  Amounts of relative noise reduction when adding a 
second frame, as a function of object and PSF support sizes. 

 
     We then investigated how the amounts of relative noise reduction that occur in sum(CRBM(ψ)) as a result of 
using two (M=2) instead of one (M=1) frames of data depend on the object and PSF support constraint sizes.  To do 
this, we calculated sum(CRB2(ψ)) for several object and PSF support constraints.  We used four different object 
support constraint sizes:  the true support region and three larger support regions created by blurring the true support 
region with 2 x 2, 5 x 5, and 7 x 7 blurring kernels (see Fig. 1).  The PSF supports were all circular with varying 
radii.  The amounts of relative noise reduction are displayed in Fig. 3, where a value of zero indicates no additional 
noise reduction and a value of one indicates complete noise removal achieved with the use of the second frame.  
Notice that the amounts of relative noise reduction are a decreasing function of the PSF support radius for all blurred 
object support constraints, but are independent of the PSF radius for the true object support case.  Notice also that 
the benefit of adding a second frame to the MFBD process increases as the object support constraint size increases 
for a fixed PSF support constraint size.  This second property is especially useful since highly-accurate object 
supports are difficult to generate, in general.  We note that the amount of relative noise reduction corresponding to a 
1/M reduction is 0.5 for M=2. 
     We emphasize that the results in Fig. 3 are based on the normalized sum(CRBM(ψ)) values, not the absolute 
values.  Without this awareness, the results in Fig. 3 could be interpreted to mean that a less-accurate object support 
constraint produces lower CRB values than does a more-accurate object support constraint, which is not true.  The 
proper conclusion to draw is that noise reduction occurs more swiftly as M increases for less-accurate support sizes. 
 
4.  Conclusions 
 
Using an algorithm-independent CRB approach, we have analyzed the amount of noise reduction possible when 
using MFBD algorithms.  We investigated the amount of absolute and relative noise reduction as a function of the 
number of data frames included in the restoration process and the sizes of the object and PSF support constraints.  
We showed that the relative noise reduction is greater than 1/M for values of M on the order of one, where M is the 
number of data frames, and is approximately equal to 1/M for larger values of M.  We also showed that the amount 
of relative noise reduction achieved for M = 2 is generally an increasing function of object support constraint size.  
For all but the true object support constraint case, the amount of relative noise reduction is a decreasing function of 
the PSF support size. 
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