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ABSTRACT

We wish to solve fluid flow problems in only a portion of a large or infinite

domain. By restricting our area of interest, we effectively create a boundary where

none exists physically, dividing our computational domain from the rest of the physical

domain. The challenge we must overcome, then, is defining this boundary in such a

way that it behaves computationally as if there were no physical boundary. Such a

boundary definition is often called a non-reflecting boundary, as its primary function

is to permit wave phenomena to pass through the open boundary without reflection.

In this dissertation we develop several non-reflecting boundary conditions for the

linearized Euler equations of inviscid gas dynamics. These boundary conditions are

derived from the Higdon, Givoli-Neta, and Hagstrom-Warburton boundary schemes

for scalar equations, and they are adapted here for a system of first-order partial

differential equations. Using finite difference methods, we apply the various boundary

schemes to the gas dynamic equations in two dimensions, in an open domain with

and without the influence of gravity or Coriolis forces. These new methods provide

significantly greater accuracy than the classic Sommerfeld radiation condition with

only a modest increase to the computation time.
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I. INTRODUCTION

Many problems in computational fluid dynamics occur within a limited portion

of a very large or infinite domain. Difficulties immediately arise when one attempts

to define the boundary condition for such a system. Such boundary conditions are

necessary for the problem to be well-posed, but the physical system under consider-

ation has no boundary to model. One needs to define an artificial boundary whose

behavior models the open edge of the physical system. Such a boundary definition is

often called a non-reflecting boundary condition (NRBC), as its primary function is

to permit wave phenomena to pass through the open boundary without reflection.

NRBC development has been an ongoing research area since the 1960s. As with

any computational endeavor, there are trade-offs involved. An ideal NRBC would be

fast, accurate, stable, and easy to implement: fast, meaning that the computation

of boundary values is small or negligible relative to the interior domain; accurate,

meaning that there is little to no spurious reflection induced by the boundary con-

dition; stable, meaning that the boundary computations do not cause the solution

to degrade catastrophically over time; and easy to implement, meaning that the user

can incorporate the NRBC computations into an operational model with minimal

modification to existing code. Realistically, one must settle for two or three of these

attributes, at best. Consequently, the search for better NRBC methods continues. In

addition, researchers continue to apply existing NRBC methods to new domains and

wave propagation equations.

In this dissertation we develop several NRBCs for the linearized Euler equa-

tions of inviscid gas dynamics. These boundary conditions are derived from the

Higdon, Givoli-Neta, and Hagstrom-Warburton boundary schemes for scalar equa-

tions, adapted here for a system of first-order partial differential equations. Using

finite difference methods, we apply the various boundary schemes to the gas dynamic

equations in two dimensions, in an open domain with and without the influence of
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gravity or Coriolis forces. These new methods provide significantly greater accuracy

than the classic Sommerfeld radiation condition with only a modest increase to the

computational cost.

Our motivation for developing these NRBCs is to support the work of Giraldo

and Restelli in their efforts to develop the next generation of mesoscale atmospheric

modeling tools [32]. In their current form, the models rely on large absorbing layers

surrounding the computational domain. In order to be effective, these “sponge lay-

ers” can be as thick as the original domain [31], resulting in a total domain which

is nearly quadrupled in size. If we can replace these large sponge layers with accu-

rate NRBCs, then the modeling tools will requires less memory and computational

overhead, significantly increasing their efficiency.

The rest of the dissertation is outlined as follows. We begin in Chapter II by

deriving the equations under consideration, the linearized Euler equations of inviscid

gas dynamics. In Chapter III we provide an overview of existing NRBCs and provide

specific details about the Higdon, Givoli-Neta, and Hagstrom-Warburton schemes for

scalar equations. We then extend these boundary conditions to the first-order 2-D

linearized Euler system in Chapters IV (Higdon), V (Givoli-Neta), and VI (Hagstrom-

Warburton). In all three cases, we consider the NRBC implementation in a semi-

infinite or infinite channel and in an open domain, under basic conditions as well

as under the influence of Coriolis forces or gravity. Numerical examples using finite

differences are provided throughout. We discuss the issue of long-time stability in

Chapter VII. We offer a qualitative comparison of the three NRBC techniques in

Chapter VIII. We close in Chapter IX with a summary of our results and a list of

areas for further research.
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II. MODELING INVISCID FLUID FLOW

In this chapter we explore the equations governing the motion of a body of

fluid. These principles describe the flow of water in a channel or in the ocean, air

movement over mountains, airflow and drag in aircraft design, and even the heat

generated by a spacecraft re-entering the atmosphere. Although many physical phe-

nomena depend on the viscosity of the fluid, certain large-scale flows of low-viscosity

fluids (e.g., air) can be reasonably approximated by assuming the viscosity is negli-

gible.

By neglecting viscous forces, our fluid flow equations can be derived based

simply on physical conservation laws governing mass, momentum, and energy. The

following section considers each conservation law in turn and derives the relevant

governing equations therefrom.

We derive the Euler equations based first on internal factors. Then we consider

the inhomogeneous factors which affect these equations in the context of atmospheric

modeling.

A. DERIVATION OF EQUATIONS
1. Conservation of Mass

Mass is conserved in a closed system. If dm denotes an infinitesimal portion

of the mass, then
$
dm denotes the total mass of the body, and conservation of mass

requires
d

dt

8
dm = 0 (II.1)

Since the mass is continuous, we can bring the derivative inside the integral; thus

8 d

dt
(dm) = 0 (II.2)
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Furthermore, since this statement must be true for any piece of the body’s mass, the

integrand must be identically zero, i.e.,

d

dt
(dm) = 0 (II.3)

or
d

dt
(ρdxdydz) = 0 (II.4)

Applying the product rule gives

(dxdydz)
dρ

dt
+ (ρdydz)d

dx

dt
+ (ρdxdz)d

dy

dt
+ (ρdxdy)d

dz

dt
= 0 (II.5)

Define the velocity vector nu = (u, v, w)T , where u = dx/dt, v = dy/dt, and w = dz/dt,

and divide all four terms by dxdydz to get

dρ

dt
+ ρ

du

dx
+ ρ

dv

dy
+ ρ

dw

dz
= 0 (II.6)

Applying the chain rule to each derivative gives

∂ρ
∂t
+ u ∂ρ

∂x
+ v ∂ρ

∂y
+ w ∂ρ

∂z
+ ρ
p
∂u
∂x

dx
dx
+ ∂u

∂y
dy
dx
+ ∂u

∂z
dz
dx

Q
+ρ
p
∂v
∂x

dx
dy
+ ∂v

∂y
dy
dy
+ ∂v

∂z
dz
dy

Q
+ ρ
p
∂w
∂x

dx
dz
+ ∂w

∂y
dy
dz
+ ∂w

∂z
dz
dz

Q
⎫⎪⎬⎪⎭ = 0 (II.7)

However, since x, y, and z are independent, this equation reduces to

∂tρ+ u∂xρ+ v∂yρ+ w∂zρ+ ρ (∂xu+ ∂yv + ∂zw) = 0, (II.8)

i.e.,

∂tρ+ ∂x(ρu) + ∂y(ρv) + ∂z(ρw) = 0 (II.9)

or, in vector notation,

∂tρ+∇ · (ρnu) = 0 , (II.10)

where from here on, we use the following shorthand for partial derivatives:

∂t =
∂

∂t
, ∂xy =

∂2

∂x∂y

This equation assumes no external sources or sinks adding or removing mass from

the system. We note in passing that we have shown, from first principles, a special

case of Reynold’s transport theorem [3] applied to the density of a fluid.

4



2. Conservation of Momentum

We now consider the momentum of the fluid body. To this end, we first

determine what forces act upon the fluid. For the purpose of this dissertation, the

fluid body is assumed to be a portion of the Earth’s atmosphere.

a. Forces Acting upon a Fluid Body

The internal forces exerted by the body on itself consist of pressure

forces and viscous forces (which are neglected since we are assuming an invsicid

fluid). The external inhomogeneous forces we consider are the effects of gravity and

the Earth’s rotation.

(1) Force Due to Internal Pressure. The pressure force

results from pressure differences within the body (see Fig. 1) and acts to retard the

motion of the fluid.

p pp dy
y

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

∂+ ∂

pp dx
x

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

∂+ ∂

pp dz
z

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

∂+ ∂

x

y

z

dy

dx

dz

p

p

Figure 1. Pressure Differences in a Small Volume [From [113], Fig. 3, p. 15]

In a small piece of fluid volume dV = dxdydz, the change in

pressure in the x direction is (to first order accuracy)

∂xp dx
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The force exerted by this pressure difference is the product of the pressure difference

and the surface area on which the pressure is exerted. Hence, the pressure force in

the x direction is given by

dFpressurex = − (∂xp dx) dydz = −∂xp dV (II.11)

Similarly, the forces exerted by pressure differences in the y and z directions are given

by

dFpressurey = − (∂yp dy) dxdz = −∂yp dV
dFpressurez = − (∂zp dz) dxdy = −∂zp dV (II.12)

Thus, the total force due to internal pressure differences is the sum of the three

components,

dFpressure = −
p
∂xpı̂+ ∂ypĵ+ ∂zpk̂

Q
dV = −(∇p)dV, (II.13)

and the overall force on the entire body is

Fpressure =
8
dFpressure =

8
−(∇p)dV (II.14)

(2) Force Due to Gravity. According to Vallado [112], the

gravitational acceleration comes from Newton’s Law of Gravitation:

na = − μ

,nr,2
X

nr

,nr,
~
, (II.15)

where μ is the Earth’s gravitational parameter (398,600.4418 km3/s2), and ,nr, is the
radius from the center of the Earth (6378.137 km at sea level). At sea level, this gives

a gravitational acceleration of approximately 9.798 m/s2. Comparing the magnitudes

of the acceleration at sea level to that at an altitude of 20 km, we find

∆a = μ

X
1

(r + 20km)2
− 1

r2

~
≈ −0.06116m

s2
(II.16)

Given such a small relative difference, we can treat the gravitational acceleration as

constant, so the gravitational force is simply

Fgravity =
8
−gdmk̂ (II.17)
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where

g ≈ 9.798m
s2

(II.18)

(3) Force Due to Earth’s Rotation. In Fig. 2, Ω repre-

sents the angular velocity of the sphere, which for Earth has a value of 2π radians per

sidereal day (23 hours, 56 minutes, 4.090524 seconds [112]) or 7.292116× 10−5 rad/s.
We must consider the effects caused by the rotating reference frame. Here we follow

Equator

M
e
rid
ia
n

Parallel

N
z

S

x

y

Ω

φ

Figure 2. Rotating Sphere [From [113], Fig. 2, p. 11]

the derivation laid out by Holton [70] and Pedlosky [94]. Let nr denote the position

vector of an element in our rotating reference frame (see Fig. 3, where ψ is the angle

between nr and the angular rotation vector nΩ). In a small time interval ∆t, the vector

rotates by an angle ∆θ = |nΩ|∆t. If the time interval is small enough, the change in
the vector is given by

∆nr = nn|nr|∆θ sinψ, (II.19)

where nn is the unit vector in the direction of the cross product nΩ× nr, i.e.,

nn =
nΩ× nr

|nΩ× nr| (II.20)
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Ω

r

|r|sinψ

r+Δr

Δr

ψ

Δθ

Figure 3. Vector in Rotating Reference Frame [After [94], Fig. 1.5.2, p. 15]

Thus,
∆nr

∆t
=

nΩ× nr

|nΩ× nr| |nr|
∆θ

∆t
sinψ, (II.21)

or in the limit as ∆t→ 0,

dnr

dt
=

nΩ× nr

|nΩ× nr| |nr|
dθ

dt
sinψ, (II.22)

and since dθ
dt
= |nΩ|, we get

dnr

dt
= nΩ× nr (II.23)

If we have nr = xı̂ + yĵ + zk̂ in the east-north-up coordinate frame shown in Fig. 2,

then we convert from rotating to inertial reference frames by

nuI = nu+
dnr

dt
= nu+ nΩ× nr , (II.24)

where nu is the change in position within the rotating reference frame, and nuI is the

same motion relative to the inertial reference frame. Differentiation of the above,
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substituting nuI for nr and noting that nΩ is constant, yieldsX
dnuI
dt

~
I

=

X
dnuI
dt

~
R

+ nΩ× nuI

=
dnu

dt
+ 2nΩ× nu+ nΩ× (nΩ× nr) (II.25)

Based on Fig. 2, our angular momentum vector is

nΩ = |nΩ| cosφĵ+ |nΩ| sinφk̂ (II.26)

Using this definition and the definition of the cross product twice, we have

nΩ× (nΩ× nr) = |Ω|2
⎛⎜⎜⎜⎝

x

z sinφ cosφ− y sin2 φ
−z cos2 φ+ y sinφ cosφ

⎞⎟⎟⎟⎠ , (II.27)

but, since |Ω|2 = 5.317496× 10−9, we can ignore the last term of (II.25) to getX
dnuI
dt

~
I

=
dnu

dt
+ 2nΩ× nu (II.28)

Applying this formula to the momentum vector givesX
d

dt
(nuIdm)

~
I

=
d

dt
(nudm) + 2nΩ× (nudm) (II.29)

Hence, when we consider the change in momentum, we must add to it this rotational

effect. Now this rotational effect can be simplified. The atmosphere is thin compared

to the radius of the Earth. Furthermore, atmospheric flows tend to be parallel to the

ground (i.e., the velocity in the z direction is small). Taking the cross product of this

vector and our velocity vector gives

2nΩ× nu = 2|nΩ|((w cosφ− v sinφ)̂ı+ u sinφĵ− u cosφk̂) (II.30)

Again, assuming a thin atmosphere and thus neglecting terms in the z direction, this

simplifies to

2nΩ× nu ≈ 2|nΩ| sinφ(−vı̂+ uĵ) = 2|nΩ| sinφ(k̂ × nu) (II.31)
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If we define f = 2|nΩ| sinφ, we can express this force asX
d

dt
(nudm)

~
I

=

X
d

dt
(nudm)

~
R

+ f(k̂ × (nudm)) (II.32)

Since we are observing the flow from the rotating reference frame, this additional force

becomes an inhomogeneous term on the right-hand-side of the momentum equation:

FCoriolis =
8
f(nu× k̂)dm (II.33)

b. Summary of Forces

Thus, the equation for conservation of momentum is

d

dt

8
nudm = −

8
∇pdV +

8
f(nu× k̂)dm−

8
gk̂dm (II.34)

Here, as before, the integrand must be identically zero,

d

dt
(nudm) +

∇p
ρ
dm = f(nu× k̂)dm− gk̂dm, (II.35)

or, by component,

d

dt
(udm) +

dm

ρ
∂xp = fvdm

d

dt
(vdm) +

dm

ρ
∂yp = −fudm (II.36)

d

dt
(wdm) +

dm

ρ
∂zp = −gdm

Using a derivation similar to that in Section 1, these equations can be rewritten in

vector notation:

∂t(ρnu) +∇ · (ρnu⊗ nu) +∇p = f(ρnu× k̂)− gρk̂, (II.37)

where ⊗ denotes the tensor product. However, we can simplify the equations to

∂tu+ u∂xu+ v∂yu+ w∂zu+
1

ρ
∂xp = fv

∂tv + u∂xv + v∂yv + w∂zv +
1

ρ
∂yp = −fu (II.38)

∂tw + u∂xw + v∂yw + w∂zw +
1

ρ
∂zp = −g,

or, in vector notation,

∂nu

∂t
+ (nu ·∇)nu+ 1

ρ
∇p = f(nu× k̂)− gk̂ (II.39)
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3. Conservation of Energy

The intrinsic energy in each piece of mass dm consists of its kinetic energy. For

atmospheric modeling, there are also inhomogeneous components for thermal energy

and potential energy. These quantities are defined by

dHE = cvTdm

dKE =
,nu,2
2
dm (II.40)

dPE = gzdm

In these equations, cv is the specific heat at constant volume, and T is the temperature.

Hence the total energy in the body is8 X
cvT +

,nu,2
2

+ gz

~
dm

To change the amount of energy, apply force to the body over a distance or add/remove

heat. Adding/removing heat is a complicated process involving solar radiation, ther-

mal radiation from the Earth, heat dissipation into space, reflectivity of the Earth’s

surface, and other factors. Due to the complexity, factors which contribute to a change

in temperature will not be considered here. Rather, we will simply consider the time

derivative of our heat energy term on its own without determining the precise factors

which determine it. Later in this section, we will hide the temperature component

entirely, combining thermal and kinetic energy into a “total energy” term e.

For force application, the momentum equations assume a balance between

the external forces and the internal pressure. However, if the two quantities are not

matched, then the volume will expand/contract so that they are matched. If there

is an imbalance between the forces on opposing sides of the body (hence a pressure

difference), then the body will accelerate in the direction of the net force. (Imagine

pulling a spring across a table. The spring will stretch according to the pulling force,

and the stretched spring will move in the pulling direction.)

We can conceive of the total force as having these two components, compression

and acceleration. For compression at constant temperature, as the volume decreases,
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the internal pressure increases, and vice versa. Hence,

d

dt
(pdV ) = 0 (II.41)

However, if the temperature is not constant, then the pressure increases proportionally

to the thermal energy at the constant volume, adding the following component to our

equations:
d

dt
(cvTdm) =

dp

dt
dV (II.42)

The acceleration component is determined by Newton’s Second Law. The acceleration

occurs as a result of an imbalance between the force acting on one side of the body

and the force acting on the opposite side, which results in the pressure differences

defined in the conservation of momentum section. Using nF = mna and our definition

of dFpressure we have

na =
−(∇p)dV
dm

= −∇p
ρ

(II.43)

This force changes the kinetic energy of the body. The time derivative of kinetic

energy is
d

dt
(KE) = dm

X
nu · dnu
dt

~
= dm(nu · na) (II.44)

Using our formula for the acceleration, we have

d

dt
(KE) =

−dm
ρ
(nu ·∇p) = −(nu ·∇p)dV (II.45)

In the context of atmospheric modeling, this force also results in an increase in the

body’s potential energy as it changes position vertically, so that we have

d

dt
(KE) +

d

dt
(PE) = −(nu ·∇p)dV (II.46)

Therefore, changing the energy in the body results in increased kinetic energy, body

compression, and pressure increase due to temperature

d

dt

X8 X
cvT +

,nu,2
2

+ gz

~
dm

~
+
8 d

dt
(pdV ) = −

8
(nu ·∇p)dV +

8 dp
dt
dV (II.47)
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Combining the integrals and bringing the derivative inside gives

8 d

dt

XX
cvT +

,nu,2
2

+ gz

~
dm

~
+ (nu ·∇p)dV + p d

dt
(dV ) = 0, (II.48)

where we use the product rule to combine d
dt
(pdV )− dp

dt
dV into p d

dt
(dV ). Again, this

integral must be true for any body, so the integrand must be identically zero

d

dt

XX
cvT +

,nu,2
2

+ gz

~
dm

~
+ (nu ·∇p)dV + p d

dt
(dV ) = 0 (II.49)

Let e = cvT +
,nu,2
2
denote the total internal energy of the system (i.e., not including

potential energy). Then we have

d

dt
((e+ gz)ρdV ) + (u∂xp+ v∂yp+ w∂zp)dV + p

d

dt
(dV ) = 0 (II.50)

It is easy to show that this equation is equivalent to

∂t(ρe) + ∂x((ρe+ p)u) + ∂y((ρe+ p)v) + ∂z((ρe+ p)w) = −gρw, (II.51)

or, in vector notation,

∂t(ρe) +∇ · ((ρe+ p)nu) = −(gk̂) · (ρnu) (II.52)

This equation can be placed in a simpler form, if we assume our fluid is an ideal

gas. Using the ideal gas law p = ρRT [24, 58], where R = cp − cv, simple algebraic
manipulation using the previous equations can reduce this energy equation to

∂tp+ u∂xp+ v∂yp+ w∂zp+ γp (∂xu+ ∂yv + ∂zw) = 0 , (II.53)

where γ = cp
cv
. In vector notation, this equation can be written as

∂tp+ (nu ·∇)p+ γp(∇ · nu) = 0 (II.54)

While this equation is simple, it lacks an explicit energy term and thus fails to convey

the energy conservation principle from which it was derived.
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B. SUMMARY OF NON-LINEAR EULER EQUATIONS

Using only the physical conservation principles for mass, momentum, and en-

ergy, we can derive Euler’s equations for inviscid fluid motion. We have a system of

five equations for six variables:

∂tρ+ ∂x(ρu) + ∂y(ρv) + ∂z(ρw) = 0

∂t(ρu) + ∂x(ρu
2) + ∂y(ρuv) + ∂z(ρuw) + ∂xp = fρv

∂t(ρv) + ∂x(ρuv) + ∂y(ρv
2) + ∂z(ρvw) + ∂yp = −fρu (II.55)

∂t(ρw) + ∂x(ρuw) + ∂y(ρvw) + ∂z(ρw
2) + ∂zp = −gρ

∂t(ρe) + ∂x((ρe+ p)u) + ∂y((ρe+ p)v) + ∂z((ρe+ p)w) = −gρw

In vector notation, the equations can be written as

∂tρ+∇ · (ρnu) = 0

∂t(ρnu) +∇ · (ρnu⊗ nu) +∇p = f(ρnu× k̂)− gρk̂ (II.56)

∂t(ρe) +∇ · ((ρe+ p)nu) = −(gk̂) · (ρnu)

A state equation of some kind is required to close the system. For an ideal gas, we

can use p = ρRT to simplify the equations to

∂tρ+ ∂x(ρu) + ∂y(ρv) + ∂z(ρw) = 0

∂tu+ u∂xu+ v∂yu+ w∂zu+
1

ρ
∂xp = fv

∂tv + u∂xv + v∂yv + w∂zv +
1

ρ
∂yp = −fu (II.57)

∂tw + u∂xw + v∂yw + w∂zw +
1

ρ
∂zp = −g

∂tp+ u∂xp+ v∂yp+ w∂zp+ γp (∂xu+ ∂yv + ∂zw) = 0

(see Appendix A for details). For all three formulations, the terms on the right-hand-

side denote forces specific to atmospheric modeling.

In the next section, we will derive the linearized form of (II.57), which will

form the basis for developing the finite-difference implementation of the NRBCs in
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Chapters IV—VI. We will begin with a simplified prototype implementation of the

automated Higdon NRBCs with no advection or forcing terms, and we will build

the implementation to include Coriolis, gravity, and non-zero mean flow. We will

also develop auxiliary variable forms which eliminate the high-order derivative terms,

using both the Givoli-Neta and the Hagstrom-Warburton auxiliary variable NRBC

formulations.

C. LINEARIZED EULER EQUATIONS

Having derived the non-linear equations, we now seek to simplify them into a

linear form. We assume that each state variable consists of a time-independent mean

value and a small perturbation from that mean. Thus,

ϕ = ϕ̄+ ϕ∗, (II.58)

where the overbar denotes the reference value, and the asterisk denotes the O(δ)

perturbation variable. Before we can derive this linearized form, we must first define

our reference variables. We will perform the linearization on (II.57).

1. Defining the Reference Variables

The reference values are time-independent by definition, but they may not

necessarily be constant in space. It is reasonable to believe that the reference values

for the velocity variables u, v, and w will be constant; however, this may not be true

for the density ρ and pressure p. In the presence of gravity, a volume of compressible

fluid will be compressed by the weight of the fluid above it, increasing the density and

pressure. Therefore, it is reasonable to expect that our reference states for density

and pressure will vary with z.

Let us consider a constant domain governed by (II.57). With everything at

rest, we set all time derivative terms and all velocity terms to zero. This leaves us

with

∂xp̄ = 0

15



∂yp̄ = 0 (II.59)

∂zp̄ = −gρ̄

This confirms our expectation that our reference values for ρ and p are dependent

on z. So for our reference values, we let u0, v0, and w0 define our constant mean

velocities; ρ̄ denotes our z-dependent density reference state, with ρ0 the density at

z = 0; and p̄ denotes our z-dependent pressure reference state, with p0 the pressure

at z = 0.

2. Linearizing the Equations

Begin with the first equation of (II.57):

∂tρ+ ∂x(ρu) + ∂y(ρv) + ∂z(ρw) = 0. (II.60)

Expand the derivatives via the product rule, and substitute the reference/perturbation

variable expansion in (II.58) to get

∂t(ρ̄+ ρ∗) + (ρ̄+ ρ∗) ∂x(u0 + u∗) + (u0 + u∗) ∂x(ρ̄+ ρ∗)

+ (ρ̄+ ρ∗) ∂y(v0 + v∗) + (v0 + v∗) ∂y(ρ̄+ ρ∗)

+ (ρ̄+ ρ∗) ∂z(w0 + w∗) + (w0 + w∗) ∂z(ρ̄+ ρ∗)

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
= 0 . (II.61)

Recalling which reference variables are independent in space and time, and eliminating

all terms of O(δ2), we get

∂tρ
∗+ ρ̄ (∂xu∗ + ∂yv

∗ + ∂zw
∗)+u0∂xρ∗+ v0∂yρ∗+w0∂zρ∗ = −∂zρ̄ (w0 + w∗) . (II.62)

We leave the equation in this form, rather than reverting it to the whole state variable.

By considering only the perturbation variable, we eliminate the possibility of the

reference value overwhelming the perturbation, introducing unnecessary round-off

errors into the finite-precision calculations.

When we apply this same process to the velocity and pressure equations of

(II.57), using (II.59) to simplify the equation for w, we get

∂tnϕ+A∂xnϕ+B∂ynϕ+ C∂z nϕ = Dnϕ+ E, (II.63)
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where

nϕ =
w
ρ∗ u∗ v∗ w∗ p∗

WT

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

u0 ρ̄ 0 0 0

0 u0 0 0 1
ρ̄

0 0 u0 0 0

0 0 0 u0 0

0 γp̄ 0 0 u0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

B =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

v0 0 ρ̄ 0 0

0 v0 0 0 0

0 0 v0 0 1
ρ̄

0 0 0 v0 0

0 0 γp̄ 0 v0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

C =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

w0 0 0 ρ̄ 0

0 w0 0 0 0

0 0 w0 0 0

0 0 0 w0
1
ρ̄

0 0 0 γp̄ w0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

D =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 −∂zρ̄ 0

0 0 f 0 0

0 −f 0 0 0

−g 1
ρ̄

0 0 0 0

0 0 0 gρ̄ 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

E =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−∂zρ̄w0
fv0

−fu0
0

gρ̄w0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(II.64)
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For the 1
ρ
{∂xp, ∂yp, ∂zp} terms in the momentum equations, we use the following

linearization:

∂xp

ρ
=

∂x (p̄+ p
∗)

ρ̄+ ρ∗

=
∂xp

∗

ρ̄

⎛⎝ 1

1 + ρ∗
ρ̄

⎞⎠
≈ ∂xp

∗

ρ̄

⎛⎝1− ρ∗

ρ̄
+

X
ρ∗

ρ̄

~2
− . . .

⎞⎠
≈ ∂xp

∗

ρ̄
∂yp

ρ
≈ ∂yp

∗

ρ̄

∂zp

ρ
≈ ∂zp

∗ + ∂zp̄

ρ̄

⎛⎝1− ρ∗

ρ̄
+

X
ρ∗

ρ̄

~2
− . . .

⎞⎠
≈ ∂zp

∗

ρ̄
− gρ̄

ρ̄

X
1− ρ∗

ρ̄

~

≈ ∂zp
∗

ρ̄
− g
X
1− ρ∗

ρ̄

~
,

where we use (II.59) in the next to last line.

Note that the matrix A is singular if u0 = 0 or u20 = γp̄/ρ̄. Similarly, B is

singular if v0 = 0 or v
2
0 = γp̄/ρ̄, and C is singular if w0 = 0 or w

2
0 = γp̄/ρ̄.

So what have we lost by this linearization? The main difference between non-

linear flow and linear flow is the non-linear interaction between vortices [69]. For

example, Fig. 4 shows a rising thermal bubble using non-linear equations (left) and

their linearized form (right). The turbulence is clearly absent in the linearized case.

However, wave motion is not noticeably affected. Fig. 5 shows an acoustic wave using

the non-linear (left) and linearized equations (right). The differences are negligible.

(These figures were generated during some early work, applying a spectral element

implementation of the non-linear system (II.55) in the xz plane influenced by gravity,

and to the linearized form of the same system.) Since our non-reflecting boundary
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conditions are intended for wave propagation, we do not need to keep the non-linear

effects of vorticity.

Final potential temperature at time t=149.9946
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Figure 4. A Rising Thermal Bubble Using Non-linear (left) and Linear (right) Equa-
tions
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Figure 5. An Acoustic Wave Using Non-linear (left) and Linear (right) Equations

Before we begin developing NRBCs for this equation system, let us spend some

time discussing NRBCs in general, with particular emphasis on the scalar-equation

implementations of the NRBCs we are here adapting for a linear first-order system.

This discussion will be the subject of the next chapter, and then the new NRBC

implementations will be developed in Chapters IV—VI.
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III. NON-REFLECTING BOUNDARY

CONDITIONS

A. OVERVIEW AND HISTORY

We wish to solve fluid flow problems in only a portion of a large or infinite

domain. By restricting our area of interest, we effectively create a boundary B where
none exists physically, dividing our computational domain Ω from the rest of the

domain D. Implicit in our choice of B is the assumption that everything we wish to
model is contained inside Ω; nothing external impinges on our computational domain.

The challenge we must overcome, then, is defining B in such a way that it behaves
computationally as if there were no physical boundary. How, then, do we specify

what occurs at these boundaries? The usual answer is to claim that waves flow out

of the domain at the boundary, but they do not flow into the domain. If defined

correctly, this claim will result in waves which propagate out of the computational

domain without any reflection, so that the computational boundary is transparent

to these outgoing waves, mimicking the real-world behavior where no such physical

boundary exists.

In general, there are two ways to simulate an open boundary. One may either

surround the domain with an artificial absorbing medium, so that outgoing waves

are diffused to zero before they return to the computational domain, or one may use

a differential operator to prescribe the wave behavior at the boundary, so that only

outgoing waves are permitted.

Research into modeling open boundaries has been active since the late 1960s.

Zienkiewicz and Newton [121] first derived the Sommerfeld radiation condition for

outgoing wave propagation in 1969. In hindsight, this differential operator is surpris-

ingly obvious and easy to derive. Beginning with the known general solution to the

one-dimensional scalar wave equation

∂ttu = c
2∂xxu , (III.1)
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we have

u(x, t) = F (x− ct) +G(x+ ct) (III.2)

for some functions F and G [105]. If F denotes the outgoing waves, and G the

incoming, then we insist on G ≡ 0 on the boundary. Differentiating u with respect
to x and t, this gives us

∂tu = −cF I , ∂xu = F
I . (III.3)

From here we easily get the Sommerfeld boundary condition:

∂tu+ c∂xu = 0 . (III.4)

This boundary condition can be interpreted in two ways. The characteristic-based

interpretation uses this condition as prescribing the Riemann invariant of the solution

(see Ch. 8 of [24]). The wave-based interpretation describes it as requiring waves on

the boundary to satisfy the one-way advection equation. Several early NRBCs were

developed in the 1970s using these two interpretations. Wurtele et al. [119] used

the characteristic method, while Pearson [93] and Orlanski [92] took the wave-based

approach. Engquist and Majda [25, 26] extended the wave-based method, defining

a pseudo-differential operator solution to the 2-D wave equation and deriving Padé

approximations thereto in a sequence of ever-more-accurate boundary conditions.

Smith [101] took a simplistic, albeit computationally intensive, approach: Apply a

Dirichlet boundary condition to one solution, apply a Neumann boundary condition

to another, and then add the two solutions, cancelling the two reflections and leaving

only the non-reflecting solution within the accuracy of the Neumann operator. One

of the first absorbing layer methods was also published around this time by Davies

[17] for the linearized Euler equations in a nested environment, using a “relaxation”

function near the boundary to match the small-scale interior scheme with the large-

scale outer model. Later NRBCs built on these methods or developed new approaches.

In the 1980s, several new NRBC techniques appeared. Bayliss and Turkel

[9, 10] developed a sequence of increasing-order boundary conditions based on an-
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nihilating the first terms of the asymptotic expansion of the scalar wave equation.

Miller and Thorpe [87] proposed a modified Orlanski scheme based on alternative

time-stepping methods. Ferm and Gustafsson [27] used Fourier transformations to

devise a downstream boundary condition for the steady-state linearized Euler equa-

tions. Klemp and Durran [79] developed a “sponge layer” to absorb outgoing gravity

waves, applied to the linear Boussinesq equations, later applied to the non-linear Euler

equations by Giraldo and Restelli [32]. Davies [18] compared various techniques, in-

cluding “diffusion zones,” relaxation functions, and radiation boundary conditions.

Raymond and Kuo [95] modified the Sommerfeld condition to consider tangential as

well as normal derivatives in multi-dimensional flows. Ting and Miksis [110] pro-

posed using Kirchhoff’s formula to determine the boundary values of waves exterior

to a scatterer. Trefethen and Halpern [111] analyzed the Engquist-Majda method;

considering different approaches to approximating the pseudo-differential operator,

they demonstrated its well-posedness and proved Engquist’s and Majda’s proposition

concerning which classes of Padé approximations are well-posed. Higdon [62, 64] de-

veloped a sequence of increasing-order boundary conditions based on a product of

Sommerfeld conditions at various incidence angles. Keller and Givoli [78] developed

the “Dirichlet-to-Neumann” (DtN) mapping, an NRBC method which converts the

Dirichlet condition at infinity to a Neumann condition at the computational domain

boundary; they then used this DtN mapping in a finite element solution of Laplace’s

equation on an infinite domain [38]. See also Givoli’s 1991 paper [33] reviewing the

then-current state of the art.

The 1990s saw an explosion in NRBC development. Kröner [82] adapted the

Engquist-Majda scheme to the 2-D linearized Euler equations, using Fourier transfor-

mations rather than pseudo-differential operators to define the boundary condition;

Giles [30] performed a similar technique, also using Fourier transformations to de-

rive an NRBC for the 2-D linearized Euler equations. G. Kreiss [80] used a simple

Dirichlet condition at the downstream end for the pressure term of the linearized
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Euler equations, and he showed that the resulting error decreases exponentially up-

stream of the open boundary. Collino [15] extended the Engquist-Majda scheme to

open domains (requiring consideration of corner conditions) and to other wave-like

equations. Tam and Webb [106] used the asymptotic expansion to define radiation

boundary conditions compatible with their dispersion-relation-preserving finite dif-

ference scheme for the linearized Euler equations. Higdon continued his sequence

of NRBC papers [65, 66, 67, 68], culminating in a robust NRBC sequence for the

dispersive (Klein-Gordon) wave equation. Grote and Keller [47, 48, 49] extended the

DtN technique to spherical waves and the Helmholtz equation, in finite difference and

finite element methods; Thompson and Huan [109] later modified this formulation to

implement a finite element solution of the spherical wave equation. Ren [96] used a

2-D Sommerfeld-like boundary condition,

(∂t + c (αx∂x + αy∂y)) η = 0 (III.5)

α2x + α2y = 1 ,

to define an open boundary for the 2-D Boussinesq equations. Hagstrom and Hariha-

ran [54] presented an NRBC for the 2-D and 3-D wave equation in polar/spherical co-

ordinates, using auxiliary variables to remove the high-order normal derivative terms;

Huan and Thompson [75] later modified this scheme by using a spherical harmonic-

based formulation. Safjan [98] also took the auxiliary variable approach, applying

them to high-order Padé approximations to the pseudo-differential operator of the

scalar wave equation. Jensen [77] compared several techniques, including NRBCs

and sponge layers, for modeling open boundaries in a stratified ocean model.

The 1990s also saw the development of the Perfectly Matched Layer (PML),

first defined by Bérenger [11] for the 2-D Maxwell equations. This absorbing layer

method surrounds the computational domain with a dispersive medium, defined in

such a way that incoming waves at any incidence angle pass from the interior to

the dispersive layer without any (theoretical) reflection. A 2007 paper by Skelton et

al. [100] claimed to find over 1,000 references to Bérenger’s paper in the literature.
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This technique has been applied to the linearized Euler equations by Abarbanel et

al. [1], Goodrich and Hagstrom [45], Hu [71, 72, 73], and Nataf [88]; to the linearized

shallow-water equations by Navon et al. [89]; to Maxwell’s equations using a second-

order discretization scheme by Sjögreen and Petersson [99]; to the linearized and

non-linear wave equation by Appelö and G. Kreiss [7] (following Appelö et al.’s well-

posedness and stability theory in [6]); to elastic waveguides by Skelton et al. [100];

to the time-harmonic wave equation by Bermúdez et al. [12]; and to the non-linear

Euler and Navier-Stokes equations by Hu et al. [74].

NRBC development continued in this decade as well, with new techniques and

new applications of old techniques. Oliveira [91] combined a Sommerfeld condition

with an absorbing layer to develop an NRBC for the transient mild-slope equation:

∇ (CCg∇η) +
p
k2CCg − ω2

Q
η − ∂ttη = 0 (III.6)

(see Eqn. (9) of [91]). Grote and Keller [50] developed an exact NRBC for the 3-D

elastic wave equation with a spherical open boundary, based on annihilating the first

terms of the wave’s spherical harmonics. Alpert et al. [4, 5] developed two NRBCs

for the scalar wave equation, one using Hankel functions and Laplace transforms, and

one using Fourier-Laplace transformations. Lie [83] used Fourier-Laplace transfor-

mations to derive an NRBC for the shallow-water equations. Colonius and Ran [16]

developed an absorbing buffer technique for conservation law-based systems by using

Fourier transformations to filter the outgoing flow disturbances. McDonald [85, 86]

derived a characteristic-based NRBC for the shallow-water equations and compared

the performance of NRBCs and “relaxation zone” boundaries in nested-model envi-

ronments. Hagstrom and Nordström [56] analyzed the use of extrapolation boundary

values in solving the steady-state linearized Euler equations, showing the relation-

ship between the position of the artificial far-field boundary and the error norm of

the discrete solution. Blayo and Debreu [13] considered a characteristic variable ap-

proach to NRBCs in first-order systems for ocean and atmospheric models. Chang

et al. [14] used a Space-Time Conservation Element and Solution Element (CE/SE)
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method to solve the 1-D Euler equations, which effectively handled shockwaves inside

the domain (although the results were good within the domain, the numerical results

published showed poorer performance closer to the boundary). Guddati and Lim [51]

used continued fractions (rather than the Engquist-Majda Padé approximations) to

approximate the pseudo-differential operator, and they devised a formulation that

could be applied to any convex polygon boundary (rather than the usual straight-line

boundaries). Zahid and Guddati [120] incorporated PML-like “padding elements”

into a continued fraction NRBC for dispersive waves. Atassi and Galán [8] used

Fourier-Bessel modes to derive an NRBC for the non-linear Euler equations in an

annular duct. Song and Bazyar [102] derived an NRBC for finite element frequency-

domain wave analysis based on Padé approximations.

The 2000s also saw a revived interest in the Higdon NRBC sequence. Givoli

and Neta created an algorithm to compute high-order finite difference derivatives

automatically, removing the algebraic complexity which limited the original Higdon

sequence to third-order. This automation, along with an auxiliary variable method

which removed the high-order normal derivatives, was applied to the Klein-Gordon

equation and the shallow-water equations in a sequence of papers by them and their

students and colleagues [39, 40, 41, 42, 43, 90, 113, 114, 115, 116]. Givoli again

published a review of current NRBC techniques in [35]. In addition, Hagstrom and

Warburton [57] developed a modified form of the Givoli-Neta auxiliary variable NRBC

for the scalar wave equation. This new method was expanded and analyzed in [37,

53, 55, 84].

In this dissertation, we use the Givoli-Neta automation to apply the Hig-

don NRBCs to the linearized Euler equations; we also extend the Givoli-Neta and

Hagstrom-Warburton auxiliary variable NRBCs thereto. Some of the results pre-

sented in the following chapters have been published or submitted for publication

[19, 20, 21, 22]. The remainder of this chapter is devoted to the scalar form of the

Higdon, Givoli-Neta, and Hagstrom-Warburton NRBC sequences, laying the ground-
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work for their application to the linearized Euler equations.

B. NRBCS FOR SCALAR EQUATIONS
1. Higdon

One of the simplest non-reflecting boundary conditions (NRBCs) is the Som-

merfeld radiation condition:

(∂t + c0∂x)u = 0, (III.7)

where u is the unknown solution to our problem, and c0 is the wave propagation speed

in the positive x direction (for a right-side boundary; on other sides, replace ∂x with

the appropriate normal derivative). In essence, this boundary condition says that the

outgoing wave at the boundary satisfies the one-dimensional advection equation with

advection speed c0. This boundary condition is most easily applied to the standard

wave equation,

∂ttu = c
2
0∇2u (III.8)

It can also apply to the linearized shallow water equations (see [41]),

∂tu− fv = −g∂xη
∂tv + fu = −g∂yη

∂tη + h0 (∂xu+ ∂yv) = 0

(III.9)

whose surface height component η can be converted (see [113]) to the dispersive

(Klein-Gordon) wave equation,

∂ttη = c
2
0∇2η − f 2η , c0 =

�
gh0 (III.10)

The difficulty in (III.9) and (III.10) is that there is more than one wave speed. The

same problem afflicts the standard wave equation in more than one dimension, as

waves travelling in directions other than normal to the boundary have wave speeds

whose normal components are not equal to c0. Higdon proposed [68] defining a

boundary condition as a product of J Sommerfeld-like terms:

J�
j=1

(∂t + cj∂x)u = 0 (III.11)
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Just as “xy = 0” is a consolidation of “x = 0 or y = 0”, this product consolidates, into

a single equation, numerous Sommerfeld conditions with different advection speeds.

Since the differential operator is linear, it is easy to show that if any one of the

individual Sommerfeld conditions is satisfied, then the consolidated Higdon condition

is also satisfied.

a. Reflection Coefficient

Let us analyze the claim that this boundary condition is non-reflecting.

Consider a wave-like equation with a solution of the form

u(x, t) = ei(x−cxt) (III.12)

This solution defines a wave with speed cx. Applying the Higdon boundary condition

to this equation, we claim that

J�
j=1

(∂t + cj∂x) e
i(x−cxt) = 0 (III.13)

If cx does not exactly equal one of the cj, this statement may not be true. To make

it true, we must add a reflected wave, thus:

J�
j=1

(∂t + cj∂x)
p
ei(x−cxt) +RJei(x+cxt)

Q
= 0 (III.14)

The magnitude of RJ is the reflection coefficient associated with the boundary con-

dition. (If (III.13) is true, then RJ = 0.) Higdon [68] claims that this reflection

coefficient is always less than one, and that it decreases as J increases. We present

the proof here in more detail.

Lemma III.1 The magnitude of the reflection coefficient RJ of the Higdon NRBC
defined in (III.11), applied to a wave with speed cx, is

|RJ | =
J�
j=1

eeeeecx − cjcx + cj

eeeee (III.15)

Proof. We prove by induction. For the J = 1 case, we have

(∂t + c1∂x)
�
ei(x−cxt) +R1ei(x+cxt)

=
= 0 , (III.16)
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and it is easy to show that

|R1| =
eeeecx − c1cx + c1

eeee . (III.17)

Having proven there exists a J such that this lemma is true, we consider the J + 1

case:
J+1�
j=1

(∂t + cj∂x)
p
ei(x−cxt) +RJ+1ei(x+cxt)

Q
= 0 (III.18)

Since the differential operators are linear, we can write

J�
j=1

(∂t + cj∂x)
�
(∂t + cJ+1∂x)

p
ei(x−cxt) +RJ+1ei(x+cxt)

Q=
= 0 . (III.19)

Expanding the derivatives inside the brackets and combining terms, we get

J�
j=1

(∂t + cj∂x)

X
ei(x−cxt) +

X
cJ+1 + cx
cJ+1 − cx

~
RJ+1e

i(x+cxt)

~
= 0 . (III.20)

Comparing this equation with (III.14), we see that

|RJ | =
eeeee
X
cJ+1 + cx
cJ+1 − cx

~
RJ+1

eeeee . (III.21)

Thus,

|RJ+1| =
eeeeecJ+1 − cxcJ+1 + cx

eeeee |RJ |
=

eeeeecJ+1 − cxcJ+1 + cx

eeeee
J�
j=1

eeeeecx − cjcx + cj

eeeee
=

J+1�
j=1

eeeeecx − cjcx + cj

eeeee 2 (III.22)

Since these cj and cx are positive, each term in the product is less than one. Thus, as J

increases, the reflection coefficient gets smaller. Of course, well-chosen cj’s will reduce

the reflection coefficient more rapidly, but even poor choices (for example, failing to

consider possible incidence angles or phase speeds) will still bring improvements.

Hence, we can get good absorption either with a high J or with well-chosen cj’s.
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b. A Simplifying Assumption

The difficulty in using (III.11) comes from the rapidly increasing alge-

braic complexity for large J . At J = 2, we haveX
∂2

∂t2
+ c1

∂2

∂t∂x
+ c2

∂2

∂t∂x
+ c1c2

∂2

∂x2

~
u = 0 (III.23)

At J = 3, it becomes p
∂3

∂t3
+ c1

∂3

∂t2∂x
+ c2

∂3

∂t2∂x
+ c3

∂3

∂t2∂x

+c1c2
∂3

∂t∂x2
+ c1c3

∂3

∂t∂x2
+ c2c3

∂3

∂t∂x2
+ c1c2c3

∂3

∂x3

Q
u

⎫⎪⎬⎪⎭ = 0 , (III.24)

and so forth. The Givoli-Neta algorithm automates the finite difference computation

of these high-order derivatives, but at a cost of O(3J) operations per time step.

However, if we simply make all cj equal to a single wave speed c, then (III.11) can be

written as

(∂t + c∂x)
J u = 0 (III.25)

(see [90]), or, expanding the polynomial,⎛⎝ J3
j=0

J !

j!(J − j)!c
j ∂J

∂t(J−j)∂xj

⎞⎠u = 0 (III.26)

We will show in the next section that this simplification, when applied to a finite

difference formulation, requires only O(J2) operations per time step.

c. Discretization of Higdon NRBCs

For our finite difference implementation of the NRBCs, we use first-

order differences for each derivative, with the difference pointing into the domain and

backward in time. Higdon [68] demonstrated that this discretization scheme is stable

when used in conjunction with the Klein-Gordon equation. For an open boundary on

a rectangular domain, we have

Top:

X
I − S−t
δt

+ c0

X
I − S−y
δy

~~J
σni,N = 0

Left:

X
I − S−t
δt

− c0
X
S+x − I
δx

~~J
σnW,j = 0
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Right:

X
I − S−t
δt

+ c0

X
I − S−x
δx

~~J
σnE,j = 0 (III.27)

Bottom:

X
I − S−t
δt

− c0
X
S+y − I
δy

~~J
σni,S = 0,

where I denotes the identity operator; S− and S+ backward and forward shifts in the

subscript variable, e.g.,

S+x σ
n
i,j = σni+1,j , S−t σ

n
i,j = σn−1i,j ;

δt our grid spacing in time; δx and δy our grid spacing in x and y, respectively; σni,j

the value of a generic state variable σ at grid point (i, j) at time step n; and subscripts

N,W,E, S denoting the north, west, east, or south boundaries, respectively. If we

multiply each term by δt, clearing it out of the denominator, and then group terms

by shift operator, we get

Top:
p
ayI + bS

−
t + cyS

−
y

QJ
σni,N = 0

Left:
p
axI + bS

−
t + cxS

+
x

QJ
σnW,j = 0

Right:
p
axI + bS

−
t + cxS

−
x

QJ
σnE,j = 0 (III.28)

Bottom:
p
ayI + bS

−
t + cyS

+
y

QJ
σni,S = 0,

where

ax = 1− cx
ay = 1− cy
b = −1
cx = −c0 δt

δx

cy = −c0 δt
δy

Expanding these operators as polynomials, we have

Top:

⎛⎝ J3
β=0

J−β3
γ=0

J !

α!β!γ!
aαy b

βcγyS
−
t
β
S−y

γ

⎞⎠σni,N = 0
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Left:

⎛⎝ J3
β=0

J−β3
γ=0

J !

α!β!γ!
aαxb

βcγxS
−
t
β
S+x

γ

⎞⎠σnW,j = 0

Right:

⎛⎝ J3
β=0

J−β3
γ=0

J !

α!β!γ!
aαxb

βcγxS
−
t
β
S−x

γ

⎞⎠σnE,j = 0 (III.29)

Bottom:

⎛⎝ J3
β=0

J−β3
γ=0

J !

α!β!γ!
aαy b

βcγyS
−
t
β
S+y

γ

⎞⎠σni,S = 0

where α = J − β − γ.

Note. From this point forward in the dissertation, we will only show

the NRBC formula for one side rather than all four. On the other three sides, the

appropriate changes should be made for the correct normal derivative.

2. Givoli-Neta

The greatest problem afflicting these high-order NRBCs is the presence of

high-order spatial and temporal derivatives. With the spatial derivatives, the NRBC

algorithm must look deep into the domain, and an incoming wave can begin to affect

the boundary long before it actually reaches the boundary. High temporal derivatives

require a long “history” of past values, increasing memory requirements. In both

cases, and with the high-order mixed derivatives, increasing the number of terms in

the NRBC calculation increases the danger of round-off errors corrupting the solution

and destabilizing the system.

In addition, the NRBC order is inherently limited by the size of the domain.

This is true in a finite difference setting, but it is even more restrictive in dealing with

finite elements. In a finite element scheme, the spatial derivatives generally limit the

NRBC order to that of the element polynomials, unless one is willing to use derivative

approximations which are not local to a single element.

The way out of this dilemma is to introduce auxiliary variables [34] which

require only low-order derivative calculations. In this section and the one following,

we consider two methods for implementing these auxiliary variable techniques.

The Givoli-Neta NRBC was first proposed in [39, 42, 43] for the Klein-Gordon
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equation in finite difference and finite element schemes. (In this dissertation, the

term “Givoli-Neta NRBC” refers to the auxiliary variable implementation, not their

automated high-order Higdon NRBC.) This NRBC follows directly from the Higdon

NRBC. Where the Higdon NRBC uses one high-order equation on the boundary, the

Givoli-Neta NRBC of order J uses a system of J low-order equations, defined thus:

ϕj+1 =

X
∂x +

1

cj+1
∂t

~
ϕj (III.30)

ϕ0 ≡ u

ϕJ ≡ 0 .

Direct substitution shows that (III.30) is equivalent to (III.11). The above definition

applies to an NRBC on the right side of the domain; on other sides, replace ∂x with

the appropriate normal derivative.

To illustrate the utility of this formulation, let us apply the NRBC to the

Klein-Gordon equation (III.10). As this work has already been done by Givoli and

Neta [39, 42, 43], we will not repeat the derivations here.

It is easy to show that the auxiliary variables also satisfy the Klein-Gordon

equation, that is,

∂ttϕj = c
2
0∇2ϕj − f 2ϕj , (III.31)

for all j ∈ 1 . . . J−1. Armed with that fact, we can then combine (III.30) and (III.10)
to remove the normal derivative terms from our NRBC. When we do so, our resulting

NRBC isX
1

c20
− 1

c2j

~
∂ttϕj−1 +

X
1

cj
+

1

cj+1

~
∂tϕj − ϕj+1 = ∂yyϕj−1 − f

2

c20
ϕj−1 . (III.32)

This equation gives us a tri-diagonal system of equations to solve for our

auxiliary variables. With an efficient matrix solver, the effort required is O(J), rather

than the O(J2) required for the original formulation, and it is O(J) even without

setting the cj values to c0. Furthermore, since the auxiliary variables are defined solely

using temporal and tangential derivatives, we can restrict them to the boundary,
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reducing the amount of memory needed to store their values. Finally, since the

NRBC uses no derivatives beyond second order, they can be easily applied to a finite

element system to any order. There are three downsides, however. NRBCs on two

adjacent sides require consideration of corner compatibility conditions (due to the

presence of tangential derivatives), their numeric stability is less robust over long time-

integrations [37], and the conversion to remove the normal derivatives introduces an

additional source of discretization error which produces an “error floor” that cannot

be overcome by simply increasing J [36].

3. Hagstrom-Warburton

The Hagstrom-Warburton NRBCs were first presented in [57] for the scalar

wave equation, with subsequent extensions and analysis in [37, 53, 55]. This NRBC

scheme also uses a system of low-order auxiliary variable equations instead of a single

high-order boundary equation. The Hagstrom-Warburton NRBC of order J is given

by

∂tϕ1 = a0∂tu+ c0∂xu

aj∂tϕj+1 − c0∂xϕj+1 = aj∂tϕj + c0∂xϕj (III.33)

ϕJ+1 ≡ 0 ,

where the parameters aj ∈ (0, 1] are chosen by the user. Hagstrom and Warburton

show that this definition, applied to a plane wave traveling at speed c0 and incidence

angle θ, results in a reflection coefficient of

R = −a0 − cos θ
a0 + cos θ

J�
j=1

X
aj − cos θ
aj + cos θ

~2
, (III.34)

which, like the Higdon scheme’s reflection coefficient, is a product of J terms, each

of which is less than unity. Hence, as J increases, the reflection coefficient decreases.

However, with the squaring of each term in the product, the reflection coefficient

for the Hagstrom-Warburton scheme decreases significantly more rapidly than the

Higdon reflection coefficient.
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No physical interpretation of the NRBC formulation is given. One way to

interpret (III.33b) is that the outgoing characteristic of ϕj is matched by the incoming

characteristic of ϕj+1. However, that does not explain the form of (III.33a). It could

be that the authors wanted an NRBC scheme with a quadratically-decaying reflection

coefficient, and they reverse-engineered this NRBC formulation to get one that works.

As with the Givoli-Neta NRBCs, the auxiliary variables presented here also

satisfy the Klein-Gordon equation (III.31) for all j ∈ 1 . . . J . We can use that fact to
remove the normal derivative term from (III.33b), replacing that equation with

aj
p
a2j−1 − 1

Q
∂ttϕj−1 + aj−1

p
a2j − 1

Q
∂ttϕj+1

− (aj−1 + aj) (aj−1aj + 1) ∂ttϕj

⎫⎪⎬⎪⎭ =
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
aj (f

2ϕj−1 − c20∂yyϕj−1)
+ (aj−1 + aj) (f 2ϕj − c20∂yyϕj)
+aj−1 (f 2ϕj+1 − c20∂yyϕj+1)

.

(III.35)

(again, see [55] for details). Once again, we have a system of auxiliary variables

defined solely on the boundary, and a boundary condition consisting entirely of low-

order derivatives. As with the Givoli-Neta system, this system also requires O(J)

operations to solve.

C. NRBCS FOR FIRST-ORDER SYSTEMS

In general, the three NRBC techniques discussed in the previous section have

only been implemented for scalar wave-like equations, not for first-order systems.

The exception is the Hagstrom-Warburton NRBC, where one section of [57] briefly

discusses the characteristic-based implementation for a symmetric first-order system

of the form

∂tnϕ+A∂xnϕ+B∂ynϕ = 0 . (III.36)

However, that discussion does not consider corner conditions or the presence of un-

differentiated terms on the right-hand side. In Chapter VI we develop these NRBCs

in more depth.
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While the Higdon and Givoli-Neta NRBC methods have been developed for

the shallow-water equations (e.g., [113]), those implementations involve converting

the system to a scalar Klein-Gordon equation for the surface height state variable;

hence, they are not truly implemented for the first-order system. In the next two

chapters, we will develop these NRBC methods for a true first-order system. While

the Higdon implementation is specific to the linearized Euler equations, the Givoli-

Neta implementation (not including gravitational effects (Sec. V.C)) can be extended

easily to any first-order system.

36



IV. HIGDON NRBCS FOR THE

LINEARIZED EULER EQUATIONS

A. OVERVIEW

This chapter develops the finite difference implementation of the high-order

NRBCs for the linearized Euler equations in two dimensions. We begin with the

simplest possible equation set, with no advection or forcing terms. After demon-

strating the validity of this prototypical implementation in Section B, we proceed to

incorporate the effects of Coriolis (Sec. C), gravity (Sec. D), and advection (Sec. E).

B. AN INITIAL PROTOTYPE

We begin with the simplest possible implementation of the linearized 2-D Euler

equations: zero advection, no Coriolis or gravitational forces.

∂tρ+ ρ0 (∂xu+ ∂yv) = 0

∂tu+
1

ρ0
∂xp = 0

∂tv +
1

ρ0
∂yp = 0 (IV.1)

∂tp+ γp0 (∂xu+ ∂yv) = 0

The variables here are the perturbation variables from the linearization in Sec. II.C.2;

we remove the asterisks here and in all subsequent equations for textual clarity. In

addition, we use ρ0 and p0 instead of ρ̄ and p̄ because we have no z-dependency in these

equations. This set is mostly useless for real-world modeling, especially considering

the fact that ρ has no impact on any of the other state variables. However, it will

serve as an initial prototype for developing this implementation (see also [19]).

1. Equivalence of (IV.1) and the ScalarWave Equation–
Continuous Case

In [68], Higdon proved that the J-order NRBC is compatible and stable when

applied to the dispersive wave equation (and thus the standard wave equation by
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setting f = 0), based on stability criteria developed by H.-O. Kreiss [81] (with a

geometric characteristic-based interpretation provided by Higdon [63]). Therefore, if

we can convert these simplified Euler equations to the standard wave equation, we

will know that they too will be stable with this NRBC formulation.

Differentiate (IV.1b,c,d) with respect to x, y, and t, respectively, and get

(ignoring the equation for ρ)

∂xtu = − 1
ρ0
∂xxp

∂ytv = − 1
ρ0
∂yyp (IV.2)

∂ttp = −γp0 (∂xtu+ ∂ytv)

Substituting the first and second of these new equations into the third gives

∂ttp =
γp0
ρ0
(∂xxp+ ∂yyp) , (IV.3)

which is the standard wave equation for p, with the wave speed given by

c0 =

�
γp0
ρ0
, (IV.4)

reflecting the value given in the literature [24, 76, 107, 108]. Therefore, this system of

equations, combined with the Higdon-like NRBCs, will be stable. It may seem a bit

shaky to make this claim, since we have only proven that the system can be converted

to the wave equation for p, not for the other variables. Might they still be unstable

in u and v? The answer is no. Since p depends on u and v, if they are unstable,

then they will destabilize p. Since p is stable, it follows that u and v must also be

stable. (The stability of ρ is somewhat irrelevant, as it has no impact on the other

state variables.)

In Sec. VI.1, we will show that all four state variables satisfy the scalar wave

equation, and we will derive its exact form. For now, it is sufficient to note that we

can convert this equation set to the scalar wave equation in p.
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2. Equivalence of (IV.1) and the ScalarWave Equation–
Discrete Case

Using stability criteria developed by Gustafsson et.al. [52], Higdon showed

[68] that the discretization scheme in Sec. III.B.1.c is compatible with the standard

second-order discretization scheme for the standard wave equation (solving for un+1i,j ):

un+1i,j − 2uni,j + un−1i,j

(δt)2
= c20

X
uni+1,j − 2uni,j + uni−1,j

(δx)2
+
uni,j+1 − 2uni,j + uni,j−1

(δy)2

~
(IV.5)

However, this scheme is for solving a single second-order PDE, not a system of first-

order PDEs, as we have. Even though we have shown that this system is equivalent,

in one of the state variables, to the standard wave equation, creating a discretization

scheme which is also consistent and stable is a matter of some delicacy.

Givoli and Neta described a similar difficulty they encountered in developing

a stable discretization scheme for the shallow water equations [39]. After numerous

failed efforts, whose results were unstable for any J ≥ 2, they defined a scheme which
was equivalent to the dispersive wave equation discretization scheme proved stable

by Higdon in [68]. We use a similar approach here. Let ∆t denote a second-order

centered difference in time, with similar notation for difference approximations in x

and y; thus,

∆a =
S+a − S−a
2δa

(IV.6)

a ∈ {x, y, t} ,

where δa is the step size in a. Use the following discretization for (IV.1):

∆tρ = −ρ0 (∆xu+∆yv)

∆tu =
∆xp

ρ0

∆tv =
∆yp

ρ0
∆tp = −γp0 (∆xu+∆yv) (IV.7)
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As with converting (IV.1) to (III.8), apply∆x to (IV.7b), ∆y to (IV.7c), ∆t to (IV.7d),

and then make the appropriate substitution. This gives us

∆t∆tp =
γp0
ρ0
(∆x∆xp+∆y∆yp) . (IV.8)

If we expand these differences, we get

pn+2i,j − 2pni,j + pn−2i,j

(2δt)2
=
γp0
ρ0

X
pni+2,j − 2pni,j + pni−2,j

(2δx)2
+
pni,j+2 − 2pni,j + pni,j−2

(2δy)2

~
, (IV.9)

which is the scalar wave equation on a double-sized grid. Hence, to make our dis-

cretization scheme fully compatible, we use the following discretization for the NRBC

on each side of the domain:X
I − S−2t
2δt

+ c0
I − S−2x
2δx

~J
σni,j = 0 (IV.10)

where σ denotes any one of our state variables ρ, u, v, p.

A reviewer for [21] noted that this NRBC cannot resolve the shortest wave-

lengths resolvable by the interior scheme. Subsequent experiments showed no new

instabilities generated by these short wavelengths.

In [19], the authors showed that a certain choice of one-sided differencing can

also yield a compatible scheme, one which is compatible with the scalar wave equa-

tion on the same size grid. However, subsequent experimentation revealed deeper

flaws in that approach. First, it could not be extended to match the Klein-Gordon

equation when Coriolis forces are included. Second, its semi-implicit nature became

fully implicit under advection. (An attempt to avoid an implicit scheme, based on

a quadrant-based interior discretization method, proved to be unstable under ad-

vection.) The scheme devised here avoids these flaws, as subsequent sections will

show.

3. Numerical Example–Semi-Infinite Channel

Consider a simple numerical example. Define a square domain 10 km on each

side, with walls on three sides and open on the top (see Fig. 6). We truncate the
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domain Ω with an artificial north boundary Γ and impose the non-reflecting boundary

condition on the state variables. We define the hard wall as

∂nnρ = 0

nu · nn = 0 (IV.11)

∂nnp = 0

The open boundary is defined by a Higdon-type NRBC of order J . Using a sea-level

Γ
T

Ω

x

y

Figure 6. A semi-infinite channel domain Ω truncated by an artifical boundary ΓT
[After [40], Fig. 1b, p. 259]

atmospheric density ρ0 = 1.2 kgm3 and pressure p0 = 1.01 × 105 Nm2 [58], our initial

condition is a pressure bubble in the center of the domain:

p0x,z =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
p0

w
1 +

cos(π2
d
r )

100

W
: d ≤ r

p0 : otherwise

(IV.12)

ρ0x,z =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
ρ0

w
p0x,y
p̄z

W cv
cp

: d ≤ r

ρ0 : otherwise,

41



where

cv = 717.5
J

kg ·K
cp = 1004.67

J

kg ·K
d =

�
(x− xc)2 + (y − yc)2 m

r = 1 km ,

and (xc, yc) denotes the center of the domain. The initial perturbation of ρ is defined

to maintain a constant potential temperature in the pressure perturbation bubble

[24]. We divide the domain into a 100× 100 grid and run the simulation up to t = 24
s, which is sufficient time for the wave trough to reach the corners. We also run

a reference solution on a 10 × 20 km domain consisting of 100 × 200 grid points;
this reference solution has hard walls on all four sides, and the simulation duration

is short enough that reflections from the top boundary will not re-enter the original

domain. By using a computed reference solution rather than an analytic solution, we

can attribute all differences to the NRBC error rather than the discretization scheme’s

truncation error. Our time step is chosen as 90% of the CFL limit [64],X
c0
δt

δx

~2
+

X
c0
δt

δy

~2
≤ 1 , (IV.13)

where c0 is the wave speed
�
γp0/ρ0. (We have observed experimentally [21] that

setting δt to the maximum allowed by the CFL limit results in reduced effectiveness

for the higher J NRBCs.) We use this same c0 for the NRBC wave speed. Define the

error norm, for each state variable ϕ, to be

Eϕ =

��Nx
i=1

�Ny
j=1 (ϕJ(i, j)− ϕ0(i, j))

2��Nx
i=1

�Ny
j=1 ϕ0(i, j)

2
, (IV.14)

where ϕJ is the state variable computed using the order J NRBC; ϕ0 is the reference

solution state variable; Nx and Ny are the number of points in the x and y directions,

respectively; and we normalize the error norm by the norm of the reference state

42



variable (so that all four state variables’ error norms are approximately the same

order of magnitude). Using the perturbation variables defined in (IV.1), the interior

discretization scheme (IV.7), and the Higdon NRBC discretization (IV.10a), we run

the simulation using different values of J for the NRBC order. Figs. 7—10 show

the perturbation variables ρ, u, v, and p, respectively, for the J = 10 case. Fig. 11

contrasts the computed solutions and error deltas for v between the J = 1 and J = 10

cases. Table I shows the error norms for each state variable for J ∈ 1 . . . 10.

Figure 7. Plot of ρ in basic system (IV.1) with J = 10 in a semi-infinite channel.
(TL) Computed solution. (Center) Reference solution; the area corresponding to the
computed solution is contained below the horizontal line. (BL) Reference solution
truncated to computed solution domain. (BR) Delta between reference solution and
computed solution, with error norm computed by (IV.14).
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Figure 8. Plot of u in basic system (IV.1) with J = 10 in a semi-infinite channel.
(TL) Computed solution. (Center) Reference solution; the area corresponding to the
computed solution is contained below the horizontal line. (BL) Reference solution
truncated to computed solution domain. (BR) Delta between reference solution and
computed solution, with error norm computed by (IV.14).

J Eρ Eu Ev Ep
1 0.12361 0.077449 0.1674 0.12361
2 0.039728 0.020397 0.047278 0.039727
3 0.026079 0.010879 0.022051 0.026078
4 0.022763 0.0077222 0.014192 0.022763
5 0.021505 0.0060029 0.010178 0.021505
6 0.020889 0.0049066 0.0078822 0.020889
7 0.020551 0.0041032 0.0063328 0.020551
8 0.020362 0.0035019 0.0052668 0.020361
9 0.020249 0.0030695 0.0044665 0.020249
10 0.020176 0.0027737 0.0038836 0.020176

Table I. Error norms for basic system (IV.1) with J ∈ 1 . . . 10 in a semi-infinite
channel
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Figure 9. Plot of v in basic system (IV.1) with J = 10 in a semi-infinite channel.
(TL) Computed solution. (Center) Reference solution; the area corresponding to the
computed solution is contained below the horizontal line. (BL) Reference solution
truncated to computed solution domain. (BR) Delta between reference solution and
computed solution, with error norm computed by (IV.14).
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Figure 10. Plot of p in basic system (IV.1) with J = 10 in a semi-infinite channel.
(TL) Computed solution. (Center) Reference solution; the area corresponding to the
computed solution is contained below the horizontal line. (BL) Reference solution
truncated to computed solution domain. (BR) Delta between reference solution and
computed solution, with error norm computed by (IV.14).

Figure 11. Comparison of v in basic system (IV.1) computed with J = 1 and J = 10
in a semi-infinite channel, with error norms computed by (IV.14). (TL) Computed
solution for J = 1. (TR) Computed solution for J = 10. (BL) Delta between reference
solution and J = 1 computed solution. (BR) Delta between reference solution and
J = 10 computed solution.
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4. Numerical Example–Open Domain

We now perform the same simulation in an open domain (see Fig. 12), using

NRBCs on all four sides for the state variables. Before proceeding, we note that we

Γ
T

Ω
Γ

R
Γ

L

Γ
B

x

z

Figure 12. An open domain Ω truncated by artificial boundaries ΓL, ΓT , ΓR and ΓB
[After [19], Fig. 1, p. 1]

now have points which are on the corners of two open boundaries, and we pause to

address this potential complication. Looking at (IV.10), we see that for each point

on an open boundary, that point only depends on itself at previous times and on

the adjacent interior points. The boundary points are independent of each other.

Furthermore, due to the discretization (IV.7) of the interior scheme, there are no

interior points which depend on the corner points. Fig. 13 illustrates this dependency

for the top-right corner of an open domain. Notice that no other point depends on

the corner. Hence, our boundary condition at the corner is, by and large, irrelevant.

For our implementation here, we decree that the corners are considered part of the

top/bottom boundaries. Our reference solution is a 30 × 30 km domain with 300×300
grid points, situated so that the center of the reference domain corresponds to the

computational domain. When we run this simulation, we get results such as those in

Figs. 14, 15, and Table II. (From here on, we will only plot the results for one state
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Figure 13. Interior and boundary discretization dependencies for points near the
top-right corner of an open domain. The black arrows show the interior dependecies
based on the discretization scheme (IV.7). Blue arrows show the dependencies of the
boundary points except for the corner. Green arrows show the dependency if the
corner is considered part of the top; red arrows show the dependency if the corner is
considered part of the right.

variable, rather than all four.) Not surprisingly, given the symmetry of the domain

and the discretization scheme, the errors for u and v are the same.

J Eρ Eu Ev Ep
1 1.5544 2.0918 2.0918 1.5558
2 0.4589 0.61777 0.61777 0.45933
3 0.22861 0.30055 0.30055 0.22882
4 0.15198 0.19766 0.19766 0.15212
5 0.11326 0.14588 0.14588 0.11336
6 0.089796 0.11564 0.11564 0.08988
7 0.074067 0.095798 0.095798 0.074136
8 0.06246 0.082285 0.082285 0.062519
9 0.053427 0.071617 0.071617 0.053476
10 0.046644 0.062478 0.062476 0.046687

Table II. Error norms for basic system (IV.1) with J ∈ 1 . . . 10 in an open domain
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Figure 14. Plot of u in basic system (IV.1) with J = 10 in an open domain. (TL)
Computed solution. (Right) Reference solution; the area corresponding to the com-
puted solution is contained within the center box. (CL) Reference solution truncated
to computed solution domain. (BL) Delta between reference solution and computed
solution, with error norm computed by (IV.14).

Figure 15. Comparison of p in basic system (IV.1) computed with J = 1 and J = 10
in an open domain, with error norms computed by (IV.14). (TL) Computed solution
for J = 1. (TR) Computed solution for J = 10. (BL) Delta between reference
solution and J = 1 computed solution. (BR) Delta between reference solution and
J = 10 computed solution.
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C. CORIOLIS FORCES IN THE XY PLANE

Let us now add Coriolis forces to our equation set [21]. Leaving the advection

terms zero, our equation set is

∂tρ+ ρ0 (∂xu+ ∂yv) = 0

∂tu+
1

ρ0
∂xp = fv

∂tv +
1

ρ0
∂yp = −fu

∂tp+ γp0 (∂xu+ ∂yv) = 0 (IV.15)

This set is somewhat more useful for atmospheric modeling, although we still have ρ

decoupled from the rest of the system. As with the preceding section, we now wish

to show that (IV.15) is equivalent to the Klein-Gordon equation ∂ttp = c
2
0∇2p− f2p,

which, as noted previously, Higdon proved is stable with this NRBC formulation [68].

1. Equivalence of (IV.15) and the Klein-Gordon Equation–
Continuous Case

This conversion begins the same as in the previous section. Differentiate

(IV.15d) with respect to t

∂ttp+ γp0(∂xtu+ ∂ytv) = 0 (IV.16)

Now differentiate (IV.15b) with respect to x and (IV.15c) with respect to y and add

∂xtu+ ∂ytv +
1

ρ0
(∂xxp+ ∂yyp) = f (∂xv − ∂yu) (IV.17)

Now substitute (IV.17) into (IV.16)

∂ttp− γp0
ρ0
∇2p+ fγp0 (∂xv − ∂yu) = 0 . (IV.18)

Differentiate (IV.15b) with respect to y and (IV.15c) with respect to x and subtract

∂ytu− ∂xtv +
1

ρ0

⎛⎜⎝∂yxp− ∂xyp� ,� 1
=0

⎞⎟⎠ = f (∂yv + ∂xu) . (IV.19)
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Combine terms to get

f (∂xu+ ∂yv) = −∂t (∂xv − ∂yu) . (IV.20)

Combine (IV.15d) and (IV.20) to get

f∂tp = γp0∂t (∂xv − ∂yu) . (IV.21)

Integrate (IV.21) with respect to time to get

f (p− p0) = γp0 (∂xv − ∂yu) . (IV.22)

Finally, substitute (IV.22) into (IV.18)

∂ttp− γp0
ρ0
∇2p+ f 2(p− p0) = 0 , (IV.23)

which gives us the Klein-Gordon equation for the pressure perturbation p− p0, again
with wave speed

�
γp0/ρ0. As an aside, we notice that (IV.20) involves the time

derivative of the curl of nu on the right-hand side. Thus, if f = 0, then ∇ × nu is

constant.

2. Equivalence of (IV.15) and the Klein-Gordon Equation–
Discrete Case

We would like to find a discretization scheme which is equivalent to the discrete

Klein-Gordon equation

un+1i,j − 2uni,j + un−1i,j

δt2
= c20

X
uni+1,j − 2uni,j + uni−1,j

δ2x
+
uni,j+1 − 2uni,j + uni,j−1

δ2y

~
− f 2uni,j
(IV.24)

Given the similarity to the discrete scalar wave equation, we begin by using the

discretization scheme in Sec. B.2, adding the Coriolis terms to the right-hand side to

get

∆tρ = −ρ0 (∆xu+∆yv)

∆tu = −∆xp

ρ0
+ fv

∆tv = −∆yp

ρ0
− fu

∆tp = −γp0 (∆xu+∆yv) (IV.25)
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Apply ∆x to (IV.25b), ∆y to (IV.25c), ∆t to (IV.25d), and then make the appropriate

substitution. This gives us

∆t∆tp =
γp0
ρ0
(∆x∆xp+∆y∆yp)− fγp0 (∆xv −∆yu) , (IV.26)

Next, apply ∆y to (IV.25b) and ∆x to (IV.25c), then subtract and combine terms to

get

∆t (∆yu−∆xv) = f (∆xu+∆yv) (IV.27)

We substitute (IV.25d) into (IV.27) to get

∆t (∆yu−∆xv) = − f

γp0
∆tp (IV.28)

If we apply ∆t to (IV.26) and incorporate (IV.28) into it, we get

∆t

^
∆t∆tp− γp0

ρ0
(∆x∆xp+∆y∆yp) + f

2p

�
= 0 (IV.29)

Thus, the quantity inside the brackets is constant in time. Since we are assuming

a closed system with no source functions (other than the Coriolis force itself), then

this quantity must initially be zero and will thus always be zero. Expanding the

differencing terms gives us

pn+2i,j − 2pni,j + pn−2i,j

(2δt)2
=
γp0
ρ0

X
pni+2,j − 2pni,j + pni−2,j

(2δx)2
+
pni,j+2 − 2pni,j + pni,j−2

(2δy)2

~
− f2pni,j
(IV.30)

As with equating the initial basic case to the scalar wave equation, we now have a

system which is compatible with the Klein-Gordon equation on a double-size grid. So

again, our NRBC will be given by (IV.10).

3. Numerical Examples

For this example, we use the same domain and initial conditions as with the

basic system in Sec. B. Our Coriolis force f is based on an angular momemtum

Ω = 7.292116× 10−5 s−1 [112] at a latitude φ of 30◦ N, thus,

f = 2Ω sinφ = 7.292116× 10−5 s−1
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J Eρ Eu Ev Ep
1 0.12361 0.077448 0.1674 0.12361
2 0.039728 0.020397 0.047278 0.039727
3 0.026079 0.010879 0.022051 0.026078
4 0.022763 0.0077222 0.014192 0.022763
5 0.021505 0.0060029 0.010178 0.021505
6 0.020889 0.0049066 0.0078821 0.020889
7 0.020551 0.0041032 0.0063328 0.020551
8 0.020362 0.0035019 0.0052668 0.020361
9 0.020249 0.0030695 0.0044665 0.020249
10 0.020176 0.0027737 0.0038836 0.020176

Table III. Error norms for Coriolis-influenced system (IV.15) with J ∈ 1 . . . 10 in a
semi-infinite channel

When we apply this force to our domains, we get results which are virtually indistin-

guishable from those in the preceding section. This is not too surprising, since the

Coriolis force is so small that its effects are unnoticeable over such short timeframes

[28]. Tables III and IV show the error norms for all four state variables for J ∈ 1 . . . 10
in the channel and open domain, respectively. Suppose, just for curiosity’s sake, we

make the Earth rotate much more rapidly and increase f by a factor of a thousand,

J Eρ Eu Ev Ep
1 1.5544 2.0917 2.0917 1.5558
2 0.4589 0.61777 0.61777 0.45933
3 0.22861 0.30055 0.30054 0.22882
4 0.15198 0.19766 0.19766 0.15212
5 0.11326 0.14588 0.14588 0.11336
6 0.089797 0.11564 0.11564 0.08988
7 0.074067 0.095798 0.095797 0.074136
8 0.062461 0.082285 0.082284 0.062519
9 0.053427 0.071617 0.071617 0.053476
10 0.046645 0.062478 0.062476 0.046689

Table IV. Error norms for Coriolis-influenced system (IV.15) with J ∈ 1 . . . 10 in an
open domain
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J Eρ Eu Ev Ep
1 1.4093 0.70281 0.70253 1.4033
2 0.4086 0.20314 0.20309 0.40687
3 0.20321 0.098226 0.098178 0.20235
4 0.13492 0.064387 0.064365 0.13435
5 0.10056 0.047464 0.047443 0.10013
6 0.079742 0.037609 0.037594 0.079405
7 0.065817 0.031154 0.031144 0.065539
8 0.055543 0.026777 0.026767 0.055308
9 0.047521 0.023331 0.023321 0.04732
10 0.041445 0.020369 0.020361 0.04127

Table V. Error norms with J ∈ 1 . . . 10 in an open domain under artifically-large
Coriolis (IV.15)

to f = 0.07292116 s−1, just to make its effects noticeable. If we do that, we get the

error norms given in Table V for the open domain. A comparison of the results for

small and large J is exemplified in Figs. 16 and 17. If we look at the u and v plots

side-by-side (Fig. 18), we can discern the clockwise rotation generated by the Coriolis

force.
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Figure 16. Comparison of u in Coriolis-influenced system (IV.15), using artificially-
large Coriolis, computed with J = 1 and J = 10 in an open domain, with error norms
computed by (IV.14). (TL) Computed solution for J = 1. (TR) Computed solution
for J = 10. (BL) Delta between reference solution and J = 1 computed solution.
(BR) Delta between reference solution and J = 10 computed solution.

Figure 17. Comparison of v in Coriolis-influenced system (IV.15), using artificially-
large Coriolis, computed with J = 1 and J = 10 in an open domain, with error norms
computed by (IV.14). (TL) Computed solution for J = 1. (TR) Computed solution
for J = 10. (BL) Delta between reference solution and J = 1 computed solution.
(BR) Delta between reference solution and J = 10 computed solution.
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Figure 18. Side-by-side plot of u and v, illustrating the rotation generated by the
Coriolis acceleration. The superimposed clockwise arrows highlight the combined
result of the u and v values.

56



D. GRAVITATIONAL FORCES IN THE XZ PLANE

Now we shift from the xy plane to the xz plane and consider what happens

when we add the effects of gravity to our system. Still keeping the advection terms

equal to zero, we now have the equation set

∂tρ+ ρ̄ (∂xu+ ∂zw) = −ρ̄Iw
∂tu+

1

ρ̄
∂xp = 0

∂tw +
1

ρ̄
∂zp = −g

ρ̄
ρ (IV.31)

∂tp+ γp̄ (∂xu+ ∂zw) = gρ̄w

where we now must use ρ̄ and p̄ for our z-dependent reference states. We use ρ̄I to

denote the derivative of ρ̄, which depends only on z. Note that ρ finally makes an

impact on the other state variables.

1. Defining the Reference State for Density and Pres-
sure

Eq. (II.59) sets a compatibility condition between our reference states for den-

sity and pressure. This restriction is a fairly loose one, however, requiring us to look

to other sources for possible functions which satisfy this condition. Since these equa-

tions are derived from the ideal gas law, we look to the literature for atmospheric

models on which we can base these initial conditions.

Although several atmospheric models exist [24, 112], for ease of differentiation

we will use an exponentially-decaying model

p̄ = p0e
−αz , (IV.32)

where α is a scaling height needed to match the surface (z = 0) pressure and density

values. Applying (II.59) to this model, we get

ρ̄ =
p0α

g
e−αz . (IV.33)
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2. Deriving a Wave-Like Equation from (IV.31)

As with the basic system and the system subject to Coriolis forces, we now

attempt to convert the gravity-affected system to a wave-like equation. First, we

differentiate (IV.31d) with respect to time to get

∂ttp = gρ̄∂tw − γp̄ (∂xtu+ ∂ztw) (IV.34)

Differentiating (IV.31b) with respect to x and (IV.31c) with respect to z (remember-

ing that ρ̄ depends on z) gives us

∂xtu = −1
ρ̄
∂xxp (IV.35)

∂ztw = −g
X
ρ̄∂zρ− ρ̄Iρ

ρ̄2

~
− ρ̄∂zzp− ρ̄I∂zp

ρ̄2
(IV.36)

Substituting these results into (IV.34) gives us

∂ttp = gρ̄∂tw +
γp̄

ρ̄

X
∂xxp+ g∂zρ− gρ̄

I

ρ̄
ρ+ ∂zzp− ρ̄I

ρ̄
∂zp

~

=
γp̄

ρ̄
∇2p+ gρ̄∂tw + γp̄

ρ̄

X
g∂zρ− gρ̄

I

ρ̄
ρ− ρ̄I

ρ̄
∂zp

~
(IV.37)

Using (IV.31c) to remove the ρ̄∂tw term from (IV.37) gives us

∂ttp =
γp̄

ρ̄
∇2p− g2ρ− g∂zp+ γp̄

ρ̄

X
g∂zρ− gρ̄

I

ρ̄
ρ− ρ̄I

ρ̄
∂zp

~

=
γp̄

ρ̄
∇2p− g

X
g +

γp̄ρ̄I

ρ̄2

~
ρ+ g

γp̄

ρ̄
∂zρ−

X
g +

γp̄ρ̄I

ρ̄2

~
∂zp (IV.38)

If we solve (IV.31a) and (IV.31d) for ∂xu+ ∂zw, we get

gρ̄w − ∂tp

γp̄
=
−ρ̄Iw − ∂tρ

ρ̄
, (IV.39)

which we can solve for w and differentiate with respect to time to get

∂tw =
ρ̄∂ttp− γp̄∂ttρ

gρ̄2 + γp̄ρ̄I
, g W= 0 (IV.40)

Equating this with ∂tw in (IV.31c) and solving for ρ gives

ρ =
ρ̄

g

X
ρ̄∂ttp− γp̄∂ttρ

gρ̄2 + γp̄ρ̄I
− 1
ρ̄
∂zp

~
(IV.41)
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Substituting this result into (IV.38) gives us

∂ttp =

⎧⎪⎨⎪⎩
γp̄
ρ̄
∇2p− ρ̄

p
g + γp̄ρ̄I

ρ̄2

Q p
ρ̄∂ttp−γp̄∂ttρ
gρ̄2+γp̄ρ̄I − 1

ρ̄
∂zp
Q

+g γp̄
ρ̄
∂zρ−

p
g + γp̄ρ̄I

ρ̄2

Q
∂zp

=
γp̄

ρ̄
∇2p− gγp̄ρ̄∂ttρ− gρ̄

2∂ttp

gρ̄2 + γp̄ρ̄I
− γp̄ρ̄I

ρ̄

γp̄∂ttρ− ρ̄∂ttp

γρ̄2 + γp̄ρ̄I
+ g

γp̄

ρ̄
∂zρ(IV.42)

after combining and cancelling terms. Now let us use an exponential atmospheric

model. Combining (IV.32) and (II.59) gives us

ρ̄ =
p̄α

g

ρ̄I = − p̄α
2

g

Substituting these values into (IV.42) gives us

∂ttp =
γp̄

ρ̄
∇2p− gγ

α
g
∂ttρ− gα2g2 ∂ttp
gα

2

g2
− γ α

2

g

+
γ α

2

g
α
g

⎛⎝γ∂ttρ− α
g
∂ttp

g α
2

g2
− γ α

2

g

⎞⎠+ gγp̄
ρ̄
∂zρ

=
γp̄

ρ̄
∇2p− γ

g

α
∂ttρ+ ∂ttp+ g

γp̄

ρ̄
∂zρ (IV.43)

Noting that p̄/ρ̄ = g/α, this simplifies to

∂ttρ = ∇2p+ g∂zρ (IV.44)

We almost have a wave-like equation. The only thing missing is having the time

derivative and the Laplace operator in the same variable. Look again at (IV.41). If

we solve it for ∂ttρ and use (IV.32) to cancel and combine terms, we have

∂ttρ =
ρ̄

γp̄
∂ttp+

α(1− γ)

γ
(gρ+ ∂zp) (IV.45)

Substituting this result into (IV.44) gives us

∂ttp =
γp̄

ρ̄

p
∇2p+ g∂zρ

Q
+ g (1− γ) ρ̄∂tw , (IV.46)

where we use (IV.31c) to make the substitution

ρ̄∂tw = −gρ− ∂zp ,
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and we keep the usual γp̄
ρ̄
as the wave speed term rather than simplify it. If we try to

remove the ρ and w terms, we go around in circles, never quite replacing them all in

terms of p. Hence, this is the closest we can come to deriving a wave-like equation that

is equivalent to (IV.31). Our wave equation for p is altered by the vertical derivative

of ρ and the time derivative of w.

Note, however, that if we set γ = 1, differentiate (IV.46) with respect to time,

and make the appropriate substitutions, we can get

∂t

w
∂ttp− g

α
∇2p
W
− g∂ztp = 0 , (IV.47)

which more nearly resembles a wave equation, only for the time derivative of the

pressure, rather than for the pressure itself. However, due to the definitions of the

atmospheric constants, γ = 1 means R = 0, which causes problems with the ideal

gas law p = ρRT on which we base our model. Hence, this contrivance is purely

academic.

3. Numerical Examples

For our first example, we consider an open boundary on the sides of the do-

main, so that the normal derivative is perpendicular to the force of gravity (see

Fig. 19). We discretize (IV.31) according to the same second-order centered-difference

scheme in Sec. B, which gives us

∆tρ = −ρ̄ (∆xu+∆zw)− ρ̄Iw

∆tu = −∆xp

ρ̄

∆tw = −∆zp

ρ̄
− g
ρ̄
ρ

∆tp = −γp̄ (∆xu+∆zw) + gρ̄w (IV.48)

where we use z, w, ρ̄, and p̄ instead of y, v, ρ0, and p0, respectively, to emphasize

that our concern is now with a vertical, rather than horizontal, plane. As before, we

use the same domain size and initial conditions. However, we now have hard walls

on the top and bottom and NRBCs on the left and right, and the reference solution
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Figure 19. An infinite channel domain Ω truncated by artifical boundaries ΓL and
ΓR [After [22], Fig. 1, p. 2]

is a 30× 10 km channel, with the domain of interest in the center. The error norms

are given in Table VI, with a comparison of pressure plots given by Fig. 20.

Having successfully implemented gravity perpendicular to the open bound-

aries’ normal vector, we now implement it parallel to the open boundary’s normal

vector. Using again the same initial conditions, our domain is now a “bucket,” i.e.,

a semi-infinite channel with the open boundary on top (Fig. 6). Table VII shows the

J Eρ Eu Ev Ep
1 0.23241 0.52603 0.12775 0.23171
2 0.065394 0.14839 0.033298 0.065251
3 0.03214 0.069192 0.017724 0.032071
4 0.021193 0.04438 0.012525 0.021144
5 0.015814 0.031941 0.0096649 0.015776
6 0.012458 0.024676 0.007901 0.012429
7 0.010184 0.019914 0.0066308 0.01016
8 0.0086452 0.016684 0.0056677 0.0086248
9 0.0076161 0.01435 0.0049472 0.0075982
10 0.0068845 0.012637 0.0044394 0.0068682

Table VI. Error norms with J ∈ 1 . . . 10 in a horizontal channel with gravitational
forces (IV.31)
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Figure 20. Comparison of p in gravity-influenced system (IV.31) computed with J = 1
and J = 10 in an infinite horizontal channel, with error norms computed by (IV.14).
(TL) Computed solution for J = 1. (TR) Computed solution for J = 10. (BL)
Delta between reference solution and J = 1 computed solution. (BR) Delta between
reference solution and J = 10 computed solution.

error norms, and Fig. 21 compares the z-velocity perturbations for J = 1 and J = 10.

Next we combine these results into a domain open on three sides, with a hard

wall on the bottom (see Fig. 22). Table VIII shows the error norms, and Fig. 23

compares the x-velocity perturbations for J = 1 and J = 10.

62



J Eρ Eu Ev Ep
1 0.097404 0.10278 0.22495 0.096936
2 0.034899 0.027336 0.063934 0.034738
3 0.026286 0.014095 0.030089 0.026195
4 0.024522 0.0098734 0.019451 0.024443
5 0.023927 0.00764 0.013899 0.023852
6 0.023651 0.0062309 0.010768 0.023578
7 0.023506 0.0052081 0.0086306 0.023433
8 0.023425 0.0044326 0.0071758 0.023353
9 0.023378 0.0038462 0.0060809 0.023307
10 0.023348 0.00339 0.0052913 0.023276

Table VII. Error norms with J ∈ 1 . . . 10 in a vertical bucket with gravitational forces
(IV.31)

J Eρ Eu Ev Ep
1 0.31226 0.85386 0.30744 0.30865
2 0.088812 0.24972 0.089607 0.087862
3 0.043421 0.11951 0.04392 0.042972
4 0.028607 0.077987 0.029393 0.028308
5 0.021264 0.057307 0.021724 0.021042
6 0.016764 0.04499 0.017264 0.016589
7 0.01378 0.036859 0.014216 0.013637
8 0.011743 0.031518 0.012194 0.01162
9 0.010292 0.027596 0.010665 0.010185
10 0.0091922 0.024287 0.0094066 0.0090963

Table VIII. Error norms with J ∈ 1 . . . 10 in an open-air domain with gravitational
forces (IV.31)
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Figure 21. Comparison of w in gravity-influenced system (IV.31) computed with
J = 1 and J = 10 in a semi-infinite vertical channel, with error norms computed by
(IV.14). (TL) Computed solution for J = 1. (TR) Computed solution for J = 10.
(BL) Delta between reference solution and J = 1 computed solution. (BR) Delta
between reference solution and J = 10 computed solution.

Γ
T

Ω
Γ

R
Γ

L

x

z

Figure 22. A half-plane domain Ω truncated by artificial boundaries ΓL, ΓT and ΓR
[After [20], Fig. 1, p. 3]
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Figure 23. Comparison of u in gravity-influenced system (IV.31) computed with
J = 1 and J = 10 in an open-air domain, with error norms computed by (IV.14).
(TL) Computed solution for J = 1. (TR) Computed solution for J = 10. (BL)
Delta between reference solution and J = 1 computed solution. (BR) Delta between
reference solution and J = 10 computed solution.
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E. ADVECTION

Now we consider the case of non-zero mean flow. Beginning with the simple

case, we have

∂tρ+ u0∂xρ+ v0∂yρ+ ρ0 (∂xu+ ∂yv) = 0

∂tu+ u0∂xu+ v0∂yu+
1

ρ0
∂xp = 0

∂tv + u0∂xv + v0∂yv +
1

ρ0
∂yp = 0

∂tp+ u0∂xp+ v0∂yp+ γp0 (∂xu+ ∂yv) = 0 (IV.49)

Define a Lagrangian derivative

D

Dt
= ∂t + u0∂x + v0∂y (IV.50)

If we use this definition in (IV.49), we get

Dρ

Dt
+ ρ0 (∂xu+ ∂yv) = 0

Du

Dt
+
1

ρ0
∂xp = 0

Dv

Dt
+
1

ρ0
∂yp = 0

Dp

Dt
+ γp0 (∂xu+ ∂yv) = 0 , (IV.51)

and we can easily show that this formulation is equivalent to a Lagrangian scalar

wave equation
D2p

Dt2
=
γp0
ρ0
∇2p (IV.52)

If we incorporate Coriolis forces, then our equation set is

Dρ

Dt
+ ρ0 (∂xu+ ∂yv) = 0

Du

Dt
+
1

ρ0
∂xp = f (v + v0)

Dv

Dt
+
1

ρ0
∂yp = −f (u+ u0)

Dp

Dt
+ γp0 (∂xu+ ∂yv) = 0 (IV.53)
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Using our now-familiar conversion technique, we have

D2p

Dt2
=
γp0
ρ0
∇2p− γp0f (∂xv − ∂yu) (IV.54)

Now (IV.49) and (IV.53) both imply Dp
Dt
= γp0

ρ0

Dρ
Dt
, so if we apply D

Dt
to (IV.54), we

get
D

Dt

X
D2p

Dt2
− γp0

ρ0
∇2p+ γp0f (∂xv − ∂yu)

~
= 0 (IV.55)

Using the same approach we used to convert the no-mean-flow form to the Klein-

Gordon equation, we apply ∂y to (IV.53b), ∂x to (IV.53c), and subtract to get

D

Dt
(∂xv − ∂yu) = −f (∂xu+ ∂yv) (IV.56)

Substituting this result into (IV.55) removes the vorticity term and gives us

D

Dt

X
D2p

Dt2
p− γp0

ρ0
∇2p
~
− γp0f

2 (∂xu+ ∂yv) = 0

D

Dt

X
D2p

Dt2
p− γp0

ρ0
∇2p
~
+ f2

Dp

Dt
= 0 (IV.57)

Integrate along characteristics, assuming an initial value of zero, to get

D2p

Dt2
p =

γp0
ρ0
∇2p− f2p . (IV.58)

So our system is still equivalent to the Klein-Gordon equation, using Lagrangian

derivatives rather than time derivative. However, we will show in Sec. 3 that such a

system is inherently unstable under long-time integration.

1. Interior Discretization Scheme

Similar to (IV.50), if we define the Lagrangian difference

n∆ = ∆t + u0∆x + v0∆y , (IV.59)

then the discrete basic system is given by

n∆ρ+ ρ0 (∆xu+∆yv) = 0

n∆u+
1

ρ0
∆xp = 0

n∆v +
1

ρ0
∆yp = 0

n∆p+ γp0 (∆xu+∆yv) = 0 , (IV.60)
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which is easily shown to be equivalent to

n∆n∆p =
γp0
ρ0
(∆x∆xp+∆y∆yp) (IV.61)

Hence, the basic system under advection should be stable when implemented in con-

junction with the Higdon NRBC defined for a double-sized grid. Likewise, if we

include Coriolis, we have the discrete system

n∆ρ+ ρ0 (∆xu+∆yv) = 0

n∆u+
1

ρ0
∆xp = f

X
v0
ρ0
ρ+ v + v0

~

n∆v +
1

ρ0
∆yp = −f

X
u0
ρ0
ρ+ u+ u0

~
n∆p+ γp0 (∆xu+∆yv) = 0 , (IV.62)

and if we use the discrete analog to the continuous case derivation in the preceding

section, we can easily show that this system is equivalent to

n∆

^
n∆n∆p =

γp0
ρ0
(∆x∆xp+∆y +∆yp)− f2p

�
, (IV.63)

which again should be stable when the Higdon scheme is used on a double-sized

grid. Since the inclusion of gravity creates a system which is not compatible in the

continuous case with a wave-like equation, its discrete formulation will also not be

equivalent to a discrete wave-like equation. The discretization scheme in the xz plane

under the influence of gravity is given by

n∆ρ+ ρ̄ (∆xu+∆zw) = −ρ̄I (w + w0)
n∆u+

1

ρ̄
∆xp = 0

n∆w +
1

ρ̄
∆zp = −g

ρ̄
ρ

n∆p+ γp̄ (∆xu+∆zw) = gρ̄ (w + w0) , (IV.64)

where we replace the constants ρ0 and p0 with the z-dependent values ρ̄ and p̄. Note

that w0 appears on the right-hand side of the equations for ρ and p because of the

linearization process in Sec. II.C.2. In practice, however, the presence of the ground

will require w0 = 0.
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2. NRBC Formulation

The addition of advection changes our wave speed with respect to the bound-

ary. To determine the new “correct” wave speed estimate, replace the time derivative

in the Higdon NRBC definition (III.11) with the Lagrangian derivative (expressed for

a right-side boundary):
J�
j=1

w
D

Dt
+ cj∂x

W
u = 0 (IV.65)

For waves striking the boundary, we are only concerned with the velocity normal to the

boundary. Thus, we remove the tangential component of the Lagrangian derivative,

expand and combine terms, and use our simplification cj = c0, giving

(∂t + (c0 + u0) ∂x)
J u = 0 (IV.66)

Since our interior discretization scheme is equivalent (or approximately so) to a wave

equation on a double-sized grid, our NRBC discretization for these equations is given

by X
I − S−2t
2δt

+ (c0 + u0)
I − S−2x
2δx

~J
σ = 0 (IV.67)

3. Long-Term Instability of Advection with Coriolis

Let us briefly consider the discrete form of (II.63) in the xy plane with Coriolis

forces. Using our usual second-order centered-difference scheme, we have

∆tρ+ u0∆xρ+ v0∆yρ+ ρ0∆xu+ ρ0∆yv = 0

∆tu+ u0∆xu+ v0∆yu+
1

ρ0
∆xp = f (v + v0)

∆tv + u0∆xv + v0∆yv +
1

ρ0
∆yp = −f (u+ u0)

∆tp+ u0∆xp+ v0∆yp+ γp0∆xu+ γp0∆yv = 0 (IV.68)

Assume everything is initially at rest (no perturbations), and u0v0 W= 0. With every
perturbation variable equal to zero at times n ≤ 0, our values at time n = 1 become

ρ1i,j
2δt

= 0
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u1i,j
2δt

= fv0

v1i,j
2δt

= −fu0
p1i,j
2δt

= 0 (IV.69)

So, having started from a zero-perturbation domain, the combination of advection

and Coriolis creates non-zero perturbations in u and v. In fact, u and v are still

constant in the domain, but now the constant is non-zero. We note that ρ and p are

still uniformly zero throughout the domains, and it is easy to show that they will

always be zero. However, if we look at u and v at the next time step, noting that all

spatial differences are zero, we get

u2i,j
2δt

= f
p
v1i,j + v0

Q
v2i,j
2δt

= −f
p
u1i,j + u0

Q
(IV.70)

Substituting the previously determined values for u1i,j and v
1
i,j, we get

u2i,j = 2δtfv0 − (2δtf)2 u0
v2i,j = −2δtfu0 − (2δtf)2 v0 (IV.71)

Proceeding to time step n = 3, we have

u3i,j ≈ 2 (2δtfv0) +O
p
(2δtf)2

Q
v3i,j ≈ −2 (2δtfu0) +O

p
(2δtf)2

Q
(IV.72)

where we are only concerned with the terms which are linear in 2δtf . It can be shown

that

uni,j ≈ un
2
J (2δtf) v0 +O

p
(2δtf)2

Q
vni,j ≈ −un

2
J (2δtf)u0 +O

p
(2δtf)2

Q
, (IV.73)
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where u·J denotes the floor function.
Remark 1: If f W= 0 and either u0 W= 0 or v0 W= 0, then our zero-perturbation

domain grows linearly, without bound, in u and/or v. While the growth will be slow

due to the magnitude of f , it will still be present. Hence, the combination of Coriolis

forces and non-zero advection is inherently unstable in the linearized Euler equations.

We can only use this equation set for short-time integrations, not for longer durations.

Remark 2: If we perform a similar analysis in the case of gravity and non-

zero advection, we see that that system is inherently unstable if w0 W= 0. Horizontal
advection does not cause any problems. Any physical problem which considers gravity

and vertical advection is unsuited to this equation set. Meteorological problems,

however, will generally include the ground and thus not have any constant vertical

advection.

4. Numerical Examples
a. Basic System, Infinite Channel

For the examples in this section, we use the same domain and initial

conditions as before. Our first example is a basic system in an infinite channel with a

constant lateral advection of u0 = 100
m
s . Again running the simulation up until t =

24, we get the error norms listed in Table IX. Fig. 24 shows the density preturbation

ρ for the J = 10 case. Note the faint wave propagating in the opposite direction; this

false wave is a consequence of using centered-differences for our spatial discretization

[24]. Fig. 25 compares the pressure perturbation p for low- and high-order NRBCs.
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J Eρ Eu Ev Ep
1 0.22447 0.30496 0.18074 0.22447
2 0.06216 0.09791 0.059247 0.062159
3 0.026666 0.041939 0.021853 0.026666
4 0.017115 0.025099 0.012509 0.017115
5 0.01258 0.019265 0.0097557 0.01258
6 0.010007 0.014986 0.0074502 0.010007
7 0.0082563 0.012216 0.0059657 0.0082562
8 0.0070098 0.010347 0.0051175 0.0070098
9 0.0060805 0.0090438 0.0044283 0.0060805
10 0.0053682 0.0079242 0.003876 0.0053683

Table IX. Error norms with J ∈ 1 . . . 10 in an infinite channel with horizontal advec-
tion

Figure 24. Plot of ρ in basic system (IV.49) with left-to-right advection with J = 10
in an infinite channel. (BL) Computed solution. (Top) Reference solution; the area
corresponding to the computed solution is contained between the vertical lines. (BC)
Reference solution truncated to computed solution domain. (BR) Delta between
reference solution and computed solution, with error norm computed by (IV.14).

72



Figure 25. Comparison of p in basic system (IV.49) with left-to-right advection
computed with J = 1 and J = 10 in an infinite channel, with error norms computed
by (IV.14). (TL) Computed solution for J = 1. (TR) Computed solution for J = 10.
(BL) Delta between reference solution and J = 1 computed solution. (BR) Delta
between reference solution and J = 10 computed solution.
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J Eρ Eu Ev Ep
1 0.33816 0.36566 0.36566 0.33819
2 0.091059 0.10563 0.10563 0.091066
3 0.043514 0.050827 0.050827 0.043517
4 0.028633 0.032601 0.032601 0.028635
5 0.021446 0.023794 0.023794 0.021447
6 0.0172 0.018581 0.018581 0.017201
7 0.014495 0.015508 0.015508 0.014496
8 0.012603 0.013347 0.013347 0.012604
9 0.011967 0.013011 0.012734 0.011969
10 0.078775 0.10216 0.082933 0.078757

Table X. Error norms with J ∈ 1 . . . 10 in an open domain with diagonal advection

b. Basic System, Open Domain

Now consider the basic system in an open domain with a constant

diagonal advection of u0 = 90 m/s, v0 = 90 m/s. This time, we get the error norms

listed in Table X. Not surprisingly, the error norms for u and v are identical up to

J = 8 (with v slightly better than u in the J = 9 case). In this example, we see that

the J = 10 error norms are larger than those for J = 9. Fig. 26 shows the x-velocity

preturbation u for the J = 8 case; Figs. 27 and 28 shows the same variable for the

J = 9 and J = 10 cases, respectively. We see from the latter two that the system

begins to destabilize at the top-right corner. The reason for this destabilization is

still under investigation. Fig. 29 compares the y-velocity perturbation v for low- and

high-order NRBCs.
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Figure 26. Plot of u in basic system (IV.49) with bottom-left-to-top-right advection
with J = 8 in an open domain. (TL) Computed solution. (Right) Reference solution;
the area corresponding to the computed solution is contained in the center box. (CL)
Reference solution truncated to computed solution domain. (BL) Delta between
reference solution and computed solution, with error norm computed by (IV.14).

Figure 27. Plot of u in basic system (IV.49) with bottom-left-to-top-right advection
with J = 9 in an open domain. (TL) Computed solution. (Right) Reference solution;
the area corresponding to the computed solution is contained in the center box. (CL)
Reference solution truncated to computed solution domain. (BL) Delta between
reference solution and computed solution, with error norm computed by (IV.14).
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Figure 28. Plot of u in basic system (IV.49) with bottom-left-to-top-right advection
with J = 10 in an open domain. (TL) Computed solution. (Right) Reference solution;
the area corresponding to the computed solution is contained in the center box. (CL)
Reference solution truncated to computed solution domain. (BL) Delta between
reference solution and computed solution, with error norm computed by (IV.14).

Figure 29. Comparison of v in basic system (IV.49) with bottom-left-to-top-right
advection computed with J = 1 and J = 8 in an open domain, with error norms
computed by (IV.14). (TL) Computed solution for J = 1. (TR) Computed solution
for J = 8. (BL) Delta between reference solution and J = 1 computed solution. (BR)
Delta between reference solution and J = 8 computed solution.
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J Eρ Eu Ev Ep
1 0.22154 0.59249 0.25232 0.22154
2 0.10104 0.3566 0.15752 0.10104
3 0.34963 1.3304 0.39134 0.34963
4 1.4844 5.1058 1.391 1.4844
5 2.3286 7.4879 3.3526 2.3286
6 34.219 98.952 36.169 34.219
7 71.57 277.37 83.65 71.57
8 4971.8 14265 4154 4971.8

Table XI. Error Norms with J ∈ 1 . . . 8 in an Infinite Channel with Horizontal Ad-
vection and Coriolis

c. Coriolis Forces, Infinite Channel

Having shown already that the system is inherently unstable for long-

time integrations involving both advection and Coriolis, let us look briefly at the

effectiveness of the Higdon NRBCs for a short-duration simulation. We first consider

an infinite channel with left-to-right advection, u0 = 100ms . Incorporating Coriolis

forces, we use the discretization scheme (IV.62) for the interior. Table XI shows the

error norms for J ∈ 1 . . . 8. We see some improvement between J = 1 and J = 2, but
the system fails for higher J . We will not show any plots of these results.
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J Eρ Eu Ev Ep
1 0.86499 0.31392 0.33843 0.86506
2 0.58828 0.26882 0.2833 0.58833
3 6.288 2.5314 2.67 6.2885
4 327.16 134.55 141.92 327.18
5 14895 4854.5 5120.1 14896
6 278880 87044 91822 278900

Table XII. Error Norms with J ∈ 1 . . . 6 in an Open Domain with Diagonal Advection
and Coriolis

d. Coriolis Forces, Open Domain

Likewise, when we consider the system in an open domain, with the

NRBC on all four sides, using a diagonal advection, u0 = v0 = 100ms , we get the

results shown in Table XII. A slight improvement from J = 1 to J = 2 is followed by

massive instability for higher J . Again, we will omit any plots of these results.
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J Eρ Eu Ev Ep
1 0.2251 0.29999 0.18206 0.22442
2 0.062733 0.096051 0.059583 0.062517
3 0.027088 0.041293 0.022049 0.027048
4 0.017524 0.024613 0.012558 0.017488
5 0.012913 0.018886 0.0098005 0.012887
6 0.010289 0.014672 0.0074523 0.01027
7 0.0085063 0.011944 0.0059542 0.0084902
8 0.007226 0.010119 0.005107 0.0072123
9 0.0062668 0.0088368 0.0044166 0.0062548
10 0.0055272 0.0077406 0.0038622 0.0055167

Table XIII. Error norms with J ∈ 1 . . . 10 in an infinite channel with horizontal
advection and gravity

e. Gravity, Infinite Channel

Turning our attention now to the inclusion of gravity, we again consider

an infinite channel with horizontal advection, u0 = 100
m
s . Using the discretization

scheme (IV.64), we get the error norms shown in Table XIII. Unlike the Coriolis

case, this time we get good results all the way up to J = 10. Fig. 30 illustrates the

difference in pressure perturbation results for small and large J .
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Figure 30. Comparison of p in gravity-influenced system (IV.64) with left-to-right
advection computed with J = 1 and J = 10 in an infinite channel, with error norms
computed by (IV.14). (TL) Computed solution for J = 1. (TR) Computed solution
for J = 10. (BL) Delta between reference solution and J = 1 computed solution.
(BR) Delta between reference solution and J = 10 computed solution.
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J Eρ Eu Ev Ep
1 0.25917 0.35427 0.28085 0.25639
2 0.072395 0.11036 0.084279 0.071655
3 0.032031 0.050496 0.036455 0.03179
4 0.020847 0.03178 0.022262 0.020674
5 0.015383 0.023689 0.016319 0.015259
6 0.012198 0.018435 0.012387 0.012104
7 0.010073 0.01515 0.0099833 0.0099939
8 0.0085547 0.012836 0.0084265 0.0084879
9 0.0074187 0.011229 0.007244 0.0073608
10 0.0066163 0.010216 0.0066934 0.0065656

Table XIV. Error norms with J ∈ 1 . . . 10 in a half-plane with horizontal advection
and gravity

f. Gravity, Ground and Open Air

Looking now at an “open” domain in the presence of gravity, we con-

sider the open-air domain of Fig. 22. This domain matches the physical idea of

modeling an open atmosphere bounded by the ground. While the presence of the

ground prevents us from considering vertical or diagonal advection, it still presents

us with a domain containing two adjacent open boundaries. We keep u0 = 100
m
s for

our advection speed and run our standard simulation. The error norms for different

values of J are given in Table XIV. Fig. 31 illustrates the differences between low

and high J .

F. SUMMARY

This high-order NRBC implementation provides high accuracy with little com-

putational overhead. However, it has three significant limitations:

1. The formulation requires one-sided high-order spatial and temporal deriva-
tives.

2. These one-sided derivatives limit the NRBC order to the size of the domain.

3. Coriolis and advection cannot be used together stably.

81



Figure 31. Comparison of ρ in gravity-influenced system (IV.64) with left-to-right
advection computed with J = 1 and J = 10 in an open-air domain, with error norms
computed by (IV.14). (TL) Computed solution for J = 1. (TR) Computed solution
for J = 10. (BL) Delta between reference solution and J = 1 computed solution.
(BR) Delta between reference solution and J = 10 computed solution.

In the next chapter, we will look at another NRBC implementation, one which does

not suffer from these limitations.
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V. GIVOLI-NETA NRBCS FOR THE

LINEARIZED EULER EQUATIONS

A. INITIAL IMPLEMENTATION FOR FIRST-ORDER
SYSTEMS
1. Derivation

Let us now consider the Givoli-Neta auxiliary variable NRBC described in

Sec. III.B.2. That section described this NRBC formulation for a scalar wave-like

equation. In this chapter we apply it to the linearized Euler system. We first define

the auxiliary variables in vector form:X
∂nn +

1

cj
∂t

~
nϕj = nϕj+1 (V.1)

nϕ0 ≡ nϕ

Note that we have left off the truncation condition nϕJ ≡ 0 from our formulation.

As we derive the implementation below, we shall see that we need to modify the

truncation condition slightly; the modified truncation condition will be given as part

of the characteristic-based derivation (V.10).

Givoli and Neta [39, 40] show how to manipulate the Klein-Gordon equation to

remove the normal derivatives. We will show briefly how to do so with the linearized

Euler equations. For definiteness, we proceed for the right-side boundary; thus, nn = x.

Begin with the equation system in vector form:

∂tnϕ+A∂xnϕ+B∂ynϕ = C nϕ+ nD , (V.2)

where

nϕ =
w
ρ u v p

WT

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

u0 ρ0 0 0

0 u0 0 1
ρ0

0 0 u0 0

0 γp0 0 u0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
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B =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

v0 0 ρ0 0

0 v0 0 0

0 0 v0
1
ρ0

0 0 γp0 v0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
In the basic system, C and nD are both zero. With Coriolis, we have

C =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0

0 0 f 0

0 −f 0 0

0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
nD =

w
0 fv0 −fu0 0

WT
With gravity, replace v, v0, ρ0, and p0 in A and B with w, w0, ρ̄, and p̄, respectively,

and use

C =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 −ρ̄I 0
0 0 0 0

−g 1
ρ̄
0 0 0

0 0 gρ̄ 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
nD =

w
−ρ̄Iw0 0 0 gρ̄w0

WT
Define the linear differential operator L(nϕ) to be

L(nϕ) ≡ ∂tnϕ+A∂xnϕ+B∂ynϕ− C nϕ (V.3)

By definition, L(nϕ) = nD. A more useful result is the following lemma:

Lemma V.1 The auxiliary variables nϕj satisfy

L( nϕj) = 0 (V.4)

for all j ∈ 1 . . . J. The only exception to this lemma is when both of the following
conditions are met:

84



• nn = ±k̂
• g W= 0

Proof. Apply the operator L to (V.1) to get

L( nϕ1) = L

XX
∂nn +

1

cj
∂t

~
ϕ

~

= ∂nn (L(nϕ)) +
1

cj
∂t (L(nϕ))

= ∂nn nD +
1

cj
∂t nD

= 0 (V.5)

Then proceed by induction to prove the lemma for all j 2.

(Note that if both conditions in Lemma V.1’s exception are met, then L (∂z nϕ) W=
∂z (L (nϕ)), and we cannot proceed with this proof or the overall derivation. The NRBC

which handles these conditions will be given in Sec. C.)

Solve (V.1) for ∂x nϕj and, using Lemma V.1, substitute the result into (V.2):

Anϕj+1 =

X
1

cj
A− I

~
∂tnϕj −B∂tnϕj + Cnϕj , ∀j ∈ 1 . . . J (V.6)

We now have an auxiliary variable equation which need be defined only on the bound-

ary. However, as it is defined solely on the boundary, and given that everything on

the boundary is initially zero, we have an equation system which will always be iden-

tically zero. We will take a characteristic-based approach similar to that presented

in Sec. 6 of [57].

Let Λ be the diagonal matrix of the eigenvalues of A in decreasing order, with R

the corresponding right eigenvectors. With two degrees of freedom for the eigenvectors

associated with λ = u0, we choose eigenvectors which do not map one characteristic

variable to one state variable, which we would get if we chose
w
1 0 0 0

WT
andw

0 0 1 0

WT
for our u0 eigenvectors. Instead, we use the following:

Λ = diag
w
u0 + c0 u0 u0 u0 − c0

W
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R =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρ0
c0

1 1 −ρ0
c0

1 0 0 1

0 −1 1 0

ρ0c0 0 0 −ρ0c0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

R−1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1
2

0 1
2ρ0c0

1
2
0 −1

2
− 1
2c20

1
2
0 1

2
− 1
2c20

0 1
2

0 − 1
2ρ0c0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
(V.7)

A = RΛR−1

With this definition, left-multiply (V.6) by R−1 and insert RR−1 as needed to get

Λnξ1 =

X
1

cj
Λ− I

~
∂tnξ0 − B̃∂tnξ0 + C̃nξ0 + D̃

Λnξj+1 =

X
1

cj
Λ− I

~
∂tnξj − B̃∂tnξj + C̃nξj , j ∈ 1 . . . J , (V.8)

where

nξj = R−1nϕj

B̃ = R−1BR

C̃ = R−1CR (V.9)

D̃ = R−1 nD

However, we still have a system which is defined exclusively on the boundary. To over-

come this problem, use (V.6) in characteristic form as a natural boundary condition

for the outgoing characteristics. To close the system, use a Dirichlet condition for the

highest-order auxiliary variables corresponding to the incoming characteristics. The

final system then is

�
∂tnξ0 = −Λ∂xnξ0 − B̃∂ynξ0 + C̃nξ0 + D̃

=
+X

I − 1

cj
Λ

~
∂tnξ0 + Λnξ1 = −B̃∂ynξ0 + C̃nξ0 + D̃
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X
I − 1

cj
Λ

~
∂tnξj + Λnξj+1 = −B̃∂ynξj + C̃nξj , j ∈ 1 . . . J�

nϕJ = 0
=
− , (V.10)

where the subscripts + and − mean we apply these equations only to the outgoing
and incoming characteristics, respectively; that is, the first equation only applies to

the outgoing characteristic variables, the second and third equations apply to all four

characteristic auxiliary variables (for each j), and the final equation only applies to

the incoming characteristic auxiliary variables. For example, if we have J = 1, u0 > 0,

C = 0, nD = 0, and we use standard first-order forward-differences in time, first-order

backward-differences in x, and second-order centered-differences in y, then (V.10)

defines the matrix system⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

1− λa 0 0 0 δtλa 0 0 0

0 1− λb 0 0 0 δtλb 0 0

0 0 1− λc 0 0 0 δtλc 0

0 0 0 1− λd 0 0 0 δtλd

0 0 0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ξna,E,i

ξnb,E,i

ξnc,E,i

ξnd,E,i

ξn1,a,E,i

ξn1,b,E,i

ξn1,c,E,i

ξn1,d,E,i

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ξn−1a,E,i + δt
w
−
}
Λ
w
nξn−1E,i −nξn−1E−1,i

δx

W]
a
−
}
B̃
w
nξn−1E,i+1−nξn−1E,i−1

2δy

W]
a

W
ξn−1b,E,i + δt

w
−
}
Λ
w
nξn−1E,i −nξn−1E−1,i

δx

W]
b
−
}
B̃
w
nξn−1E,i+1−nξn−1E,i−1

2δy

W]
b

W
ξn−1c,E,i + δt

w
−
}
Λ
w
nξn−1E,i −nξn−1E−1,i

δx

W]
c
−
}
B̃
w
nξn−1E,i+1−nξn−1E,i−1

2δy

W]
c

W
(1− λa) ξ

n−1
a,E,i + δt

w
−
}
B̃
w
nξn−1E,i+1−nξn−1E,i−1

2δy

W]
a

W
(1− λb) ξ

n−1
b,E,i + δt

w
−
}
B̃
w
nξn−1E,i+1−nξn−1E,i−1

2δy

W]
b

W
(1− λc) ξ

n−1
c,E,i + δt

w
−
}
B̃
w
nξn−1E,i+1−nξn−1E,i−1

2δy

W]
c

W
(1− λd) ξ

n−1
d,E,i + δt

w
−
}
B̃
w
nξn−1E,i+1−nξn−1E,i−1

2δy

W]
d

W
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (V.11)
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where λ denotes the individual eigenvalues of the diagonal matrix Λ; the subscript

1 denotes the first (and only) auxiliary variable; the subscripts a, b, c, d denote the

individual components of the characteristic/state/auxiliary variable vectors; the sub-

scripts E and E−1 denote the eastern boundary and the point adjacent to it, respec-
tively; the subscripts i, i+ 1, and i− 1 denote the grid point in the y direction; and
the superscripts n and n−1 denote the current and previous time steps, respectively.

Note that if we are applying this NRBC in the presence of gravity, even in a

horizontal channel, we must take care to consider the z-derivative of the eigenvector

matrix R when we convert from state variables to characteristics. In such a case,

(V.10) becomes

�
∂tnξ0 = −Λ∂xnξ0 − B̃∂znξ0 +

p
B̃
p
∂zR

−1QR+ C̃Q nξ0 + D̃=
+X

I − 1

cj
Λ

~
∂tnξ0 + Λnξ1 = −B̃∂znξ0 +

p
B̃
p
∂zR

−1QR+ C̃Q nξ0 + D̃X
I − 1

cj
Λ

~
∂tnξj + Λnξj+1 = −B̃∂znξj +

p
B̃
p
∂zR

−1QR + C̃Q nξj , j ∈ 1 . . . J�
nϕJ = 0

=
− . (V.12)

2. Incompatibility with Zero Advection

Note that, because of the Λ on the left-hand side of (V.10b,c), all of the

eigenvalues must be non-zero. Requiring the advection be subsonic is trivial; it can

be a constraint of the model. But the case of zero advection is trickier. The answer is

to define a “false” non-zero advection, small enough that there will be no drift from

one point to an adjacent point over the duration of the simulation:

,u0, < min(δx)

2tmax
, (V.13)

where min(δx) is the smallest grid spacing in the x direction, and tmax is the duration

of the simulation. If the false u0 is too small, however, there is a risk that the resulting

matrix could be numerically singular. Realistically, this concern is unfounded; we have

seen experimentally (using Matlab) that the matrix A is not ill-conditioned so long

as ,u0, > 10−10ms (approximately an eighth of an inch per year).
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J Eρ Eu Ev Ep
1 0.15985 0.32103 0.13114 0.15985
2 0.1581 0.32249 0.12376 0.1581
3 0.15697 0.32307 0.12029 0.15697
4 0.15617 0.32308 0.11844 0.15617
5 0.15557 0.32274 0.11729 0.15557
6 0.15506 0.32218 0.11646 0.15506
7 0.15462 0.32151 0.11579 0.15462
8 0.15422 0.32077 0.1152 0.15422
9 0.15384 0.32 0.11465 0.15384
10 0.15347 0.3192 0.11413 0.15347

Table XV. Error norms for Givoli-Neta NRBCs in basic system (IV.1) with J ∈
1 . . . 10 in an infinite channel with no advection

3. Numerical Examples

Let us consider some numerical examples. In each example, we use our stan-

dard domain and initial condition in an infinite channel (Fig. 19). We first consider

the basic case with no advection. Since we have to define a false advection on the

boundary, we set

u0 =
δx

3tmax
(V.14)

For this domain and simulation duration, that equates to u0 = 1.3889ms . Further-

more, we set cj = 1 for all j [23, 55], a simplification we will use for all subsequent

derivations for these NRBCs. Table XV shows the state variable error norms for

J ∈ 1 . . . 10, Fig. 32 shows the state variable ρ for the J = 10 case, and Fig. 33 com-
pares the state variable u for the J = 1 and J = 10 cases. We note that there is very

little difference between the low-order and high-order results. This is a consequence of

the characteristic-based approach [72] as well as a consequence of converting the nor-

mal derivative to tangential [36]. If we instead use a horizontal advection u0 = 100
m
s ,

we get the results shown in Table XVI and Figs. 34 and 35.

If we incorporate Coriolis forces in this domain, we see that the Givoli-Neta

NRBCs still produce valid results. Tables XVII and XVIII show the error norms for
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Figure 32. Plot of ρ for Givoli-Neta NRBCs in basic system (IV.1) with J = 10 in
an infinite channel with no advection. (BL) Computed solution. (Top) Reference
solution; the area corresponding to the computed solution is contained between the
vertical lines. (BC) Reference solution truncated to computed solution domain. (BR)
Delta between reference solution and computed solution, with error norm computed
by (IV.14).

the state variables for the u0 = 0 and u0 = 100 cases, respectively. In the interest of

brevity, we will omit any figures from these examples.

Similarly, incorporating gravity in the xz plane poses no additional difficulties

in this horizontal channel, as shown in Tables XIX and XX. We will see in Sec. C

how to deal with the effects of gravity on a vertical open boundary.

Interestingly, even though these error norms appear to decrease only slightly

as J increases, we can see from a logarithmic plot that they do, in fact, decay ex-

ponentially. See Fig. 36 for a graphical representation of the values in Table XX.
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J Eρ Eu Ev Ep
1 0.1556 0.23218 0.15239 0.1556
2 0.15506 0.23139 0.15096 0.15506
3 0.15452 0.2306 0.14954 0.15452
4 0.15399 0.22982 0.14815 0.15399
5 0.15346 0.22904 0.14679 0.15346
6 0.15293 0.22827 0.14545 0.15293
7 0.1524 0.22751 0.14413 0.1524
8 0.15188 0.22674 0.14283 0.15188
9 0.15136 0.22599 0.14156 0.15136
10 0.15085 0.22523 0.1403 0.15085

Table XVI. Error norms for Givoli-Neta NRBCs in basic system (IV.1) with J ∈
1 . . . 10 in an infinite channel with left-to-right advection

J Eρ Eu Ev Ep
1 0.12541 0.25444 0.1244 0.12541
2 0.12484 0.25298 0.11594 0.12484
3 0.12438 0.25176 0.11182 0.12438
4 0.12394 0.25063 0.10959 0.12394
5 0.12351 0.24953 0.10822 0.12351
6 0.12307 0.24843 0.10724 0.12307
7 0.12263 0.24734 0.10647 0.12263
8 0.12218 0.24626 0.10581 0.12218
9 0.12174 0.24518 0.10521 0.12174
10 0.1213 0.24411 0.10465 0.1213

Table XVII. Error norms for Givoli-Neta NRBCs in Coriolis-influenced system (IV.15)
with J ∈ 1 . . . 10 in an infinite channel with no advection
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J Eρ Eu Ev Ep
1 0.24986 0.6637 0.26511 0.24986
2 0.24943 0.66284 0.26447 0.24943
3 0.24901 0.662 0.26385 0.24901
4 0.2486 0.66119 0.26325 0.2486
5 0.24819 0.66039 0.26268 0.24819
6 0.24779 0.65961 0.26213 0.24779
7 0.2474 0.65886 0.2616 0.2474
8 0.24702 0.65812 0.26109 0.24702
9 0.24664 0.6574 0.2606 0.24664
10 0.24626 0.65669 0.26013 0.24627

Table XVIII. Error norms for Givoli-Neta NRBCs in Coriolis-influenced system
(IV.15) with J ∈ 1 . . . 10 in an infinite channel with left-to-right advection

J Eρ Eu Ev Ep
1 0.12998 0.25364 0.1265 0.1294
2 0.1294 0.25218 0.11796 0.12881
3 0.12893 0.25098 0.11379 0.12833
4 0.12849 0.24986 0.11152 0.12788
5 0.12804 0.24877 0.11012 0.12742
6 0.12758 0.24769 0.10913 0.12697
7 0.12713 0.24662 0.10835 0.12651
8 0.12667 0.24555 0.10768 0.12605
9 0.12621 0.24449 0.10707 0.1256
10 0.12575 0.24343 0.1065 0.12514

Table XIX. Error norms for Givoli-Neta NRBCs in gravity-influenced system (IV.31)
with J ∈ 1 . . . 10 in an infinite channel with no advection
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Figure 33. Comparison of u for Givoli-Neta NRBCs in basic system (IV.1) computed
with J = 1 and J = 10 in an infinite channel with no advection, with error norms
computed by (IV.14). (TL) Computed solution for J = 1. (TR) Computed solution
for J = 10. (BL) Delta between reference solution and J = 1 computed solution.
(BR) Delta between reference solution and J = 10 computed solution.

J Eρ Eu Ev Ep
1 0.1402 0.20569 0.14568 0.13973
2 0.13959 0.20481 0.14417 0.13912
3 0.13899 0.20395 0.14269 0.13852
4 0.13839 0.20309 0.14123 0.13793
5 0.13779 0.20223 0.13979 0.13733
6 0.1372 0.20138 0.13837 0.13674
7 0.1366 0.20053 0.13698 0.13615
8 0.13601 0.19969 0.13561 0.13556
9 0.13543 0.19885 0.13426 0.13498
10 0.13484 0.19802 0.13293 0.1344

Table XX. Error norms for Givoli-Neta NRBCs in gravity-influenced system (IV.31)
with J ∈ 1 . . . 10 in an infinite channel with left-to-right advection
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Figure 34. Plot of u for Givoli-Neta NRBCs in basic system (IV.1) with J = 10
in an infinite channel with left-to-right advection. (BL) Computed solution. (Top)
Reference solution; the area corresponding to the computed solution is contained
between the vertical lines. (BC) Reference solution truncated to computed solution
domain. (BR) Delta between reference solution and computed solution, with error
norm computed by (IV.14).
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Figure 35. Comparison of p for Givoli-Neta NRBCs in basic system (IV.1) computed
with J = 1 and J = 10 in an infinite channel with left-to-right advection, with error
norms computed by (IV.14). (TL) Computed solution for J = 1. (TR) Computed
solution for J = 10. (BL) Delta between reference solution and J = 1 computed
solution. (BR) Delta between reference solution and J = 10 computed solution.
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Figure 36. Logarithmic plot of state variable error norms (IV.14) for Givoli-Neta
NRBCs applied to gravity-influenced system (IV.31) with J ∈ 1 . . . 10 in an infinite
channel with left-to-right advection. (TL) Error norms for ρ. (TR) Error norms for
u. (BL) Error norms for w. (BR) Error norms for p.
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B. CORNER CONDITIONS IN AN OPEN DOMAIN
1. Derivation

In an auxiliary variable NRBC scheme, the corner where two open boundaries

intersect is a source of concern. Assuming the tangential derivatives are approximated

with a centered-difference formula, points adjacent to the corner depend on the value

at the corner. (This is not the case in a standard high-order NRBC such as the

Higdon sequence, where there are no tangential derivatives and thus no dependence

on the corner values, as we noted in Sec. IV.B.4.) So how should we treat this corner?

Is it to be considered part of one boundary but not the other? Even so, we still have

to use a different discretization scheme than that used elsewhere on the boundary.

We propose here to treat the corner as if it were part of a curved boundary; define the

normal derivative as the 45◦ vector bisecting the normal vector of the two adjacent

sides (see Fig. 37). With this definition, we have for the top-left and top-right corners

n

x

z

Figure 37. The “normal” derivative for the top-right corner of an open domain

of Fig. 22,

Top-left: ∂n =
−∂x + ∂z√

2

Top-right: ∂n =
∂x + ∂z√

2
, (V.15)
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and the associated tangential derivatives are given by

Top-left: ∂τ =
∂x + ∂z√

2

Top-right: ∂τ =
∂x − ∂z√

2
. (V.16)

In order to derive our characteristic system for the auxiliary variables, we must rewrite

(V.2) in terms of normal and tangential derivatives. It is straightforward to show that

∂tnϕ+N∂nnϕ+ T∂τ nϕ = C nϕ+ nD , (V.17)

where

Top-left: N =
1√
2
(−A+B)

T =
1√
2
(A+B)

Top-right: N =
1√
2
(A+B)

T =
1√
2
(A− B) . (V.18)

With these definitions, it is easy to show that the characteristic NRBC system for

each corner is given by �
∂tnξ0 = −Λ∂znξ0 − T̃∂τnξ0 + C̃nξ0 + D̃

=
+

(I − Λ) ∂tnξj + Λnξj+1 = −T̃∂τnξj + C̃nξj (V.19)�
nξJ = 0

=
− ,

where

Λ = diag
w
n0 + c0 n0 n0 n0 − c0

WT
Λ = RNR−1

T̃ = R−1TR , (V.20)

and C̃ and D̃ defined as in (V.9). On the top-left corner, we have

n0 =
−u0 + w0√

2
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τ0 =
u0 + w0√

2

R =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 −1 1

− c0√
2ρ0

1 1 c0√
2ρ0

c0√
2ρ0

1 1 − c0√
2ρ0

c20 0 0 c20

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

R−1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 −
√
2ρ0
4c0

√
2ρ0
4c0

1
2c20

1
2

1
4

1
4

− 1
2c20

−1
2

1
4

1
4

1
2c20

0
√
2ρ0
4c0

−
√
2ρ0
4c0

− 1
2c20

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

and on the top-right corner, we use

n0 =
u0 + w0√

2

τ0 =
u0 − w0√

2

R =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1

c0√
2ρ0

1 −1 − c0√
2ρ0

c0√
2ρ0
−1 1 − c0√

2ρ0

c20 0 0 c20

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

R−1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
√
2ρ0
4c0

√
2ρ0
4c0

1
2c20

1
2

1
4

−1
4
− 1
2c20

1
2
−1
4

1
4

− 1
2c20

0 −
√
2ρ0
4c0

−
√
2ρ0
4c0

− 1
2c20

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

In implementing the finite-difference approximations of ∂τ , decompose it into its con-

stituent ∂x and ∂z components. Use the ΓT auxiliary variable for ∂x, and use the ΓL

or ΓR auxiliary variable for ∂z, using one-sided differences. Note also that the eigen-

values of N must be non-zero. We can again use a “false” advection to get around

this difficulty, if needed.
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J Eρ Eu Ev Ep
1 0.16986 0.20783 0.19382 0.16986
2 0.16904 0.20686 0.19168 0.16905
3 0.16823 0.20591 0.18957 0.16823
4 0.16742 0.20496 0.18749 0.16742
5 0.16661 0.20401 0.18545 0.16661
6 0.16581 0.20307 0.18344 0.16581
7 0.16501 0.20214 0.18146 0.16502
8 0.16422 0.20121 0.17951 0.16422
9 0.16343 0.20029 0.1776 0.16343
10 0.16265 0.19938 0.17571 0.16265

Table XXI. Error norms for Givoli-Neta NRBCs in basic system (IV.1) with J ∈
1 . . . 10 in an open half-plane with left-to-right advection

2. Numerical Examples

For simplicity, let us consider just one example of this open-air domain. We

use our standard example with left-to-right advection with no inhomogeneous forces.

We require a “false” vertical advection on the top boundary and at the corners; we

use w0 =
δz

4tmax
= 1.0417ms . Table XXI and Fig. 38 show the error norms for the

state variables for J ∈ 1 . . . 10. Again, although the differences are small, they are
nonetheless exponential.

C. GRAVITATIONAL EFFECTS
1. Derivation

Our claim that L(nϕj) = 0 in the preceding section hinges on the fact that the

coefficient matrices are constant in the direction of the normal derivative. However,

this is not the case when we consider an NRBC on ΓT in the presence of gravity. In

that case, the coefficient terms A, B, C, and nD all depend on z. Recall the differential

operator L(nϕ) defined in (V.3). We still have L(nϕ) = nD by definition, but what of

the auxiliary variables? Since L (∂znϕ) W= ∂z (L (nϕ)), we come up against the exception

to Lemma V.1. A new derivation is needed. Apply the operator L to both sides of
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Figure 38. Logarithmic plot of state variable error norms (IV.14) for Givoli-Neta
NRBCs applied to basic system (IV.1) with J ∈ 1 . . . 10 in an open half-plane with
left-to-right advection. (TL) Error norms for ρ. (TR) Error norms for u. (BL) Error
norms for v. (BR) Error norms for p.

(V.1a, j = 0), and simplify

L(nϕ1) = L(∂tnϕ) + L(∂znϕ)

=

⎧⎪⎨⎪⎩ [∂ttnϕ+A∂xtnϕ+B∂ztnϕ− C∂tnϕ]+ [∂ztnϕ+A∂xz nϕ+B∂zz nϕ− C∂z nϕ]

=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
∂t (∂tnϕ+A∂xnϕ+B∂z nϕ− C nϕ)
+∂z (∂tnϕ+A∂xnϕ+B∂z nϕ− C nϕ)
−(∂zA)∂xnϕ− (∂zB)∂z nϕ+ (∂zC)nϕ

= ∂t(L(nϕ)) + ∂z(L(nϕ))− (∂zA)∂xnϕ− (∂zB)∂z nϕ+ (∂zC)nϕ
= ∂t nD + ∂z nD − (∂zA)∂xnϕ− (∂zB)∂znϕ+ (∂zC)nϕ

L(nϕ1) = −(∂zA)∂xnϕ− (∂zB)∂z nϕ+ (∂zC)nϕ+ ∂z nD (V.21)

As we continue applying the operator L to successive nϕj’s, this expression will result

in ever-higher z-derivative terms, exactly the case we are trying to avoid. We need

to define our reference states in such a way as to remove this difficulty. The most
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effective approach is to use the exponentially-decaying atmospheric model (IV.32),

given in Sec. IV.D.1.

We can rewrite the matrices A and B as the sum of a constant matrix and a

z-dependent one:

A = u0I +Az

B = w0I +Bz , (V.22)

where Az and Bz are the z-dependent cells of A and B, respectively. Given these

z-dependencies, and the definitions for ρ̄ and p̄, we have

∂zA = −αAz
∂zB = −αBz
∂zC = −αC
∂z nD = −αnD . (V.23)

Continuing our derivation of L(nϕ1) using these definitions, we have

L(nϕ1) = αAz∂xnϕ+ αBz∂z nϕ− αC nϕ− αnD

= α
p
L(nϕ)− nD − ∂tnϕ− u0∂xnϕ− w0∂z nϕ

Q
= α

p
nD − nD − ∂tnϕ− u0∂xnϕ− w0∂z nϕ

Q
= −α (∂tnϕ+ u0∂xnϕ+ w0∂znϕ)

L(nϕ1) = −α∂F nϕ , (V.24)

where ∂F denotes the Lagrangian derivative along the flow. If we continue this deriva-

tion for successive nϕj terms, we get

L(nϕ2) = −2α∂F nϕ1 − α2∂F nϕ

L(nϕ3) = −3α∂F nϕ2 − 3α2∂F nϕ1 − α3∂F nϕ (V.25)

etc.

This leads us to the following lemma:

101



Lemma V.2

L(nϕj) = −
j3
k=1

X
j

k

~
αk∂F nϕj−k (V.26)

Proof. Having demonstrated it for the j = 1 case, we now proceed by induction:

L(nϕj+1) = L(∂tnϕj) + L(∂znϕj) (V.27a)

= ∂t(L(nϕj)) + ∂ztnϕj +A∂xz nϕj +B∂zz nϕj − C∂z nϕj (V.27b)

=

⎧⎪⎨⎪⎩ ∂t(L(nϕj)) + ∂z (∂tnϕj +A∂xnϕj +B∂znϕj − C nϕj)
−(∂zA)∂xnϕj − (∂zB)∂znϕj + (∂zC)nϕj

(V.27c)

= ∂t(L(nϕj)) + ∂z(L(nϕj)) + αAz∂xnϕj + αBz∂znϕj − αC nϕj (V.27d)

=

⎧⎪⎨⎪⎩ ∂t(L(nϕj)) + ∂z(L(nϕj))

+α(L(nϕj)− ∂tnϕj − u0∂xnϕj − w0∂z nϕj)
(V.27e)

= ∂t(L(nϕj)) + ∂z(L(nϕj)) + αL(nϕj)− α∂F nϕj (V.27f)

=

⎧⎪⎨⎪⎩ ∂t
p
−�j

k=1

p
j
k

Q
αk∂F nϕj−k

Q
+ ∂z

p
−�j

k=1

p
j
k

Q
αk∂F nϕj−k

Q
+α
p
−�j

k=1

p
j
k

Q
αk∂F nϕj−k

Q
− α∂F nϕj

(V.27g)

= −
j3
k=1

X
j

k

~
αk∂F (∂tnϕj−k + ∂z nϕj−k)−

j3
k=0

X
j

k

~
αk+1∂F nϕj−k (V.27h)

= −
j3
k=1

X
j

k

~
αk∂F nϕj+1−k −

j+13
k=1

X
j

k − 1
~
αk∂F nϕj+1−k (V.27i)

= −
j3
k=1

XX
j

k

~
+

X
j

k − 1
~~

αk∂F nϕj+1−k − αj+1∂F nϕ (V.27j)

= −
j3
k=1

X
j + 1

k

~
αk∂F nϕj+1−k − αj+1∂F nϕ (V.27k)

L(nϕj+1) = −
j+13
k=1

X
j + 1

k

~
αk∂F nϕj+1−k 2 (V.28)

We can now use this L(nϕ) to remove the normal derivative terms. Proceeding with

each nϕj in succession, we first have

B∂znϕ = −∂tnϕ−A∂xnϕ+ C nϕ+ nD . (V.29)

Next, we have

L(nϕ1) ≡ ∂tnϕ1 +A∂xnϕ1 +B∂z nϕ1 − C nϕ1 = −α∂F nϕ , (V.30)

102



which we combine with (V.29) to get

B∂z nϕ1 = −∂tnϕ1 − A∂xnϕ1 + C nϕ1 − α∂tnϕ− αu0∂xnϕ− αw0∂znϕ

=

⎧⎪⎨⎪⎩ −∂tnϕ1 −A∂xnϕ1 + C nϕ1 − α (I − w0B−1) ∂tnϕ
−α (u0I − w0B−1A) ∂xnϕ− αw0B

−1
p
C nϕ+ nD

Q
.

(V.31)

Lemma V.3

B∂znϕj =

⎧⎪⎪⎨⎪⎪⎩
−∂tnϕj −A∂xnϕj + C nϕj −�j

k=1

p
j
k

Q
αkPk [(I − w0B−1) ∂tnϕj−k

+(u0I − w0B−1A) ∂xnϕj−k + w0B−1C nϕj−k]
−αjPjw0B−1 nD ,

(V.32)

for all j ≥ 1, where the polynomial sequence Pj is defined recursively by

Pj
p
w0B

−1Q = I − j−13
k=1

X
j

k

~
w0B

−1Pk
p
w0B

−1Q . (V.33)

Proof. As with the preceding lemma, having demonstrated the j = 1 case, we

proceed by induction:

L(nϕj+1) ≡ ∂tnϕj+1 +A∂xnϕj+1 +B∂z nϕj+1 − C nϕj+1
= −

j+13
k=1

X
j + 1

k

~
αk∂F nϕj+1−k (V.34)

B∂z nϕj+1 = −∂tnϕj+1 −A∂xnϕj+1 + C nϕj+1� ,� 1
Φ(nϕj+1)

−
j+13
k=1

X
j + 1

k

~
αk∂F nϕj+1−k (V.35a)

= Φ(nϕj+1)−
j+13
k=1

X
j + 1

k

~
αk (∂t + u0∂x + w0∂z) nϕj+1−k (V.35b)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Φ(nϕj+1)−�j
k=1

p
j+1
k

Q
αk (∂tnϕj+1−k + u0∂xnϕj+1−k

+w0B
−1 {−∂tnϕj+1−k −A∂xnϕj+1−k + C nϕj+1−k

−�j+1−k
l=1

p
j+1−k
l

Q
αlPl [(I − w0B−1) ∂tnϕj+1−k−l

+(u0I − w0B−1A) ∂xnϕj+1−k−l + w0B−1C nϕj+1−k−l]
−αj+1−kPj+1−kw0B−1 nD

�Q
− αj+1 (∂tnϕ+ u0∂xnϕ

+w0B
−1
p
−∂tnϕ−A∂xnϕ+ C nϕ+ nD

QQ
(V.35c)
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=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Φ(nϕj+1)−�j
k=1

p
j+1
k

Q
αk [(I − w0B−1) ∂tnϕj+1−k

+(u0I − w0B−1A) ∂xnϕj+1−k + w0B−1C nϕj+1−k]
+w0B

−1�j
k=1

p
j+1
k

Q
αk
�j+1−k
l=1

p
j+1−k
l

Q
αlPl [(I − w0B−1) ∂tnϕj+1−k−l

+(u0I − w0B−1A) ∂xnϕj+1−k−l + w0B−1C nϕj+1−k−l]
+w0B

−1�j
k=1

p
j+1
k

Q
αj+1Pj+1−kw0B−1 nD − αj+1 ((I − w0B−1) ∂tnϕ

+(u0I − w0B−1A) ∂xnϕ+ w0B−1
p
C nϕ+ nD

QQ
(V.35d)

B∂z nϕj+1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Φ(nϕj+1)−�j+1
k=1

p
j+1
k

Q
αk [(I − w0B−1) ∂tnϕj+1−k

+(u0I − w0B−1A) ∂xnϕj+1−k + w0B−1C nϕj+1−k]
+w0B

−1�j
k=1

�j+1−k
l=1

p
j+1
k

Qp
j+1−k
l

Q
αk+lPl [(I − w0B−1) ∂tnϕj+1−k−l

+(u0I − w0B−1A) ∂xnϕj+1−k−l + w0B−1C nϕj+1−k−l]
−αj+1

p
I −�j

k=1

p
j+1
k

Q
w0B

−1Pj+1−k
Q
w0B

−1 nD .

(V.36)

Since the binomial coefficients are symmetric, we can replace Pj+1−k with Pk in the

last line of the previous equation. The terms in the final group of parentheses are

thus Pj+1 by definition. As a temporary shorthand, let

Θ(nϕj+1−k−l) ≡
⎧⎪⎨⎪⎩ (I − w0B

−1) ∂tnϕj+1−k−l

+(u0I − w0B−1A) ∂xnϕj+1−k−l + w0B−1C nϕj+1−k−l
Ω ≡ αj+1Pj+1w0B

−1 nD .

This gives us

B∂z nϕj+1 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
Φ(nϕj+1)−�j+1

k=1

p
j+1
k

Q
αk [(I − w0B−1) ∂tnϕj+1−k

+(u0I − w0B−1A) ∂xnϕj+1−k + w0B−1C nϕj+1−k]
+w0B

−1�j
k=1

�j+1−k
l=1

p
j+1
k

Qp
j+1−k
l

Q
αk+lPlΘ(nϕj+1−k−l)− Ω .

(V.37)

We would like to replace the double summation with one in terms of αk rather than

αk+l. Let r = k + l. Looking at the values assumed by k + l and l, and recognizing

that l < k + l by definition, we can rewrite this double summation as

j+13
r=1

r−13
l=1

X
j + 1

r − l
~X
j + 1− (r − l)

l

~
αrPlΘ(nϕj+1−r) .
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A quick check shows that, not only are the indices mapped correctly, we also have

the correct number of terms in the new summation:

j3
k=1

j+1−k3
l=1

1 =
j+13
r=1

r−13
l=1

1 =
j(j + 1)

2
.

Also, we can simplify the binomial expansions byX
j + 1

r − l
~X
j + 1− (r − l)

l

~
=

X
j + 1

r

~X
r

l

~

Returning to our derivation, and reverting r back to k, we have

B∂znϕj+1 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
Φ(nϕj+1)−�j+1

k=1

p
j+1
k

Q
αk [(I − w0B−1) ∂tnϕj+1−k

+(u0I − w0B−1A) ∂xnϕj+1−k + w0B−1Cnϕj+1−k]
+w0B

−1�j+1
k=1

�k−1
l=1

p
j+1
k

Qp
k
l

Q
αkPlΘ(nϕj+1−k)− Ω

(V.38a)

=

⎧⎪⎨⎪⎩ Φ(nϕj+1)−�j+1
k=1

p
j+1
k

Q
αkΘ(nϕj+1−k)

+w0B
−1�j+1

k=1

�k−1
l=1

p
j+1
k

Qp
k
l

Q
αkPlΘ(nϕj+1−k)− Ω

(V.38b)

=

⎧⎪⎨⎪⎩ Φ(nϕj+1)

−�j+1
k=1

p
j+1
k

Q
αk
p
I −�k−1

l=1

p
k
l

Q
w0B

−1Pl
Q
Θ(nϕj+1−k)− Ω

(V.38c)

= Φ(nϕj+1)−
j+13
k=1

X
j + 1

k

~
αkPkΘ(nϕj+1−k)− Ω (V.38d)

B∂znϕj+1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

−∂tnϕj+1 − A∂xnϕj+1 + C nϕj+1
−�j+1

k=1

p
j+1
k

Q
αkPk [(I − w0B−1) ∂tnϕj+1−k

+(u0I − w0B−1A) ∂xnϕj+1−k + w0B−1Cnϕj+1−k]
−αj+1Pj+1w0B−1 nD 2

(V.39)

We are now able to remove the normal derivative terms from the auxiliary variable

equations. The auxiliary variable formulation for ΓT is

nϕj+1 = (∂t + ∂z) nϕj (V.40)

nϕ0 ≡ nϕ

nϕJ ≡ 0 .
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Using our formula for ∂znϕj, we have

nϕj+1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tnϕj +B
−1 {−∂tnϕj −A∂xnϕj + Cnϕj

−�j
k=1

p
j
k

Q
αkPk [(I − w0B−1) ∂tnϕj−k

+(u0I − w0B−1A) ∂xnϕj−k + w0B−1C nϕj−k]
−αjPjw0B−1 nD

�
.

(V.41)

Collecting all ∂t terms on the left-hand side with the nϕj+1 term, leaving all the other

terms on the right-hand side, and left-multiplying everything by B, we have

�j
k=1

p
j
k

Q
αkPk (I − w0B−1) ∂tnϕj−k
+(I − B) ∂tnϕj +Bnϕj+1

⎫⎪⎬⎪⎭ =
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
−A∂xnϕj + C nϕj
−�j

k=1

p
j
k

Q
αkPk [(u0I − w0B−1A) ∂xnϕj−k

+w0B
−1C nϕj−k]− αjPjw0B

−1 nD .

(V.42)

In characteristic form, we left-multiply both sides by R−1 and insert RR−1 as needed

to get

�j
k=1

p
j
k

Q
αkP̃k (I − w0Λ−1) ∂tnξj−k
+(I − Λ) ∂tnξj + Λnξj+1

⎫⎪⎬⎪⎭ =
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
−Ã∂xnξj + C̃nξj
−�j

k=1

p
j
k

Q
αkP̃k

�p
u0I − w0Λ−1Ã

Q
∂xnξj−k

+w0Λ
−1C̃nξj−k

=
− αjP̃jw0Λ

−1D̃ ,

(V.43)

for j ∈ 1, 2, . . . , J − 1, where

Λ = diag
w
w0 + c0 w0 w0 w0 − c0

WT

R =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρ̄
c0

1 1 − ρ̄
c0

0 −1 1 0

1 0 0 1

ρ̄c0 0 0 −ρ̄c0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

R−1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1
2

1
2ρ̄c0

1
2
−1
2
0 − 1

2c20

1
2

1
2

0 − 1
2c20

0 0 1
2
− 1
2ρ̄c0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
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Ã = R−1AR

P̃j = R−1PjR (V.44)

and nξj, C̃, and D̃ are defined as in (V.9). As with the simple case, we use natural

boundary conditions for the outgoing characteristics and the truncation condition for

the incoming. Hence, our auxiliary variable system is

�
∂tnξ0 =

⎧⎪⎨⎪⎩
−Λ∂znξ0 − Ã∂xnξ0 +

p
Λ(∂zR

−1)R

+C̃
Q
nξ0 + D̃

=
+

(I − Λ) ∂tnξ0 + Λnξ1 = −Ã∂xnξ0 + C̃nξ0 + D̃

�j
k=1

p
j
k

Q
αkP̃k (I − w0Λ−1) ∂tnξj−k
+(I − Λ) ∂tnξj + Λnξj+1

⎫⎪⎬⎪⎭ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

−Ã∂xnξj + C̃nξj
−�j

k=1

p
j
k

Q
αkP̃k

�
(u0I

−w0Λ−1Ã)∂xnξj−k
+w0Λ

−1C̃nξj−k
=
− αjP̃jw0Λ

−1D̃�
nξJ = 0

=
− , (V.45)

where we again use the + and − subscripts to denote outgoing and incoming char-
acteristics, respectively. Note also that, in order to have the ∂znξ0 term in the first

equation, we use the product rule and the z-dependence of R−1:

∂znξ0 = ∂z
p
R−1nϕ0

Q
= R−1∂znϕ0 +

p
∂zR

−1Q nϕ0 .
In the absence of gravity, α = 0, and (V.45) is analogous to (V.10).

We lose some computational efficiency with this implementation. Eq. (V.10)

defined a bi-diagonal matrix system, which requires O(J) operations per time step

with an efficient matrix solver. On the other hand, (V.45) is lower-Hessenberg and

requires O(J2) operations per time step.

When we extend this derivation to the open domains defined in the previous

section, we get the following system using N and T instead of A and B (compare to

(V.19)):

�
∂tnξ =

⎧⎪⎨⎪⎩
−Λ∂nnξ − T̃∂τnξ + (Λ (∂nR−1)R
+T̃ (∂τR

−1)R+ C̃
Q
nξ + D̃

=
+
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(I − Λ) ∂tnξ0 + Λnξ1 = −T̃
p
∂τnξ0 −

p
∂τR

−1QRnξ0Q+ C̃nξ0 + D̃
�j
k=1

p
j
k

Q
α̃kP̃k (I − n0Λ−1) ∂tnξj−k
+(I − Λ) ∂tnξj + Λnϕj+1

⎫⎪⎬⎪⎭ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

−T̃
p
∂τ nξj − (∂τR−1)Rnξj

Q
+ C̃nξj

−�j
k=1

p
j
k

Q
α̃kP̃k

�p
τ0I

−n0Λ−1T̃
Q p
∂τnξj−k − (∂τR−1)Rnξj−k

Q
+n0Λ

−1C̃nξj−k
=
− α̃jP̃jn0Λ

−1D̃�
nξJ = 0

=
− , (V.46)

where

Pk ≡ Pk
p
n0N

−1Q
Λ = diag

w
n0 + c0 n0 n0 n0 − c0

WT
N = R−1ΛR

T̃ = R−1TR

α̃ =
α√
2
.

In addition, we must replace ρ0 in the eigenvector matrices R and R−1 with the

z-dependent ρ̄.

About the Polynomial Sequence. A quick literature search [2, 60, 103, 118]

revealed no matches to the polynomial sequence

Pn(x) = 1−
n−13
k=1

X
n

k

~
xPk(x) .

The first five polynomials of this sequence are

P1 = 1

P2 = 1− 2x
P3 = 1− 6x+ 6x2

P4 = 1− 14x+ 36x2 − 24x3

P5 = 1− 30x+ 150x2 − 240x3 + 120x4 .

The first three are constant multiples of the Bernoulli polynomials [103], but not the

subsequent ones. We have not found any other matches to this sequence. However,
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Dr. Pante Stǎnicǎ at the Naval Postgraduate School observed [104] that the coeffi-

cients of Pn can be generated directly, without use of the recursion sequence, by the

formula

Pn =
n3
k=1

(−1)k+1k!
F
n

k

k
xk−1 , (V.47)

where
+
n
k

�
denotes the Stirling number of the second kind [46]. Other properties of

these polynomials, such as orthogonality and a generating function, may be explored

in future research.

2. Numerical Examples

Let us consider a few numerical examples, using our standard simulation.

First, we look briefly at the system in a semi-infinite channel, open on top (see

Fig. 6), subject to gravitational forces. There is no real advection, but we define our

false boundary advection w0 =
δz

4tmax
= 1.0417ms to keep the matrices non-singular.

Table XXII shows the error norms resulting from the cases J ∈ 1 . . . 10.

J Eρ Eu Ev Ep
1 0.073179 0.08778 0.11305 0.049617
2 0.073086 0.087435 0.11249 0.04944
3 0.07298 0.08704 0.11197 0.049261
4 0.072874 0.086646 0.11146 0.049083
5 0.07277 0.086255 0.11095 0.048907
6 0.072667 0.085866 0.11045 0.048732
7 0.072565 0.08548 0.10995 0.048558
8 0.072464 0.085096 0.10945 0.048386
9 0.072364 0.084716 0.10896 0.048215
10 0.072264 0.084337 0.10848 0.048046

Som. 0.092721 0.10278 0.22495 0.092238

Table XXII. Error norms (IV.14) for Givoli-Neta NRBCs, J ∈ 1 . . . 10, gravity-
influenced system (IV.31), semi-infinite vertical channel, no advection. The error
norm from using a Sommerfeld boundary condition is included for comparison.

Next, we consider the open-air domain (Fig. 22). We begin first with “zero”

advection (false boundary advection u0 =
δx

3tmax
= 1.3889ms , w0 =

δz
4tmax

= 1.0417ms ,
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chosen so that u0 W= w0 to keep N non-singular). Fig. 39 shows the state variable p

at the end of the run for J = 10. Table XXIII shows the error norms (IV.14) for each

Figure 39. The solution for the pressure perturbation p using J = 10, Givoli-Neta
NRBCs in an open half-plane subject to gravitational forces with no advection.
(Top) Reference solution; the area corresponding to the computed solution is con-
tained in the bottom-center box. (BL) Computed solution using NRBCs. (BC) Ref-
erence solution domain corresponding to NRBC solution domain. (BR) Delta between
computed and reference solutions, with error norm computed by (IV.14).

state variable as J goes from 1 to 10.

For our third example, we use the non-zero mean flow u0 = 100
m
s (maintaining

the same “false” w0 on the boundary), we get the error norms in Table XXIV.

In both cases, we observe that there is very little improvement when we in-

crease J . This property of auxiliary variable NRBCs has been noted before in other

contexts [36] and is the result of discretization errors induced by converting the nor-

mal derivative terms to tangential. Higher-order discretization schemes may improve

these results [55], but for the purpose of this dissertation, it is sufficient to demon-

strate how to use the auxiliary variable NRBC methods with the linearized Euler

equations. Furthermore, we note by the bottom row of Tables XXII—XXIV that the
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J Eρ Eu Ev Ep
1 0.30742 0.48811 0.20486 0.21176
2 0.30615 0.48976 0.20039 0.20991
3 0.30532 0.49034 0.19818 0.2087
4 0.30472 0.49024 0.19688 0.20784
5 0.30426 0.48972 0.19598 0.20717
6 0.30387 0.48896 0.19524 0.20662
7 0.30353 0.48805 0.19459 0.20613
8 0.30321 0.48706 0.19399 0.20568
9 0.30291 0.48602 0.19342 0.20526
10 0.30261 0.48497 0.19286 0.20485

Som. 0.30224 0.85386 0.30744 0.29872

Table XXIII. Error norms (IV.14) for Givoli-Neta NRBCs, J ∈ 1 . . . 10, gravity-
influenced system (IV.31), open-air domain, no advection. The error norm from
using a Sommerfeld boundary condition is included for comparison.

auxiliary variable method is significantly more accurate than the basic Sommerfeld

(first-order Higdon) condition.

Note: Examination of our characteristic systems (V.45) and (V.19) reveals

that, in a uniform domain (zero perturbations in all state variables), the presence

of the non-zero D̃ on the right-hand side will generate non-zero results at the next

time step. Physically, this should not happen; it is a consequence of replacing the

normal derivatives with tangential derivatives. To avoid this problem, a check should

be made at each point on the boundary prior to applying the boundary condition: If

the solution at the point, its immediate neighbors, and the corresponding auxiliary

variables are all zero, then the solution at the point should remain zero.

D. SUMMARY

In this chapter we have modified the Givoli-Neta auxiliary variable method for

implementation in a first-order system. Although our original context is the linearized

Euler equations, the linear matrix equation can be extended easily to any first-order

system. The gravity-influenced derivation is specific to the linearized Euler equations,
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J Eρ Eu Ev Ep
1 0.20976 0.25767 0.24514 0.18111
2 0.20923 0.25683 0.24286 0.18049
3 0.20866 0.256 0.24061 0.17987
4 0.20813 0.25517 0.2384 0.17925
5 0.2076 0.25435 0.23623 0.17863
6 0.20703 0.25353 0.2341 0.17802
7 0.20647 0.25272 0.232 0.17741
8 0.20596 0.25191 0.22994 0.17681
9 0.20546 0.25112 0.22793 0.17621
10 0.20492 0.25036 0.22596 0.17562

Som. 0.25189 0.34105 0.27768 0.24917

Table XXIV. Error norms (IV.14) for Givoli-Neta NRBCs, J ∈ 1 . . . 10, gravity-
influenced system (IV.31), open-air domain, left-to-right advection. The error norm
from using a Sommerfeld boundary condition is included for comparison.

but the rest of the implementation is fully portable to any other linear first-order

system.

In the next chapter we consider a third class of NRBC, one which was recently

developed in the literature, which we shall extend to our equation system.
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VI. HAGSTROM-WARBURTON NRBCS

FOR THE LINEARIZED EULER EQUATIONS

A. INITIAL IMPLEMENTATION FOR FIRST-ORDER
SYSTEMS
1. Derivation

We now consider a third class of NRBC, the Hagstrom-Warburton auxiliary

variable technique, and apply it to the linearized Euler equations. We proceed simi-

larly to Sec. 6 of [57], which documented the concept’s extension to symmetric first-

order systems. While our system can be made symmetric [117], it is actually not

necessary to do so, and some numerical experiments have shown that the results are

either the same as the following straightforward approach, worse, or unstable, depend-

ing on the domain configuration. The vector form of (III.33) is a fairly straightforward

extension.

∂tnϕ1 = a0∂tnϕ+ ∂nnnϕ

aj∂tnϕj+1 − ∂nnnϕj+1 = aj∂tnϕj+1 + ∂nnnϕj (VI.1)

nϕJ+1 ≡ 0

We remove the wave speed c from the equations because the wave speeds will instead

be replaced by the eigenvalues of the coefficient matrix corresponding to the normal

derivative. As with the preceding chapter for the Givoli-Neta formulation, we begin

with a useful lemma:

Lemma VI.1 Let L(nϕ) = ∂tnϕ + A∂xnϕ + B∂ynϕ − C nϕ. The auxiliary variables nϕj
satisfy

L(nϕj) = 0 (VI.2)

for all j ≥ 1. The only exception is when both of the following conditions apply:
• nn = ±k̂
• g W= 0
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Proof. Apply the differential operator L to (VI.1a), giving

L (∂tnϕ1) = L (a0∂tnϕ+ ∂nnnϕ)

=
p
a0∂t

p
L( nD)

Q
+ ∂nn

p
L( nD)

QQ
∂t(L(nϕ1)) = 0 (VI.3)

Since nϕ1 is initially zero, L(nϕ1) is also zero, and thus it is always zero. Proceeding by

induction we now apply L to (VI.1b) and get

L (aj∂tnϕj+1 − ∂nnnϕj+1) = L (aj∂tnϕj + ∂nn nϕj)

= aj∂t(L(nϕj)) + ∂nn(L(nϕj))

= 0 (VI.4)

We then integrate along the incoming characteristic to get L(nϕj+1), which must be

zero because the incoming characteristics are zero 2

Once again, as with Lemma V.1, the proof relies on the fact that L (∂nnnϕ) =

∂nn (L (nϕ)). On the top and bottom of a gravity-influenced domain, that is not true,

because the coefficient matrices also depend on z. We will address this issue in Sec. C.

As with the Givoli-Neta formulation, we would like to get rid of the normal

derivative terms in (VI.1). For definiteness, the following derivation is applied to a

right-hand-side boundary, that is, nn = î. Simply make the appropriate changes for

the other boundaries (except a vertical boundary in the presence of gravity, as we

have noted). Left-multiply (VI.1a) by A and subtract 0 = L(nϕ)− nD to get

A∂tnϕ1 = (a0A− I) ∂tnϕ− B∂ynϕ+ C nϕ+ nD (VI.5)

Similarly, left-multiply (VI.1b) by A and add L(nϕj+1) = −L(nϕj) = 0 to get

(ajA+ I) ∂tnϕj+1 +B∂ynϕj+1 − Cnϕj+1 = (ajA− I) ∂tnϕj − B∂ynϕj + C nϕj (VI.6)

Consider the eigenvalue and eigenvector matrices for the Givoli-Neta NRBCs

(V.7). Left-multiply (VI.5) and (VI.6) by R−1 and make the substitution nξj = R−1nϕj.
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We get

Λ∂tnξ1 = (a0Λ− I) ∂tnξ0 − B̃∂ynξ0 + C̃nξ0 + D̃
(ajΛ+ I) ∂tnξj+1 + B̃∂ynξj+1 − C̃nξj+1 = (ajΛ− I) ∂tnξj − B̃∂ynξj + C̃nξj , (VI.7)

where B̃, C̃ and D̃ are all defined by (V.9). We also insert R−1R as needed to

change the nϕj terms to nξj’s. We have a self-contained system of equations defined

solely on the boundary. Hence, with the boundary perturbations initially zero, these

equations will always remain zero. So we need to incorporate interior values into

our formulation in order to have something more than a rather convoluted Dirichlet

condition. Following the approach in [57], we replace the four-equation truncation

condition nϕJ+1 ≡ 0 with a more characteristic-based approach. For the outgoing

characteristics, we use the interior scheme

�
∂tnξ0 + Λ∂xnξ0 + B̃∂ynξ0 = C̃nξ0 + D̃

=
+
, (VI.8)

where the + subscript indicates that we only consider the resulting equations corre-

sponding to the outgoing characteristics. This gives us one or three equations (de-

pending on the sign of u0) for our system of unknowns. For the remaining unknowns,

we apply the truncation condition to the incoming characteristics only, i.e.,

�
nξJ+1 = 0

=
− (VI.9)

These two equations, in conjunction with (VI.7), define a system of 4(J+2) equations

for 4(J +2) unknowns nξj. Collecting the time derivative terms onto one side gives us

the explicit system:

�
∂tnξ0 = −Λ∂xnξ0 − B̃∂y|znξ0 +

p
B̃
p
∂zR

−1QR+ C̃Q nξ0 + D̃=
+

Λ∂tnξ1 + (I − a0Λ) ∂tnξ0 = −B̃∂y|znξ0 +
p
B̃
p
∂zR

−1QR+ C̃Q nξ0 + D̃
(I + ajΛ) ∂tnξj+1 + (I − ajΛ) ∂tnξj =

⎧⎪⎨⎪⎩ −B̃∂y|z
nξj+1 +

p
B̃ (∂zR

−1)R + C̃
Q
nξj+1

−B̃∂y|znξj +
p
B̃ (∂zR

−1)R+ C̃
Q
nξj�

nξJ+1 = 0
=
− , (VI.10)
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where the subscript y|z denotes a partial derivative with respect to either y or z, de-
pending on the domain. The ∂zR

−1 term is non-zero only when gravity is considered.

Note that the presence of Λ on the left-hand side of (VI.10b) requires that we

again have Λ (and thus A) non-singular, as with the Givoli-Neta NRBC. We solve the

problem here the same way. Impose a false advection u0 = 6 W= 0 small enough that
the system will not drift across a single grid point over the duration of the simulation;

thus,

,u0, < δx

2tmax
(VI.11)

where δx is the grid spacing, tmax is the duration of the simulation, and we include a

factor of two to ensure that there will be no drift even with round-off errors.

2. Numerical Examples

Let us consider a few numerical examples. We use our usual infinite-channel

example, considering the same six cases as Sec. V.3, always with J ∈ 1 . . . 10. Ta-
ble XXV shows the state variable error norms for the basic system with no advection.

Table XXVI shows the error norms for the basic system with left-to-right advec-

tion. Table XXVII shows the error norms for the Coriolis-influenced system with

no advection. Table XXVIII shows the error norms for the Coriolis-influenced sys-

tem with left-to-right (u0 = 100ms ) advection. Table XXIX shows the error norms

for the gravity-influenced system with no advection (recall that we can handle grav-

ity when our open boundaries are on the left and/or right, but not on the top or

bottom). Table XXX shows the error norms for the gravity-influenced system with

left-to-right advection. For comparison, each table includes the error norm resulting

from using a Sommerfeld condition. For the “no advection” cases we use the false

advection u0 = 1.3889
m
s . In every case, we make the simplification aj = 1 for all j.

Hagstrom et al. [53], citing an analysis by Diaz and Joly [23], show that this choice is

always adequate. We will also make this simplification in all subsequent derivations

for these NRBCs. Fig. 40 shows the state variable p at the end of the run for J = 10
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for the gravity-influenced system with left-to-right advection. Note again the strong

reflections which accompany the characteristic-based implementations [72].

Figure 40. The solution for the pressure p using J = 10, Hagstrom-Warburton
NRBCs, gravity-influenced system (IV.31), infinite horizontal channel, left-to-right
advection. (Top) Reference solution; the area corresponding to the computed so-
lution is contained between the vertical lines. (BL) Computed solution using NR-
BCs. (BC) Reference solution domain corresponding to NRBC solution domain.
(BR) Delta between computed and reference solutions, with error norm computed by
(IV.14).
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J Eρ Eu Ev Ep
1 0.12441 0.25176 0.10978 0.12441
2 0.12353 0.24955 0.10744 0.12353
3 0.12264 0.24735 0.10619 0.12264
4 0.12175 0.24519 0.10511 0.12175
5 0.12086 0.24305 0.10407 0.12086
6 0.11999 0.24095 0.10304 0.11999
7 0.11912 0.23887 0.10203 0.11912
8 0.11827 0.23683 0.10103 0.11827
9 0.11742 0.23482 0.10004 0.11742
10 0.11658 0.23283 0.099065 0.11658

Som. 0.21847 0.53616 0.12503 0.21847

Table XXV. Error norms (IV.14) for Hagstrom-Warburton NRBCs for basic system
(IV.1) with J ∈ 1 . . . 10 in an infinite channel with no advection. Error norms from
using a Sommerfeld radiation condition are included for comparison

J Eρ Eu Ev Ep
1 0.13788 0.2047 0.14207 0.13788
2 0.1367 0.20297 0.13915 0.1367
3 0.13553 0.20126 0.13632 0.13553
4 0.13437 0.19958 0.13358 0.13437
5 0.13322 0.19791 0.13092 0.13322
6 0.13209 0.19626 0.12835 0.13209
7 0.13096 0.19462 0.12586 0.13096
8 0.12985 0.19301 0.12344 0.12985
9 0.12874 0.19141 0.1211 0.12874
10 0.12765 0.18983 0.11884 0.12765

Som. 0.21817 0.29414 0.17727 0.21817

Table XXVI. Error norms (IV.14) for Hagstrom-Warburton NRBCs for basic system
(IV.1) with J ∈ 1 . . . 10 in an infinite channel with left-to-right advection. Error
norms from using a Sommerfeld radiation condition are included for comparison
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J Eρ Eu Ev Ep
1 0.12441 0.25176 0.10979 0.12441
2 0.12353 0.24955 0.10745 0.12353
3 0.12264 0.24736 0.10621 0.12264
4 0.12175 0.24519 0.10513 0.12175
5 0.12086 0.24306 0.10408 0.12086
6 0.11999 0.24095 0.10306 0.11999
7 0.11912 0.23888 0.10204 0.11912
8 0.11827 0.23684 0.10104 0.11827
9 0.11742 0.23482 0.10005 0.11742
10 0.11658 0.23284 0.09908 0.11658

Som. 0.21847 0.53616 0.12503 0.21847

Table XXVII. Error norms (IV.14) for Hagstrom-Warburton NRBCs for Coriolis-
influenced system (IV.15) with J ∈ 1 . . . 10 in an infinite channel with no advection.
Error norms from using a Sommerfeld radiation condition are included for comparison

J Eρ Eu Ev Ep
1 0.13855 0.31144 0.21862 0.13855
2 0.13753 0.30948 0.21789 0.13753
3 0.13654 0.3076 0.21725 0.13653
4 0.13557 0.3058 0.21668 0.13557
5 0.13464 0.30407 0.21617 0.13464
6 0.13372 0.3024 0.21573 0.13372
7 0.13284 0.3008 0.21534 0.13284
8 0.13198 0.29926 0.215 0.13197
9 0.13113 0.29777 0.21471 0.13113
10 0.13032 0.29633 0.21446 0.13032

Som. 0.1929 0.32104 0.15953 0.1929

Table XXVIII. Error norms (IV.14) for Hagstrom-Warburton NRBCs for Coriolis-
influenced system (IV.15) with J ∈ 1 . . . 10 in an infinite channel with left-to-right
advection. Error norms from using a Sommerfeld radiation condition are included for
comparison
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J Eρ Eu Ev Ep
1 0.12896 0.25097 0.11173 0.12835
2 0.12807 0.24879 0.10934 0.12745
3 0.12714 0.24663 0.10807 0.12652
4 0.12622 0.24449 0.10697 0.1256
5 0.1253 0.24238 0.10591 0.12469
6 0.12439 0.24031 0.10487 0.12379
7 0.12349 0.23826 0.10384 0.12289
8 0.12259 0.23624 0.10283 0.12201
9 0.12171 0.23425 0.10183 0.12113
10 0.12084 0.2323 0.10084 0.12026

Som. 0.22442 0.52603 0.12775 0.22374

Table XXIX. Error norms (IV.14) for Hagstrom-Warburton NRBCs for gravity-
influenced system (IV.31) with J ∈ 1 . . . 10 in an infinite channel with no advection.
Error norms from using a Sommerfeld radiation condition are included for comparison

J Eρ Eu Ev Ep
1 0.13899 0.20395 0.14268 0.13852
2 0.13779 0.20223 0.13977 0.13733
3 0.1366 0.20053 0.13696 0.13615
4 0.13543 0.19885 0.13423 0.13498
5 0.13426 0.19718 0.13158 0.13382
6 0.13311 0.19554 0.12902 0.13267
7 0.13197 0.19391 0.12654 0.13154
8 0.13084 0.1923 0.12414 0.13041
9 0.12972 0.19071 0.12181 0.1293
10 0.12861 0.18913 0.11956 0.1282

Som. 0.21869 0.28969 0.17855 0.21802

Table XXX. Error norms (IV.14) for for Hagstrom-Warburton NRBCs for gravity-
influenced system (IV.31) with J ∈ 1 . . . 10 in an infinite channel with left-to-right
advection. Error norms from using a Sommerfeld radiation condition are included for
comparison
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B. CORNER CONDITIONS
1. Derivation

We can use the same methods as in Sec. V.1 to apply these NRBCs to the

corners of an open domain, in the absence of gravity. Using the same notation as

before, our characteristic-based NRBC scheme on three open sides of a half-plane is

given by

∂tnξ+ = −Λ∂nnξ+ − T̃∂τ nϕ+
Λ∂tnξ1 + (I − Λ)∂tnξ = −T̃∂τ nϕ

(I + Λ)∂tnξj+1 + (I − Λ)∂tnξj = −T̃∂τ nϕj+1 − T̃∂τ nϕj
nξJ+1,− = 0 (VI.12)

where we use

Left :

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
∂n = −∂x
∂τ = ∂z

T = B

Right :

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
∂n = ∂x

∂τ = ∂z

T = B

Top :

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
∂n = ∂z

∂τ = ∂x

T = A

(VI.13)

Top-left :

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
∂n = (−∂x + ∂z) /

√
2

∂τ = (∂x + ∂z) /
√
2

T = (A+B) /
√
2

Top-right :

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
∂n = (∂x + ∂z) /

√
2

∂τ = (∂x − ∂z) /
√
2

T = (A−B) /√2

121



2. Numerical Examples

Let us now consider some examples. Since we cannot include the effects of

gravity on the top of the domain, we consider only four cases: The basic system

and the system influenced by Coriolis forces, with and without horizontal advec-

tion. We use the same false advection as in Sec. 2 (horizontal) and V.2 (vertical).

Table XXXI shows the error norms for J ∈ 1 . . . 10 for the basic system with no ad-

vection. Table XXXII shows the error norms for J ∈ 1 . . . 10 for the basic system with
left-to-right advection. Table XXXIII shows the error norms for J ∈ 1 . . . 10 for the
Coriolis-influenced system with no advection. Table XXXIV shows the error norms

for J ∈ 1 . . . 10 for the Coriolis-influenced system with left-to-right advection. Fig. 41
shows an example of the horizontal velocity perturbation u for the basic no-advection

test. Note the reflections are stronger at the bottom corners than the top. These

reflections are the result of waves reflecting off the hard wall on the bottom before

impacting the left and right boundaries; thus, their incidence angles are greater than

45
◦
. At the top corners, these waves pass through the open top with the smaller inci-

dence angle, so there is less reflection evident. If we plot the values of Table XXXIV,

we see that the error norms decrease exponentially as J increases by 2 (Fig. 42, but

note that v increases with J ≥ 7). The reason for the saw-tooth pattern is unknown,
but it is only present in the Coriolis+advection case; the other cases show exponential

reductions with each increase in J .
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Figure 41. The solution for the horizontal velocity u using J = 10, Hagstrom-
Warburton NRBCs, basic system (IV.1), open half-plane, no advection. (Top) Ref-
erence solution; the area corresponding to the computed solution is contained in the
bottom-center box. (BL) Computed solution using NRBCs. (BC) Reference solution
domain corresponding to NRBC solution domain. (BR) Delta between computed and
reference solutions, with error norm computed by (IV.14).

J Eρ Eu Ev Ep
1 0.17603 0.30011 0.13089 0.17604
2 0.17485 0.29724 0.12848 0.17485
3 0.17364 0.29438 0.12699 0.17365
4 0.17244 0.29157 0.12565 0.17245
5 0.17125 0.28881 0.12435 0.17126
6 0.17007 0.2861 0.12307 0.17007
7 0.1689 0.28345 0.12182 0.1689
8 0.16773 0.28085 0.12059 0.16774
9 0.16658 0.2783 0.11938 0.16658
10 0.16543 0.2758 0.11819 0.16543

Som. 0.33324 0.71942 0.2414 0.33325

Table XXXI. Error norms (IV.14) for Hagstrom-Warburton NRBCs for basic system
(IV.1) with J ∈ 1 . . . 10 in an open half-plane with no advection. Error norms from
using a Sommerfeld radiation condition are included for comparison
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J Eρ Eu Ev Ep
1 0.16823 0.20592 0.18956 0.16823
2 0.16661 0.20403 0.18543 0.16661
3 0.16501 0.20217 0.18143 0.16501
4 0.16342 0.20034 0.17755 0.16342
5 0.16186 0.19854 0.1738 0.16186
6 0.16031 0.19675 0.17016 0.16031
7 0.15878 0.19499 0.16664 0.15878
8 0.15727 0.19326 0.16323 0.15727
9 0.15577 0.19154 0.15993 0.15577
10 0.15429 0.18985 0.15673 0.1543

Som. 0.2675 0.32527 0.2411 0.2675

Table XXXII. Error norms (IV.14) for Hagstrom-Warburton NRBCs for basic system
(IV.1) with J ∈ 1 . . . 10 in an open half-plane with left-to-right advection. Error
norms from using a Sommerfeld radiation condition are included for comparison

J Eρ Eu Ev Ep
1 0.17604 0.30024 0.13095 0.17604
2 0.17484 0.29737 0.12852 0.17484
3 0.17364 0.29451 0.12704 0.17365
4 0.17243 0.29169 0.12569 0.17243
5 0.17125 0.28893 0.12439 0.17126
6 0.17006 0.28622 0.12311 0.17006
7 0.16889 0.28356 0.12186 0.1689
8 0.16772 0.28096 0.12063 0.16772
9 0.16657 0.2784 0.11943 0.16658
10 0.16541 0.27591 0.11824 0.16542

Som. 0.33324 0.71943 0.2414 0.33325

Table XXXIII. Error norms (IV.14) for Hagstrom-Warburton NRBCs for Coriolis-
influenced system (IV.15) with J ∈ 1 . . . 10 in an open half-plane with no advection.
Error norms from using a Sommerfeld radiation condition are included for comparison
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J Eρ Eu Ev Ep
1 0.20445 0.35374 0.261 0.20444
2 0.20472 0.35221 0.26198 0.20471
3 0.20277 0.34939 0.26073 0.20276
4 0.20307 0.34806 0.26177 0.20306
5 0.20117 0.34542 0.26059 0.20116
6 0.20152 0.34424 0.26168 0.2015
7 0.19966 0.34175 0.26057 0.19965
8 0.20003 0.34072 0.26169 0.20002
9 0.19822 0.33836 0.26064 0.19821
10 0.19862 0.33744 0.26179 0.19861

Som. 0.26015 0.34856 0.20456 0.26014

Table XXXIV. Error norms (IV.14) for Hagstrom-Warburton NRBCs for Coriolis-
influenced system (IV.15) with J ∈ 1 . . . 10 in an open half-plane with left-to-right
advection. Error norms from using a Sommerfeld radiation condition are included for
comparison
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Figure 42. Logarithmic plot of error norms (IV.14) for Hagstrom-Warburton NRBC,
J ∈ 2 . . . 10, open half-plane, Coriolis, left-to-right advection. (TL) Error norm for ρ.
(TR) Error norm for u. (BL) Error norm for v. (BR) Error norm for p.
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C. INCOMPATIBILITY WITH GRAVITY

Problems arise, however, when we try to incorporate the effects of gravity on

the top boundary. (We can include it on ΓL and ΓR without any difficulty.) Using

the same approach as for the Givoli-Neta NRBCs, we apply the differential operator

L to both sides of (VI.1a), beginning the process of removing the normal derivatives:

L (∂tnϕ1) = L (a0∂tnϕ+ ∂z nϕ)

∂t (L (nϕ1)) = a0∂t (L (nϕ)) + L (∂znϕ)

= a0∂t nD + ∂tz nϕ+A∂xz nϕ+B∂zznϕ− C∂z nϕ

=

⎧⎪⎨⎪⎩ ∂z (∂tnϕ+A∂xnϕ+B∂znϕ− C nϕ)
− (∂zA) nϕ− (∂zB) nϕ+ (∂zC) nϕ

∂t (L (nϕ1)) = ∂z (L (nϕ))− (∂zA) nϕ− (∂zB) nϕ+ (∂zC) nϕ . (VI.14)

Even with the simplifying assumption of an exponentially-decaying atmosphere, we

still have

∂t (L (nϕ1)) = ∂z nD + αAz nϕ+ αBz nϕ− αC nϕ

= −αnD + α (L (nϕ)− ∂tnϕ− u0∂xnϕ− w0∂znϕ)
= −αnD + αnD − α (∂tnϕ+ u0∂xnϕ+ w0∂znϕ)

∂t (L (nϕ1)) = −α∂F nϕ . (VI.15)

To continue this derivation, we must integrate the Lagrangian flow derivative of nϕ over

time. The result is then applied to find L (nϕ2), with increasingly convoluted combina-

tions of Lagrangian derivatives and time integrals. This approach is not satisfactory.

Hence, we require a different approach if we wish to incorporate gravitational effects

into the Hagstrom-Warburton NRBCs. We have not found such an approach, but

future research may reveal a suitable technique.
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D. WAVE-LIKE IMPLEMENTATION
1. Derivation

The results from this implementation are not bad, but the improvement with

larger J is slight. Furthermore, the reflections downstream of the advection are trou-

blesome. Perhaps we can do better. Looking at (VI.1), we see a hint of the problem.

Although Hagstrom and Warburton do not provide a physical interpretation of their

auxiliary variable formulation, inspection of (VI.1) shows that we can conceive of the

second equation in the following manner: The outgoing characteristic of nϕj is in some

sense paired with the incoming characteristic of nϕj+1. However, when we use these

characteristic variables for a first-order system, we contradict this interpretation of

the auxiliary variables, since each variable has only one characteristic (either incom-

ing or outgoing), not two. If we could contrive a second characteristic for each state

variable, it might improve our results. Let us instead apply the NRBC to each state

variable individually. Instead of Lemma VI.1, we use the following:

Lemma VI.2 Each state variable ϕ ∈ {ρ, u, v, p} has a solution which satisfies the
acoustic wave equation

∂ttϕ = c
2
w∇2ϕ , (VI.16)

where

cw =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
c0 + u0 on ΓE
c0 − u0 on ΓW
c0 + v0 on ΓN
c0 − v0 on ΓS .

(VI.17)

The derivation is given in Appendix C. With this fact, we can then implement the

auxiliary variables exactly as given in [57], taking each state variable individually.

Upon removing the normal derivatives, we are left with the following system of equa-

tions:

−a0∂tϕ+ ∂tϕ1 = cp∂xϕ

2a1(1− a20)∂ttϕ
+(1 + a21 + 2a0a1)∂ttϕ1

+(1− a21)∂ttϕ2

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
=

⎧⎪⎨⎪⎩ c
2
w(2a1∂yyϕ

+∂yyϕ1 + ∂yyϕ2)
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aj(1− a2j−1)∂ttϕj−1
+(aj−1 + aj)(1 + aj−1aj)∂ttϕj

+aj−1(1− a2j)∂ttϕj+1

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
c2w(aj∂yyϕj−1

+(aj−1 + aj)∂yyϕj

+aj−1∂yyϕj+1)

aP (1− a2P−1)∂ttϕP−1
+(aP−1 + aP )(1 + aP−1aP )∂ttϕP

⎫⎪⎬⎪⎭ =

⎧⎪⎨⎪⎩ c
2
w(aP∂yyϕP−1

+(aP−1 + aP )∂yyϕP ) ,
(VI.18)

where cw = c0 + u0. When we make the simplification aj = 1, this system reduces to

−∂tϕ+ ∂tϕ1 = cp∂xϕ

4∂ttϕ1 =

⎧⎪⎨⎪⎩ c
2
w(2∂yyϕ

+∂yyϕ1 + ∂yyϕ2)

4∂ttϕj =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
c2w(∂yyϕj−1

+2∂yyϕj

+∂yyϕj+1)

4∂ttϕP =

⎧⎪⎨⎪⎩ c
2
w(∂yyϕP−1

+2∂yyϕP ) ,
(VI.19)

This system is the NRBC on ΓE. On ΓW replace ∂xϕ in (VI.19a) with −∂xϕ, and
use cw = c0 − u0.

2. Numerical Examples

If we run the same infinite-channel example as in Sec. 1.2, using the wave-based

auxiliary variable approach from the preceding section, we get the results illustrated in

Fig. 43 with the error norms for all state variables given in Table XXXV. If we use the

non-zero mean flow u0 = 100
m
s , we get the error norms in Table XXXVI. Comparing

Tables XXXV and XXXVI to Tables XXV and XXVI, respectively, we see that this

new version’s error norms are approximately half the old version’s. We note also that

the new method’s error norms show almost no improvement for J ≥ 5. This “error
floor” has been observed in other auxiliary variable implementations for scalar wave

equations [36]. Although the old method shows continual (albeit slow) improvement,

the error norms do not match those of the new method until J ≈ 500, which runs far
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Figure 43. The solution for the pressure p using J = 10, wave-like Hagstrom-
Warburton NRBCs in an infinite channel, basic system with no advection. (Top) Ref-
erence solution; the area corresponding to the computed solution is contained between
the vertical lines. (BL) Computed solution using NRBCs. (BC) Reference solution
domain corresponding to NRBC solution domain. (BR) Delta between computed and
reference solutions, with error norm computed by (IV.14).

slower than the new method’s J = 5. While this result is promising, experiments with

longer integration times show that this wave-like implementation is less stable than

the characteristic-based method; hence, we do not pursue its development further.

E. SUMMARY

This chapter concludes our development of NRBCs for the linearized Euler

equations. For each NRBC, we have derived its implementation and demonstrated

its effectiveness for short time-integrations. In the next two chapters, we will consider

the question of longer time-integrations and the relative strengths and weaknesses of

each method.
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J Eρ Eu Ev Ep
1 0.059866 0.16273 0.038642 0.059866
2 0.059442 0.16184 0.038079 0.059443
3 0.059306 0.16156 0.037884 0.059306
4 0.059252 0.16144 0.037804 0.059252
5 0.059236 0.16139 0.037775 0.059237
6 0.059234 0.16138 0.037765 0.059235
7 0.059235 0.16138 0.037761 0.059236
8 0.059236 0.16138 0.03776 0.059237
9 0.059237 0.16138 0.037759 0.059237
10 0.059237 0.16138 0.037759 0.059238

Table XXXV. Error norms (IV.14) for J ∈ 1 . . . 10, wave-like Hagstrom-Warburton
NRBCs, infinite channel, basic system with no advection

J Eρ Eu Ev Ep
1 0.053965 0.078277 0.040606 0.053965
2 0.053561 0.077765 0.040013 0.053561
3 0.05347 0.077625 0.039873 0.05347
4 0.053457 0.077589 0.039842 0.053457
5 0.053456 0.077575 0.039836 0.053456
6 0.053455 0.077568 0.039835 0.053455
7 0.053454 0.077564 0.039835 0.053454
8 0.053453 0.077562 0.039835 0.053453
9 0.053453 0.077561 0.039834 0.053453
10 0.053453 0.077561 0.039834 0.053453

Table XXXVI. Error norms (IV.14) for J ∈ 1 . . . 10, wave-like Hagstrom-Warburton
NRBCs, infinite channel, basic system with left-to-right advection
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VII. LONG-TIME STABILITY

A. OBSERVATIONS

In this chapter we address the stability of the NRBCs for long time-integrations.

This issue is critical to numerical weather prediction and other applications which re-

quire time frames beyond that of a single wave’s propagation through the domain.

Higdon [68] discusses the numerical stability of his NRBC formulation, us-

ing criteria developed by Kreiss [81] and Gustafsson et al. [52] (and Higdon’s own

characteristic-based interpretation thereof [63]). While his scheme meets the de-

fined stability criteria, there is still concern that a scheme which is stable for the

single-variable Klein-Gordon equation is also stable long-term for the equivalent

linearized Euler system. Long-term stability, surprisingly, has not been much dis-

cussed or demonstrated in NRBC development. In the Givoli-Neta papers explor-

ing the automated Higdon NRBCs and the Givoli-Neta auxiliary variable NRBCs

[39, 40, 41, 42, 43, 90, 113, 114, 115, 116], only [90] discusses the long-time stability

of the solution, showing that the automated Higdon NRBC of order J = 10 is stable

for long time-integrations. In the papers exploring the Hagstrom-Warburton auxil-

iary variable scheme [57, 37, 53, 55], long-time stability was claimed in [57] (although

the numerical example plotted showed an error norm that was increasing over time),

and [55] uses an evanescent mode correction (a second set of auxiliary variables) to

ensure long-time stability.

As for the papers which discuss various NRBC techniques for the linearized

Euler equations, only the absorbing layer methods [1, 17, 72, 73, 88] discuss or demon-

strate long-time stability. Specifically, the numerical examples in [17] are carried out

for long time-integrations, and the PMLs [1, 72, 73] require additional terms to make

them stable ([88] claims medium-term stability and implies stability over long time-

integrations).

All three types of NRBCs presented in this dissertation suffer from some form
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of long-time instability. One example may be seen in Fig. 44, which is the state

variable u from the numerical example of Sec. IV.B.3, with J = 10, run until t = 100 s.

As we can see, the values on the boundary have become catastrophically large, and

they have polluted the domain, completely overwhelming the actual wave (faintly

visible near the center of the domain). Tables XXXVII—XXXIX list the maximum

order J for which the given NRBC is stable for the various domain configurations

for short (24 s), medium (100 s), and long (10,000 s) time-integrations. Table entries

marked “No” indicate that the configuration was unstable even for J = 1. The

upper limit to J for the short-term stability mirrors a condition seen while producing

the results given in [90]; even though the Higdon scheme is theoretically stable in the

discrete case, round-off errors in the finite-precision implementation lead to instability.

This same problem afflicted the examples given in Chapter IV: If the example was

performed on a 50×50 grid, it was stable only up to J = 5; halving the grid spacings
enabled the stable results up to J = 10.

Figure 44. Plot of unstable u in basic system (IV.1) with Higdon NRBC J = 10 in
a semi-infinite channel integrated up to t = 100 s. Notice the faint wave crests near
the middle of the domain
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Domain Coriolis Short Medium Long
shape or gravity Advection (24 s) (100 s) (10,000 s)
Bucket None None 10 8 4

Coriolis None 10 8 4
Gravity None 10 8 No

Channel None L-R 10 4 No
Coriolis L-R 2 2 No
Gravity None 10 8 4

L-R 10 4 No
Open None None 10 5 2

L-R 10 4 No
BL-TR 10 4 No

Coriolis None 10 5 2
L-R 2 No No
BL-TR 2 No No

Ground Gravity None 10 5 No
L-R 10 4 No

Table XXXVII. Higdon NRBCs, maximum stable order J for various domain config-
urations and simulation durations

For the Hagstrom-Warburton NRBCs, we found short-term stability as high

as J = 40. While the NRBC still exhibits exponential improvement (see Fig. 45),

the improvement is slight enough that the computational overhead for such high J is

unjustified; hence, we did not seek an actual “maximum” stable J but simply noted

that the maximum is at least J = 40.
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Domain Coriolis Short Medium Long
shape or gravity Advection (24 s) (100 s) (10,000 s)
Bucket None None 15 7 No

Coriolis None 15 7 No
Gravity None 13 6 No

Channel None L-R 12 7 4
Coriolis L-R 11 7 1
Gravity None 15 7 No

L-R 12 7 3
Ground None None 15 7 No

L-R 12 3 No
Coriolis None 15 7 No

L-R 10 3 No
Gravity None 13 No No

L-R 11 3 No

Table XXXVIII. Givoli-Neta NRBCs, maximum stable order J for various domain
configurations and simulation durations

Domain Coriolis Short Medium Long
shape or gravity Advection (24 s) (100 s) (10,000 s)
Bucket None None 40+ 40+ No

Coriolis None 40+ 40+ No
Channel None L-R 40+ 40+ 40+

Coriolis L-R 40+ 40+ 40+
Gravity None 40+ 40+ No

L-R 40+ 40+ 5
Ground None None 40+ 28 No

L-R 40+ 3 No
Coriolis None 40+ 27 No

L-R 40+ 4 No

Table XXXIX. Hagstrom-Warburton NRBCs, maximum stable order J for various
domain configurations and simulation durations
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Figure 45. Logarithmic plot of error norms (IV.14) for J ∈ 1 . . . 40, Hagstrom-
Warburton NRBCs, open half-plane with Coriolis, no advection. (TL) Error norms
for ρ. (TR) Error norms for u. (BL) Error norms for v. (BR) Error norms for p.
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B. SPECULATIONS

Based on observations from these and other experiments during this research,

we can tentatively identify several possible instability sources. These sources, though

currently mere conjecture and speculation, will be explored in future research.

1. Round-off errors. Early tests of these NRBCs used a smaller domain, only 1
km square, and the scheme was stable up to J ≈ 8. Increasing the domain
size and grid spacing by an order of magnitude made the scheme stable up to
J = 10.

2. Normal derivatives reaching too far into the domain. The first numerical ex-
amples, using the Higdon scheme, were run on a 50×50 grid. The scheme was
unstable for J > 5. Changing the grid to 100 × 100 made the scheme stable
up to J = 10. As a result, the normal derivatives of the Higdon scheme did
not reach as far into the domain. Van Joolen [113] noted this same behavior
for the Klein-Gordon equation.

3. Dependency between interior and NRBC near corners. Although no points
depend on the corner values in the Higdon NRBC scheme (see Fig. 13), the
interior point closest to the corner depends on two boundary points, rather
than just one. It could be that this dependence creates a slight error, just
enough that it grows over time and destabilizes the system.

4. Frequency mis-match between interior and Higdon NRBC schemes. A reviewer
for [21] noted that the Higdon NRBC discretization scheme (IV.10) cannot re-
solve the shortest wavelengths resolvable by the interior scheme (IV.7). When
a wave strikes the open boundary, the NRBC computes the value based on
every other point at every other time step, as if for a wave with twice the
wavelength. The skipped points of the wave are then used at the next time
step to compute that next time step’s boundary value. Hence, a wave striking
the boundary with wavelength ν is resolved by the NRBC as a two-stage com-
position of two waves, each with wavelength 2ν. A stability analysis by one of
the co-authors of [21] is in progress to determine the impact of this resolution
discrepancy.

5. Numerically-singular matrix computations. For the Givoli-Neta NRBCs with
gravity, in either the “bucket” or open-air domains, Matlab issued “Matrix is
close to singular or badly scaled” warnings for large J and small δt. It appears
the left-hand matrix used to solve the auxiliary variables is prone to numeric
instability.

6. Exponentially-growing solutions. Although Higdon [68] proves the stability
of his system by demonstrating that exponentially-growing solutions are not
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permitted for the discrete system and boundary condition, it is possible that
such solutions are appearing in this system. Look at Fig. 46, which shows the
results of an unstable configuration run until t = 100s. For each unstable J , the
∞-norm of the solution grows exponentially after a certain point in time. If we
were to extend these lines backward, they would intersect at approximately
t = 0. Hence, it appears that there is an initially small, but exponentially
growing, solution within the scheme. Over time, this exponentially growing
solution overwhelms the other interior values and leads to the unstable system.

7. Discrete reflection coefficient greater than unity. Our analysis of the reflection
coefficients (III.15) and (III.34) is based on the partial derivatives in the con-
tinuous case. However, we implement the system using finite differences on
discrete variables. It is possible that the “reflection coefficient” in the discrete
case is dependent on more factors than just the wave speed and the NRBC
estimated wave speed, factors such as the grid spacing and the time step size.
Some configurations may lead to ,R, > 1 for some waves. See Appendix D
for some initial analysis. A full analysis of this discrete reflection coefficient
will be performed in future research.
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Figure 46. Logarithmic plot of state variable ∞-norms for J ∈ 1 . . . 11, Givoli-Neta
NRBCs, open half-plane, left-to-right advection, no gravity or Coriolis, run until
t = 100s. (TL) ∞-norms for ρ. (TR) ∞-norms for u. (BL) ∞-norms for w. (BR)
∞-norms for p.

One result of the Hagstrom-Warburton table was surprising: The “bucket”

configuration was always unstable long-term, but the infinite channel configuration
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showed long-term stability. This result was not a programming error. Running the

simulation on a horizontal semi-infinite channel showed the same instability as the

vertical semi-infinite channel. The stability of the boundary condition was impacted

by the type of boundary on the opposite side. Until a formal analysis is undertaken

to explain this result, we offer here a tentative hypothesis. The instability comes

from waves whose reflection coefficients are slightly greater than unity when striking

an open boundary on one side. On an open boundary on the other side, the wave

speed and NRBC wave speed combine to cause a reflection coefficient less than unity;

however, if the other side is a hard wall, then its reflection coefficient is exactly unity,

and so the undiminished wave is totally reflected back to the open boundary, where

it is again reflected and magnified back toward the hard wall, and so forth, growing

in magnitude with each pass.
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VIII. SUMMARY AND COMPARISONS

Having developed three distinct NRBC methods, we now examine them side-

by-side to assess their relative strengths and weaknesses. As stated in the introduction

(Chapter I), there are four criteria we desire for an NRBC: speed, accuracy, stability,

and ease of implementation. We consider each criterion individually and compare the

three NRBC methods against each other.

Speed. We do not have speed comparisons of the implementations, as a simple

“execution time” metric is dependent on the efficiency of the code and the inventive-

ness of the programmer. However, we can make some ballpark estimates based on

the approximate operator counts required. As noted in their respective chapters, the

basic Higdon scheme (as automated by the Givoli-Neta algorithm) requires O(3J)

operations, but the simplification of setting all the cj to the same value reduces the

operation count to O(J2). The Givoli-Neta and Hagstrom-Warburton auxiliary vari-

able methods each require O(J) operations, except for the Givoli-Neta NRBC in the

presence of gravity, which requires O(J2).

Accuracy. By using the same numerical example throughout this disser-

tation, we can easily compare the relative accuracy of the three implementations.

The only change is that the Higdon scheme’s no-advection examples used a semi-

infinite channel instead of the infinite channel used for the Givoli-Neta and Hagstrom-

Warburton schemes. Even if we assume the error norms for the Higdon scheme would

be doubled by having two open boundaries, we still see that the Higdon NRBC error

norms are approximately 80% lower than Hagstrom-Warburton NRBC error norms,

which in turn are approximately 40% lower than the Givoli-Neta NRBC error norms

(for the basic system, but only 10% lower for the Coriolis- and gravity-influenced

systems). The only exception to this case is the Higdon scheme with advection and

Coriolis. In all other cases, Hagstrom-Warburton is approximately the same or slightly

better than Givoli-Neta, but Higdon is significanly better than either of them. Again,
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this is a consequence of the characteristic-based boundary method.

Stability. When we consider stability, our comparison depends on the con-

figuration. Comparing the Higdon scheme to the Givoli-Neta scheme, we see that

Higdon is more stable when there is no advection, but Givoli-Neta is more stable in

the presence of non-zero advection. In fact, the Higdon scheme is completely unstable

in the non-zero advection case with Coriolis forces; however, the Givoli-Neta scheme

shows some medium-term stability. The Hagstrom-Warburton scheme is the most

stable, although it and the Givoli-Neta schemes are less stable in an open half-plane

with non-zero advection. It also turns out that only the Hagstrom-Warburton scheme

exhibited any appreciable long-term stability (specifically, in the infinite channel do-

main), while the other two methods failed for nearly all configurations.

Ease of implementation. All three methods are fairly straightforward and

easy to implement. Since all three methods are explicit, they can be computed in

a separate calculation after the interior scheme’s calculations. The Higdon scheme

requires a summation algorithm to automate the high-order finite-difference approx-

imations, and the Givoli-Neta and Hagstrom-Warburton schemes require a careful

consideration of characteristic and some matrix calculations. These drawbacks are

not significant. However, Higdon is limited by the number of points in the domain, and

it is not yet possible to implement Hagstrom-Warburton on an open top boundary in

the presence of gravity. Furthermore, Higdon requires a careful choice of interior dis-

cretization schemes [39, 19], while experiments with the Hagstrom-Warburton scheme

for the scalar wave equation [55] show that higher-order interior schemes can be used

(an option we have not attempted to utilize here). Such high-order schemes may also

be permissible for the Givoli-Neta method.

Summary. The Higdon scheme has an enormous advantage in accuracy,

Hagstrom-Warburton is the most stable, Givoli-Neta and Hagstrom-Warburton are

approximately equally fast, and all three are equally easy to implement.
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IX. CONCLUSIONS AND AREAS FOR

FURTHER RESEARCH

We have shown through the preceding chapters that high-order non-reflecting

boundary conditions can be applied to the 2-D linearized Euler equations in a wide

variety of configurations. The Higdon, Givoli-Neta, and Hagstrom-Warburton tech-

niques can all be used, in channels and in open domains, with and without advec-

tion, with basic conditions or with gravity or Coriolis, excepting only the Hagstrom-

Warburton method with gravity. However, despite the large amount of work con-

tained herein, there remain many more extensions and improvements. These areas

for further study include the following:

1. Application of the auxiliary variable methods (Givoli-Neta and Hagstrom-
Warburton) to finite element models

2. Extension of the NRBC formulations to account for evanescent modes as well
as the primary waves

3. Analysis of the stability of each scheme for long-time integrations, including
an exploration of the conjectures enumerated in Chapter VII, and mitigation
of identified error sources

4. Application of the NRBCs to the full three-dimensional system, including both
gravity and Coriolis simultaneously

5. Incorporating the NRBCs into a nested environment

6. Finding a means to incorporate gravity into the Hagstrom-Warburton scheme

7. Application of the NRBCs to the non-linear system, in two or three dimensions

8. Extending this work to other linear first-order systems, such as Maxwell’s
equations or the shallow-water equations (as a first-order system, not converted
to the Klein-Gordon equation as in [113] and elsewhere)

In the introduction, we stated that one motivation behind this NRBC develop-

ment was to support the next generation of atmospheric modeling tools. This research

has made significant progress toward that goal. With a broad-based finite-difference
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implementation, the next step is to adapt the implementation for a spectral element

system. In addition, the long-term stability concerns still need to be addressed. Al-

though we have not satisfied our original purpose, we have nonetheless developed new

computation tools for a broad array wave propagation models.
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APPENDIX A. SIMPLIFYING THE EULER

EQUATIONS

1. INTRODUCTION

Eq. (II.55) from Sec. II.B is

∂tρ+ ∂x(ρu) + ∂y(ρv) + ∂z(ρw) = 0

∂t(ρu) + ∂x(ρu
2) + ∂y(ρuv) + ∂z(ρuw) + ∂xp = fρv

∂t(ρv) + ∂x(ρuv) + ∂y(ρv
2) + ∂z(ρvw) + ∂yp = −fρu (A.1)

∂t(ρw) + ∂x(ρuw) + ∂y(ρvw) + ∂z(ρw
2) + ∂zp = −gρ

∂t(ρe) + ∂x((ρe+ p)u) + ∂y((ρe+ p)v) + ∂z((ρe+ p)w) = −gρw

This form can be simplified, if we assume the fluid under consideration is an

ideal gas (p = ρRT ). The simplified form requires fewer terms and is thus easier and

faster to calculate. We will consider the mass, momentum, and energy equations

separately.

2. MASS EQUATION

We begin the simplification process with the first equation of the set:

∂tρ+ ∂x(ρu) + ∂y(ρv) + ∂z(ρw) = 0 (A.2)

This equation needs no simplification. However, we will expand the three spatial

derivative terms using the product rule, since that form will appear in the subsequent

simplifications

∂tρ+ u∂xρ+ v∂yρ+ w∂zρ+ ρ (∂xu+ ∂yv + ∂zw) = 0 (A.3)

3. MOMENTUM EQUATIONS

The next simplification can be taken with the next three equations of the set:

∂t(ρu) + ∂x(ρu
2) + ∂y(ρuv) + ∂z(ρuw) + ∂xp = fρv
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∂t(ρv) + ∂x(ρuv) + ∂y(ρv
2) + ∂z(ρvw) + ∂yp = −fρu

∂t(ρw) + ∂x(ρuw) + ∂y(ρvw) + ∂z(ρw
2) + ∂zp = −gρ (A.4)

We first use the product rule to separate the equations’ components as follows:

u∂tρ+ u∂x(ρu) + u∂y(ρv) + u∂z(ρw)

+ρ∂tu+ ρu∂xu+ ρv∂yu+ ρw∂zu+ ∂xp

⎫⎪⎬⎪⎭ = fρv

v∂tρ+ v∂x(ρu) + v∂y(ρv) + v∂z(ρw)

+ρ∂tv + ρu∂xv + ρv∂yv + ρw∂zv + ∂yp

⎫⎪⎬⎪⎭ = −fρu

w∂tρ+ w∂x(ρu) + w∂y(ρv) + w∂z(ρw)

+ρ∂tw + ρu∂xw + ρv∂yw + ρw∂zw + ∂zp

⎫⎪⎬⎪⎭ = −gρ (A.5)

We then combine terms to get

u (∂tρ+ ∂x(ρu) + ∂y(ρv) + ∂z(ρw))

+ρ (∂tu+ u∂xu+ v∂yu+ w∂zu) + ∂xp

⎫⎪⎬⎪⎭ = fρv

v (∂tρ+ ∂x(ρu) + ∂y(ρv) + ∂z(ρw))

+ρ (∂tv + u∂xv + v∂yv + w∂zv) + ∂yp

⎫⎪⎬⎪⎭ = −fρu

w (∂tρ+ ∂x(ρu) + ∂y(ρv) + ∂z(ρw))

+ρ (∂tw + u∂xw + v∂yw + w∂zw) + ∂zp

⎫⎪⎬⎪⎭ = −gρ (A.6)

The terms in the first set of parentheses matches (A.2), so we can eliminate them.

Dividing the remaining terms by ρ gives

∂tu+ u∂xu+ v∂yu+ w∂zu+
1

ρ
∂xp = fv

∂tv + u∂xv + v∂yv + w∂zv +
1

ρ
∂yp = −fu

∂tw + u∂xw + v∂yw + w∂zw +
1

ρ
∂zp = −g (A.7)

4. ENERGY EQUATION

Now the simplification process gets more complicated, using the final equation

of the set:

∂t(ρe) + ∂x((ρe+ p)u) + ∂y((ρe+ p)v) + ∂z((ρe+ p)w) = −gρw (A.8)
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We begin with our state equation and our definition of energy

p = ρRT (A.9)

e = cvT +
1

2
(u2 + v2 + w2) (A.10)

R = cp − cv (A.11)

Combining these terms, we have

ρe = p
cv
R
+
ρu2 + ρv2 + ρw2

2
(A.12)

Substituting this value into (A.8) gives

∂t
p
p cv
R
+ ρu2+ρv2+ρw2

2

Q
+∂x

pp
p cv
R
+ ρu2+ρv2+ρw2

2

Q
u+ pu

Q
+∂y
pp
p cv
R
+ ρu2+ρv2+ρw2

2

Q
v + pv

Q
+∂z
pp
p cv
R
+ ρu2+ρv2+ρw2

2

Q
w + pw

Q

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
= −gρw (A.13)

Separating the sums and using the product rule gives the expansion

cv
R
∂tp+ ρu∂tu+ ρv∂tv + ρw∂tw +

u2+v2+w2

2
∂tρ

+ cv
R
∂x(pu) +

1
2
∂x (ρu (u

2 + v2 + w2)) + ∂x(pu)

+ cv
R
∂y(pv) +

1
2
∂y (ρv (u

2 + v2 + w2)) + ∂y(pv)

+ cv
R
∂z(pw) +

1
2
∂z (ρw (u

2 + v2 + w2)) + ∂z(pw)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
= −gρw (A.14)

Combining the cv
R
terms and expanding more pieces with the product rule gives

cv
R
(∂tp+ u∂xp+ v∂yp+ w∂zp+ p (∂xu+ ∂yv + ∂zw))

+ρu∂tu+ ρv∂tv + ρw∂tw

+u2+v2+w2

2
(∂tρ+ ∂x(ρu) + ∂y(ρv) + ∂z(ρw))

+(ρu) (u∂xu+ v∂xv + w∂xw)

+(ρv) (u∂yu+ v∂yv + w∂yw)

+(ρw) (u∂zu+ v∂zv + w∂zw)

+u∂xp+ v∂yp+ w∂zp+ p (∂xu+ ∂yv + ∂zw)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

= −gρw (A.15)

145



The parenthetical term in the third line matches (A.2), so we can eliminate it entirely.

In addition, if we combine the ρu, ρv, and ρw terms together, we get

cv
R
(∂tp+ u∂xp+ v∂yp+ w∂zp+ p (∂xu+ ∂yv + ∂zw))

+(ρu) (∂tu+ u∂xu+ v∂xv + w∂xw)

+(ρv) (∂tv + u∂yu+ v∂yv + w∂yw)

+(ρw) (∂tw + u∂zu+ v∂zv + w∂zw)

+u∂xp+ v∂yp+ w∂zp+ p (∂xu+ ∂yv + ∂zw)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
= −gρw (A.16)

Based on the simplified results in (A.7), we can replace the third, fourth, and fifth

lines of the above equation, resulting in the following

cv
R
(∂tp+ u∂xp+ v∂yp+ w∂zp+ p (∂xu+ ∂yv + ∂zw))

+(ρu)
p
−1

ρ
∂xp+ fv

Q
+(ρv)

p
−1

ρ
∂yp− fu

Q
+(ρw)

p
−1

ρ
∂zp− g

Q
+u∂xp+ v∂yp+ w∂zp+ p (∂xu+ ∂yv + ∂zw)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
= −gρw, (A.17)

which we can expand into

cv
R
(∂tp+ u∂xp+ v∂yp+ w∂zp+ p (∂xu+ ∂yv + ∂zw))

−u∂xp+ fρuv − v∂yp− fρuv − w∂zp− gρw
+u∂xp+ v∂yp+ w∂zp+ p (∂xu+ ∂yv + ∂zw)

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
= −gρw, (A.18)

Canceling terms reduces this equation to

cv
R
(∂tp+ u∂xp+ v∂yp+ w∂zp+ p (∂xu+ ∂yv + ∂zw)) + p (∂xu+ ∂yv + ∂zw) = 0,

(A.19)

which we can also write as

cv
R
(∂tp+ u∂xp+ v∂yp+ w∂zp) +

w
cv
R
+ 1
W
p (∂xu+ ∂yv + ∂zw) = 0, (A.20)

From our definition of R we have

cv
R
+ 1 =

cv +R

R
=
cv + (cp − cv)

R
=
cp
R
, (A.21)

146



so that multiplying the above equation by R
cv
gives the simplified equation

∂tp+ u∂xp+ v∂yp+ w∂zp+ γp (∂xu+ ∂yv + ∂zw) = 0, (A.22)

where γ = cp
cv
, and we have replaced our energy variable with the primitive state

variable for pressure.
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APPENDIX B. THE FINITE DIFFERENCE

INTERIOR SCHEME

Let us briefly analyze the interior scheme used in Chapters IV—VI. We claim

that this discretization scheme is O(δx2+ δy2+ δt2). Is that claim true? To test this

scheme, we contrive an analytic solution of sines and cosines

ρ = ρ0 cos(kxx) cos(kyy) cos(ωt)

u = u0 sin(kxx) cos(kyy) cos(ωt)

v = v0 cos(kxx) sin(kyy) cos(ωt)

p = p0 cos(kxx) cos(kyy) cos(ωt)

(B.1)

with kx = ky =
π
4
and ω =

�
γp0
ρ0
·
�
k2x + k

2
y. On a 40 × 40 m domain, these values

match a hard wall boundary condition on all four sides. We apply the differential

operators of (IV.1) to this equation, and set the results as the right-hand-side values of

(IV.1). These terms will then act to force the solution to remain equal to (B.1) within

the limits of the discretization error. So that all four state variables are approximately

the same order of magnitude, we set ρ0 = 1, γ = 1, p0 = 1, and u0 = v0 = 0.25.

Since the leap-frog method requires two prior time steps, we use the analytic

solution to set the values for the first two time steps. We then use the discretization

scheme to compute the next time step, which we compare to the analytic solution at

that same time step. We compute the average absolute error at each interior point

for each state variable by

Eϕ =

�Nx−1
i=2

�Ny−1
j=2 |ϕ̂i,j − ϕi,j|

(Nx − 2) (Ny − 2) (B.2)

where ϕ̂ is our computed state variable, and ϕ is the analytic solution state variable.

For the first test, we begin with δx = 0.8, and we halve it with each iteration.

We set δy = 0.00625 for all iterations, so that the discretization error in y does not

overwhelm the x-discretization error we wish to measure, and we set δt = 2−6, which
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δx δy δt Eρ, Ep Eu Ev
0.8 0.00625 0.015625 2.7983 ×10−4 8.0102 ×10−4 4.9978 ×10−5
0.4 0.00625 0.015625 7.1 ×10−5 2.0223 ×10−4 1.2617 ×10−5
0.2 0.00625 0.015625 1.7814 ×10−5 5.062 ×10−5 3.1584 ×10−6
0.1 0.00625 0.015625 4.4562 ×10−6 1.2654 ×10−5 7.91 ×10−7

Table XL. Discretization errors for different grid spacings δx

δx δy δt Eρ, Ep Eu Ev
0.00625 0.8 0.015625 2.7983 ×10−4 4.9978 ×10−5 8.0102 ×10−4
0.00625 0.4 0.015625 7.1 ×10−5 1.2617 ×10−5 2.0223 ×10−4
0.00625 0.2 0.015625 1.7814 ×10−5 3.1584 ×10−6 5.062 ×10−5
0.00625 0.1 0.015625 4.4562 ×10−6 7.91 ×10−7 1.2654 ×10−5

Table XLI. Discretization errors for different grid spacings δy

is well below the CFL limit for these conditions. Table XL shows the discretization

errors for each state variable with each halving of δx. The error norms decrease by

a factor of almost four with each halving of δx, exacly as expected for a second-

order method. The only exception to this decrease is the error norm for v. We note,

however, that the equation for v contains two ∂y terms and only one ∂x term, so it

is not surprising that reducing the error for ∂x without simultaneously reducing the

error for ∂y would have only a small impact.

For our second test, we set δx = 0.00625, and we begin with δy = 0.8, halving

it with each iteration. Keeping δt the same as before, we get the results shown in

Table XLI. Note that these errors are almost identical to those for the δx test, with

the error norms for u and v reversed. Hence we conclude that the method is also

second-order in the y direction.

As a third test, we start with δx = δy = 0.8 and halve both grid spacings at

each iteration. Using a larger δt = 2−5, we get the results shown in Table XLII, and

we see second-order results in all four state variables.

Finally, we test δt. This time, we set δx = δy = 0.4, and we begin with
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δx δy δt Eρ, Ep Eu Ev
0.8 0.8 0.03125 9.5561 ×10−4 1.5883 ×10−3 1.5883 ×10−3
0.4 0.4 0.03125 2.4401 ×10−4 4.031 ×10−4 4.031 ×10−4
0.2 0.2 0.03125 6.1292 ×10−5 1.012 ×10−4 1.012 ×10−4
0.1 0.1 0.03125 1.5216 ×10−5 2.5368 ×10−5 2.5368 ×10−5

Table XLII. Discretization errors for different grid spacings δx and δy

δx δy δt Eρ, Ep Eu Ev
0.8 0.8 0.25 0.0066075 0.012469 0.012469
0.8 0.8 0.125 0.0037399 0.0063109 0.0063109
0.8 0.8 0.0625 0.0019051 0.0031717 0.0031717
0.8 0.8 0.03125 0.00095561 0.0015883 0.0015883

Table XLIII. Discretization errors for different time steps δt

δt = 0.25, halving it with each iteration. The results are somewhat surprising. As

shown in Table XLIII, the error norms only decrease by a factor of two with each

halving of δt, which implies a first-order method rather than second-order. The

discretization scheme is the same. How can a scheme which is second-order in space

be only first-order in time? Perhaps the difference comes from how the discretization

scheme is used. For the spatial derivative approximations, we use the known node

values to approximate the derivative, that is,

∂xu ≈ u
n
i+1 − uni−1
2δx

, (B.3)

which is a second-order approximation, easily demonstrated via Taylor series expan-

sion. For the time derivative, we approximate it using the equation system, and then

use that approximation and the earlier node value to compute the new node value:

∂tu = RHS(nϕ) (B.4)

un+1i − un−1i

2δt
≈ ∂tu (B.5)

un+1i ≈ un−1i + 2δt∂tu (B.6)
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If we rewrite the superscript for the un−1i term, we see that this method is in fact

Euler’s method over 2δt:

un+1i ≈ u(n+1)−2i + 2δt∂tu (B.7)

Since Euler’s method is only a first-order approximation, our time marching method

is only first-order, even though it is defined using the same discretization scheme

for our second-order spatial derivative approximations. Thus, it appears that our

discretization scheme is in fact O(δx2 + δy2 + δt).

This analysis “feels” wrong, and it caused some strenuous debates with the

dissertation supervisors. However, it fits the observations. Furthermore, other ex-

periments designed to test the leap-frog scheme’s performance also showed similarly

inexplicable results. Testing it as an ODE solver resulted in O(δx3) performance for

a single-step and a global O(δx2) convergence. Contrariwise, a test using an analytic

solution to the heat equation

∂tu = ∂xxu+ ∂yyu

initially showedO(δx5/2) single-step convergence, but as the time step became smaller,

the improvement shrank to O(δx) and remained there. The cause of this performance

is under investigation.
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APPENDIX C. WAVE-LIKE SOLUTIONS OF

THE LINEARIZED EULER EQUATIONS

We now derive the wave-like solution used in Lemma VI.2. The derivation is

similar to Hu’s [71], where he uses a non-dimensionalized system and split variables

to derive the PML equations. We first assume the existence of a wave-like solution,

then we derive the amplitude of each state variable. By avoiding contradictions, we

prove that such a wave-like solution exists. This wave-like solution has the form

nϕ = nϕ∗eikx+ily−iωt , (C.1)

where nϕ denotes our state variables, and nϕ∗ denotes the amplitudes of each compo-

nent. If we apply (C.1) to (IV.1) and cancel out the common exponential term, we

get

−iωρ∗ + iku0ρ∗ + ilv0ρ∗ + ikρ0u∗ + ilρ0v∗ = 0

−iωu∗ + iku0u∗ + ilv0u∗ + ik
ρ0
p∗ = 0

−iωv∗ + iku0v∗ + ilv0v∗ + il
ρ0
p∗ = 0

−iωp∗ + iku0p∗ + ilv0p∗ + ikγp0u∗ + ilγp)v∗ = 0 .

(C.2)

Combining terms, we get

(ku0 + lv0 − ω) ρ∗ + kρ0u∗ + lρ0v∗ = 0

(ku0 + lv0 − ω)u∗ + k
ρ0
p∗ = 0

(ku0 + lv0 − ω) v∗ + l
ρ0
p∗ = 0

kγp0u
∗ + lγp0v∗ + (ku0 + lv0 − ω) p∗ = 0 .

(C.3)

For acoustic waves, ku0 + lv0 − ω W= 0. (ku0 + lv0 − ω = 0 for entropy and vorticity

waves; see [71]). We can easily solve for ρ∗ and p∗ in terms of u∗ and v∗:

ρ∗ =
ρ0 (ku

∗
0 + lv

∗)
ω − ku0 − lv0

p∗ =
γp0 (ku

∗
0 + lv

∗)
ω − ku0 − lv0 . (C.4)
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From (C.3b,c) we have

ku0 + lv0 − ω

k
u∗ =

ku0 + lv0 − ω

l
v∗ , (C.5)

which leads directly to
u∗

v∗
=
k

l
. (C.6)

If we insert our solution for p∗ into (C.3b,c), we get

u∗ =
kp∗

ρ0 (ω − ku0 − lv0)
=

kγp0 (ku
∗ + lv∗)

ρ0 (ω − ku0 − lv0)2

=
γp0
ρ0

k2u∗ + klv∗

(ω − ku0 − lv0)2
(C.7)

v∗ =
lp∗

ρ0 (ω − ku0 − lv0)
=

lγp0 (ku
∗ + lv∗)

ρ0 (ω − ku0 − lv0)2

=
γp0
ρ0

klu∗ + l2v∗

(ω − ku0 − lv0)2
(C.8)

If we use (C.6) to remove l from the numerator of (C.7a) and k from the numerator

of (C.7b), we get

u∗ =
γp0
ρ0

k2 u
∗2
v∗ + k

2v∗

(ω − ku0 − lv0)2

v∗ =
γp0
ρ0

l2u∗ + l2 v
∗2
u∗

(ω − ku0 − lv0)2
, (C.9)

which, after a little algebra, can be reformulated as

k = ±ω − ku0 − lv0
c0

u∗√
u∗2 + v∗2

l = ±ω − ku0 − lv0
c0

v∗√
u∗2 + v∗2

(C.10)

c0 =

�
γp0
ρ0
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Now, let u∗ = U cos θ, v∗ = U sin θ, for some U ∈ C and θ ∈ [0, 2π] measured

counterclockwise from the positive x axis. After some manipulation, we can explicitly

solve for k and l:

k =
ω cos θ

c0 + u0 cos θ + v0 sin θ

l =
ω sin θ

c0 + u0 cos θ + v0 sin θ
, (C.11)

where we choose the positive for each± in (C.10), denoting propagation in the positive
x and y directions. We then insert these values of k and l into the equations for nϕ∗

and simplify, yielding

ρ∗ = U ρ0
c0

u∗ = U cos θ

v∗ = U sin θ

p∗ = U γp0
c0

(C.12)

Thus our wave solution becomes

nϕ = nϕ∗ exp
w
iω
w

cosx+ sin y

c0 + u0 cos θ + v0 sin θ
− t
WW

, (C.13)

with nϕ∗ defined by (C.12). A little tedious algebra shows that this solution satisfies

(IV.1). If we insert this solution into (VI.16), we get the wave speed

c2w = (c0 + u0 cos θ + v0 sin θ)
2 . (C.14)

Similarly, when we consider the opposite-sign terms of (C.10), we again get a wave-like

solution, this time with

c2w = (u0 cos θ + v0 sin θ − c0)2 . (C.15)

Since we do not know in advance the propagation angle of these plane waves, for

the purpose of defining the NRBC wave speed, we assume the angle is normal to

the boundary. With this assumption, and the requirement that cw ≥ 0, we have the
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following:

ΓE : cw = c0 + u0

ΓN : cw = c0 + v0

ΓW : cw = c0 − u0
ΓS : cw = c0 − v0

(C.16)
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APPENDIX D. DISCRETE REFLECTION

COEFFICIENT–A PRELIMINARY ANALYSIS

Let us briefly look at this idea of quantifying the reflection coefficient for the

discrete case (see Chapter VII). This analysis differs from Sec. 8.1.5 of [24] in that

we consider the physical waves, not merely the high-frequency non-physical compu-

tational waves generated by the finite-difference scheme. For our initial analysis, we

consider a Sommerfeld (first-order Higdon) boundary condition in a 1-D domain. A

full analysis is outside the scope of this dissertation. We begin the work here to show

its potential for future research.

1. DERIVATION

As with the analysis of the reflection coefficient for the continuous equation

(Sec. III.B.1.a), we begin by considering a wave of the form

u(x, t) = ei(x−cxt) (D.1)

traveling left to right at unknown speed cx. (For a two-dimensional wave, we consider

only the portion of the wave traveling parallel to the x axis.) If we use a Sommerfeld

condition (∂t + c0∂x)u = 0, then the computed solution for u will include a reflected

wave of the correct magnitude to satisfy the boundary condition. Thus,

u(x, t) = ei(x−cxt) +Rei(x+cxt) (D.2)

Discretizing the Sommerfeld condition with a backward difference in x and t, we have

unN − un−1N

k
+ c0

unN − unN−1
h

= 0 , (D.3)

where the subscripts N and N − 1 denote the point on the right boundary and the
point immediately to its left, respectively; the superscripts n and n − 1 denote the
current and previous time steps, respectively; k denotes the time step size; and h
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denotes the spatial step size. Thus, at the right boundary at time step n, we have

x = Nh and t = nk. Applying this discretization to our wave (D.2) at this point, we

have

ei(Nh−cxnk) +Rei(Nh+cxnk) − ei(Nh−cx(n−1)k) −Rei(Nh+cx(n−1)k)
+λ
p
ei(Nh−cxnk) +Rei(Nh+cxnk) − ei((N−1)h−cxnk) −Rei((N−1)h−cxnk)

Q
⎫⎪⎬⎪⎭ = 0 , (D.4)

where λ = c0k
h
. After we cancel and combine terms, we solve for R and get

R = − 1− eicxk + λ
p
1− e−ih

Q
e2icxnk (1− e−icxk + λ (1− e−ih)) (D.5)

We are interested in the magnitude of R more than its actual value. Solving for this

magnitude, we have

,R, =

EEEEEE
1− eicxk + λ

p
1− e−ih

Q
1− e−icxk + λ (1− e−ih)

EEEEEE
=

EEEEE1− sin(cxk)

2i (1− e−icxk + λ (1− e−ih))

EEEEE
,R, =

EEEEEE1− sin(cxk)

e
−icxk
2 sin

p
cxk
2

Q
+ λe

−ih
2 sin

p
h
2

Q
EEEEEE . (D.6)

2. IMPLICATIONS AND SPECULATION

Looking at (D.6), we see that certain combinations of cxk and h could make

the fractional term negative, resulting in a reflection coefficient R with magnitude

greater than one. In fact, if we use the following constants,

c0 = 343
m

s

h = 100 m

k = 0.18 s ,

which are close to those used in our numerical examples in this dissertation, we get

several large reflection coefficients as cx varies from 1 up to c0. The top half of

Fig. 47 shows these reflection coefficients. Each value of R larger than one represents

a potentially unstable wave mode.
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Figure 47. Discrete reflection coefficients for varying wave speeds cx. The x-axis is
the wave speed cx; the y-axis is the magnitude of the reflection coefficient R computed
by (D.6). (Top) Discrete reflection coefficients using constants approximately equal
to those in this dissertation’s numerical examples for a mesoscale model. (Bottom)
Discrete reflection coefficients using the same constants as the numerical example of
[90] for the Klein-Gordon equation in a small-scale model.

On the other hand, if we use the values from the numerical example in [90],

c0 = 1
m

s

h = 0.25 m

k = 0.125 s ,

then our discrete reflection coefficients are all less than one, even if cx is twice as large

as c0. These coefficients are plotted in the bottom half of Fig. 47. These plots imply

the stability of the example in [90] and the instability of our examples.

The problem appears to be the scale of the domain. Perhaps the introduction

of a scaling factor can improve the stability. Future research will expand this analysis,

to determine the general formula for the Higdon NRBC of order J , and also to con-

sider the Givoli-Neta and Hagstrom-Warburton NRBCs, after converting the normal

derivatives to tangential. Ideally, this analysis will uncover the choice (or combina-
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tion of choices) of cj to choose to keep ,R, < 1 for all possible cx. In the meantime,
this quick test has uncovered a possible reason for the instabilities exhibited by these

NRBCs.
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[104] Stǎnicǎ, P., private communication.

[105] Strauss, W., Partial Differential Equations: An Introduction, John Wiley and
Sons, New York, 1992.

168



[106] Tam, C., and J. Webb, “Dispersion-Relation-Preserving Finite Difference
Schemes for Computational Acoustics,” Journal of Computational Physics 107,
pp.262—281, 1993.

[107] Tannehihll, J., D. Anderson, and R. Pletcher, Computational Fluid Mechanics
and Heat Transfer, Second Edition, Taylor & Francis, Washington, DC, 1997.

[108] Thomas, J., Numerical Partial Differential Equations: Finite Difference Meth-
ods, Springer, New York, 1995.

[109] Thompson, L., and R. Huan, “Finite Element Formulation of Exact Non-
Reflecting Boundary Conditions for the Time-Dependent Wave Equation,” In-
ternational Journal for Numerical Methods in Engineering 45, pp.1607—1630,
1999.

[110] Ting, L., and M. Miksis, “Exact Boundary Conditions for Scattering Problems,”
Journal of the Acoustical Society of America 80, pp.1825—1827, 1986.

[111] Trefethen, L., and L. Halpern, “Well-Posedness of One-Way Wave Equa-
tions and Absorbing Boundary Conditions,” Mathematics of Computation 47,
pp.421—435, 1986.

[112] Vallado, D., Fundamentals of Astrodynamics and Applications, Second Edition,
Microcosm Press, El Segundo, CA, 2001.

[113] Van Joolen, V., Application of Higdon Non-Reflecting Boundary Conditions to
Shallow Water Models, PhD Dissertation, Naval Postgraduate School, Mon-
terey, CA, 2003.

[114] Van Joolen, V., D. Givoli, and B. Neta, “High-Order Non-Reflecting Boundary
Conditions for Dispersive Waves in Cartesian, Cylindrical and Spherical Coor-
dinate Systems,” International Journal of Computational Fluid Dynamics 17,
pp.263—274, 2003.

[115] Van Joolen, V., B. Neta, and D. Givoli, “A Stratified Dispersive Wave Model
with High-Order Non-Reflecting Boundary Conditions,” Computers and Math-
ematics with Applications 48, pp.1167—1180, 2004.

[116] Van Joolen, V., B. Neta, and D. Givoli, “High-Order Higdon-Like Boundary
Conditions for Exterior Transient Wave Problems,” International Journal for
Numerical Methods in Engineering 63, pp.1041—1068, 2005.

[117] Warming, R., R. Beam, and B. Hyett, “Diagonalization and Simultaneous Sym-
metrization of the Gas-Dynamic Matrices,” Mathematics of Computation 29,
pp.1037—1045, 1975.

169



[118] Wikipedia, “Polynomial Sequence — Wikipedia, the Free Encyclopedia,”
http://en.wikipedia.org/wiki/Polynomial sequence, and links on that page to
Abel, Bell, Bernoulli, Chebyshev, Fibonacci, Hermite, Legendre, Laguerre,
Spread, Touchard, Rook, Orthogonal, Secondary, Sheffer sequence, Sturm se-
quence, and Generalized Appell Polynomials, accessed on 16 May 2008.

[119] Wurtele, M., J. Paegle, and A. Sielecki, “The Use of Open Boundary Conditions
with the Storm-Surge Equations,” Monthly Weather Review 99, pp.537—544,
1971.

[120] Zahid, M., and M. Guddati, “Padded Continued Fraction Absorbing Boundary
Conditions for Dispersive Waves,” Computer Methods in Applied Mechanics and
Engineering 195, pp.3797—3819, 2006.

[121] Zienkiewicz, O., and R. Newton, “Coupled Vibrations of a Structure Submerged
in a Compressible Fluid,” presented at the International Symposium on Finite
Element Techniques, Stuttgart, West Germany, 1969.

170



INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Fort Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

3. Beny Neta
Naval Postgraduate School
Monterey, California

4. Francis X. Giraldo
Naval Postgraduate School
Monterey, California

5. Clyde Scandrett
Naval Postgraduate School
Monterey, California

6. Garth Hobson
Naval Postgraduate School
Monterey, California
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