

NAVAL

POSTGRADUATE
SCHOOL

MONTEREY, CALIFORNIA

THESIS

Approved for public release; distribution is unlimited

CATEGORIZATION AND REPRESENTATION OF
FUNCTIONAL DECOMPOSITION BY EXPERTS

by

Paul W. Melançon

September 2008

 Thesis Advisor: Gary O. Langford
 Second Reader: John Osmundson

THIS PAGE INTENTIONALLY LEFT BLANK

 i

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send
comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to
Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA
22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
September 2008

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE Categorization and Representation of Functional
Decomposition by Experts
6. AUTHOR(S) Paul W. Melançon

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Naval Undersea Warfare Center, Division Newport, Rhode Island

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official policy
or position of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)

The objective of this thesis is to investigate different approaches to identifying system functions. The
approaches that are described are standard functional decomposition process, Unified Modeling Language (UML),
System Modeling Language (SySML), and Integration Definition for Function Modeling (IDEF0). A discussion is
presented on advantages and limitations of describing and using functions by means of graphical formatting.
Improving system functionality by effective decomposition is vital to robust system development. However, not one
of these approaches presents the best method for complete functional identification. While each has its benefits and
should be considered during functional analysis, a good decomposition has proper interrogation of the functions by
means of coupling and cohesion of the functionality as well as identifying functional overlap and underlap. Standard
functional decomposition works best as the first step in laying out system functionality. Rigor and completeness are
improved when followed up by UML, SySML, or even IDEF0. Value and risk of each function can and should be
identified as a way of posing a series of questions that measure and analyze the appropriateness of the functional
decomposition. Combining these different approaches can help lead to a more complete functional decomposition and
therefore reduce the risk to system development.

15. NUMBER OF
PAGES

89

14. SUBJECT TERMS functional decomposition, Function, function coupling, function cohesion,
function overlap, function underlap, value of function, risk of function, complete functional
decomposition

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UU
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited

CATEGORIZATION AND REPRESENTATION OF FUNCTIONAL
DECOMPOSITION BY EXPERTS

Paul W. Melançon
Civilian, Department of Defense

B.S., University of Massachusetts, Dartmouth, 2001

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN SYSTEMS ENGINEERING MANAGEMENT

from the

NAVAL POSTGRADUATE SCHOOL
September 2008

Author: Paul W. Melançon

Approved by: Lecturer, Gary O. Langford
Thesis Advisor

John Osmundson
Second Reader

David H. Olwell
Chairman, Department of Systems Engineering

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

The objective of this thesis is to investigate different approaches to identifying

system functions. The approaches that are described are standard functional

decomposition process, Unified Modeling Language (UML), System Modeling Language

(SySML), and Integration Definition for Function Modeling (IDEF0). A discussion is

presented on advantages and limitations of describing and using functions by means of

graphical formatting. Improving system functionality by effective decomposition is vital

to robust system development. However, not one of these approaches presents the best

method for complete functional identification. While each has its benefits and should be

considered during functional analysis, a good decomposition has proper interrogation of

the functions by means of coupling and cohesion of the functionality as well as

identifying functional overlap and underlap. Standard functional decomposition works

best as the first step in laying out system functionality. Rigor and completeness are

improved when followed up by UML, SySML, or even IDEF0. Value and risk of each

function can and should be identified as a way of posing a series of questions that

measure and analyze the appropriateness of the functional decomposition. Combining

these different approaches can help lead to a more complete functional decomposition

and therefore reduce the risk to system development.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION..1
A. BACKGROUND ..1
B. RESEARCH OBJECTIVE ...9
C. DEFINING COMPLEXITY, SYSTEM, AND FUNCTION......................10

1. Complexity..10
2. Definition of System...11
3. The Term Function, Explained...14

D. A FRAMEWORK METHODOLOGY..18

II. KEY FACTORS RELATED TO COMPLETE FUNCTIONAL
DECOMPOSITIONS ..23
A. COUPLING AND COHESION..23
B. DEALING WITH OVERLAPPING AND UNDER-LAPPING OF

FUNCTIONS..27
C. FAILURE MODE ANALYSIS, AN INTERROGATION

TECHNIQUE OF FUNCTIONS..29

III. DIFFERENT APPROACHES TO FUNCTIONAL DECOMPOSITION33
A. UNIFIED MODELING LANGUAGE (UML)..34

1. Activity Diagram..36
2. Sequence Diagram ...37
3. Class Diagram ..38
4. Collaboration Diagram..39
5. Statechart Diagram..40
6. Use Case Diagrams ..43

B. SYSTEM MODELING LANGUAGE (SYSML):.......................................45
1. The New Diagram; Requirement Diagram47
2. Differences between UML and SysML ..51

C. INTEGRATION DEFINITION FOR FUNCTION MODELING
(IDEF0): ..54

IV. CONCLUSION ..61
A. FUTURE WORK...62

LIST OF REFERENCES..67

INITIAL DISTRIBUTION LIST ...71

 viii

THIS PAGE INTENTIONALLY LEFT BLANK

 ix

LIST OF FIGURES

Figure 1 Typical Functional Breakdown..3
Figure 2 Typical Functional Decomposition (From Langford, 2006)..............................5
Figure 3 Functional Decomposition of Household Lighting System...............................6
Figure 4 Systems Engineering Methodology (From MIL Standard 499B Model,

1994) ..7
Figure 5 Process Context Diagram...14
Figure 6 Example of an N-Squared (N^2) Chart..27
Figure 7 Example of not mitigating failure mode (From Donald A. Norman, 2005)31
Figure 8 Typical Activity Diagram (showing order processing)36
Figure 9 Typical Sequence Diagram (From Bell, 2003) ..38
Figure 10 Typical Class Diagram (From TogetherSoft, Inc, 2001)39
Figure 11 Typical Collaboration Diagram (From TogetherSoft, Inc, 2001)....................40
Figure 12 Typical Statechart Diagram (showing states of a hybrid SUV) (From

OMG SySML, 2007) ...41
Figure 13 Use Case Diagram example ...44
Figure 14 SySML Diagram Types (From INCOSE Handbook)......................................46
Figure 15 Graphical Nodes Included in Requirements Diagram (From OMG

SysML, 2007) ..48
Figure 16 Graphical Paths Included in Requirements Diagrams (From OMG

SysML, 2007) ..49
Figure 17 Inputs and Outputs into the functional block (From Blanchard &

Fabrycky, 1998) ...54
Figure 18 IDEF0 sample diagram ..56
Figure 19 IDEF0 Modified with Risk Attributes (From Langford, 2008)65

 x

THIS PAGE INTENTIONALLY LEFT BLANK

 xi

LIST OF TABLES

Table 1 Perceived Systems Engineering Limitations of UML V1.x (Friedenthal &
Burkhart, 2007) ..35

Table 2 Comparison of UML and SySML (http://www.uml-forum.com).53
Table 3 Suite of IDEF0 Methods (current and in development)...................................57

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiii

EXECUTIVE SUMMARY

This thesis compares and contrasts several approaches to identifying functions

using Functional Decomposition, Unified Modeling Language (UML), System Modeling

Language (SySML), and Integration Definition for Function Modeling (IDEF0). Each of

these approaches is described and depicted graphically, explaining how each handles

system functionality. Benefits and limitations of each approach are explained.

The driving force behind this analysis into identifying system functions was to

expose differences and key factors that lead to effective decomposition of functionality.

Good functional decomposition has great influence on the success of system development

against schedule, cost, and performance and quality requirements. Defining which

approach should be used in a particular development effort seems impractical since there

are too many subjective ways to manage development. However, key factors that help

guide towards more complete functional decompositions are explained which, if

followed, could reduce the risk associated with incomplete decompositions.

The findings are such that each of the approaches has benefits in identifying

system functions, but none alone is best suited for complete identification. Using the

‘standard’ functional decomposition approach, breaking the functionality down into

manageable chunks, i.e., sub-functions, seems to be the best starting point before

combining other approaches. Keeping in mind the key factors that interrogate the

functions such as coupling and cohesion, overlapping and underlapping conditions, and

failure analysis can lead to better decompositions. Expanding on the interrogation of the

functions with respect to value and risk, e.g., such as the application of the Systems

Engineering Value Equation with Risk (SEVER) equation, can result in more complete

functional decompositions.

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

 xv

ACKNOWLEDGMENTS

I would like to thank the Naval Postgraduate School for the outstanding education

that enhanced my career and new found enthusiasm in the Systems Engineering

discipline. Professor Gary O. Langford and Professor Dr. John Osmundson, I thank for

the support required to accomplish this task. I also would like to thank my organization

who provided the financial backing to further my education.

Ultimately, it comes down to those dearest to my heart, my family. Thank you to

my mother and father, my wife and son. I could not have done it without you.

Thank you!

 xvi

THIS PAGE INTENTIONALLY LEFT BLANK

 1

I. INTRODUCTION

A. BACKGROUND

Functional decomposition has been used in electrical engineering and software

development. It has further evolved and has become a process for defining and

understanding functionality and functional requirements of systems in the field of

systems engineering.

This thesis presents the investigation of functional decomposition as it applies to

the systems engineering process. The different ways or approaches of determining

functional requirements, e.g., Functional Decomposition, Modeling languages, and

Integration Definition Function Modeling (IDEF0) are compared.

It should be noted that some authors have criticized functional decomposition as

being flawed and as contributing to systems that do not meet customer requirements

[Cantor, 2003]. It is the intent of this thesis to begin a dissection of this criticism. Why

does it appear that some people are inherently better at performing functional

decomposition than others? Is it a difference in thinking, in manner of approach, or even

in education? This question was explored theoretically by review and analysis of

relevant research. Particular focus was given to three questions: What is the range of

appropriateness of functional decomposition as a systems engineering tool? What are the

limitations, bounds, and applications? Is there a better approach to capture functional

requirements?

In general, decomposition is a notion founded in reductionism. Reductionism is

an approach used to understand complex systems simply by reduction (a simplification or

condensation). Reductionist thinking forms the basis for most modern science and

axiomatic mathematics. The development of systems thinking promotes a holistic view

rather than a reductionist’s method. However, functional decomposition combines

reductionism with systems thinking. The methods of the reductionist may lead to

incomplete decompositions because these methods do not convey or acknowledge the

 2

relationships between the reduced system components. Systems engineering improves on

this situation by viewing functions and their interfaces as the building blocks for the

system. Parsing functions with their associated performances, quality, physical,

informational and other views further improves the ability of systems engineering to

better characterize the desired system (Langford, 2008).

The general notion of functional decomposition is to break apart (i.e., partition

and objectify) the components of an object into it sub elements (Langford, 2006). The

purpose of decomposition is to give precise meaning to the relationships between a whole

and its parts. Decomposition specifies the structuring and distribution of these parts in

terms of the transfer of information (i.e., energy) between the parts – specifically the

elements of the parts). Systems engineers can and do use decomposition to obtain clarity

in the understanding of the system design.

Functional decomposition is a widespread design technique applied to design

problems in many fields, such as systems engineering, software development and

electrical design (Coulston & Ford, 2004). It is well known in the field of systems

engineering and software development, yet is often employed in an ad-hoc or haphazard

fashion, leading to less than desired results (Coulston & Ford, 2004).

Functional decomposition is a fundamental tool of systems engineering. It maps

functions to physical components (thereby ensuring that each function has an “owner”)

(Langford, 2008). It maps functions to system requirements. By its intention, it ensures

all necessary tasks are listed and no unnecessary tasks are requested. The process of

performing the decomposition should begin with the top-level function (see Figure 1) and

then proceed through the major subsystem (Langford, 2008). However, in practice,

beginning at any level in a functional hierarchy, the process is to move through or

decompose in a logically step-wise fashion. The functional subsystem level should be

completed next and then advance to the hardware / software, if appropriate (Langford,

2008). At each level, one completes the activities of functional analysis, allocation, and

synthesis before proceeding to next lower level (Langford, 2008).

 3

Figure 1 Typical Functional Breakdown

To some professionals, functional decomposition is something to avoid, as it has

been rumored to be responsible for poorly designed, low quality systems (Cantor, 2003).

Yet there are a plethora of successes using functional decomposition and it continues to

be in widespread use, so, why do some consider there to be an issue? At first glance, the

practitioner may not have the requisite skills and expertise to use functional

decomposition effectively in system development. Therefore, the application of

functional decomposition to derive requirements may be subjective and ill fated. With

the interests in developing increasing complex systems, it is common to have tens of

thousands of system requirements. Even the simplest of systems may have several

thousand. For example, consider the simple task of withdrawing currency from an

Automated Teller Machine (ATM). The general requirements of “ATM shall dispense

Top-level functions

Function A Function B Function C Function D

Function E Function F

E.1

E.2 E.4 E.5

E.3

E.6 E.3

Next-level functions (function “E” broken down further)

 System Requirements

 4

currency,” “ATM shall dispense currency in correct amount.” and “ATM shall dispense

currency when requested” can be expanded to include “REQUESTOR shall provide

proper credentials,” “ATM shall verify credentials,” ATM shall authorizing

disbursement,” and “ATM shall disperse.”

The typical functional decomposition results in a functional hierarchy diagram, a

top to bottom parsing of general functions into their constituent parts. Higher levels of

detail are found at the bottom. All functions and sub-functions are numerically

designated to indicate kinship, (see Figure 2) (Langford, 2006). This depiction is an

example of an event-structured functional decomposition. At the top of the hierarchy are

the key function(s) that define the properties of the system required to complete the

system objectives (Langford, 2007). The bottom of the hierarchy covers only limited

objectives - a small set of the overall list of objectives. In that fashion, the top level

function specifies the user need and the lower level functions specify specific systems

needs (Langford, 2007). Some systems engineers have tried to generalize the hierarchy,

short cut the methodology, and have stumbled because of a poorly defined set of terms

that describe functions (Langford, 2007). The primary criteria for evaluating the worth

and quality of a decomposed system are the numbers of interfaces and the type of

information exchanged between system elements, i.e., the complexity of the

decomposition (Langford, 2007). For example, complexity can be inferred from an

entropic view (degree of uncertainty) of the decomposition (Langford, 2007).

 5

Fast Food
Delivery With
Drive Through

Phase 1

2.1

2.2

Take
Orders

Prepare
Orders

Deliver
Orders

Prepare
Orders

Pour Cold
Drinks

Get Hot
Foods

Pack in Sack

Collect
Payment

AND

1.0 2.0 3.0 4.0

2.0

2.1

2.3

Take Counter
Orders

Take & Display
Drive Thru Orders

2.2

Pour Cold
Drinks

Get Hot
Foods

Pack in Sack
AND

2.1

2.31.1

1.2

2.2

Pour Cold
Drinks

Get Hot
Foods

Pack in Sack
AND

2.3

Figure 2 Typical Functional Decomposition (From Langford, 2006)

Figure 3 presents another graphical look at a typical hierarchical functional

decomposition. Typically, functional decompositions are performed by first indentifying

the top level physical constraints (boundary conditions). In Figure 3, “Functional

decomposition of Household Lighting System,” the boundary condition would be the

physical limitation of the exterior walls of the house. There are interacting systems that

would exist outside the boundary such as power lines and power stations (i.e., external

systems) but here the primary focus is on the system of lighting within the house. The

exterior of the house is the system boundary. The house also consists of a plumbing

system, heating system, etc. A next step in functional decomposition could be to identify

the top level functional descriptions of the physical items such as “provide power

source.” The physical aspect would be the power distribution system internal to the

system boundary. Another example of a function is to “provide user control,” the

physical embodiment of the on/off light switch. From the physical decomposition

diagram, the top level functional description is defined by parsing the interface

requirements into a conjugate sets. The interface requirements are defined with

 6

consistency to instance the higher level inputs and outputs. This ‘nesting’ of hierarchical

functions and their associated input/output processes and activities allows groupings (i.e.,

aggregation) of like and delineation of dislike interfaces between functions. At each level

of decomposition the input and output requirements are matched to the functional

description (Langford, 2006). A graphical method of systems engineering methodology

showing the hierarchical system’s analysis (e.g., functional decomposition) is illustrated

in Figure 3.

Functional Decomposition of Household Lighting System

Exterior
wall
of house

Figure 3 Functional Decomposition of Household Lighting System

 7

System Analysis
(Functional Decomposition)

Control/balanceRequirements
Analysis

Functional
Analysis

SynthesisVerification

Design loop

Requirements Loop

Process
Inputs

Process
Outputs

Systems Engineering Methodology

Figure 4 Systems Engineering Methodology
(From MIL Standard 499B Model, 2006)

There are many types of decomposition with different bases (e.g., functional,

physical, informational). In general, the actions of separating distinct functionality into

defined components that have well-defined interfaces are one of the essential ingredients

of functional decomposition. Fundamentally, there are two types of decomposition:

part/whole, and generalization/specialization. A discussion of decomposition theory can

be traced back as far as 1776, and maybe further. Adam Smith, “An Inquiry into the

Nature and Causes of The Wealth of Nations” (9 March 1776) stated:

Metals cannot only be kept with as little loss as any other commodity,
scarce any thing being less perishable than they are, but they can likewise,
without any loss, be divided into any number of parts, as by fusion those
parts can easily be re-united again; a quality which no other equally
durable commodities possess, and which, more than any other quality,
renders them fit to be the instruments of commerce and circulation.

 8

The decomposition of material elements that form the particular metal are broken

down into sub-elements and reunited without overlapping or under-lapping issues

(explained further in next section). A simple example of an underlap condition can be

explained such as taking a block of wood (i.e., particular system) and decomposing it into

smaller manageable parts by means of sawing, one would experience under-lapping due

to the thickness of the saw cut (a loss of relationship between the parts). A reassembly of

the parts back into the system as a whole would result with a smaller block of wood due

to the loss of material from the saw cut.

An early publication that refers to the functional decomposition process was

produced by G. Boole, An Investigation of the Laws of Thought on Which are Founded

the Mathematical Theories of Logic and Probabilities London, 1854. Boole’s writings

are mentioned in much American and Russian research on the decomposition topic

(Perkowski & Grygiel, 1995).

Additional influential work on decomposition was published by R.L. Ashenhurst,

first in 1952, and later often described as the Ashenhurst Decomposition in 1957, a

widely acclaimed paper on “The decomposition of Switching Functions” (Perkowski &

Grygiel, 1995). The main idea of the Ashenhurst’s decomposition, later modified by

Curtis in 1962, was to decompose functions into simpler units of logic. This was done by

reducing various cofactors in the corresponding representation of each unit, thereby

compressing a larger number into a smaller number. Typically, this reduction was

achieved by grouping redundant functions into a logical structure that services multiple

other structures. The Ashenhurst-Curtis decomposition was appropriately characterized

as recursive top-down reduction from the system whole to the constituent parts. A top-

down approach to functional decomposition broke the main function into sub-functions, a

hierarchical approach to better understanding of system complexity. The top-down

approach allows logical, well-organized thought and orderly development of systems.

However, premature binding of temporal relations can be a risk (Langford, 2008).

A second, popular work on the decomposition approach proposed by Dietmeyer,

1971, is qualified as a compositional type, which is described as bottom-up starting from

defined parts, building through intermediate levels, until all output functions are realized.

 9

In contrast to the Ashenhurst-Curtis decomposition, Dietmeyer’s paradigm is particularly

useful when the problem is defined to solicit a solution from a quantifiable and available

set of well-quantified parts. An example might be to solve a problem by putting marbles

into various boxes. The boxes and the marbles are givens, while the solutions are

described as juxtapositions (put together to suggest a link or thread between them) of

boxes and marbles. The Dietmeyer technique is premised on building blocks that are

determined after a search of partition matrices for a classic decomposition property. The

result is a predefined collection of modules that are used to design a function subject to

constraints (Jozwiak et al, 1995).

These two techniques are adequately designed to address a wide range of different

designs or paradigms. The Ashenhurst-Curtis Decomposition (top down hierarchal

approach) is more suited to the open-ended design, while the Dietmeyer Decomposition

(bottom up approach) applies appropriately to the self-constrained design. In addition,

the Dietmeyer Decomposition lends itself more naturally to reversible logic designs, with

the Ashenhurst-Curtis Decomposition being a special case of the Dietmeyer

Decomposition for same. A like-minded approach was outlined in (Fang & Wojcik,

1998).

B. RESEARCH OBJECTIVE

The purpose of this thesis is to discuss and compare a few of the popular methods

of deriving functional requirements – traditional Functional Decomposition, Unified

Modeling Language (UML), Systems Modeling Language (SysML) and Integration

Definition Function Modeling (IDEF0) – within the context of discovering improvements

and limitations.

Research questions that were addressed include:

1. What factors contribute to incomplete functional decompositions?

2. What is the range of appropriateness of Functional Decomposition, as a
systems engineering tool?

3. Are there other ways/approaches to performing the decomposition?

 10

4. What are the limits of these different ways/approaches to functional
decomposition?

5. Is one way/approach to determining requirements better than another?

One of the suggested critical aspects of improving system engineering is to

transition systems engineering from a document centric perspective to an approach based

on graphical modeling (Friedenthal & Burkhart, 2007). For some people, graphical

views allow for better understanding, and traceability of system elements and their

functionality.

Functional decomposition needs to be studied further. Incomplete

decompositions can impact the success of systems development leading to poorly

designed systems that are over cost, behind schedule, inadequately provided functionality

and performance, or inadaptable to change. In addition, incomplete decompositions can

lead system engineers to improper requirements and poorly defined architectures. Proper

understanding of the approaches to decomposing system functions will help minimize the

risk of not properly meeting the goal of the system. Further study may shed light on how

to better develop less costly systems.

C. DEFINING COMPLEXITY, SYSTEM, AND FUNCTION

1. Complexity

The complexity and functionality of the cell phone has greatly increased in the

past several years. However, does that mean the “system” is more complex or is it just

that the heuristics are something we do not understand and are therefore deemed

complex? At one time the “need” was to contact another person without the

inconvenience of stopping what you were doing and traveling to a fixed location from

which to place a call. Today the phone has mobility and juxtaposition with the caller,

with an evolving set of functions that include placing and receiving calls, sending and

receiving text messages, sending and receiving emails, “surfing” the Internet, verifying

the stock market prices, taking digital images, and so on. Complexity is defined as the

number and types of Worth Transfer Functions between stakeholders of a system, or

likewise between system elements (Langford & Huynh, 2007). Therefore, increasing the

 11

number of functions increases system complexity. Heuristics, if not understood, may

cause complexity in the system structure. Comprehensive and complicated are terms

commonly used to describe systems that have given way to understanding of the system’s

heuristics. However, complexity is referred to that which is usually not understood.

Functional decomposition is the widely practiced methodology that deals with

system complexity, focusing on intelligently partitioning the system into smaller, more

definable pieces. An improvement over the standard functional decomposition is

described in “A Methodology for Managing Complexity” (Langford & Huynh, 2007) in

which Value Transfer Functions between stakeholders and the number of stakeholders is

directly related to complexity. The paper outlines measures that lead to the

understanding of schedule uncertainties and the sensitivities between the Work

Breakdown Structure and the schedule. A large number of interacting elements or sub-

systems can be difficult to understand. For example, the lamp in a room is a system and

considered by most systems engineers to be a basic system. The function of the lamp is

‘to light’. If one were to understand a broad view system (including power plant that

provides the electricity to the lamp) that perspective would be describe as complicated

and comprehensive, even if the heuristics were understood (Langford, 2008). Managing

complexity is accomplished by defining tasks whose outcomes flow together, creating a

successful system that includes all the various interactions and relationships. In these

cases, functional decomposition is used to decompose the different elements or tasks of

the system into more manageable parts, thereby allowing the overall system behavior to

be understood as a straightforward composite of the behavior of its many elements

(Langford, 2007). Functional decomposition is a convenient means to divide the problem

into meaningful, yet understandable parts.

2. Definition of System

A system is defined as an assemblage or combination of elements or parts

forming a complex or unitary whole, such as a transportation system (Blanchard &

Fabrycky, 1998). Systems contain elements, which are interacting interdependent (or

temporary) sets of variables that maintain certain functions, behaviors, and performance

 12

relations (Langford, 2006). Elements within the system are defined as functions,

processes, technology, users, products, or services (Langford, 2006). Every element has

a lifecycle. A lifecycle is the event-phased course of developmental changes that occur

from concept to the termination of the element’s use) (Langford, 2006).

Systems consist of many interfaces, e.g., physical and functional (Langford,

2006). The physical interface comprises the things we encounter everyday, such as cell

phones, automobiles, shoes, etc. The functional interfaces are sometimes less obvious,

but equally important as the physical interface. The functional interface goes hand-in-

hand with the performance characteristics of the system. Consider a shoe made from

steel rather than leather or cloth. The resultant performance difference between steel,

leather, or cloth would be shoes that may wear extremely well in the case of steel, but be

rather uncomfortable and difficult in which to walk. One can readily envision multiple

trade-offs to include changes in temperature, size, weight, susceptibility to temperature,

water, and different terrains. The manner and means of dealing with the physical and

functional interfaces are central to the systems engineering process.

Systems have emergent properties that are described as having many system

entities, operating in the same environment, resulting in a complex system (Langford,

2008). Emergent properties affect how the system capabilities are defined, which in turn

may indicate how to meet the intended needs of the stakeholder (Langford, 2008). As

described by (Blanchard & Fabrycky, 1998), “Systems are composed of components,

attributes, and relationships.” Components form the basis for system operations;

therefore, the functions they perform characterize the system. Improper decomposition

or identification of system functionality can lead to systems with missing elements and

therefore do not meet stakeholder needs (Langford, 2008). Therefore, good

decomposition results in better system requirements, i.e., those requirements that are

verifiable and validated.

A system needs to have limitations imposed to relegate the problem to definable

and implementable tasks. Boundaries and constraints define such limitations (Langford,

2006). A complete description of a system includes all of its domains and all of the

elements contained within these domains. Otherwise, the boundaries are too

 13

constraining, and the alternative solutions to the problem may reside outside the imposed

system boundary. The system will not meet the user’s need (Langford, 2006).

Determining a system boundary can be a challenge! How can you be sure that what has

been defined is appropriate? Good analysis of the consequences of said boundaries and

communication of the system boundary to stakeholders is important to making the final

determination. As discussed in (Brown, Cantor, & Mott, 2006), (Cantor & Roose, 2005),

(Dockerill, 1999), (Long, 2008), good communication can be represented by a standard,

intuitive graphical language that is easily understood among all stakeholders, customers

and system engineers.

The success of a development process can be measured by its value and value can

be determined by the ratio of performance to investment. Successful systems are defined

as satisfying the needs – are at or under budget, delivered on time, have requisite

functionalities and performances, and do not result in unexpected losses (Langford,

2007). An analysis that indicates the stage of development, the next steps to be

accomplished, defined ends and deliverables, the budget and schedules, and the

conditions for success/failure are essential to developing a successful system (Langford,

2006). Generally speaking, this process is called systems engineering. Systems

engineering helps keep track of stakeholders/customers and their needs; the product and

specifications; production and operational support; and the program management and

organization.

The process of thinking, reasoning, and structuring facts and relationships to

provide clear and unambiguous direction to managers and developers, as well as

accounting for progress and risks, is a strategy based on iterative, top-down, and

hierarchical decomposition of system functions to derive requirements. By this process,

the analyses and studies objectify the basis for, and sometimes suggest, methods to

support key decisions (Langford, 2006). By following this top-down development

process, one can reduce design risk by attacking the most difficult design area(s) first,

throughout its total hierarchy, during the start of the development.

 14

System elements display functions, behaviors, performance, and quality

(Langford, 2006). These elements, or the constituent sub-elements of elements, have

associated lifecycles, which means the elements are impacted by the developmental

changes that occur from initial concept to final termination. The inability of certain

system elements which are not adaptable to change or upgrades can influence and impact

project success. This is sometimes found to be the case as technology evolves and the

result is an increase in lifecycle costs. Such non-adaptive systems might be terminated

earlier than originally scheduled. A decomposition of functions may not always expose

all the requirements since no theory of building systems is finitely describable consistent,

or complete (Langford, 2006).

3. The Term Function, Explained

Keeping in mind the applicability of functional decomposition to the systems

engineer, the term function is defined loosely as a property of the system that is required

to achieve a system objective (Langford, 2007). Functions are implemented as processes,

with inputs and outputs, or as activities, without inputs and outputs. Inputs and outputs

represent the context for the attributed function. Below is a Process Context Diagram.

Figure 5 Process Context Diagram

Inputs are shown as text within an arrow pointing towards the process. Outputs

are shown as text within a box with an arrow pointing away from the process. Processes

are shown as text within a circle.

Process
1.0

Input

Output

File

 15

As described in “A Methodology for Managing Complexity” (Langford &

Huynh), value of the developing or developed system is defined within the context of

Value Engineering, as a ratio of performance to investment. Value per function is

specified in terms of the performances of these functions. Worth is defined as the Value

multiplied by the quantification of quality of the functions and their performance(s), i.e.,

the losses incurred due to the performance of functions (Langford & Huynh). Therefore,

the system shall provide a function with a specified performance and a delimited level of

quality (Langford & Huynh, 2007).

A function requires at least one input and at least one output to ultimately enact or

realize the desires of the user. The result(s) of a function is its output(s). Decomposing

functions exposes the required interfaces and connections as well as the boundaries of the

beginning and ending of the domain of the function. During the decomposition process,

if it is found that a function has no input or output, an incomplete decomposition has

occurred. If the inputs or outputs are not apparent then incompleteness has been

identified and the boundary between functions must be investigated and defined

(Langford, 2007).

Distinctions between behavior and function, as well as function and purpose, are

sometimes blurred to systems engineers (Bell, 2004). Definitions of function vary from

researcher to researcher (Bell, 2004). Though these definitions are differently worded,

they may be similar in meaning. Particular attention needs to be placed on the scope of

the definitions and the resultant implications of scope (Langford, 2008). According to

(Chittaro & Kumar, 1998) the operational definition is where function is a relation

between input and output and the purpose, where function is described as a relation

between user’s goal and the component’s (or system’s) behavior. For example, the

function ‘to float’ is the behavior required of the boat (as a system). The behavior is

defined as the system performance. The purpose of the boat may be to get across the

river, but the performance ‘to float’ satisfies the need to get across the river and not sink

before that task is accomplished. How well a boat performs the function ‘to move in

water’ embodies the measures of the performance ‘to float associated with that function’.

 16

Distinguishing between the four classes of knowledge (Chittaro & Kumar, 1998)

structure, behavior, function and purpose, it is described (Bell, 2004) that structure is

what is internal to the system, i.e., the function ‘to move in water’ and the performance

‘to float’ are structural consequences of the interfaces between the boat and the water.

Behavior is what happens inside the system, i.e., does the system meet the intended goal?

Function and performance are measured as what happens at the surface/boundary of the

system, i.e., the boundary between the boat and the water. The purpose is the goal that is

satisfied outside the system, i.e., the boat traverses the river without sinking.

For every function (from the highest to the lowest levels of decomposition), there

is at least one performance requirement and at least one quality requirement (Langford,

2007). For every performance requirement, there must be at least one quality

requirement (Langford, 2007). Functions are identified as properties of a system

requiring achievement of a system objective, while performance is a measure that

qualifies the fulfillment of those functions (Langford, 2007).

Functions are grouped in a logical form to meet both functional and

supplementary needs. (Cantor & Roose, 2006) These interactions, or threads between

each system function, must be described adequately to allow the intended system’s

purpose to be met. These functions are allocated to physical “owners,” e.g., hardware,

software, etc. The collaboration between each function is then evaluated and portrayed to

determine the extant relationships. This analysis is referred to as a Functional Thread

Analysis (FTA) (Langford, 2008). Some apply the Use Case methodology defined in the

Unified Modeling Language (UML) to define and illustrates these relationships.

The community of functional reliance has applied knowledge of system

relationships, and therefore of system functions, to deduce the system behaviors

(Langford, 2008). This supported diagnosis (Sticklen et al., 1989) and Failure Modes and

Effects Analysis (FMEA) (Hawkins & Woollons, 1998). In this regard, the system

function can be suggested (and perhaps defined) by relationships between its lower level

subfunctions. In contrast, a “top down” system perspective expresses functions that can

support the design and architecture processes (Iwasaki et al., 1993). By using the

example supported by functional refinement of the design process in (Gero, 1990), the

 17

hierarchical association of the system’s functions can congruently be associated with

constituent characteristics (Langford, 2008). The functional levels (or views) can be

interpreted as behaviors. These views express the input and output models for analysis of

design and its various interpretations (Snooke & Price, 1998). By this approach of

“functional labeling,” system behaviors are tracked by the system’s functions. The set of

behaviors are mapped to the desired functionality and are often delineated as process

outputs. Some authors refer to these outputs as vectors, or system states, or “goal states.”

Applying such nomenclature, the function “headlight NOT lit” associates inputs and

outputs through the related system functionality with a system state which represents that

the headlight is off. The use of goal states is discussed in (Snooke & Price, 1998). Goal

states’ approaches associate functions with failed outputs, and lend themselves to failed

output reporting, which facilitates fault analysis and diagnosis.

The intended results are a functional description language (Langford, 2008) that

deals with functional (input and output) dependencies. This is most useful when viewing

the system as a totality, without visibility into its internal workings explained in (Bell,

2004). A more formal definition of function can be explained through a model of

elements, e, functions, F, and triggers, G, which results in the achievement of an external

effect E (Langford, 2008). Functions are built up of subfunctions and activities.

Subfunctions and activities are the elemental units of the System (Langford, 2008).

Some authors (Chittaro & Kumar, 1998) pertain to objects, O, functions, F, and triggers,

T. Chittaro and Kumar refer to external triggers that permit the system to achieve goals.

In fact, system functions are enacted only through internal triggers (Langford, 2008).

However, both definitions are consistently modeled as relationships between functions,

goals, and behaviors. (Chandrasekaran & Josephson, 1997) viewed these models as

merging the purpose and operation as representations of system functions. In total, this

representative view of functions that are triggered by internal (or external) triggers is

unlike other perspectives on functions. The distinguishing difference is formed by both

the system behaviors and purpose. As such, rigorously defining functions in this manner,

supports the view that element, trigger, and effects are inexplicitly related (Langford,

2008). This representation determines: (1) how the system achieves the function, (2) the

 18

trigger that stimulates the function, and (3) the function’s effect. The idea that a function

can have multiple triggers and resultant effects is conveniently incorporated in those

decompositions that are comprised of subfunctions. Derived from this descriptive state

(with multiple possible states) is the conclusion that some system enactments may be

without the fulfillment of some functions. The result is a system behavior that may not

be predictable based merely on a decomposition of functionality, but instead may achieve

altered states of enactment (sometimes with emergent properties) that are wholly

unpredictable (Langford, 2008).

If functions are decomposed into subsidiary functions, it may be necessary to

relate the system effectiveness to the various states of system and subsystem

functionalities. This decomposition schema can result in several states of functions and

sub-functions each indicating a different or variant scenario (Langford, 2008).

D. A FRAMEWORK METHODOLOGY

The term ‘framework’ for discussion, refers to a means of organizing and

reporting the performance, impacts, and effectiveness of an enterprise (Langford, 2008).

Representations of frameworks are a graphical means to display the impacts of functional

analyses. Frameworks are based on a broad appreciation of the kind, purpose, and

content for assessing and portraying impacts and effectiveness.

Another implication of the objective of decomposition is to define a whole in

terms of parts (i.e., partition and objectify) that have the least-complexity with the most

architecturally effective design. One way to think about architecture is through various

perspectives of the result of a system (Langford, 2008). One can posit a framework of

views, or enterprise framework(s) that are comprised of nine architectural views

(physical, operational, functional, performance, quality, information, energy, profit, and

temporal) (Langford, 2008). These architectural views are based on long-standing

determinates of design – independence, aggregation, form, relationship, attribute, pattern,

and juxtaposition (Langford, 2008), which dictate the many factors that relate to the

problem and the solution.

 19

The two primary interfaces in all systems are physical and functional, which is a

consequence of defining the term “system.” These interfaces are viewed as two sub-

divided areas: internal and external. Internal interfaces encompass the partitioning and

design elements. The external interfaces span differences between partitions and

interactions with the non-system related environment(s). Partitioned boundaries are

selected carefully to minimize the number of requirements with cross partition interfaces

(Kanefsky et al., 1999). Protocols, processes, and activities between activities and

interfaces are therefore improved.

Partitioning is the process of dividing a system into constituent parts, thereby

defining smaller tasks as opposed to one all encompassing task. This division serves to

expose redundancies in the system design; specifically issues related to physical,

operational, functional, performance, and quality. Partitioning functions allow the system

engineer to measure, interrogate and objectify the system (Langford, 2008). Partitioning,

much like decomposition, is formulated by both the process and the intent of the

partitioning. In part this process depends on is the division of a large number of small

tasks or a small number of large tasks. A good partition (or complete decomposition)

allows flexibility to small changes and robustness in terms of scalability to meet

additional needs. When the designer (or architect) first focuses on the movement of

energy (or energy equivalents) through the proto architecture, the partitioning technique

is termed domain decomposition (Langford, 2008). Where, as the alternative approach,

functional decomposition, deals first with the functions to be performed, and then deals

with the energy issues (i.e., architecture). These two types of decomposition represent

different, but complementary, ways of thinking about structuring a problem. For

instance, if the design can be divided into disjointed, but non-overlapping parts,

(Langford, 2008) the partition function is complete.

In the previous section, the decomposition technique presented by Ashenhurst-

Curtis laid the groundwork for the top-down approach to decomposition. This technique

pushes the partitioning process to completion prior to defining the system. An iterative

process, much like the functional decomposition generally referred to in systems

engineering, is the practical application of top-down (and bottom-up) approaches.

 20

Reconciliation of the two up/down approaches brings closure of this iterative process.

Usually closure is achieved after the system has been implemented (Langford, 2008).

This all leads to the chief criticism of the Ashenhurst-Curtis decomposition.

Each partition matrix must be examined to determine if it possesses the specific

decomposition property that is essential to its part in fulfilling the top-level and

horizontal-level functions and not to another part. By comparison, these partition

matrixes reveal the overlaps and under-laps of the parts when aggregated and summed to

make the whole. Since only a very small number of decompositions will have the

requisite set of specific attributes, the challenge is to group attributes to reflect the desired

degree of uniqueness or omnipresence that satisfy the system requirements (Langford,

2008).

The analysis framework will organize the presentation and facilitate discussions

about the functions and performance requirements. Understanding of the overall design

is encouraged by the constituent relations and functions, transformations (e.g., combining

and composing), and comparing properties of classes of functions. This framework will

formulate and describe the appropriate relationships, and extend and apply generalized

notions to the specifics of the uses and actions of the system to form operational

scenarios. The framework should also consist of or be integrated with applicable rules

and best practice principles. A convenient way to organize the structure of the

framework is to facilitate decision-making. One of the purposes of a framework is to

support and simplify decision-making processes (Langford, 2008).

Frameworks are built within the context of a set of like-kind scenarios, having at

least a commonality that distinguishes one framework from another framework. The

measures may be similar for a variety of frameworks, and perhaps there is a grouping of

like-kind frameworks with similar (or same) measures. The metrics may be different for

different frameworks, but alternatively, the metrics may be the same for different

frameworks (Langford, 2008).

 21

The foundation of the framework could be a model of a process or a set of

processes, a function or a set of functions. There could be a ‘model’ framework, an

‘application’ framework, a ‘domain’ framework (when aggregated it represents the

‘system’ framework), and a ‘support’ framework. The framework could be modular so

that new frameworks could be proposed. Frameworks could be considered from different

perspectives, much the same as the points of view of stakeholders. There must also be

the consideration of scope of framework (Langford, 2008). The ‘application’ framework

could comprise the set of applications that are broadly applicable to multiple frameworks.

The ‘domain’ framework would contain all the functionality for the groupings of

bounded set of elements. The boundary may be physical or intellectual. Generally, the

boundary will be of a convenience that permits aggregation in one form, or another of a

generally accepted grouping (Langford, 2008). The ‘support’ framework could provide

the system functionality that underlies all other frameworks. The ‘model’ framework

would be representations of any other domain(s) abstracted to facilitate understanding

without loss of clarity.

 22

THIS PAGE INTENTIONALLY LEFT BLANK

 23

II. KEY FACTORS RELATED TO COMPLETE FUNCTIONAL
DECOMPOSITIONS

A. COUPLING AND COHESION

As mentioned in theChapter I, some view functional decomposition as flawed,

possibly because many have used the process incorrectly. The processes of functional

decomposition, along with emphasis on key aspects that lead to insufficient

decompositions, need to be explored. When done properly, the process of functional

decomposition defines the ‘logic’ of the system. At a fundamental level, functional

decomposition is the basis of all science, all structure, and all thought (Langford, 2008).

The struggle to perform functional decomposition (from the perspectives of the

unskilled or unknowledgeable) centers on two questions: (1) how does one determine if

enough information has been collected about the functions? and (2) when enough is

enough during the decomposition process, i.e., how far does one go with decomposition?

The following questions should be investigated: how to define the specific tasks of the

functions; how active should stakeholders be during development of functional

hierarchies; how are tasks performed; where are these tasks performed; what is the

timing and sequencing of each task; what is the nature of inputs and outputs for each task;

who are users of the outputs of each task; what is required of each task; is each task

necessary; what policies apply to the work; what rules are key drivers; which regulations

apply to the functionalities; what controls are required to be applied to the function; and

what equipment is used to enact the function. Consideration, and perhaps answers, to

these and other questions, helps to make the determination as to whether enough

information was collected about the function (Langford, 2008). If a function cannot be

allocated to a component of the system, further decomposition of this function is

necessary to determine the level whereby the function can be allocated to the proper

component. In some cases, the functional hierarchy may not be mature enough with the

resultant requirements unallocated as a single entity. Therefore, the performance

decomposition would need postponement until the functions are clearly defined. A usual

 24

criterion for completion of functional decomposition is to continue the process until the

functional requirement is clear, realizable, and allocatable in hardware, software, and/or

manual operations (Langford, 2007). The objective of generally decomposing the system

into its hierarchical components helps the analyst better appreciate and deal with over

stated and under stated functionality. Assessing risk involves partitioning functions by the

appropriate measures of performance, the lifecycle costs, and the losses incurred as a

result of the observed performance. Determining when decomposition is considered

“complete” is therefore warranted.

Coupling and cohesion of system function is a means of performing an

interrogation of “completeness” of the decomposition process, i.e., how far to go with

decomposition. “Completeness” is defined as a reasonable level of verification that what

has been conducted thus far for decomposition has sufficiently identified all necessary

parts, elements, or steps to effectively and properly define the system. Total

“completeness” is not a goal, rather completeness of functional decompositions means no

better decomposition is likely given the knowledge and skills.

Functional Analysis (the method of identifying, characterizing, and arranging the

levels and domains of system functionalities) is a development of the architectural

determinants which evaluate the degree of coupling, cohesion, and connectivity of

functions and sub-functions (Langford, 2006). Functional analysis can be used to verify

that the intended state of a system suffices to improve the system performance.

Functional decomposition is performed to determine what the system is supposed to (and

likely to) do. By this method, the current state of the system can be defined as well as the

future desired state.

Coupling is a measure of interdependence between sub-functions. Low coupling

is defined as that change in a module that affects very few other modules (Langford,

2008). Functions that carry a higher coupling pose risk, as they are prone to creating a

ripple of changes that involve other modules. The higher coupling factors also make the

impacted modules difficult to understand by themselves and stand-alone testability of the

module becomes an issue. An increase in dependant modules this leads to an issue with

reusability as more modules are impacted.

 25

Coupling and cohesion are related. When a low coupling exists, a high cohesion

will result. When the modules are independent (without responsibilities to each other),

the cohesion is increased. Cohesion is defined as the similarity of functions performed.

High cohesion aggregates as many like tasks as is convenient, up to the limitations of

physical and other system properties. Connectivity is defined as the reference that relates

one module to another. By circumstance, lower connectivity implies a smaller number of

interfaces.

If a function consists of only a single output variable with a precise task, it is

considered cohesive. At high levels of cohesion the functions perform "tasks,” like "turn

on" or "turn off,” but a higher level of cohesion such as "turn on light,” "turn off light" is

considered an improvement. The more the function is focused, the more it is cohesive.

A high cohesion function is simpler to understand, having to do only a single task, while

a low cohesion function will be difficult to follow due to the many different tasks it

executes. In addition, a high cohesion function is easier to reuse because of the limits on

tasking, and therefore easier to extend. High cohesion maximizes reusability and

extendibility. A simple test to determine low cohesion: no simply name describes the

function.

Functions that perform several activities are considered non-cohesive. Instead of

one monolithic function that performs many activities, it is preferable to have several

smaller functions each performing a single activity (Lakhotia & Deprez, 2008). Cohesive

functions also reduce the complexity of the system, and aid in better understanding,

communication and more complete functional decompositions (Langford, 2008).

Coupling and cohesion are explained in terms of elements (like modules, classes,

or frames) that are linked in some way (e.g., by function calls) (Langford, 2008). The

degree of dependence within such an element is called cohesion, and the degree of

interdependence between these elements is called coupling (Langford, 2008). In general,

low coupling and high cohesion are indicators of minimal interfaces and good

modularization (Kramer & Kaindl, 2004).

 26

Another tool that aids in functional decomposition is the function matrix or N-

Squared (N^2) chart (Long, 2008), shown in Figure 6. Functions are indicated on the

diagonal of a matrix of functions as well as inputs/outputs. Outputs are indicated

horizontally, while inputs are indicated vertically. Non-functional entities are defined as

interfaces with only an input and output. These are linked functions. The N-Squared

Chart allows for a graphical view of functional inputs and outputs and their dependences,

thereby allowing for visual verification of coupling and cohesion.

The functional decomposition along with functional flow diagrams is used to

portray what the system is supposed to do. The functional flow block diagram shows the

function and sequence of functions. This validation method displays the current state,

i.e., effectiveness, of the system in meeting its desired goal. From here, the performance

of the system can be altered or changed. The behaviors of the functions are captured in a

behavioral analysis chart that indicates functional juxtapositions, input and output ports

(or connectivity’s), sequences, controls, and data / and data flows. The timeline diagram

shows functions, sequences, and timing. Whereas the data flow diagram shows data/data

flows and control flows.

 27

Figure 6 Example of an N-Squared (N^2) Chart

B. DEALING WITH OVERLAPPING AND UNDER-LAPPING OF
FUNCTIONS

Good functional decompositions consist of no parts having overlaps with other

parts, and no under-laps with logically adjacent parts (Langford, 2008). Dealing with

these overlapping and under-lapping issues requires analyses of (1) scenarios (e.g., Use

Cases), (2) data flow diagrams, and (3) N^2 charts. All these are facilitated by, and

enacted through, functional decomposition. Diagrammatic tools capture behaviors, i.e.,

activities, sequences, collaborations, and statecharts. These diagrams can augment and

enlighten various processes (see UML and SysML sections).

 28

Overlap of system functionality is defined as functions that are duplicated and not

independent. The overlap of functions leads to conflicts in the execution of system tasks

(Langford, 2008). Overlap is not the same as redundancy, redundancy to increase

reliability.

Underlap conditions can be detected by analyzing the functional decomposition to

determine if applying scenarios exercise all functions (Langford, 2008). Scenarios can be

enacted by the use of functional decomposition by itself or behavior diagrams, activity

diagrams, sequence diagrams, and Use Cases. Functions that are unaccounted for in the

functional decomposition (and need to be invoked) are considered underlaps. This

underlap issue is corrected by adding a function or a set of functions and rerunning the

scenario through the functional decomposition. Sometimes the notion of simply adding a

new function does not adequately address the issue of underlap. Since the newly added

function will have interfaces to other system functions, those new interfaces may not

seamlessly integrate with these other functions (Langford, 2008). Consequently, some

functions will need to change in scope (inputs, outputs, mechanisms, and processes) to

better align the processes and actions with the new structure of functionality. Once the

underlap condition is accommodated and corrected, the range of scenarios should be

broadened to continue testing the efficacy of the functional decomposition. Additional

new functions may be necessary, and if sufficient, the functional decomposition will be

complete, through the first phase of analysis.

The next phase of this analysis centers on interactions. Specifically, consider the

actions of one function of the system with either the extended system or with an external

system. Newly added function(s) need to satisfy the underlap condition and may result in

changes in the interactions with external systems. The result might be a different

interface requirement between the developing system and the external system(s). Making

adjustments in both the total system functionality as well as in the interaction(s) with

other system(s) may be required in order to satisfy the goal for correcting an underlap

condition (Langford, 2008).

 29

C. FAILURE MODE ANALYSIS, AN INTERROGATION TECHNIQUE OF
FUNCTIONS

Failure mode analysis is a method of finding possible faults in a system and

reviewing these faults as to the consequence on the system. A definition given by the

British Standards (1991) describes failure mode analysis as:

A method of reliability analysis intended to identify failures which have
consequences affecting the functioning of a system.

Failure mode analysis is often criticized as being effective in the design due to the

amount of effort it usually takes, therefore resulting in exceeding the design/development

phase (Hawkins & Woollons, 1998). Mitigating failure modes due to system

functionality have proven to be effective in system design by requiring a deep

understanding of the engineering system, functional diagrams, i.e., graphical

understanding (Hawkins & Woollons, 1998). There are two main areas of this analysis

(Aerospace, 1979). The first is the hardware approach, which deals with the behavioral

changes that occur from the failure. This greatly affects the effectiveness on the design

since it is performed once hardware has been designed. Changes to hardware because of

this analysis can be costly and affect the program schedule. This is not to say that it

should not be conducted, however, more attention to the second approach will mitigate

the impact to the program from the hardware perspective. The second approach focuses

on the functional aspect. The analysis of failures at a functional level will greatly benefit

the program since it is performed early on in the initial design stages, i.e., during

functional decomposition (Langford, 2008). If the functional approach yields the most

benefit early in the design phase then why is it not widely practiced? As mentioned

before, the effort to conduct a failure mode analysis can take time and this deters most

developers due to program time constraints. However, completion of programs does not

necessarily mean they were successful. More and more it is apparent through

Department of Defense case studies and GAO reports that programs are continuing to be

behind schedule, over budget, or both. These problems with schedule and budgets have

resulted from a plethora of “required” design changes, often ascribed to low technology

maturity, not meeting user or customer needs, not properly addressed human interfaces,

 30

etc. By decomposing system functionality using mitigating failure modes, one can

develop a significant set of scenarios that far outstrip the Use Case design technique

(Langford, 2008). This interrogation technique of system functionality, if not used, can

lead to undiscovered functional issues, i.e., overlaps and underlap of functions. Such

activities can be improved upon by differentiating between relevant actor inspired Cases.

Relevant Cases typify the expected outputs and the expected failures that ensure. Systems

can be designed with functions and their associated structures to provide the means for

achieving complete system functionality (Langford, 2008).

Disassembling the system’s functionality with respect to behavior, failure, etc., is

important to the success of the system in meeting its goal, as well as to the completeness

of the functional decomposition. Functional decomposition, when improperly conducted,

can leave out relationships between elements, and therefore result in loss of value and

purpose of smaller bits of system functionality. Various definitions and constructs should

be imposed during the development process so all measures and means of accounting for

the various attributes of the problem are explored and exhausted (Langford, 2006). By

following a more rigorous approach to functional decomposition, the systems developer

may generally concluded that no essential element was overlooked, and further that the

problem was not overly specified, which could lead to unnecessary program costs.

 31

Figure 7 Example of not mitigating failure mode (From Donald A. Norman, 2005)

The process of mitigating failures implies that a complete failure analysis is

performed for every function, to better understand the ramifications and extent of the

possible failure modes for and inherent in each function. The behavior(s) identified can

be categorized into catastrophic or inconsequential, implying some effects (or modes) are

below the threshold of interest, and therefore do not need to be carried forward in

subsequent analyses.

Appropriate and mature processes exist to perform a failure mode and effects

analysis (FMEA). Some of these processes have been developed into extensive models

that focus on the functional aspects (Hawkins & Woollons, 1998) of the differences

between calculated behavior and expected behavior. These facilitate the derivation of

descriptive failure modes and consequences.

 32

THIS PAGE INTENTIONALLY LEFT BLANK

 33

III. DIFFERENT APPROACHES TO FUNCTIONAL
DECOMPOSITION

With the concern that functional decomposition may lead to poorly developed

systems (Cantor, 2003), two questions arise: Are different alternatives to functional

decomposition available, and what are the consequences of using them?

The desire to transition Systems Engineering from a document centered process

model to a modeling approach is suggested as critical to improving Systems Engineering

(Friedenthal, Burkhart). System engineers have used many different types of graphical

means to modeling projects, including hand drawings on the traditional white board, but

until the development of the Systems Modeling Language (SysML) there had not been a

systems engineering standard modeling language, which had been recognized by the

International Council on Systems Engineering (INCOSE, 2007).

A standard modeling language allows the system engineer to communicate system

requirements and design specifications among other engineers. Modeling languages such

as the Unified Modeling Language (UML) and Systems Modeling Language (SysML)

provide such means of effective communication. For example, we know that while

driving our vehicle we will come across a red eight sided sign. This sign instructs the

driver to stop their vehicle, even without the word “stop” printed on the sign. The

symbol has been known for the action to stop and take caution. The tools within the

language help dissect the system in order to verify requirements, functionality, behavior,

etc. which allows early identification of design issues and system effectiveness to

meeting customer goals.

Viewing systems in a graphical form such as behavior diagrams, functional flow

diagrams and N-Squared (N^2) Charts are effective means for the systems engineer to

understand and present the functional and data flow characteristics of their systems

(Long). These graphical forms (or representations) provide a valuable set of tools and

methods for the systems engineer. They support and allow for the decomposition of the

functional and data models into a natural hierarchical structure. The processes used to

 34

perform any decomposition are always subjective from one expert to another. For

example, the expert’s opinion, knowledge or even behaviors influence their decisions,

which ultimately affect the outcome of the decomposition. The following tools and

methods discussed below result in similar decompositions when deriving the intended

goal of the functional relationship and the behavior of each system element. However,

these tools and methods may benefit some decomposition compared to others. This is

dependant on the intent of the decomposition, the structure of the elements, and the skill

of the systems engineer. For example, UML was originally developed for software

developers and electrical engineers, but systems engineers to help communicate the key

fundamental threads that characterize the entire system also utilize it. The following

sections examine and compare the basic functional decomposition method.

A. UNIFIED MODELING LANGUAGE (UML)

UML is a means to communicate with stakeholders the ideas concerning system

development. UML provides a defined method of communication that consists of

specific graphical format for systems and software engineers (Fowler & Scott, 2004).

This graphical format seems to aid in understanding complexity and de-convolving the

twists of interactions and relationships that mire some product developments. But is this

simply that the population of UML users does not adequately understand how to use the

tools (Grossman et al., 2004)? We find that more and more this graphical method of

communication is becoming increasingly important as systems become more complex.

For others, UML is used as a formal mechanism for requirements definition and design

(Fowler & Scott, 2004).

Based on surveys of knowledgeable users of UML users, it appears the

technology is poorly defined and lacks maturity (Grossman et al., 2004) in more than a

few selected areas of application. The limitation of current UML (its inability to model

continuous behavior and to deal with performance) hinders a wider application beyond

software dominated parts (Volvo, 2002). There is additionally a lack of empirical

evidence to support that UML leads to greater performance in system development

(Grossman et al., 2004) or that it enforce the issues with usage, i.e., UML is considered

 35

complex therefore difficult to learn, inconsistent, and incomplete. UML is continually

evolving, e.g., note the recent introduction of UML 2.0 that aspires to address some of the

major issues. Table 1 lists the key perceived limitations of earlier versions of UML 1.x.

UML 2.0 was created to offset some of these limitations and become more of a systems

engineering asset than just a software asset, such as the inclusion of requirements

constructs.

Perceived Limitations of UML V1.x
Continuous time behavior
Decision tree
Hierarchical modeling of behavior and structure
Input/output flow (i.e., data, mass, energy)
Parametric models and integration with other analysis
models (i.e., performance, reliability, safety...)
Performance and physical characteristics (including
probabilities)
Physical interfaces and connections
Problem definition and causal analysis
Requirements constructs
System, subsystem, and component representations
Terminology harmonization
Verification and validation models and constructs

Table 1 Perceived Systems Engineering Limitations of UML V1.x
(From Friedenthal & Burkhart, 2007)

UML is not a tool, but rather more of a format that controls how engineers,

stakeholders, customers, etc. communicate by means of diagrams such as various types of

diagrams to depict Use Cases, classes, states, activities, composite structures, interaction

overviews, sequences, collaborations, components, deployments, and timings.

Use Case diagrams offer a view of a system through a functional description that

is enacted by events. That description includes the actors, who are internal or external

triggers. The diagram activities, sequences, collaborations, composite structures,

interactions, and statecharts represent the behaviors of the system. For example, an

activity is represented by diagrams of control flow(s) between activities.

 36

1. Activity Diagram

Figure 8 Typical Activity Diagram (showing order processing)

 37

Activity diagrams lay out the procedural flow of the activities or actions of a high-

level activity. Use Cases exist in most development projects, and concomitantly, activity

diagrams should exists that portray activity diagrams that enlighten the Use Cases at a

more detailed level. Activity diagrams do not need to be always combined with Use

Cases. They can be used independently and beneficially for business level functions, an

example of which is modeling of online procurements.

Activity diagrams model workflows that comprise a system. These diagrams are

used along with other views, typically interactions, and states. Activity diagrams can also

be used to analyze Use Cases. In this instance, actions are described in terms of their

local interactions along with their associated timing. Activity diagrams give neither

detail about objects and their behaviors nor objects and their collaborations (Fowler &

Scott, 2004).

2. Sequence Diagram

Sequence diagrams describe the succession of interactions between objects.

Horizontal arrows represent messages or logic between objects. Similar to the format

used in N-Squared Chart messages begin in the top left and proceed down in a step

formation. Sequence diagrams organize and display the requirements that would be

expressed in Use Cases. Sequence diagrams document objects and their interactions.

These diagrams are useful for system architects and designer, and further, prove useful as

a means to create continuity between project teams and individuals in (Bell, 2003).

 38

Figure 9 Typical Sequence Diagram (From Bell, 2003)

3. Class Diagram

Class diagrams provide the basic notation used in all other structure diagrams in

UML. Class diagrams portray static structures. These diagrams focus on classifiers (Bell,

2004). Class diagrams are particularly useful when building business operational models

or military organizational models (Langford, 2007).

 39

Figure 10 Typical Class Diagram (From TogetherSoft, Inc, 2001)

4. Collaboration Diagram

Collaboration diagrams focus on the behavior of objects external to, but

interactive with, the system. These diagrams are similar to the sequence diagrams, as

they include the same information, but are attributed to show the collaboration between

asynchronous messages. Collaboration diagrams represent objects by icons and their

message sharing as labeled arrows (Borysowich, 2007).

 40

Figure 11 Typical Collaboration Diagram (From TogetherSoft, Inc, 2001)

5. Statechart Diagram

A statechart diagram describes the state of the object. The statechart diagram also

shows how the objects are affected during actions. Typically, statecharts are used to

describe behavior of classes, but can also be used to identify proper behavior of entities

such as actors and Use Cases in the Use Case diagram. It is another way to identify

behavior that in turn can be used to investigate the function.

 41

Figure 12 Typical Statechart Diagram (showing states of a hybrid SUV)
(From OMG SySML, 2007)

A statechart diagram describes the transitions of an object from one state to

another in response to events, and the actions that occur within a state (Friedenthal &

Burkhart, 2007).

Controls and flows of control can be diagrammed as sequences of events or states

in which object interact. Through the passing of messages statecharts depict objects in

transition from one state to another. Changes are responsive to events and actions – all

occurring within a state. Software systems are represented in UML by various diagrams:

object, component, sequence, state, deployment, and timing, to mention a few. These

diagrams cover the types of classes, operations, attributes (collectively referred to as class

diagrams); the objects (object diagrams and structures); partitioning of classes among

components (component diagrams); and how components are staged and executed

(deployment and timing diagrams).

 42

The Unified Modeling Language was developed as an industry standard for

modeling software intensive systems. It allows the designer to visualize, specify, and

document the artifacts of the software (Bell, 2003). UML employs Use Cases, which

according to various critics of functional decomposition is the best means for capturing

and documenting requirements. Use Cases define the interaction of the user or actor to

the system itself sometimes via the initiator of the interaction. Use Cases are intended to

help build a sound understanding of the system being designed by decomposing its

behavior into components and interactions. Use Cases were expected to address the

issues with UML regarding non-traceable requirements but did not since the system

design requirements are usually only traced to Use Cases and not the design (Leffingwell

& Widrig, 2002). UML 2.0 provides extension to the previous versions, i.e., UML 1.x.

According to (Kobryn, 2004) UML 2.0 provides support for representing structural

behavior in a hierarchical decomposition of the behavior allowing for diagrams that are

understandable and contain complex behavior descriptions. Also UML 2.0 now

facilitates viewing the same element in multiple perspectives. The result is an

improvement in understanding the extractions (or models) of a system (Herzog &

Pandikow, 2005), and (Kobryn, 2004).

UML methods provide diagrams, and visual graphics. When used within system

design or methodology UML allows better understanding of a system under development

(Bell, 2003). According to a survey conducted by (Grossman et al., 2004) most

respondents concluded that UML provides benefits for understanding the communication

aspects via graphical notation. However, there is yet no consensus as to whether UML

makes any real difference in the performance of the development task. Perhaps a lack of

adequate understanding of UML is responsible. On the other hand, perhaps the use of

UML has result in no real difference (Grossman et al., 2004).

UML 2.0, as with UML 1.x, is based on two basic categories of diagrams -

Diagrams of structures and diagrams of behavior. Structure diagrams show the static

nature of the modeled system being. They include classes, components, and objects.

Behavioral diagrams indicate dynamic behaviors between objects and diagrammed

sequences. Behavioral diagrams present activities, Use Cases, and sequence diagrams.

 43

6. Use Case Diagrams

Use Case diagrams provide descriptions of system functionality, including actors.

Actors are external to the system and include domains such as the environment. The Use

Cases represent usage(s) of the system, i.e., the subject, which correspond to the basic

functionalities that the system and actors support (Friedenthal & Burkhart, 2007). The

associations between the actors and the Use Case represent the communications between

the actors and the processes and activities that will accomplish the functionality (OMG

SysML, 2007). Bottom line: Use Cases can be used to capture the functional

requirements of the system.

Functionality is represented in Use Case Diagrams in a top-down fashion. Use

Case Diagrams represent behavior as relationships, which are rather different from

Functional Flow Diagrams that represent behavior in a linear fashion, captured in a time-

framed way. However, as with functional decomposition, the Use Case Diagram process

begins by identifying the top level system functionality layout of the Use Case diagram.

This top level is a description of what the system is to do, but not how it will do it. In

addition, as with the functional decomposition process, further decomposition of system

functionality is created by the Use Cases that were used during the top-level

decomposition.

Use Cases are generally neither definitive nor complete when tying to understand

failure analysis. The diagrams can quickly become confusing with overlapping

functionality. In this case, sequence or flow diagrams provide a better way to represent

failure modes and branching conditions. Sequence diagrams are used to address the

exception behavior, the “what if” function. The sequence diagram is another tool to help

understand the systems functionality. If the failure analysis is simple, i.e., pass or fail

then only two different Use Case ovals are needed and at this point are only extensions of

the original Use Case.

 44

Figure 13 shows a typical Use Case Diagram. The typical Use Case diagram

shows how to communicate the high level functions of the system and the system’s scope

(Bell, 2003). In Figure 13, the functions are portrayed graphically, such as; the

commander views the target statistics and the topology of the target area.

Figure 13 Use Case Diagram example

Clean visual description, depicted in Figure 13 allows the system engineer as well

as the other stakeholders to see if more or less functionality is required in the system.

“Use Cases capture who (actor) does what (interaction) with the system, for what

purpose (goal), without dealing with system internals. A complete set of Use Cases

should specify all the different, key ways to use the system. Therefore, these Use Cases

 45

define the behaviors required of the system, and they serve to bound the scope of the

system” (Malan & Bredemeyer, 2001). Use Cases can provide benefit to the product

definition work, which in turn is relevant to defining the system architecture by a subset

of Use Cases for each of the products (Malan & Bredemeyer, 2001).

According to (Malan & Bredemeyer, 2001), Use Cases do not offer a means to

reflect commonality/variability across products in a product line or family. Such remarks

and sentiment appear in other surveys and questioner’s, such as (Grossman et al., 2004)

and UML for Systems Engineering Request for Information (SE DSIG RFI 1) by the

Object Management Group. In the article from (Malan & Bredemeyer, 2001) it is noted,

“Many teams are not able to decide on the appropriate level of abstraction to which to

take the Use Cases, and therefore experience an uncontrolled and time-consuming

proliferation in their Use Cases.”

UML focuses on a narrow view of the development rather than a broader, more

systematic view. This narrow view causes the UML model of the system to stand alone

in isolation from other domains, stakeholders, and systems. The limited involvement of

stakeholders, customer and systems engineer gives a false design mentality that “we need

only provide the functions the customer wants” (Gotterbarn, 2008).

UML does not have an explicit way of connecting the abstract description of

processes, resources, and structures, in addition to details of behaviors and structures of

objects (Kim et al., 2002).

B. SYSTEM MODELING LANGUAGE (SYSML):

The development of SysML is a joint initiative of OMG and the International

Council on Systems Engineering (INCOSE, 2007). SysML was developed to assist the

systems engineer with the specification, analysis, design, verification and validation of a

broad range of complex systems which are not necessarily software based (Vanderperren

& Dehaene, 2005), like UML. SysML is a modeling language used to represent systems

and product architectures, as well as their behavior and functionality (Balmelli & IBM,

2008). Unlike UML, SysML does address the requirements traceability needed by

systems engineers by linking the requirements to the design. Linkage is accomplished

 46

through requirements diagrams within the SysML environment. SysML is derived from

UML, however, with changes geared to the systems engineer. The structural layout of

SysML is shown in Figure 14.

Figure 14 SySML Diagram Types (From INCOSE Handbook)

Within this diagram tree, there is the behavior diagram that addresses Use Cases.

The Use Case diagrams provide descriptions of system requirements as previously

mentioned in the UML section.

The attempts to extend UML by tools or modeling ultimately created difficulties

when trying to integrate the different viewpoints and achieve traceability (Hause, Thom,

& Moore, 2008). “SysML was developed to address this issue by providing a standard

modeling language among all system engineers to analyze, specify, design, and verify

complex systems, intended to enhance systems quality, improve the ability to exchange

systems engineering information amongst tools, and help bridge the semantic gap

between systems, software, and other engineering disciplines” (Hause, Thom, & Moore,

2008). SysML uses additional tools as compared with UML. The tools consist of models

and techniques for analyzing, verifying models and decision trees.

 47

Unlike SysML, UML is biased towards its use with software development, and so

not easily adaptable to systems engineering (http://www.uml-forum.com). SysML

reduces the size of UML and extends its semantics to requirements and parametric

constraints (http://www.uml-forum.com) (see also Figure 14). SysML provides these

model requirements and parametric constraints to support some of the most important

systems engineering processes, requirements engineering and performance analysis.

1. The New Diagram; Requirement Diagram

The requirement diagram is added to SysML to benefit the systems engineer

during defining requirements. The requirement diagram was brought into the modeling

language to support the system engineer by listing requirements based on text and textual

attributes (e.g., id, text statement, and criticality). This diagram also formulates

requirements decomposition into its sub elements, has traceability between derived and

formative requirements, allows inspection into elemental components that can satisfies

various requirement(s) and provides a means to verification of requirements by test cases

(OMG SysML, 2007).

The requirement diagram can only display requirements, packages, other

classifiers, test cases, and rationale (OMG SysML, 2007). SysML represents the

requirements as elements of a system model. Requirements are inherent to the system

architecture. SysML represents textually drafted requirements (e.g., functional,

performance, quality), and their relations (Balmelli & IBM, 2006). Generally, the

requirements diagram is another means to requirements traceability. Requirement

derivation and traceability can be performed by many methods including other diagrams

within the UML or SysML format (OMG SysML, 2007). Functional decomposition and

IDEF0 provide a means as well. Add in tools such as DOORS help the process as well.

Figure 15 and Figure 16 display how SysML graphically represents the requirements in

nodes and paths as outlined in the OMG SysML specification.

 48

Figure 15 Graphical Nodes Included in Requirements Diagram
(From OMG SysML, 2007)

 49

Figure 16 Graphical Paths Included in Requirements Diagrams
(From OMG SysML, 2007)

New requirements are produced, and subsequently decomposed, during

requirements analysis. These are notionally associated with the formative requirements,

which were initially conceived or handed-down (Balmelli & IBM, 2006) (see graphical

notation above).

 50

Graphical Paths included in Requirements Diagrams (From OMG SysML, 2007),
continued

 51

Graphical Paths included in Requirements Diagrams (From OMG SysML, 2007),
continued

2. Differences between UML and SysML

What are the differences between these two modeling languages? The systems

engineer that could influence decisions when utilizing one of these languages should

know what advantages are best. SysML is a domain specific modeling language and

UML is construed as a general purpose modeling language. UML has evolved to UML

2.0 on which SysML was built to allow the reuse of maturing notation and semantics

(http://www.uml-forum.com). Both UML 2.0 and SysML provide the system engineer

with means to derive system functionality.

What advantages does SysML offer the systems engineer? The following is a list

provided by the UML Forum at http://www.uml-forum.com.

SysML expresses systems engineering semantics (interpretations of
notations) better than UML. It reduces UML’s software bias and adds two
new diagram types for requirements management and performance
analysis: requirement diagrams and parametric diagrams, respectively.

SysML is smaller and easier to learn than UML. Since SysML removes
many software-centric and gratuitous constructs, the overall language is
smaller as measured in diagram types (9 vs. 13) and total constructs.

 52

SysML allocation tables support various kinds of allocations (e.g.,
requirement allocation, functional allocation, structural allocation)
thereby facilitating automated verification and validation (V&V) and gap
analysis.

SysML model management constructs support the specification of models,
views, and viewpoints and are architecturally aligned with IEEE-Std-
1471-2000 (IEEE Recommended Practice for Architectural Description of
Software-Intensive Systems).

The following table, also provided by the UML Forum at http://www.uml-

forum.com, compares SysML diagrams with their UML counterparts. The capability of

each modeling language is listed directly in the column applicable to it. Where N/A is

indicated the particular language does not support the category described.

SysML Diagram Purpose UML Diagram Analog

Activity diagram Show system behavior as control and
data flows. Useful for functional
analysis. Compare Extended
Functional Flow Block diagrams
(EFFBDs), already commonly used
among systems engineers.

Activity diagram

Block Definition diagram Show system structure as components
along with their properties, operations
and relationships. Useful for system
analysis and design.

Class diagram

Internal Block diagram Show the internal structures of
components, including their parts and
connectors. Useful for system analysis
and design.

Composite Structure
diagram

Package diagram Show how a model is organized into
packages, views and viewpoints.
Useful for model management.

Package diagram

Parametric diagram Show parametric constraints between
structural elements. Useful for
performance and quantitative analysis.

N/A

Requirement diagram Show system requirements and their
relationships with other elements.
Useful for requirements engineering.

N/A

Sequence diagram Show system behavior as interactions
between system components. Useful

Sequence diagram

 53

for system analysis and design.
State Machine diagram Show system behavior as sequences of

states that a component or interaction
experience in response to events.
Useful for system design and
simulation/code generation.

State Machine diagram

Use Case diagram Show system functional requirements
as transactions that are meaningful to
system users. Useful for specifying
functional requirements. (Note
potential overlap with Requirement
diagrams.)

Use Case diagram

Allocation tables*

*dynamically derived tables,
not really a diagram type

Show various kinds of allocations
(e.g., requirement allocation,
functional allocation, structural
allocation). Useful for facilitating
automated verification and validation
(V&V) and gap analysis.

N/A

N/A Component diagram
N/A Communication diagram
N/A Deployment diagram
N/A Interaction overview

diagram
N/A Object diagram
N/A Timing diagram

Table 2 Comparison of UML and SySML (http://www.uml-forum.com).

Use Cases, as shown in the above table, are also implemented using SysML and

have not been modified. In this respect, the UML or SysML formats are the same.

An alternative to beginning with functional decomposition is to decompose a

system into objects. This is the approach used in applying SysML. First is to start with

an object decomposition that then leads to another way of identifying functions using the

principles of UML (Osmundson, 2007).

 54

C. INTEGRATION DEFINITION FOR FUNCTION MODELING (IDEF0):

Integration Definition for Function Modeling (IDEF0) is a modeling method that

defines process and data flows. “IDEF0 is useful in conducting systems analysis and

design at all levels, for system composed of people, machines, materials, computers and

information of all varieties” (IEEE Std 1320.1-1998). The IDEF0 graphical model is laid

out in a hierarchical arrangement of boxes or diagrams. Each box represents a prime

function and the arrows into and out of represents the data that interacts with the

particular function. The format of the IDEF0 function box is very similar to the

description of “function” as depicted by (Blanchard & Fabrycky, 1998). The IDEF0

defines function as “a set of activities that takes certain inputs and, by means of some

mechanism, and subject to certain controls, transforms the inputs to outputs” (Kim et al.,

2002).

Figure 17 Inputs and Outputs into the functional block
(From Blanchard & Fabrycky, 1998)

Calls:
(communications and
coordination)

 55

In Figure 17 the functional box is an activity, process, or transformation. This

function is identified by a verb or verb phrase that describes what the function must

accomplish. The inputs into the function box are transformed by the function itself into

an output. The controls/constraints from the top are transformed by the function, creating

the output. The mechanisms enable the sharing of detail between other models or with a

model (Osmundson, 2007).

IDEF0 is structured to make the understanding of a process easier since it

organizes the structures process in the same manner as the user may think about the

process, i.e., sequences (FIPS, 1993). IDEF0 is very similar to functional decomposition

as it is based on breaking down a process into sub-processes to make it easier to handle

complex systems. Functional decomposition is usually the beginning of the IDEF

process by which it gives a systematic way of dealing with levels of complexity (Kim et

al., 2002). This breakdown also follows the similar functional flow diagrams (FFD) as

the IDEF0 is arranged in a descending sequence with left to right flow, making it possible

to easily follow how each sub-process interacts with another. IDEF0 has a similar

methodology to that of functional decomposition, as it is hierarchical in nature. The

model is laid out in it’s as-is condition in a top down fashion, but allowing for an analysis

to be conducted in a bottom up approach.

The hierarchical layout of system functionality gives the designer the ability to

view the system from a “current” viewpoint. The IDEF0 diagram allows for a bottom up

analysis of the system functionality. Much like the cohesion process mentioned earlier,

similar or closely related activities are grouped together resulting in a more appropriate

hierarchal structure depicting the functional architecture. This process, as with functional

decomposition and Use Cases, is recursive until the desired level of detail in the

hierarchy is developed.

The IDEF0 method appears to be one of the best for a side-by-side comparison

with the functional decomposition method as they work well with each other (Kim et al.,

2002). The IDEF0 represents the mechanism (usually the system components to which

the function is allocated) which performs the function. Figure 18 is an example of an

IDEF0 diagram.

 56

Figure 18 IDEF0 sample diagram

As displayed in Figure 18, data into each function icon occurs or enters on the left

side. Control inputs enter the function icon at the top. Outputs of each function icon exit

on the right side. The mechanism or system components, as mentioned earlier, are

allocated to the function and enter each function icon from the bottom.

“IDEF0 is used to analyze and assist the modeler in identifying the functionality

that is to be performed. Analysis as to how the system performs these functions is

conducted which leads to identification of what the system does right and what the

system does wrong. Thus, IDEF0 models are often created as one of the first tasks of a

system development effort” (Knowledge Based Systems, 2008). Similar to other means

of identifying system functions, i.e., the functional decomposition process or Use Cases,

 57

IDEF0 presents the functional depiction in a graphical form. A graphical form seems

easier to understand than merely words in a document because of the relationship it

shows between functions.

IDEF is not alone and in fact, IDEF is not just for function modeling. IDEF0 is a

family of methods ranging from IDEF0 to IDEF14, each providing a perspective into the

domain of study.

IDEF0 Function Modeling
IDEF1 Information Modeling
IDEF1X Data Modeling
IDEF2 Simulation Model Design
IDEF3 Process Description Capture
IDEF4 Object-Oriented Design
IDEF5 Ontology Description Capture
IDEF6 Design Rationale Capture
IDEF8 User Interface Modeling
IDEF9 Scenario-Driven IS Design
IDEF10 Implementation Architecture Modeling
IDEF11 Information Artifact Modeling
IDEF12 Organization Modeling
IDEF13 Three Schema Mapping Design
IDEF14 Network Design

Table 3 Suite of IDEF0 Methods (current and in development)

The IDEF0 method models the system functions and relationships with other

functions. However, IDEF0 notations are only conceptual models and therefore not

effective for the generation of implementation schemata (Kim et al., 2002). This is not to

mean that IDEF0 is not very useful for system development. In fact, IDEF0 models

provide value to understanding system functionality and functional requirements, when

combined or mapped with object oriented models as with the generation of computer

executable systems outline in (Kim et al., 2002). Developing an IDEF0 diagram and

following functional understanding with Use Cases used in UML and SysML one can

address key constituents that IDEF0 alone cannot. The consideration of using another

 58

IDEF0 method such as IDEF3 for behavioral aspects still has its limitations as the

description of interactions between organizations are limited and “the lack of any clear

distinction between material flow and information flow lead to semantic constraints that

limit the use of all IDEF models” (Kim et al., 2002).

Note, the IDEF0 diagram is similar to the N-Squared chart mentioned before.

The input into the function box of the IDEF0 diagram allows the specification of control,

but does not have the ability to characterize the control in terms of constructs such as

triggering (Long, 2008). Other types of diagrams found in the UML and SysML formats

such as behavior diagrams allow this ability. IDEF0 diagrams also allow the explicit

representation of functional allocation (Long, 2008) i.e., the particular system component

that performs the function.

“A problem that has been described with IDEF0 models (Knowledge Based

Systems, 2008) is that IDEF0 can be confused with describing the sequence of events

within the system activity. Getting around this issue is not impossible. The systems

engineer may layout the system activities in a typical left to right sequence when

decomposing.” These sentiments are typical of the normal way one might think when

problem solving. It is etched into our thinking, especially when reading or writing, that

we must work the flow from left to right. The risk with the IDEF0 model not being

structured in an activity-sequencing format is that other developers of a team may

mistake this and attempt to add interpretation (Knowledge Based Systems, 2008)

“IDEF0 has been very effective when detailing the system activities for function

modeling” (Knowledge Based Systems, 2008), (Kim, et al., 2002). The IDEF0 process

continues with further decomposing of these activities into greater detail until the system

is described in enough detail to understand that it meets the intended need or goal.

However, one of the observed problems with IDEF0 models is “that they often are so

concise that they are understandable only if the reader is a domain expert or has

participated in the model development” (Knowledge Based Systems, 2008).

 59

IDEF0 models can be suitably constructed to describe system complexity. The

first such description was for manufacturing. IDEF0 models may posit many

perspectives (Kim et al., 2002). The modeling of functional behaviors in the system are

not handled well in IDEF format (Kim et al., 2002) so it makes sense to utilize other

means of filling in the gaps as UML does allowing system structures, components, and

computer program packages to be designed, developed, and reused (Kim, et al., 2002). It

appears logical that multiple viewpoints, such as IDEF0, Use Cases (both in UML and

SysML), Behavioral diagrams (both in UML and SysML), Requirements Diagrams

(SysML) and the process of decomposing system functionality with functional

decomposition and the key factors contributing to completer decompositions combine

well to effectively derive good system requirements. This works well as an interrogation

technique covering many views of the system.

 60

THIS PAGE INTENTIONALLY LEFT BLANK

 61

IV. CONCLUSION

In summary, it is apparent from research that the process of coming up with

functional requirements via the functional decomposition method or using other

approaches such as UML, SysML and IDEF0 is feasible but varies dependant on the

experience of the system engineer and type of system, i.e., software or hardware.

From this research, it appears that the process of functional decomposition, while

focusing on the key factors that lead to good decompositions, is the first stepping stone to

deriving functional requirements. What graphical method to use to address behavior is

considered subjective, as well as how the system accomplishes its task. The examination

into the object and process-oriented views (object being UML and SysML) shows that

combining approaches works well and depending on the system under development , i.e.,

software or hardware, different approaches and emphasis on one or the other is needed.

For example, software development seems to favor mostly UML and functional

decomposition alone. This multi view analysis of system functionality is a good way to

view the functional requirements in different ways, helping to ensure proper

functionality.

As shown in (Kim et al., 2002) and in (Doyle & Pennotti, 2005), object oriented

models and process oriented models work well together. In (Doyle & Pennotti, 2005)

their experiment showed that using UML/SySML Use Case Diagrams made it difficult to

grasp the initial view of how a system would accomplish its task. The Use Case

Diagrams show what the system might be expected to do but fails at easing the

understanding on how. The approach that worked well in their experiment was the

combination of functional decomposition and IDEF0. Remember the functional

decomposition was the first step in the IDEF0 process so as mentioned earlier IDEF0 and

functional decomposition go hand in hand. This format leads the experiment to better

communication from a project management viewpoint.

 62

In the article by (Kim et al., 2002), the combined use of UML and IDEF0

provided multiple views of requirements. Redundancy of the models is less desired since

the result would likely lead to additional development cost. However, from their

experience and others (Langford, 2008) it is believed that the increased quality of the

modeling out weighs the additional cost. In fact, the hierarchical functional

decomposition process (in process-orientated models) has shown in both these papers that

it works much better than a single approach.

The practice of hierarchical functional decomposition is most often easier and

takes less time than trying to force the hierarchy structure into Use Cases or considered as

a hack functional decomposition (Langford, 2008). “Hack” functional decompositions

are characterized by inattention to defined terms and mixing functions, with processes,

with performance and with quality. The result is a mishmash of ill-defined states,

modules, and entities which results in poorly defined inputs and outputs and

dependencies that are either undiscovered or intentionally disregarded. Hierarchy and

modularity permit reuse and replacement and therefore adaptability, standardization,

scalability, and understanding. Decomposition can be valuable to present a simple view

of the parts of a function (assuming that the top-level function can be broken into parts).

If the structure of sub functions permits modularization, then the decomposition can be

scaled and generally used more adaptively through interfaces with other modules.

Simplicity is a way of gaining understanding about the nature of the top-level function,

its relationships, its components, and how it can be used. Fundamentally, functional

decomposition is the basis for all science, all structure, all thought. If done properly,

logic is defined.

A. FUTURE WORK

In consideration of future work, a different approach to performing functional

decomposition is discussed. The combination of multiple approaches to give different

views of system functionality was shown to be best, but the functional decomposition

must be good in order to be complete. It was mentioned that coupling and cohesion play

an important role in good decompositions. The question is what else?

 63

Systems Engineering Value Equation with Risk (SEVER) (Langford, 2008) is

another way of performing an interrogation of the functional decomposition with good

coupling and cohesion. It is a way to determine the gap that can exist between an

existing product and a desired product. In terms of cohesion, it is important to position

the functions within the system hierarchy so if changes are required, i.e., function is re-

structured, it will not significantly affect the totality of design. The coupling and

cohesion interrogation is conducted first, and then in the more detailed levels in the

functional hierarchy, SEVER can be used to improve the functional decomposition. Now

consider that a problem is discovered that exposes lifecycle inconsistencies with the

product’s requirements or proposed architecture. In effect, there are conflicts between

the design objectives and the impacts of lifecycle considerations. The issue could be with

part of the problem that will require an upgrade but at a high impact, i.e., redesign, then a

simple way is to design this part of the product to be replaced earlier. The quality may be

reduced driving the need to replace sooner but this will reduce the cost of the function.

This situation makes sense for products are impacted by rapid technology changes when

an east upgrade is required.

SEVER provides a way to analyze the value of each function. The fundamental

equation from value engineering, F
PV
I

= , where the value of the function is defined as

the performance divided by the investment. For example, looking at three

functions 1.1F , 2.1F and 3.1F , let’s say that 1.1F has high value to the customer, but 3.1F has

high risk, and therefore not much value or performance. The customer indicates interest

in 3.1F but not at the high cost and risk. Combining 2.1F and 3.1F in a way that cost could

be shared and performance improved is leveling the load of both functions. This is a

means of using the value portion of SEVER to investigate the load leveling portion in the

functional domain.

This moving of functions into the functional domain is a way of quantifying the

coupling and cohesion within the functional decomposition. In some circumstances,

coupling and cohesion will not provide any improvement in the decomposition. Value is

another way of viewing the functional decomposition. It is a powerful tool that can be

 64

used in the first order to view the predominate value of the system. For example the

function 1.1F is most valuable to the system and function 3.1F could essentially be

eliminated, but the customer is willing to pay for 3.1F functionality because it has some

value to them but not worth as much as the cost of fielding 3.1F alone. So at the first

level of the functional decomposition one could design the interface so it fits with 2.1F

and 3.1F but as a modular upgrade to the system. If an improvement in technology or a

reduction in cost occurs then investment of the function 3.1F goes down and value goes

up.

There appears to be no easy way to address value in UML or SySML, but it can

be done with IDEF0. IDEF0 has inputs, outputs, mechanisms and controls, as shown in

Figure 17. SEVER can be incorporated as in input into the IDEF0 function block as a

worth equation, where * *
F

P Q LOCR
I

= (see Figure 19) where R is the risk, F is the

function, P is the performance, Q is the quality, LOC is the likelihood of occurrence, and

I is the investment (Langford, 2008). Worth is defined as Value (measured in units of

performance) multiplied by Quality (measured in units of I). Worth multiplied by LOC is

equal to R, risk.

 65

Figure 19 IDEF0 Modified with Risk Attributes (From Langford, 2008)

Looking at each function, and determining the risk of each function, defines the

loss that may occur by using the initial functional decomposition. Moving around the

value and risk of a function will increase the performance and reduce the cost thereby

resulting in an improvement to the architecture/design. Whether IDEF0 structure is used

or just a straight functional decomposition these tools, value of function and risk of

function can be used further to refine the architecture /design. Worth presents another

view of the impacts of functional decomposition. It is defined as
P
Q

T
PPW tc **//=

where P is the performance, T is the total time in hours, Q is loss function (minimum loss

-)(XLn and n
n mxkXL)()(−= (standard loss function)) (Langford, 2008). The

function 3.1F , which is of high risk, is going to cost a lot of money, which we knew when

we looked at the value of the function. At the next level of detail, the cost is related to

the number of people working the function, which could be for discussion, lines of code

in software development. A further refinement using SEVER can be conducted on the

* *
F

P Q LOCR
I

=

 66

functional decomposition to isolate problems that should be fixed by means of load

leveling the functions. For example a module of code that could de defined as high risk

could be moved from 3.1F to 2.1F . Function 2.1F may have a different skill set that would

reduce the risk of developing the high risk module and reduce the cost of rework when

kept in 3.1F . This is an improvement of the functional decomposition from a management

point of view. Looking at the management of functional decomposition first from a top

level of negotiation, a second level for design, and a third level for life cycle issues, is a

way to look at the entire business process to see if the right thing will be done with the

product.

 67

LIST OF REFERENCES

Bahill, T.A., & Dean, F.F. (2007). What is systems engineering?A Consensus of Senior
Systems Engineers. Retrieved December 5, 2007, from
http://www.sie.arizona.edu/sysengr/whatis/whatis.html.

Balmelli, L., & IBM. (2006). An overview of the systems modeling language for product
and systems development -- Part 1: Requirements, use-case, and test-case
modeling. Retrieved January 12, 2008, from
http://www.ibm.com/developerworks/rational/library/aug06/balmelli/.

Balmelli, L.D., Brown, M., Cantor, M., & Mott, M. (2006). Model-driven systems
development.

Bell, J. (2004, July). The role of functional decomposition, Doc. ref. SD/TR/FR/10.

Bell, D. (2003, June). UML basics: An introduction to the unified modeling language,
Staff, IBM.

Blanchard, B., & Fabrycky, W. (1998). Systems engineering and analysis, Third Edition.
Prentice Hall.

Borysowich, C. (2007). (Chief Technology Tactician) Overview of functional
decomposition Retrieved February 20, 2007, from
http://blogs.ittoolbox.com/eai/implementation/archives/overview-of-functional-
decomposition-14609.

British Standards, BS5760 (1991).

Cantor, M. (2003). Thoughts on functional decomposition, The Rational Edge.

Cantor, M., & Roose, G. (2005, December). Hardware/software codevelopment using a
model-driven systems development (MDSD) approach.

Cantor, M., & Roose, G. (2006). The six principles of systems engineering, IBM's
rational rules developed over 10-Year period.

Chittaro, L., & Kumar, A.N. (1998). Reasoning about function and its applications to
engineering. Artificial Intelligence in Engineering 12 (4), 331.

Chandrasekaran, B., & Josephson, J.R. (1997, July). Representing function as effect,
Proceedings of the Fifth International Workshop on Advances in Functional
Modeling of Complex Technical Systems, Paris France.

 68

Coulston, C., & Ford, R.M. (2004, October). Teaching functional decomposition for the
design of electrical and computer systems, 34th ASEE/IEEE Frontiers in
Education Conference.

Dedek, A., Suffolk University, & Lieberman, B., BioLogic Software Consulting (2006,
June). Qualifying use case diagram associations.

Dietmeyer, D.L. (1971). Logic design of digital systems, Boston: Allyn and Bacon.

Dockerill, K. (1999).The importance of animation with UML, Proc. Ninth Int. Symp.
INCOSE.

Dockerill, K. (2001, June). UML for systems engineering, Proc UML for Real-Time
Systems Development, Newbury, UK, Adaxia.

Doyle, L., & Pennotti, M. (2005, March). Systems engineering experience with UML on a
complex system, Department of Systems Engineering and Engineering
Management, Stevens Institute of Technology.

Friedenthal, S.A., & Burkhart, R. (2007). Extending UML from software to systems.

Fang, K.Y., & Wojcik, A.S. (1998). Modular decomposition of combinational multiple-
valued circuits, IEEE Trnas. On Comput., Vol. 37, No. 10, 1293-1301.

FIPS 183, (1993). Draft Federal Information Processing StandardsPublication 183.

Fowler, M., & Scott, K. (2004). UML Distilled Third Edition: A brief guide to the
standard object modeling language, Addison-Wesley, Boston.

Gero, J. (1990). Design prototypes: A knowledge representation schema for design. AI
Magazine, 11(4), 26–36.

Gotterbarn, D., UML: Improving its risk reduction, Auckland University of Technology,
New Zealand.

Grossman, M., Aronson, J.E, & McCarthy, R.V. (2004). Does UML make the grade,
Insights from the software development community.

Hause, M., Thom, F., & Moore, A. (2008). Inside SysML - Artisan Software Tools.

Hawkins, P.G., & Woollons, D.J. (1998). Failure modes and effects analysis of complex
engineering systems using functional models. Artificial Intelligence in
Engineering, 12(4), 375–397.

Herzog, E., & Pandikow, A. (2005). SysML – an assessment, Sweden.

Hitchins, K.D. (1997). Systems thinking, Retrieved February 16, 2008, from
http://ourworld.compuserve.com/homepages/prof_Hitchins/.

 69

Hitchins, K.D. (1992). Putting systems to work.

IEEE Std 1320.(1998). IEEE standard for functional modeling language—syntax and
semantics for IDEF0.

Iwasaki, et al. (1993). How things are intended to work capturing functional knowledge
in device design.

Jozwiak, et al. (1995). Efficient decomposition of assigned sequential machines and
Boolean functions for PLD implementations, IEEE, 258-266.

Kanefsky, P., Nelson, V.A., & Ranger, M. (1999). A systems engineering approach to
engine cooling design, SAE International, 44th Ray Buckendale Lecture.

Kim, C.H., Weston, R.H., Hodgson, A., & Lee, K.H. (2002). The complementary use of
IDEF and UML modeling approaches, Computers in Industry, Elsevier.

Knowledge Based Systems, Inc., 1408 University Dr. East College Station, TX 77840,
Retrieved January 20, 2008, from http://www.idef.com/idef0.html.

Kobryn, C. (2004). UML 3 and the future of modeling, Journal of Software and System
Modeling, Vol. 3, No. 1, 4-8.

Langford, G. (2006). Course on Systems Engineering presented at the Naval Postgraduate
School, Monterey CA.

Langford, G. (2007). Draft paper for the International Council on Systems Engineering
(INCOSE) on Functional Analysis.

Langford, G. (2008). Personal communication.

Langford, G., & Huynh, T. (2007, September). A methodology for managing complexity,
Systems Engineering Test and Evaluation Conference, Sydney, Australia, 24-27.

Larkin, J. (1983). The role of problem representation in physics. In Gentner, D. &
Stevens, A. (Eds.), Mental models. Hillsdale, NJ: Erlbaum.

Leffingwell, D., & Widrig, D. (2002). The role of requirements traceability in system
development, The Rational Edge.

Long, J.E. (2008). Relationships between common graphical representations used in
systems engineering, Vitech Corporation.

Maier & Rechtin. (2002). The art of systems architecting, Second Edition, by CRC Press
LLC.

Malan, R., Bredemeyer, D., & Bredemeyer Consulting. (2001). Functional requirements
and use cases.

 70

Meyer, B. (1997). OOSC2: The use case principle, Objected-Oriented Software
Construction 2nd ed.

Naval Air Systems Command Systems Engineering Guide (2003, May).

Osmundson, J. (2007). (slides UML basics) Naval Postgraduate School.

OMG SysML. (2007, September). Ver. 1.0, OMG Available Specification.

Poort, E., & LogicaCMG. (2008). Resolving requirement conflicts through non-
functional decomposition, Meander 901, 6825 MH Arnhem, The Netherlands;
Peter H.N. de with LogicaCMG / Eindhoven Univ. of Technol., P.O. Box 513,
5600 MB Eindhoven.

Perkowski & Grygiel. (1995, November). A survey of literature on functional
decomposition, Ver. VI.

Sembugamoorthy & Chandrasekaran. (1986). Functional representation of devices and
compilation of diagnostic problem solving systems.

Snooke, N.A., & Price, C.J. (1998). Hierarchical functional reasoning. Knowledge-
Based Systems, 11(5–6), 301–309.

Sticklen, Chandrasekaran, & Bond. (1989). Functional reasoning for design and
diagnosis. In Proceedings Model Based Diagnosis International Workshop (DX-
89).

TogetherSoft, Inc, (2001). Retrieved April 17, 2008, from http://www.it.lut.fi/kurssit/01-
2/010758000/UML_index.html.

Vanderperren, Y., & Dehaene, W. (2005). SysML and systems engineering applied to
UML-based SoC design, Proc. 2nd UML for SoC Design Workshop, 42nd DAC.

Volvo Car Corporation. (2002). Object Management Group’s UML Systems Engineering
(SE) Request for Information (RFI) Response.

 71

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

3. Gary Langford
Department of Systems Engineering
Naval Postgraduate School
Monterey, California

4. John Osmundson
Naval Postgraduate School
Monterey, California

