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ABSTRACT 

The objective of this thesis is to investigate different approaches to identifying 

system functions.  The approaches that are described are standard functional 

decomposition process, Unified Modeling Language (UML), System Modeling Language 

(SySML), and Integration Definition for Function Modeling (IDEF0).  A discussion is 

presented on advantages and limitations of describing and using functions by means of 

graphical formatting.  Improving system functionality by effective decomposition is vital 

to robust system development.  However, not one of these approaches presents the best 

method for complete functional identification.  While each has its benefits and should be 

considered during functional analysis, a good decomposition has proper interrogation of 

the functions by means of coupling and cohesion of the functionality as well as 

identifying functional overlap and underlap.  Standard functional decomposition works 

best as the first step in laying out system functionality.  Rigor and completeness are 

improved when followed up by UML, SySML, or even IDEF0.  Value and risk of each 

function can and should be identified as a way of posing a series of questions that 

measure and analyze the appropriateness of the functional decomposition.  Combining 

these different approaches can help lead to a more complete functional decomposition 

and therefore reduce the risk to system development. 
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EXECUTIVE SUMMARY 

This thesis compares and contrasts several approaches to identifying functions 

using Functional Decomposition, Unified Modeling Language (UML), System Modeling 

Language (SySML), and Integration Definition for Function Modeling (IDEF0).  Each of 

these approaches is described and depicted graphically, explaining how each handles 

system functionality.  Benefits and limitations of each approach are explained.  

The driving force behind this analysis into identifying system functions was to 

expose differences and key factors that lead to effective decomposition of functionality.  

Good functional decomposition has great influence on the success of system development 

against schedule, cost, and performance and quality requirements.  Defining which 

approach should be used in a particular development effort seems impractical since there 

are too many subjective ways to manage development.  However, key factors that help 

guide towards more complete functional decompositions are explained which, if 

followed, could reduce the risk associated with incomplete decompositions. 

The findings are such that each of the approaches has benefits in identifying 

system functions, but none alone is best suited for complete identification.  Using the 

‘standard’ functional decomposition approach, breaking the functionality down into 

manageable chunks, i.e., sub-functions, seems to be the best starting point before 

combining other approaches.  Keeping in mind the key factors that interrogate the 

functions such as coupling and cohesion, overlapping and underlapping conditions, and 

failure analysis can lead to better decompositions.  Expanding on the interrogation of the 

functions with respect to value and risk, e.g., such as the application of the Systems 

Engineering Value Equation with Risk (SEVER) equation, can result in more complete 

functional decompositions. 



 xiv

THIS PAGE INTENTIONALLY LEFT BLANK 



 xv

ACKNOWLEDGMENTS 

I would like to thank the Naval Postgraduate School for the outstanding education 

that enhanced my career and new found enthusiasm in the Systems Engineering 

discipline.  Professor Gary O. Langford and Professor Dr. John Osmundson, I thank for 

the support required to accomplish this task.  I also would like to thank my organization 

who provided the financial backing to further my education. 

Ultimately, it comes down to those dearest to my heart, my family.  Thank you to 

my mother and father, my wife and son.  I could not have done it without you. 

 

Thank you! 



 xvi

THIS PAGE INTENTIONALLY LEFT BLANK 

 



 1

I. INTRODUCTION  

A. BACKGROUND 

Functional decomposition has been used in electrical engineering and software 

development.  It has further evolved and has become a process for defining and 

understanding functionality and functional requirements of systems in the field of 

systems engineering.   

This thesis presents the investigation of functional decomposition as it applies to 

the systems engineering process.  The different ways or approaches of determining 

functional requirements, e.g., Functional Decomposition, Modeling languages, and 

Integration Definition Function Modeling (IDEF0) are compared.  

It should be noted that some authors have criticized functional decomposition as 

being flawed and as contributing to systems that do not meet customer requirements 

[Cantor, 2003].  It is the intent of this thesis to begin a dissection of this criticism.  Why 

does it appear that some people are inherently better at performing functional 

decomposition than others?  Is it a difference in thinking, in manner of approach, or even 

in education?  This question was explored theoretically by review and analysis of 

relevant research.  Particular focus was given to three questions: What is the range of 

appropriateness of functional decomposition as a systems engineering tool?  What are the 

limitations, bounds, and applications?  Is there a better approach to capture functional 

requirements?  

In general, decomposition is a notion founded in reductionism.  Reductionism is 

an approach used to understand complex systems simply by reduction (a simplification or 

condensation).  Reductionist thinking forms the basis for most modern science and 

axiomatic mathematics.  The development of systems thinking promotes a holistic view 

rather than a reductionist’s method.  However, functional decomposition combines 

reductionism with systems thinking.  The methods of the reductionist may lead to 

incomplete decompositions because these methods do not convey or acknowledge the 
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relationships between the reduced system components.  Systems engineering improves on 

this situation by viewing functions and their interfaces as the building blocks for the 

system.  Parsing functions with their associated performances, quality, physical, 

informational and other views further improves the ability of systems engineering to 

better characterize the desired system (Langford, 2008).  

The general notion of functional decomposition is to break apart (i.e., partition 

and objectify) the components of an object into it sub elements (Langford, 2006).  The 

purpose of decomposition is to give precise meaning to the relationships between a whole 

and its parts.  Decomposition specifies the structuring and distribution of these parts in 

terms of the transfer of information (i.e., energy) between the parts – specifically the 

elements of the parts).  Systems engineers can and do use decomposition to obtain clarity 

in the understanding of the system design.  

Functional decomposition is a widespread design technique applied to design 

problems in many fields, such as systems engineering, software development and 

electrical design (Coulston & Ford, 2004).  It is well known in the field of systems 

engineering and software development, yet is often employed in an ad-hoc or haphazard 

fashion, leading to less than desired results (Coulston & Ford, 2004).  

Functional decomposition is a fundamental tool of systems engineering.  It maps 

functions to physical components (thereby ensuring that each function has an “owner”) 

(Langford, 2008).  It maps functions to system requirements.  By its intention, it ensures 

all necessary tasks are listed and no unnecessary tasks are requested.  The process of 

performing the decomposition should begin with the top-level function (see Figure 1) and 

then proceed through the major subsystem (Langford, 2008).  However, in practice, 

beginning at any level in a functional hierarchy, the process is to move through or 

decompose in a logically step-wise fashion.  The functional subsystem level should be 

completed next and then advance to the hardware / software, if appropriate (Langford, 

2008).  At each level, one completes the activities of functional analysis, allocation, and 

synthesis before proceeding to next lower level (Langford, 2008). 
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Figure 1 Typical Functional Breakdown 

To some professionals, functional decomposition is something to avoid, as it has 

been rumored to be responsible for poorly designed, low quality systems (Cantor, 2003).  

Yet there are a plethora of successes using functional decomposition and it continues to 

be in widespread use, so, why do some consider there to be an issue?  At first glance, the 

practitioner may not have the requisite skills and expertise to use functional 

decomposition effectively in system development.  Therefore, the application of 

functional decomposition to derive requirements may be subjective and ill fated.  With 

the interests in developing increasing complex systems, it is common to have tens of 

thousands of system requirements.  Even the simplest of systems may have several 

thousand.  For example, consider the simple task of withdrawing currency from an 

Automated Teller Machine (ATM).  The general requirements of “ATM shall dispense 

Top-level functions 

Function A Function B Function C Function D 

Function E Function F 
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Next-level functions       (function “E” broken down further)   

 System Requirements 
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currency,” “ATM shall dispense currency in correct amount.” and “ATM shall dispense 

currency when requested” can be expanded to include “REQUESTOR shall provide 

proper credentials,” “ATM shall verify credentials,” ATM shall authorizing 

disbursement,” and “ATM shall disperse.” 

The typical functional decomposition results in a functional hierarchy diagram, a 

top to bottom parsing of general functions into their constituent parts.  Higher levels of 

detail are found at the bottom.  All functions and sub-functions are numerically 

designated to indicate kinship, (see Figure 2) (Langford, 2006).  This depiction is an 

example of an event-structured functional decomposition.  At the top of the hierarchy are 

the key function(s) that define the properties of the system required to complete the 

system objectives (Langford, 2007).  The bottom of the hierarchy covers only limited 

objectives - a small set of the overall list of objectives.  In that fashion, the top level 

function specifies the user need and the lower level functions specify specific systems 

needs (Langford, 2007).  Some systems engineers have tried to generalize the hierarchy, 

short cut the methodology, and have stumbled because of a poorly defined set of terms 

that describe functions (Langford, 2007).  The primary criteria for evaluating the worth 

and quality of a decomposed system are the numbers of interfaces and the type of 

information exchanged between system elements, i.e., the complexity of the 

decomposition (Langford, 2007).  For example, complexity can be inferred from an 

entropic view (degree of uncertainty) of the decomposition (Langford, 2007). 
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Figure 2 Typical Functional Decomposition (From Langford, 2006) 

Figure 3 presents another graphical look at a typical hierarchical functional 

decomposition.  Typically, functional decompositions are performed by first indentifying 

the top level physical constraints (boundary conditions).  In Figure 3, “Functional 

decomposition of Household Lighting System,” the boundary condition would be the 

physical limitation of the exterior walls of the house.  There are interacting systems that 

would exist outside the boundary such as power lines and power stations (i.e., external 

systems) but here the primary focus is on the system of lighting within the house.  The 

exterior of the house is the system boundary.  The house also consists of a plumbing 

system, heating system, etc.  A next step in functional decomposition could be to identify 

the top level functional descriptions of the physical items such as “provide power 

source.”  The physical aspect would be the power distribution system internal to the 

system boundary.  Another example of a function is to “provide user control,” the 

physical embodiment of the on/off light switch.  From the physical decomposition 

diagram, the top level functional description is defined by parsing the interface 

requirements into a conjugate sets.  The interface requirements are defined with 
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consistency to instance the higher level inputs and outputs.  This ‘nesting’ of hierarchical 

functions and their associated input/output processes and activities allows groupings (i.e., 

aggregation) of like and delineation of dislike interfaces between functions.  At each level 

of decomposition the input and output requirements are matched to the functional 

description (Langford, 2006).  A graphical method of systems engineering methodology 

showing the hierarchical system’s analysis (e.g., functional decomposition) is illustrated 

in Figure 3. 

Functional Decomposition of Household Lighting System

Exterior 
wall
of house

 

Figure 3 Functional Decomposition of Household Lighting System 
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Figure 4 Systems Engineering Methodology  
(From MIL Standard 499B Model, 2006) 

There are many types of decomposition with different bases (e.g., functional, 

physical, informational).  In general, the actions of separating distinct functionality into 

defined components that have well-defined interfaces are one of the essential ingredients 

of functional decomposition.  Fundamentally, there are two types of decomposition: 

part/whole, and generalization/specialization.  A discussion of decomposition theory can 

be traced back as far as 1776, and maybe further.  Adam Smith, “An Inquiry into the 

Nature and Causes of The Wealth of Nations” (9 March 1776) stated: 

Metals cannot only be kept with as little loss as any other commodity, 
scarce any thing being less perishable than they are, but they can likewise, 
without any loss, be divided into any number of parts, as by fusion those 
parts can easily be re-united again; a quality which no other equally 
durable commodities possess, and which, more than any other quality, 
renders them fit to be the instruments of commerce and circulation. 
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The decomposition of material elements that form the particular metal are broken 

down into sub-elements and reunited without overlapping or under-lapping issues 

(explained further in next section).  A simple example of an underlap condition can be 

explained such as taking a block of wood (i.e., particular system) and decomposing it into 

smaller manageable parts by means of sawing, one would experience under-lapping due 

to the thickness of the saw cut (a loss of relationship between the parts).  A reassembly of 

the parts back into the system as a whole would result with a smaller block of wood due 

to the loss of material from the saw cut. 

An early publication that refers to the functional decomposition process was 

produced by G. Boole, An Investigation of the Laws of Thought on Which are Founded 

the Mathematical Theories of Logic and Probabilities London, 1854.  Boole’s writings 

are mentioned in much American and Russian research on the decomposition topic 

(Perkowski & Grygiel, 1995). 

Additional influential work on decomposition was published by R.L. Ashenhurst, 

first in 1952, and later often described as the Ashenhurst Decomposition in 1957, a 

widely acclaimed paper on “The decomposition of Switching Functions” (Perkowski & 

Grygiel, 1995).  The main idea of the Ashenhurst’s decomposition, later modified by 

Curtis in 1962, was to decompose functions into simpler units of logic.  This was done by 

reducing various cofactors in the corresponding representation of each unit, thereby 

compressing a larger number into a smaller number.  Typically, this reduction was 

achieved by grouping redundant functions into a logical structure that services multiple 

other structures.  The Ashenhurst-Curtis decomposition was appropriately characterized 

as recursive top-down reduction from the system whole to the constituent parts.  A top-

down approach to functional decomposition broke the main function into sub-functions, a 

hierarchical approach to better understanding of system complexity.  The top-down 

approach allows logical, well-organized thought and orderly development of systems.  

However, premature binding of temporal relations can be a risk (Langford, 2008). 

A second, popular work on the decomposition approach proposed by Dietmeyer, 

1971, is qualified as a compositional type, which is described as bottom-up starting from 

defined parts, building through intermediate levels, until all output functions are realized.  
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In contrast to the Ashenhurst-Curtis decomposition, Dietmeyer’s paradigm is particularly 

useful when the problem is defined to solicit a solution from a quantifiable and available 

set of well-quantified parts.  An example might be to solve a problem by putting marbles 

into various boxes.  The boxes and the marbles are givens, while the solutions are 

described as juxtapositions (put together to suggest a link or thread between them) of 

boxes and marbles.  The Dietmeyer technique is premised on building blocks that are 

determined after a search of partition matrices for a classic decomposition property.  The 

result is a predefined collection of modules that are used to design a function subject to 

constraints (Jozwiak et al, 1995). 

These two techniques are adequately designed to address a wide range of different 

designs or paradigms.  The Ashenhurst-Curtis Decomposition (top down hierarchal 

approach) is more suited to the open-ended design, while the Dietmeyer Decomposition 

(bottom up approach) applies appropriately to the self-constrained design.  In addition, 

the Dietmeyer Decomposition lends itself more naturally to reversible logic designs, with 

the Ashenhurst-Curtis Decomposition being a special case of the Dietmeyer 

Decomposition for same.  A like-minded approach was outlined in (Fang & Wojcik, 

1998). 

B. RESEARCH OBJECTIVE 

The purpose of this thesis is to discuss and compare a few of the popular methods 

of deriving functional requirements – traditional Functional Decomposition, Unified 

Modeling Language (UML), Systems Modeling Language (SysML) and Integration 

Definition Function Modeling (IDEF0) – within the context of discovering improvements 

and limitations.  

Research questions that were addressed include:  

1. What factors contribute to incomplete functional decompositions? 

2. What is the range of appropriateness of Functional Decomposition, as a 
systems engineering tool? 

3. Are there other ways/approaches to performing the decomposition? 
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4. What are the limits of these different ways/approaches to functional 
decomposition? 

5. Is one way/approach to determining requirements better than another? 

One of the suggested critical aspects of improving system engineering is to 

transition systems engineering from a document centric perspective to an approach based 

on graphical modeling (Friedenthal & Burkhart, 2007).  For some people, graphical 

views allow for better understanding, and traceability of system elements and their 

functionality.  

Functional decomposition needs to be studied further.  Incomplete 

decompositions can impact the success of systems development leading to poorly 

designed systems that are over cost, behind schedule, inadequately provided functionality 

and performance, or inadaptable to change.  In addition, incomplete decompositions can 

lead system engineers to improper requirements and poorly defined architectures.  Proper 

understanding of the approaches to decomposing system functions will help minimize the 

risk of not properly meeting the goal of the system.  Further study may shed light on how 

to better develop less costly systems. 

C. DEFINING COMPLEXITY, SYSTEM, AND FUNCTION 

1. Complexity 

The complexity and functionality of the cell phone has greatly increased in the 

past several years.  However, does that mean the “system” is more complex or is it just 

that the heuristics are something we do not understand and are therefore deemed 

complex?  At one time the “need” was to contact another person without the 

inconvenience of stopping what you were doing and traveling to a fixed location from 

which to place a call.  Today the phone has mobility and juxtaposition with the caller, 

with an evolving set of functions that include placing and receiving calls, sending and 

receiving text messages, sending and receiving emails, “surfing” the Internet, verifying 

the stock market prices, taking digital images, and so on.  Complexity is defined as the 

number and types of Worth Transfer Functions between stakeholders of a system, or 

likewise between system elements (Langford & Huynh, 2007).  Therefore, increasing the 
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number of functions increases system complexity.  Heuristics, if not understood, may 

cause complexity in the system structure.  Comprehensive and complicated are terms 

commonly used to describe systems that have given way to understanding of the system’s 

heuristics.  However, complexity is referred to that which is usually not understood. 

Functional decomposition is the widely practiced methodology that deals with 

system complexity, focusing on intelligently partitioning the system into smaller, more 

definable pieces.  An improvement over the standard functional decomposition is 

described in “A Methodology for Managing Complexity” (Langford & Huynh, 2007) in 

which Value Transfer Functions between stakeholders and the number of stakeholders is 

directly related to complexity.  The paper outlines measures that lead to the 

understanding of schedule uncertainties and the sensitivities between the Work 

Breakdown Structure and the schedule.  A large number of interacting elements or sub-

systems can be difficult to understand.  For example, the lamp in a room is a system and 

considered by most systems engineers to be a basic system.  The function of the lamp is 

‘to light’.  If one were to understand a broad view system (including power plant that 

provides the electricity to the lamp) that perspective would be describe as complicated 

and comprehensive, even if the heuristics were understood (Langford, 2008).  Managing 

complexity is accomplished by defining tasks whose outcomes flow together, creating a 

successful system that includes all the various interactions and relationships.  In these 

cases, functional decomposition is used to decompose the different elements or tasks of 

the system into more manageable parts, thereby allowing the overall system behavior to 

be understood as a straightforward composite of the behavior of its many elements 

(Langford, 2007).  Functional decomposition is a convenient means to divide the problem 

into meaningful, yet understandable parts. 

2. Definition of System 

A system is defined as an assemblage or combination of elements or parts 

forming a complex or unitary whole, such as a transportation system (Blanchard & 

Fabrycky, 1998).  Systems contain elements, which are interacting interdependent (or 

temporary) sets of variables that maintain certain functions, behaviors, and performance 
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relations (Langford, 2006).  Elements within the system are defined as functions, 

processes, technology, users, products, or services (Langford, 2006).  Every element has 

a lifecycle.  A lifecycle is the event-phased course of developmental changes that occur 

from concept to the termination of the element’s use) (Langford, 2006). 

Systems consist of many interfaces, e.g., physical and functional (Langford, 

2006).  The physical interface comprises the things we encounter everyday, such as cell 

phones, automobiles, shoes, etc.  The functional interfaces are sometimes less obvious, 

but equally important as the physical interface.  The functional interface goes hand-in-

hand with the performance characteristics of the system.  Consider a shoe made from 

steel rather than leather or cloth.  The resultant performance difference between steel, 

leather, or cloth would be shoes that may wear extremely well in the case of steel, but be 

rather uncomfortable and difficult in which to walk.  One can readily envision multiple 

trade-offs to include changes in temperature, size, weight, susceptibility to temperature, 

water, and different terrains.  The manner and means of dealing with the physical and 

functional interfaces are central to the systems engineering process. 

Systems have emergent properties that are described as having many system 

entities, operating in the same environment, resulting in a complex system (Langford, 

2008).  Emergent properties affect how the system capabilities are defined, which in turn 

may indicate how to meet the intended needs of the stakeholder (Langford, 2008).  As 

described by (Blanchard & Fabrycky, 1998), “Systems are composed of components, 

attributes, and relationships.”  Components form the basis for system operations; 

therefore, the functions they perform characterize the system.  Improper decomposition 

or identification of system functionality can lead to systems with missing elements and 

therefore do not meet stakeholder needs (Langford, 2008).  Therefore, good 

decomposition results in better system requirements, i.e., those requirements that are 

verifiable and validated. 

A system needs to have limitations imposed to relegate the problem to definable 

and implementable tasks.  Boundaries and constraints define such limitations (Langford, 

2006).  A complete description of a system includes all of its domains and all of the 

elements contained within these domains.  Otherwise, the boundaries are too 
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constraining, and the alternative solutions to the problem may reside outside the imposed 

system boundary. The system will not meet the user’s need (Langford, 2006).  

Determining a system boundary can be a challenge!  How can you be sure that what has 

been defined is appropriate?  Good analysis of the consequences of said boundaries and 

communication of the system boundary to stakeholders is important to making the final 

determination.  As discussed in (Brown, Cantor, & Mott, 2006), (Cantor & Roose, 2005), 

(Dockerill, 1999), (Long, 2008), good communication can be represented by a standard, 

intuitive graphical language that is easily understood among all stakeholders, customers 

and system engineers.  

The success of a development process can be measured by its value and value can 

be determined by the ratio of performance to investment.  Successful systems are defined 

as satisfying the needs – are at or under budget, delivered on time, have requisite 

functionalities and performances, and do not result in unexpected losses (Langford, 

2007).  An analysis that indicates the stage of development, the next steps to be 

accomplished, defined ends and deliverables, the budget and schedules, and the 

conditions for success/failure are essential to developing a successful system (Langford, 

2006).  Generally speaking, this process is called systems engineering.  Systems 

engineering helps keep track of stakeholders/customers and their needs; the product and 

specifications; production and operational support; and the program management and 

organization.  

The process of thinking, reasoning, and structuring facts and relationships to 

provide clear and unambiguous direction to managers and developers, as well as 

accounting for progress and risks, is a strategy based on iterative, top-down, and 

hierarchical decomposition of system functions to derive requirements. By this process, 

the analyses and studies objectify the basis for, and sometimes suggest, methods to 

support key decisions (Langford, 2006).  By following this top-down development 

process, one can reduce design risk by attacking the most difficult design area(s) first, 

throughout its total hierarchy, during the start of the development.  
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System elements display functions, behaviors, performance, and quality 

(Langford, 2006).  These elements, or the constituent sub-elements of elements, have 

associated lifecycles, which means the elements are impacted by the developmental 

changes that occur from initial concept to final termination.  The inability of certain 

system elements which are not adaptable to change or upgrades can influence and impact 

project success.  This is sometimes found to be the case as technology evolves and the 

result is an increase in lifecycle costs.  Such non-adaptive systems might be terminated 

earlier than originally scheduled.  A decomposition of functions may not always expose 

all the requirements since no theory of building systems is finitely describable consistent, 

or complete (Langford, 2006). 

3. The Term Function, Explained 

Keeping in mind the applicability of functional decomposition to the systems 

engineer, the term function is defined loosely as a property of the system that is required 

to achieve a system objective (Langford, 2007).  Functions are implemented as processes, 

with inputs and outputs, or as activities, without inputs and outputs.  Inputs and outputs 

represent the context for the attributed function.  Below is a Process Context Diagram.  

 

 

Figure 5 Process Context Diagram 

Inputs are shown as text within an arrow pointing towards the process.  Outputs 

are shown as text within a box with an arrow pointing away from the process.  Processes 

are shown as text within a circle. 
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As described in “A Methodology for Managing Complexity” (Langford & 

Huynh), value of the developing or developed system is defined within the context of 

Value Engineering, as a ratio of performance to investment.  Value per function is 

specified in terms of the performances of these functions.  Worth is defined as the Value 

multiplied by the quantification of quality of the functions and their performance(s), i.e., 

the losses incurred due to the performance of functions (Langford & Huynh).  Therefore, 

the system shall provide a function with a specified performance and a delimited level of 

quality (Langford & Huynh, 2007).  

A function requires at least one input and at least one output to ultimately enact or 

realize the desires of the user.  The result(s) of a function is its output(s).  Decomposing 

functions exposes the required interfaces and connections as well as the boundaries of the 

beginning and ending of the domain of the function.  During the decomposition process, 

if it is found that a function has no input or output, an incomplete decomposition has 

occurred.  If the inputs or outputs are not apparent then incompleteness has been 

identified and the boundary between functions must be investigated and defined 

(Langford, 2007). 

Distinctions between behavior and function, as well as function and purpose, are 

sometimes blurred to systems engineers (Bell, 2004).  Definitions of function vary from 

researcher to researcher (Bell, 2004).  Though these definitions are differently worded, 

they may be similar in meaning.  Particular attention needs to be placed on the scope of 

the definitions and the resultant implications of scope (Langford, 2008).  According to 

(Chittaro & Kumar, 1998) the operational definition is where function is a relation 

between input and output and the purpose, where function is described as a relation 

between user’s goal and the component’s (or system’s) behavior.  For example, the 

function ‘to float’ is the behavior required of the boat (as a system).  The behavior is 

defined as the system performance.  The purpose of the boat may be to get across the 

river, but the performance ‘to float’ satisfies the need to get across the river and not sink 

before that task is accomplished.  How well a boat performs the function ‘to move in 

water’ embodies the measures of the performance ‘to float associated with that function’. 
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Distinguishing between the four classes of knowledge (Chittaro & Kumar, 1998) 

structure, behavior, function and purpose, it is described (Bell, 2004) that structure is 

what is internal to the system, i.e., the function ‘to move in water’ and the performance 

‘to float’ are structural consequences of the interfaces between the boat and the water.  

Behavior is what happens inside the system, i.e., does the system meet the intended goal?  

Function and performance are measured as what happens at the surface/boundary of the 

system, i.e., the boundary between the boat and the water.  The purpose is the goal that is 

satisfied outside the system, i.e., the boat traverses the river without sinking.  

For every function (from the highest to the lowest levels of decomposition), there 

is at least one performance requirement and at least one quality requirement (Langford, 

2007).  For every performance requirement, there must be at least one quality 

requirement (Langford, 2007).  Functions are identified as properties of a system 

requiring achievement of a system objective, while performance is a measure that 

qualifies the fulfillment of those functions (Langford, 2007).  

Functions are grouped in a logical form to meet both functional and 

supplementary needs.  (Cantor & Roose, 2006)  These interactions, or threads between 

each system function, must be described adequately to allow the intended system’s 

purpose to be met.  These functions are allocated to physical “owners,” e.g., hardware, 

software, etc.  The collaboration between each function is then evaluated and portrayed to 

determine the extant relationships.  This analysis is referred to as a Functional Thread 

Analysis (FTA) (Langford, 2008).  Some apply the Use Case methodology defined in the 

Unified Modeling Language (UML) to define and illustrates these relationships. 

The community of functional reliance has applied knowledge of system 

relationships, and therefore of system functions, to deduce the system behaviors 

(Langford, 2008).  This supported diagnosis (Sticklen et al., 1989) and Failure Modes and 

Effects Analysis (FMEA) (Hawkins & Woollons, 1998).  In this regard, the system 

function can be suggested (and perhaps defined) by relationships between its lower level 

subfunctions.  In contrast, a “top down” system perspective expresses functions that can 

support the design and architecture processes (Iwasaki et al., 1993).  By using the 

example supported by functional refinement of the design process in (Gero, 1990), the 
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hierarchical association of the system’s functions can congruently be associated with 

constituent characteristics (Langford, 2008).  The functional levels (or views) can be 

interpreted as behaviors. These views express the input and output models for analysis of 

design and its various interpretations (Snooke & Price, 1998).  By this approach of 

“functional labeling,” system behaviors are tracked by the system’s functions.  The set of 

behaviors are mapped to the desired functionality and are often delineated as process 

outputs.  Some authors refer to these outputs as vectors, or system states, or “goal states.”  

Applying such nomenclature, the function “headlight NOT lit” associates inputs and 

outputs through the related system functionality with a system state which represents that 

the headlight is off.   The use of goal states is discussed in (Snooke & Price, 1998). Goal 

states’ approaches associate functions with failed outputs, and lend themselves to failed 

output reporting, which facilitates fault analysis and diagnosis.  

The intended results are a functional description language (Langford, 2008) that 

deals with functional (input and output) dependencies.  This is most useful when viewing 

the system as a totality, without visibility into its internal workings explained in (Bell, 

2004).  A more formal definition of function can be explained through a model of 

elements, e, functions, F, and triggers, G, which results in the achievement of an external 

effect E (Langford, 2008).  Functions are built up of subfunctions and activities.  

Subfunctions and activities are the elemental units of the System (Langford, 2008).  

Some authors (Chittaro & Kumar, 1998) pertain to objects, O, functions, F, and triggers, 

T.  Chittaro and Kumar refer to external triggers that permit the system to achieve goals. 

In fact, system functions are enacted only through internal triggers (Langford, 2008).  

However, both definitions are consistently modeled as relationships between functions, 

goals, and behaviors.  (Chandrasekaran & Josephson, 1997) viewed these models as 

merging the purpose and operation as representations of system functions.   In total, this 

representative view of functions that are triggered by internal (or external) triggers is 

unlike other perspectives on functions.  The distinguishing difference is formed by both 

the system behaviors and purpose.  As such, rigorously defining functions in this manner, 

supports the view that element, trigger, and effects are inexplicitly related (Langford, 

2008).  This representation determines: (1) how the system achieves the function, (2) the 
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trigger that stimulates the function, and (3) the function’s effect.  The idea that a function 

can have multiple triggers and resultant effects is conveniently incorporated in those 

decompositions that are comprised of subfunctions.  Derived from this descriptive state 

(with multiple possible states) is the conclusion that some system enactments may be 

without the fulfillment of some functions.  The result is a system behavior that may not 

be predictable based merely on a decomposition of functionality, but instead may achieve 

altered states of enactment (sometimes with emergent properties) that are wholly 

unpredictable (Langford, 2008).  

If functions are decomposed into subsidiary functions, it may be necessary to 

relate the system effectiveness to the various states of system and subsystem 

functionalities.  This decomposition schema can result in several states of functions and 

sub-functions each indicating a different or variant scenario (Langford, 2008). 

D. A FRAMEWORK METHODOLOGY 

The term ‘framework’ for discussion, refers to a means of organizing and 

reporting the performance, impacts, and effectiveness of an enterprise (Langford, 2008).  

Representations of frameworks are a graphical means to display the impacts of functional 

analyses.  Frameworks are based on a broad appreciation of the kind, purpose, and 

content for assessing and portraying impacts and effectiveness. 

Another implication of the objective of decomposition is to define a whole in 

terms of parts (i.e., partition and objectify) that have the least-complexity with the most 

architecturally effective design.  One way to think about architecture is through various 

perspectives of the result of a system (Langford, 2008).  One can posit a framework of 

views, or enterprise framework(s) that are comprised of nine architectural views 

(physical, operational, functional, performance, quality, information, energy, profit, and 

temporal) (Langford, 2008).  These architectural views are based on long-standing 

determinates of design – independence, aggregation, form, relationship, attribute, pattern, 

and juxtaposition (Langford, 2008), which dictate the many factors that relate to the 

problem and the solution. 
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The two primary interfaces in all systems are physical and functional, which is a 

consequence of defining the term “system.”  These interfaces are viewed as two sub-

divided areas: internal and external.  Internal interfaces encompass the partitioning and 

design elements.  The external interfaces span differences between partitions and 

interactions with the non-system related environment(s).  Partitioned boundaries are 

selected carefully to minimize the number of requirements with cross partition interfaces 

(Kanefsky et al., 1999).  Protocols, processes, and activities between activities and 

interfaces are therefore improved. 

Partitioning is the process of dividing a system into constituent parts, thereby 

defining smaller tasks as opposed to one all encompassing task.  This division serves to 

expose redundancies in the system design; specifically issues related to physical, 

operational, functional, performance, and quality.  Partitioning functions allow the system 

engineer to measure, interrogate and objectify the system (Langford, 2008).  Partitioning, 

much like decomposition, is formulated by both the process and the intent of the 

partitioning.  In part this process depends on is the division of a large number of small 

tasks or a small number of large tasks.  A good partition (or complete decomposition) 

allows flexibility to small changes and robustness in terms of scalability to meet 

additional needs.  When the designer (or architect) first focuses on the movement of 

energy (or energy equivalents) through the proto architecture, the partitioning technique 

is termed domain decomposition (Langford, 2008).  Where, as the alternative approach, 

functional decomposition, deals first with the functions to be performed, and then deals 

with the energy issues (i.e., architecture).  These two types of decomposition represent 

different, but complementary, ways of thinking about structuring a problem.  For 

instance, if the design can be divided into disjointed, but non-overlapping parts, 

(Langford, 2008) the partition function is complete. 

In the previous section, the decomposition technique presented by Ashenhurst-

Curtis laid the groundwork for the top-down approach to decomposition.  This technique 

pushes the partitioning process to completion prior to defining the system.  An iterative 

process, much like the functional decomposition generally referred to in systems 

engineering, is the practical application of top-down (and bottom-up) approaches.  
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Reconciliation of the two up/down approaches brings closure of this iterative process.  

Usually closure is achieved after the system has been implemented (Langford, 2008).  

This all leads to the chief criticism of the Ashenhurst-Curtis decomposition.  

Each partition matrix must be examined to determine if it possesses the specific 

decomposition property that is essential to its part in fulfilling the top-level and 

horizontal-level functions and not to another part.  By comparison, these partition 

matrixes reveal the overlaps and under-laps of the parts when aggregated and summed to 

make the whole.  Since only a very small number of decompositions will have the 

requisite set of specific attributes, the challenge is to group attributes to reflect the desired 

degree of uniqueness or omnipresence that satisfy the system requirements (Langford, 

2008). 

The analysis framework will organize the presentation and facilitate discussions 

about the functions and performance requirements.  Understanding of the overall design 

is encouraged by the constituent relations and functions, transformations (e.g., combining 

and composing), and comparing properties of classes of functions.  This framework will 

formulate and describe the appropriate relationships, and extend and apply generalized 

notions to the specifics of the uses and actions of the system to form operational 

scenarios.  The framework should also consist of or be integrated with applicable rules 

and best practice principles.  A convenient way to organize the structure of the 

framework is to facilitate decision-making.  One of the purposes of a framework is to 

support and simplify decision-making processes (Langford, 2008). 

Frameworks are built within the context of a set of like-kind scenarios, having at 

least a commonality that distinguishes one framework from another framework.  The 

measures may be similar for a variety of frameworks, and perhaps there is a grouping of 

like-kind frameworks with similar (or same) measures.  The metrics may be different for 

different frameworks, but alternatively, the metrics may be the same for different 

frameworks (Langford, 2008).  
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The foundation of the framework could be a model of a process or a set of 

processes, a function or a set of functions.  There could be a ‘model’ framework, an 

‘application’ framework, a ‘domain’ framework (when aggregated it represents the 

‘system’ framework), and a ‘support’ framework.  The framework could be modular so 

that new frameworks could be proposed.  Frameworks could be considered from different 

perspectives, much the same as the points of view of stakeholders.  There must also be 

the consideration of scope of framework (Langford, 2008).  The ‘application’ framework 

could comprise the set of applications that are broadly applicable to multiple frameworks.  

The ‘domain’ framework would contain all the functionality for the groupings of 

bounded set of elements.  The boundary may be physical or intellectual.  Generally, the 

boundary will be of a convenience that permits aggregation in one form, or another of a 

generally accepted grouping (Langford, 2008).  The ‘support’ framework could provide 

the system functionality that underlies all other frameworks.  The ‘model’ framework 

would be representations of any other domain(s) abstracted to facilitate understanding 

without loss of clarity.  
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II. KEY FACTORS RELATED TO COMPLETE FUNCTIONAL 
DECOMPOSITIONS 

A. COUPLING AND COHESION 

As mentioned in theChapter I, some view functional decomposition as flawed, 

possibly because many have used the process incorrectly.  The processes of functional 

decomposition, along with emphasis on key aspects that lead to insufficient 

decompositions, need to be explored.  When done properly, the process of functional 

decomposition defines the ‘logic’ of the system.  At a fundamental level, functional 

decomposition is the basis of all science, all structure, and all thought (Langford, 2008). 

The struggle to perform functional decomposition (from the perspectives of the 

unskilled or unknowledgeable) centers on two questions: (1) how does one determine if 

enough information has been collected about the functions?  and (2) when enough is 

enough during the decomposition process, i.e., how far does one go with decomposition?  

The following questions should be investigated: how to define the specific tasks of the 

functions; how active should stakeholders be during development of functional 

hierarchies; how are tasks performed;  where are these tasks performed; what is the 

timing and sequencing of each task; what is the nature of inputs and outputs for each task; 

who are users of the outputs of each task; what is required of each task; is each task 

necessary; what policies apply to the work; what rules are key drivers; which regulations 

apply to the functionalities; what controls are required to be applied to the function; and 

what equipment is used to enact the function. Consideration, and perhaps answers, to 

these and other questions, helps to make the determination as to whether enough 

information was collected about the function (Langford, 2008).  If a function cannot be 

allocated to a component of the system, further decomposition of this function is 

necessary to determine the level whereby the function can be allocated to the proper 

component.  In some cases, the functional hierarchy may not be mature enough with the 

resultant requirements unallocated as a single entity.  Therefore, the performance 

decomposition would need postponement until the functions are clearly defined.  A usual 
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criterion for completion of functional decomposition is to continue the process until the 

functional requirement is clear, realizable, and allocatable in hardware, software, and/or 

manual operations (Langford, 2007).  The objective of generally decomposing the system 

into its hierarchical components helps the analyst better appreciate and deal with over 

stated and under stated functionality. Assessing risk involves partitioning functions by the 

appropriate measures of performance, the lifecycle costs, and the losses incurred as a 

result of the observed performance.  Determining when decomposition is considered 

“complete” is therefore warranted.  

Coupling and cohesion of system function is a means of performing an 

interrogation of “completeness” of the decomposition process, i.e., how far to go with 

decomposition.  “Completeness” is defined as a reasonable level of verification that what 

has been conducted thus far for decomposition has sufficiently identified all necessary 

parts, elements, or steps to effectively and properly define the system.  Total 

“completeness” is not a goal, rather completeness of functional decompositions means no 

better decomposition is likely given the knowledge and skills.  

Functional Analysis (the method of identifying, characterizing, and arranging the 

levels and domains of system functionalities) is a development of the architectural 

determinants which evaluate the degree of coupling, cohesion, and connectivity of 

functions and sub-functions (Langford, 2006).  Functional analysis can be used to verify 

that the intended state of a system suffices to improve the system performance. 

Functional decomposition is performed to determine what the system is supposed to (and 

likely to) do.  By this method, the current state of the system can be defined as well as the 

future desired state.  

Coupling is a measure of interdependence between sub-functions.  Low coupling 

is defined as that change in a module that affects very few other modules (Langford, 

2008).  Functions that carry a higher coupling pose risk, as they are prone to creating a 

ripple of changes that involve other modules.  The higher coupling factors also make the 

impacted modules difficult to understand by themselves and stand-alone testability of the 

module becomes an issue.  An increase in dependant modules this leads to an issue with 

reusability as more modules are impacted. 
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Coupling and cohesion are related.  When a low coupling exists, a high cohesion 

will result.  When the modules are independent (without responsibilities to each other), 

the cohesion is increased.  Cohesion is defined as the similarity of functions performed.  

High cohesion aggregates as many like tasks as is convenient, up to the limitations of 

physical and other system properties.  Connectivity is defined as the reference that relates 

one module to another.  By circumstance, lower connectivity implies a smaller number of 

interfaces.  

If a function consists of only a single output variable with a precise task, it is 

considered cohesive.  At high levels of cohesion the functions perform "tasks,” like "turn 

on" or "turn off,” but a higher level of cohesion such as "turn on light,” "turn off light" is 

considered an improvement.  The more the function is focused, the more it is cohesive.  

A high cohesion function is simpler to understand, having to do only a single task, while 

a low cohesion function will be difficult to follow due to the many different tasks it 

executes.  In addition, a high cohesion function is easier to reuse because of the limits on 

tasking, and therefore easier to extend.  High cohesion maximizes reusability and 

extendibility.  A simple test to determine low cohesion: no simply name describes the 

function.  

Functions that perform several activities are considered non-cohesive.  Instead of 

one monolithic function that performs many activities, it is preferable to have several 

smaller functions each performing a single activity (Lakhotia & Deprez, 2008).  Cohesive 

functions also reduce the complexity of the system, and aid in better understanding, 

communication and more complete functional decompositions (Langford, 2008).  

Coupling and cohesion are explained in terms of elements (like modules, classes, 

or frames) that are linked in some way (e.g., by function calls) (Langford, 2008).  The 

degree of dependence within such an element is called cohesion, and the degree of 

interdependence between these elements is called coupling (Langford, 2008).  In general, 

low coupling and high cohesion are indicators of minimal interfaces and good 

modularization (Kramer & Kaindl, 2004). 
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Another tool that aids in functional decomposition is the function matrix or N-

Squared (N^2) chart (Long, 2008), shown in Figure 6.  Functions are indicated on the 

diagonal of a matrix of functions as well as inputs/outputs.  Outputs are indicated 

horizontally, while inputs are indicated vertically.  Non-functional entities are defined as 

interfaces with only an input and output. These are linked functions.  The N-Squared 

Chart allows for a graphical view of functional inputs and outputs and their dependences, 

thereby allowing for visual verification of coupling and cohesion.  

The functional decomposition along with functional flow diagrams is used to 

portray what the system is supposed to do.  The functional flow block diagram shows the 

function and sequence of functions.  This validation method displays the current state, 

i.e., effectiveness, of the system in meeting its desired goal.  From here, the performance 

of the system can be altered or changed.  The behaviors of the functions are captured in a 

behavioral analysis chart that indicates functional juxtapositions, input and output ports 

(or connectivity’s), sequences, controls, and data / and data flows.  The timeline diagram 

shows functions, sequences, and timing.  Whereas the data flow diagram shows data/data 

flows and control flows. 
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Figure 6 Example of an N-Squared (N^2) Chart 

B. DEALING WITH OVERLAPPING AND UNDER-LAPPING OF 
FUNCTIONS 

Good functional decompositions consist of no parts having overlaps with other 

parts, and no under-laps with logically adjacent parts (Langford, 2008).  Dealing with 

these overlapping and under-lapping issues requires analyses of (1) scenarios (e.g., Use 

Cases), (2) data flow diagrams, and (3) N^2 charts.  All these are facilitated by, and 

enacted through, functional decomposition.  Diagrammatic tools capture behaviors, i.e., 

activities, sequences, collaborations, and statecharts. These diagrams can augment and 

enlighten various processes (see UML and SysML sections).  
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Overlap of system functionality is defined as functions that are duplicated and not 

independent.  The overlap of functions leads to conflicts in the execution of system tasks 

(Langford, 2008).  Overlap is not the same as redundancy, redundancy to increase 

reliability.  

Underlap conditions can be detected by analyzing the functional decomposition to 

determine if applying scenarios exercise all functions (Langford, 2008).  Scenarios can be 

enacted by the use of functional decomposition by itself or behavior diagrams, activity 

diagrams, sequence diagrams, and Use Cases.  Functions that are unaccounted for in the 

functional decomposition (and need to be invoked) are considered underlaps.  This 

underlap issue is corrected by adding a function or a set of functions and rerunning the 

scenario through the functional decomposition.  Sometimes the notion of simply adding a 

new function does not adequately address the issue of underlap.  Since the newly added 

function will have interfaces to other system functions, those new interfaces may not 

seamlessly integrate with these other functions (Langford, 2008).  Consequently, some 

functions will need to change in scope (inputs, outputs, mechanisms, and processes) to 

better align the processes and actions with the new structure of functionality.  Once the 

underlap condition is accommodated and corrected, the range of scenarios should be 

broadened to continue testing the efficacy of the functional decomposition.  Additional 

new functions may be necessary, and if sufficient, the functional decomposition will be 

complete, through the first phase of analysis. 

The next phase of this analysis centers on interactions. Specifically, consider the 

actions of one function of the system with either the extended system or with an external 

system.  Newly added function(s) need to satisfy the underlap condition and may result in 

changes in the interactions with external systems.  The result might be a different 

interface requirement between the developing system and the external system(s).  Making 

adjustments in both the total system functionality as well as in the interaction(s) with 

other system(s) may be required in order to satisfy the goal for correcting an underlap 

condition (Langford, 2008).   
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C.  FAILURE MODE ANALYSIS, AN INTERROGATION TECHNIQUE OF 
FUNCTIONS 

Failure mode analysis is a method of finding possible faults in a system and 

reviewing these faults as to the consequence on the system.  A definition given by the 

British Standards (1991) describes failure mode analysis as: 

A method of reliability analysis intended to identify failures which have 
consequences affecting the functioning of a system.  

Failure mode analysis is often criticized as being effective in the design due to the 

amount of effort it usually takes, therefore resulting in exceeding the design/development 

phase (Hawkins & Woollons, 1998).  Mitigating failure modes due to system 

functionality have proven to be effective in system design by requiring a deep 

understanding of the engineering system, functional diagrams, i.e., graphical 

understanding (Hawkins & Woollons, 1998).  There are two main areas of this analysis 

(Aerospace, 1979).  The first is the hardware approach, which deals with the behavioral 

changes that occur from the failure.  This greatly affects the effectiveness on the design 

since it is performed once hardware has been designed.  Changes to hardware because of 

this analysis can be costly and affect the program schedule.  This is not to say that it 

should not be conducted, however, more attention to the second approach will mitigate 

the impact to the program from the hardware perspective.  The second approach focuses 

on the functional aspect.  The analysis of failures at a functional level will greatly benefit 

the program since it is performed early on in the initial design stages, i.e., during 

functional decomposition (Langford, 2008).  If the functional approach yields the most 

benefit early in the design phase then why is it not widely practiced?  As mentioned 

before, the effort to conduct a failure mode analysis can take time and this deters most 

developers due to program time constraints.  However, completion of programs does not 

necessarily mean they were successful.  More and more it is apparent through 

Department of Defense case studies and GAO reports that programs are continuing to be 

behind schedule, over budget, or both.  These problems with schedule and budgets have 

resulted from a plethora of “required” design changes, often ascribed to low technology 

maturity, not meeting user or customer needs, not properly addressed human interfaces, 
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etc.  By decomposing system functionality using mitigating failure modes, one can 

develop a significant set of scenarios that far outstrip the Use Case design technique 

(Langford, 2008).  This interrogation technique of system functionality, if not used, can 

lead to undiscovered functional issues, i.e., overlaps and underlap of functions.  Such 

activities can be improved upon by differentiating between relevant actor inspired Cases. 

Relevant Cases typify the expected outputs and the expected failures that ensure. Systems 

can be designed with functions and their associated structures to provide the means for 

achieving complete system functionality (Langford, 2008). 

Disassembling the system’s functionality with respect to behavior, failure, etc., is 

important to the success of the system in meeting its goal, as well as to the completeness 

of the functional decomposition.  Functional decomposition, when improperly conducted, 

can leave out relationships between elements, and therefore result in loss of value and 

purpose of smaller bits of system functionality.  Various definitions and constructs should 

be imposed during the development process so all measures and means of accounting for 

the various attributes of the problem are explored and exhausted (Langford, 2006).  By 

following a more rigorous approach to functional decomposition, the systems developer 

may generally concluded that no essential element was overlooked, and further that the 

problem was not overly specified, which could lead to unnecessary program costs. 
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Figure 7 Example of not mitigating failure mode (From Donald A. Norman, 2005) 

The process of mitigating failures implies that a complete failure analysis is 

performed for every function, to better understand the ramifications and extent of the 

possible failure modes for and inherent in each function.  The behavior(s) identified can 

be categorized into catastrophic or inconsequential, implying some effects (or modes) are 

below the threshold of interest, and therefore do not need to be carried forward in 

subsequent analyses. 

Appropriate and mature processes exist to perform a failure mode and effects 

analysis (FMEA).  Some of these processes have been developed into extensive models 

that focus on the functional aspects (Hawkins & Woollons, 1998) of the differences 

between calculated behavior and expected behavior.  These facilitate the derivation of 

descriptive failure modes and consequences. 
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III. DIFFERENT APPROACHES TO FUNCTIONAL 
DECOMPOSITION 

With the concern that functional decomposition may lead to poorly developed 

systems (Cantor, 2003), two questions arise: Are different alternatives to functional 

decomposition available, and what are the consequences of using them?  

The desire to transition Systems Engineering from a document centered process 

model to a modeling approach is suggested as critical to improving Systems Engineering 

(Friedenthal, Burkhart).  System engineers have used many different types of graphical 

means to modeling projects, including hand drawings on the traditional white board, but 

until the development of the Systems Modeling Language (SysML) there had not been a 

systems engineering standard modeling language, which had been recognized by the 

International Council on Systems Engineering (INCOSE, 2007).  

A standard modeling language allows the system engineer to communicate system 

requirements and design specifications among other engineers.  Modeling languages such 

as the Unified Modeling Language (UML) and Systems Modeling Language (SysML) 

provide such means of effective communication.  For example, we know that while 

driving our vehicle we will come across a red eight sided sign.  This sign instructs the 

driver to stop their vehicle, even without the word “stop” printed on the sign.  The 

symbol has been known for the action to stop and take caution.  The tools within the 

language help dissect the system in order to verify requirements, functionality, behavior, 

etc. which allows early identification of design issues and system effectiveness to 

meeting customer goals.  

Viewing systems in a graphical form such as behavior diagrams, functional flow 

diagrams and N-Squared (N^2) Charts are effective means for the systems engineer to 

understand and present the functional and data flow characteristics of their systems 

(Long).  These graphical forms (or representations) provide a valuable set of tools and 

methods for the systems engineer.  They support and allow for the decomposition of the 

functional and data models into a natural hierarchical structure.  The processes used to 
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perform any decomposition are always subjective from one expert to another.  For 

example, the expert’s opinion, knowledge or even behaviors influence their decisions, 

which ultimately affect the outcome of the decomposition.  The following tools and 

methods discussed below result in similar decompositions when deriving the intended 

goal of the functional relationship and the behavior of each system element.  However, 

these tools and methods may benefit some decomposition compared to others. This is 

dependant on the intent of the decomposition, the structure of the elements, and the skill 

of the systems engineer.  For example, UML was originally developed for software 

developers and electrical engineers, but systems engineers to help communicate the key 

fundamental threads that characterize the entire system also utilize it.  The following 

sections examine and compare the basic functional decomposition method. 

A. UNIFIED MODELING LANGUAGE (UML) 

UML is a means to communicate with stakeholders the ideas concerning system 

development.  UML provides a defined method of communication that consists of 

specific graphical format for systems and software engineers (Fowler & Scott, 2004).  

This graphical format seems to aid in understanding complexity and de-convolving the 

twists of interactions and relationships that mire some product developments.  But is this 

simply that the population of UML users does not adequately understand how to use the 

tools (Grossman et al., 2004)?  We find that more and more this graphical method of 

communication is becoming increasingly important as systems become more complex.  

For others, UML is used as a formal mechanism for requirements definition and design 

(Fowler & Scott, 2004). 

Based on surveys of knowledgeable users of UML users, it appears the 

technology is poorly defined and lacks maturity (Grossman et al., 2004) in more than a 

few selected areas of application.  The limitation of current UML (its inability to model 

continuous behavior and to deal with performance) hinders a wider application beyond 

software dominated parts (Volvo, 2002).  There is additionally a lack of empirical 

evidence to support that UML leads to greater performance in system development 

(Grossman et al., 2004) or that it enforce the issues with usage, i.e., UML is considered 
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complex therefore difficult to learn, inconsistent, and incomplete.  UML is continually 

evolving, e.g., note the recent introduction of UML 2.0 that aspires to address some of the 

major issues.  Table 1 lists the key perceived limitations of earlier versions of UML 1.x. 

UML 2.0 was created to offset some of these limitations and become more of a systems 

engineering asset than just a software asset, such as the inclusion of requirements 

constructs.  

 

Perceived Limitations of UML V1.x 
Continuous time behavior 
Decision tree 
Hierarchical modeling of behavior and structure 
Input/output flow (i.e., data, mass, energy) 
Parametric models and integration with other analysis 
models (i.e., performance, reliability, safety...) 
Performance and physical characteristics (including 
probabilities) 
Physical interfaces and connections 
Problem definition and causal analysis 
Requirements constructs 
System, subsystem, and component representations 
Terminology harmonization 
Verification and validation models and constructs 

Table 1 Perceived Systems Engineering Limitations of UML V1.x  
(From Friedenthal & Burkhart, 2007) 

UML is not a tool, but rather more of a format that controls how engineers, 

stakeholders, customers, etc. communicate by means of diagrams such as various types of 

diagrams to depict Use Cases, classes, states, activities, composite structures, interaction 

overviews, sequences, collaborations, components, deployments, and timings. 

Use Case diagrams offer a view of a system through a functional description that 

is enacted by events. That description includes the actors, who are internal or external 

triggers.  The diagram activities, sequences, collaborations, composite structures, 

interactions, and statecharts represent the behaviors of the system.  For example, an 

activity is represented by diagrams of control flow(s) between activities. 
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1. Activity Diagram 

 

Figure 8 Typical Activity Diagram (showing order processing) 
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Activity diagrams lay out the procedural flow of the activities or actions of a high-

level activity.  Use Cases exist in most development projects, and concomitantly, activity 

diagrams should exists that portray activity diagrams that enlighten the Use Cases at a 

more detailed level.  Activity diagrams do not need to be always combined with Use 

Cases.  They can be used independently and beneficially for business level functions, an 

example of which is modeling of online procurements.  

Activity diagrams model workflows that comprise a system. These diagrams are 

used along with other views, typically interactions, and states. Activity diagrams can also 

be used to analyze Use Cases. In this instance, actions are described in terms of their 

local interactions along with their associated timing.  Activity diagrams give neither 

detail about objects and their behaviors nor objects and their collaborations (Fowler & 

Scott, 2004). 

2. Sequence Diagram 

Sequence diagrams describe the succession of interactions between objects.  

Horizontal arrows represent messages or logic between objects.  Similar to the format 

used in N-Squared Chart messages begin in the top left and proceed down in a step 

formation.  Sequence diagrams organize and display the requirements that would be 

expressed in Use Cases.  Sequence diagrams document objects and their interactions. 

These diagrams are useful for system architects and designer, and further, prove useful as 

a means to create continuity between project teams and individuals in (Bell, 2003). 
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Figure 9 Typical Sequence Diagram (From Bell, 2003) 

3. Class Diagram 

Class diagrams provide the basic notation used in all other structure diagrams in 

UML.  Class diagrams portray static structures. These diagrams focus on classifiers (Bell, 

2004).  Class diagrams are particularly useful when building business operational models 

or military organizational models (Langford, 2007). 
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Figure 10 Typical Class Diagram (From TogetherSoft, Inc, 2001) 

4. Collaboration Diagram 

Collaboration diagrams focus on the behavior of objects external to, but 

interactive with, the system.  These diagrams are similar to the sequence diagrams, as 

they include the same information, but are attributed to show the collaboration between 

asynchronous messages.  Collaboration diagrams represent objects by icons and their 

message sharing as labeled arrows (Borysowich, 2007). 
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Figure 11 Typical Collaboration Diagram (From TogetherSoft, Inc, 2001) 

5. Statechart Diagram 

A statechart diagram describes the state of the object.  The statechart diagram also 

shows how the objects are affected during actions.  Typically, statecharts are used to 

describe behavior of classes, but can also be used to identify proper behavior of entities 

such as actors and Use Cases in the Use Case diagram.  It is another way to identify 

behavior that in turn can be used to investigate the function. 
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Figure 12 Typical Statechart Diagram (showing states of a hybrid SUV)  
(From OMG SySML, 2007) 

A statechart diagram describes the transitions of an object from one state to 

another in response to events, and the actions that occur within a state (Friedenthal & 

Burkhart, 2007). 

Controls and flows of control can be diagrammed as sequences of events or states 

in which object interact.  Through the passing of messages statecharts depict objects in 

transition from one state to another.  Changes are responsive to events and actions – all 

occurring within a state.  Software systems are represented in UML by various diagrams: 

object, component, sequence, state, deployment, and timing, to mention a few.  These 

diagrams cover the types of classes, operations, attributes (collectively referred to as class 

diagrams); the objects (object diagrams and structures); partitioning of classes among 

components (component diagrams); and how components are staged and executed 

(deployment and timing diagrams).   



 42

The Unified Modeling Language was developed as an industry standard for 

modeling software intensive systems.  It allows the designer to visualize, specify, and 

document the artifacts of the software (Bell, 2003).  UML employs Use Cases, which 

according to various critics of functional decomposition is the best means for capturing 

and documenting requirements.  Use Cases define the interaction of the user or actor to 

the system itself sometimes via the initiator of the interaction.  Use Cases are intended to 

help build a sound understanding of the system being designed by decomposing its 

behavior into components and interactions.  Use Cases were expected to address the 

issues with UML regarding non-traceable requirements but did not since the system 

design requirements are usually only traced to Use Cases and not the design (Leffingwell 

& Widrig, 2002).  UML 2.0 provides extension to the previous versions, i.e., UML 1.x.  

According to (Kobryn, 2004) UML 2.0 provides support for representing structural 

behavior in a hierarchical decomposition of the behavior allowing for diagrams that are 

understandable and contain complex behavior descriptions.  Also UML 2.0 now 

facilitates viewing the same element in multiple perspectives. The result is an 

improvement in understanding the extractions (or models) of a system (Herzog & 

Pandikow, 2005), and (Kobryn, 2004). 

UML methods provide diagrams, and visual graphics.  When used within system 

design or methodology UML allows better understanding of a system under development 

(Bell, 2003).  According to a survey conducted by (Grossman et al., 2004) most 

respondents concluded that UML provides benefits for understanding the communication 

aspects via graphical notation.  However, there is yet no consensus as to whether UML 

makes any real difference in the performance of the development task.  Perhaps a lack of 

adequate understanding of UML is responsible.  On the other hand, perhaps the use of 

UML has result in no real difference (Grossman et al., 2004).   

UML 2.0, as with UML 1.x, is based on two basic categories of diagrams - 

Diagrams of structures and diagrams of behavior.  Structure diagrams show the static 

nature of the modeled system being.  They include classes, components, and objects.  

Behavioral diagrams indicate dynamic behaviors between objects and diagrammed 

sequences.  Behavioral diagrams present activities, Use Cases, and sequence diagrams.  
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6. Use Case Diagrams 

Use Case diagrams provide descriptions of system functionality, including actors.  

Actors are external to the system and include domains such as the environment.  The Use 

Cases represent usage(s) of the system, i.e., the subject, which correspond to the basic 

functionalities that the system and actors support (Friedenthal & Burkhart, 2007).  The 

associations between the actors and the Use Case represent the communications between 

the actors and the processes and activities that will accomplish the functionality (OMG 

SysML, 2007).  Bottom line: Use Cases can be used to capture the functional 

requirements of the system. 

Functionality is represented in Use Case Diagrams in a top-down fashion.  Use 

Case Diagrams represent behavior as relationships, which are rather different from 

Functional Flow Diagrams that represent behavior in a linear fashion, captured in a time-

framed way.  However, as with functional decomposition, the Use Case Diagram process 

begins by identifying the top level system functionality layout of the Use Case diagram.  

This top level is a description of what the system is to do, but not how it will do it.  In 

addition, as with the functional decomposition process, further decomposition of system 

functionality is created by the Use Cases that were used during the top-level 

decomposition.  

Use Cases are generally neither definitive nor complete when tying to understand 

failure analysis.  The diagrams can quickly become confusing with overlapping 

functionality.  In this case, sequence or flow diagrams provide a better way to represent 

failure modes and branching conditions.  Sequence diagrams are used to address the 

exception behavior, the “what if” function.  The sequence diagram is another tool to help 

understand the systems functionality.  If the failure analysis is simple, i.e., pass or fail 

then only two different Use Case ovals are needed and at this point are only extensions of 

the original Use Case.  
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Figure 13 shows a typical Use Case Diagram.  The typical Use Case diagram 

shows how to communicate the high level functions of the system and the system’s scope 

(Bell, 2003).  In Figure 13, the functions are portrayed graphically, such as; the 

commander views the target statistics and the topology of the target area. 

 

Figure 13 Use Case Diagram example 

Clean visual description, depicted in Figure 13 allows the system engineer as well 

as the other stakeholders to see if more or less functionality is required in the system. 

“Use Cases capture who (actor) does what (interaction) with the system, for what 

purpose (goal), without dealing with system internals.  A complete set of Use Cases 

should specify all the different, key ways to use the system.  Therefore, these Use Cases 
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define the behaviors required of the system, and they serve to bound the scope of the 

system” (Malan & Bredemeyer, 2001).  Use Cases can provide benefit to the product 

definition work, which in turn is relevant to defining the system architecture by a subset 

of Use Cases for each of the products (Malan & Bredemeyer, 2001).  

According to (Malan & Bredemeyer, 2001), Use Cases do not offer a means to 

reflect commonality/variability across products in a product line or family.  Such remarks 

and sentiment appear in other surveys and questioner’s, such as (Grossman et al., 2004) 

and UML for Systems Engineering Request for Information (SE DSIG RFI 1) by the 

Object Management Group.  In the article from (Malan & Bredemeyer, 2001) it is noted, 

“Many teams are not able to decide on the appropriate level of abstraction to which to 

take the Use Cases, and therefore experience an uncontrolled and time-consuming 

proliferation in their Use Cases.”  

UML focuses on a narrow view of the development rather than a broader, more 

systematic view.  This narrow view causes the UML model of the system to stand alone 

in isolation from other domains, stakeholders, and systems.  The limited involvement of 

stakeholders, customer and systems engineer gives a false design mentality that “we need 

only provide the functions the customer wants” (Gotterbarn, 2008). 

UML does not have an explicit way of connecting the abstract description of 

processes, resources, and structures, in addition to details of behaviors and structures of 

objects (Kim et al., 2002).  

B.  SYSTEM MODELING LANGUAGE (SYSML): 

The development of SysML is a joint initiative of OMG and the International 

Council on Systems Engineering (INCOSE, 2007).  SysML was developed to assist the 

systems engineer with the specification, analysis, design, verification and validation of a 

broad range of complex systems which are not necessarily software based (Vanderperren 

& Dehaene, 2005), like UML.  SysML is a modeling language used to represent systems 

and product architectures, as well as their behavior and functionality (Balmelli & IBM, 

2008).  Unlike UML, SysML does address the requirements traceability needed by 

systems engineers by linking the requirements to the design. Linkage is accomplished 
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through requirements diagrams within the SysML environment.  SysML is derived from 

UML, however, with changes geared to the systems engineer.  The structural layout of 

SysML is shown in Figure 14. 

 

 

Figure 14 SySML Diagram Types (From INCOSE Handbook) 

Within this diagram tree, there is the behavior diagram that addresses Use Cases.  

The Use Case diagrams provide descriptions of system requirements as previously 

mentioned in the UML section. 

The attempts to extend UML by tools or modeling ultimately created difficulties 

when trying to integrate the different viewpoints and achieve traceability (Hause, Thom, 

& Moore, 2008).  “SysML was developed to address this issue by providing a standard 

modeling language among all system engineers to analyze, specify, design, and verify 

complex systems, intended to enhance systems quality, improve the ability to exchange 

systems engineering information amongst tools, and help bridge the semantic gap 

between systems, software, and other engineering disciplines” (Hause, Thom, & Moore, 

2008).  SysML uses additional tools as compared with UML.  The tools consist of models 

and techniques for analyzing, verifying models and decision trees.  
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Unlike SysML, UML is biased towards its use with software development, and so 

not easily adaptable to systems engineering (http://www.uml-forum.com).  SysML 

reduces the size of UML and extends its semantics to requirements and parametric 

constraints (http://www.uml-forum.com) (see also Figure 14).  SysML provides these 

model requirements and parametric constraints to support some of the most important 

systems engineering processes, requirements engineering and performance analysis. 

1. The New Diagram; Requirement Diagram 

The requirement diagram is added to SysML to benefit the systems engineer 

during defining requirements.  The requirement diagram was brought into the modeling 

language to support the system engineer by listing requirements based on text and textual 

attributes (e.g., id, text statement, and criticality).  This diagram also formulates 

requirements decomposition into its sub elements, has traceability between derived and 

formative requirements, allows inspection into elemental components that can satisfies 

various requirement(s) and provides a means to verification of requirements by test cases 

(OMG SysML, 2007).  

The requirement diagram can only display requirements, packages, other 

classifiers, test cases, and rationale (OMG SysML, 2007).  SysML represents the 

requirements as elements of a system model.  Requirements are inherent to the system 

architecture.  SysML represents textually drafted requirements (e.g., functional, 

performance, quality), and their relations (Balmelli & IBM, 2006).  Generally, the 

requirements diagram is another means to requirements traceability.  Requirement 

derivation and traceability can be performed by many methods including other diagrams 

within the UML or SysML format (OMG SysML, 2007).  Functional decomposition and 

IDEF0 provide a means as well.  Add in tools such as DOORS help the process as well.  

Figure 15 and Figure 16 display how SysML graphically represents the requirements in 

nodes and paths as outlined in the OMG SysML specification. 
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Figure 15 Graphical Nodes Included in Requirements Diagram  
(From OMG SysML, 2007) 
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Figure 16 Graphical Paths Included in Requirements Diagrams  
(From OMG SysML, 2007) 

New requirements are produced, and subsequently decomposed, during 

requirements analysis. These are notionally associated with the formative requirements, 

which were initially conceived or handed-down (Balmelli & IBM, 2006) (see graphical 

notation above). 
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Graphical Paths included in Requirements Diagrams (From OMG SysML, 2007), 
continued 
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Graphical Paths included in Requirements Diagrams (From OMG SysML, 2007), 
continued 
 

2. Differences between UML and SysML 

What are the differences between these two modeling languages?  The systems 

engineer that could influence decisions when utilizing one of these languages should 

know what advantages are best.  SysML is a domain specific modeling language and 

UML is construed as a general purpose modeling language.  UML has evolved to UML 

2.0 on which SysML was built to allow the reuse of maturing notation and semantics 

(http://www.uml-forum.com).  Both UML 2.0 and SysML provide the system engineer 

with means to derive system functionality.  

What advantages does SysML offer the systems engineer? The following is a list 

provided by the UML Forum at http://www.uml-forum.com.   

SysML expresses systems engineering semantics (interpretations of 
notations) better than UML. It reduces UML’s software bias and adds two 
new diagram types for requirements management and performance 
analysis: requirement diagrams and parametric diagrams, respectively.  

SysML is smaller and easier to learn than UML. Since SysML removes 
many software-centric and gratuitous constructs, the overall language is 
smaller as measured in diagram types (9 vs. 13) and total constructs.  
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SysML allocation tables support various kinds of allocations (e.g., 
requirement allocation, functional allocation, structural allocation) 
thereby facilitating automated verification and validation (V&V) and gap 
analysis.  

SysML model management constructs support the specification of models, 
views, and viewpoints and are architecturally aligned with IEEE-Std-
1471-2000 (IEEE Recommended Practice for Architectural Description of 
Software-Intensive Systems).  

The following table, also provided by the UML Forum at http://www.uml-

forum.com, compares SysML diagrams with their UML counterparts.  The capability of 

each modeling language is listed directly in the column applicable to it.  Where N/A is 

indicated the particular language does not support the category described.   

 

SysML Diagram Purpose UML Diagram Analog 

Activity diagram Show system behavior as control and 
data flows. Useful for functional 
analysis. Compare Extended 
Functional Flow Block diagrams 
(EFFBDs), already commonly used 
among systems engineers. 

Activity diagram 

Block Definition diagram Show system structure as components 
along with their properties, operations 
and relationships. Useful for system 
analysis and design. 

Class diagram 

Internal Block diagram Show the internal structures of 
components, including their parts and 
connectors. Useful for system analysis 
and design. 

Composite Structure 
diagram 

Package diagram Show how a model is organized into 
packages, views and viewpoints. 
Useful for model management. 

Package diagram 

Parametric diagram Show parametric constraints between 
structural elements. Useful for 
performance and quantitative analysis.

N/A 

Requirement diagram Show system requirements and their 
relationships with other elements. 
Useful for requirements engineering. 

N/A 

Sequence diagram Show system behavior as interactions 
between system components. Useful 

Sequence diagram 
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for system analysis and design. 
State Machine diagram Show system behavior as sequences of 

states that a component or interaction 
experience in response to events. 
Useful for system design and 
simulation/code generation. 

State Machine diagram 

Use Case diagram Show system functional requirements 
as transactions that are meaningful to 
system users. Useful for specifying 
functional requirements. (Note 
potential overlap with Requirement 
diagrams.) 

Use Case diagram 

Allocation tables* 
 
*dynamically derived tables, 
not really a diagram type 

Show various kinds of allocations 
(e.g., requirement allocation, 
functional allocation, structural 
allocation). Useful for facilitating 
automated verification and validation 
(V&V) and gap analysis. 

N/A 

N/A  Component diagram 
N/A  Communication diagram 
N/A  Deployment diagram 
N/A  Interaction overview 

diagram 
N/A  Object diagram 
N/A  Timing diagram 
 
 

Table 2 Comparison of UML and SySML (http://www.uml-forum.com). 

Use Cases, as shown in the above table, are also implemented using SysML and 

have not been modified.  In this respect, the UML or SysML formats are the same. 

An alternative to beginning with functional decomposition is to decompose a 

system into objects.  This is the approach used in applying SysML.  First is to start with 

an object decomposition that then leads to another way of identifying functions using the 

principles of UML (Osmundson, 2007).  
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C.  INTEGRATION DEFINITION FOR FUNCTION MODELING (IDEF0): 

Integration Definition for Function Modeling (IDEF0) is a modeling method that 

defines process and data flows.  “IDEF0 is useful in conducting systems analysis and 

design at all levels, for system composed of people, machines, materials, computers and 

information of all varieties” (IEEE Std 1320.1-1998).  The IDEF0 graphical model is laid 

out in a hierarchical arrangement of boxes or diagrams.  Each box represents a prime 

function and the arrows into and out of represents the data that interacts with the 

particular function.  The format of the IDEF0 function box is very similar to the 

description of “function” as depicted by (Blanchard & Fabrycky, 1998).  The IDEF0 

defines function as “a set of activities that takes certain inputs and, by means of some 

mechanism, and subject to certain controls, transforms the inputs to outputs” (Kim et al., 

2002).  

 

Figure 17 Inputs and Outputs into the functional block  
(From Blanchard & Fabrycky, 1998) 

 

Calls: 
(communications and 
coordination) 
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In Figure 17 the functional box is an activity, process, or transformation.  This 

function is identified by a verb or verb phrase that describes what the function must 

accomplish.  The inputs into the function box are transformed by the function itself into 

an output.  The controls/constraints from the top are transformed by the function, creating 

the output.  The mechanisms enable the sharing of detail between other models or with a 

model (Osmundson, 2007). 

IDEF0 is structured to make the understanding of a process easier since it 

organizes the structures process in the same manner as the user may think about the 

process, i.e., sequences (FIPS, 1993).  IDEF0 is very similar to functional decomposition 

as it is based on breaking down a process into sub-processes to make it easier to handle 

complex systems.  Functional decomposition is usually the beginning of the IDEF 

process by which it gives a systematic way of dealing with levels of complexity (Kim et 

al., 2002).  This breakdown also follows the similar functional flow diagrams (FFD) as 

the IDEF0 is arranged in a descending sequence with left to right flow, making it possible 

to easily follow how each sub-process interacts with another.  IDEF0 has a similar 

methodology to that of functional decomposition, as it is hierarchical in nature.  The 

model is laid out in it’s as-is condition in a top down fashion, but allowing for an analysis 

to be conducted in a bottom up approach. 

The hierarchical layout of system functionality gives the designer the ability to 

view the system from a “current” viewpoint.  The IDEF0 diagram allows for a bottom up 

analysis of the system functionality.  Much like the cohesion process mentioned earlier, 

similar or closely related activities are grouped together resulting in a more appropriate 

hierarchal structure depicting the functional architecture.  This process, as with functional 

decomposition and Use Cases, is recursive until the desired level of detail in the 

hierarchy is developed. 

The IDEF0 method appears to be one of the best for a side-by-side comparison 

with the functional decomposition method as they work well with each other (Kim et al., 

2002).  The IDEF0 represents the mechanism (usually the system components to which 

the function is allocated) which performs the function.  Figure 18 is an example of an 

IDEF0 diagram. 
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Figure 18 IDEF0 sample diagram 

 

As displayed in Figure 18, data into each function icon occurs or enters on the left 

side.  Control inputs enter the function icon at the top. Outputs of each function icon exit 

on the right side.  The mechanism or system components, as mentioned earlier, are 

allocated to the function and enter each function icon from the bottom. 

“IDEF0 is used to analyze and assist the modeler in identifying the functionality 

that is to be performed.  Analysis as to how the system performs these functions is 

conducted which leads to identification of what the system does right and what the 

system does wrong.  Thus, IDEF0 models are often created as one of the first tasks of a 

system development effort” (Knowledge Based Systems, 2008).  Similar to other means 

of identifying system functions, i.e., the functional decomposition process or Use Cases,  
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IDEF0 presents the functional depiction in a graphical form.  A graphical form seems 

easier to understand than merely words in a document because of the relationship it 

shows between functions. 

IDEF is not alone and in fact, IDEF is not just for function modeling.  IDEF0 is a 

family of methods ranging from IDEF0 to IDEF14, each providing a perspective into the 

domain of study. 
  

IDEF0  Function Modeling  
IDEF1  Information Modeling  
IDEF1X Data Modeling  
IDEF2  Simulation Model Design  
IDEF3  Process Description Capture  
IDEF4  Object-Oriented Design  
IDEF5  Ontology Description Capture  
IDEF6  Design Rationale Capture  
IDEF8  User Interface Modeling  
IDEF9  Scenario-Driven IS Design  
IDEF10 Implementation Architecture Modeling
IDEF11 Information Artifact Modeling  
IDEF12 Organization Modeling  
IDEF13 Three Schema Mapping Design  
IDEF14 Network Design  

 

Table 3 Suite of IDEF0 Methods (current and in development)  

The IDEF0 method models the system functions and relationships with other 

functions.  However, IDEF0 notations are only conceptual models and therefore not 

effective for the generation of implementation schemata (Kim et al., 2002).  This is not to 

mean that IDEF0 is not very useful for system development.  In fact, IDEF0 models 

provide value to understanding system functionality and functional requirements, when 

combined or mapped with object oriented models as with the generation of computer 

executable systems outline in (Kim et al., 2002).  Developing an IDEF0 diagram and 

following functional understanding with Use Cases used in UML and SysML one can 

address key constituents that IDEF0 alone cannot.  The consideration of using another 
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IDEF0 method such as IDEF3 for behavioral aspects still has its limitations as the 

description of interactions between organizations are limited and “the lack of any clear 

distinction between material flow and information flow lead to semantic constraints that 

limit the use of all IDEF models” (Kim et al., 2002). 

Note, the IDEF0 diagram is similar to the N-Squared chart mentioned before.  

The input into the function box of the IDEF0 diagram allows the specification of control, 

but does not have the ability to characterize the control in terms of constructs such as 

triggering (Long, 2008).  Other types of diagrams found in the UML and SysML formats 

such as behavior diagrams allow this ability.  IDEF0 diagrams also allow the explicit 

representation of functional allocation (Long, 2008) i.e., the particular system component 

that performs the function. 

“A problem that has been described with IDEF0 models (Knowledge Based 

Systems, 2008) is that IDEF0 can be confused with describing the sequence of events 

within the system activity.  Getting around this issue is not impossible.  The systems 

engineer may layout the system activities in a typical left to right sequence when 

decomposing.” These sentiments are typical of the normal way one might think when 

problem solving.  It is etched into our thinking, especially when reading or writing, that 

we must work the flow from left to right.  The risk with the IDEF0 model not being 

structured in an activity-sequencing format is that other developers of a team may 

mistake this and attempt to add interpretation (Knowledge Based Systems, 2008) 

“IDEF0 has been very effective when detailing the system activities for function 

modeling” (Knowledge Based Systems, 2008), (Kim, et al., 2002).  The IDEF0 process 

continues with further decomposing of these activities into greater detail until the system 

is described in enough detail to understand that it meets the intended need or goal.  

However, one of the observed problems with IDEF0 models is “that they often are so 

concise that they are understandable only if the reader is a domain expert or has 

participated in the model development” (Knowledge Based Systems, 2008).  
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IDEF0 models can be suitably constructed to describe system complexity.  The 

first such description was for manufacturing.  IDEF0 models may posit many 

perspectives (Kim et al., 2002).  The modeling of functional behaviors in the system are 

not handled well in IDEF format (Kim et al., 2002) so it makes sense to utilize other 

means of filling in the gaps as UML does allowing system structures, components, and 

computer program packages to be designed, developed, and reused (Kim, et al., 2002).  It 

appears logical that multiple viewpoints, such as IDEF0, Use Cases (both in UML and 

SysML), Behavioral diagrams (both in UML and SysML), Requirements Diagrams 

(SysML) and the process of decomposing system functionality with functional 

decomposition and the key factors contributing to completer decompositions combine 

well to effectively derive good system requirements.  This works well as an interrogation 

technique covering many views of the system.  
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IV. CONCLUSION 

In summary, it is apparent from research that the process of coming up with 

functional requirements via the functional decomposition method or using other 

approaches such as UML, SysML and IDEF0 is feasible but varies dependant on the 

experience of the system engineer and type of system, i.e., software or hardware. 

From this research, it appears that the process of functional decomposition, while 

focusing on the key factors that lead to good decompositions, is the first stepping stone to 

deriving functional requirements.  What graphical method to use to address behavior is 

considered subjective, as well as how the system accomplishes its task.  The examination 

into the object and process-oriented views (object being UML and SysML) shows that 

combining approaches works well and depending on the system under development , i.e., 

software or hardware, different approaches and emphasis on one or the other is needed.  

For example, software development seems to favor mostly UML and functional 

decomposition alone.  This multi view analysis of system functionality is a good way to 

view the functional requirements in different ways, helping to ensure proper 

functionality. 

As shown in (Kim et al., 2002) and in (Doyle & Pennotti, 2005), object oriented 

models and process oriented models work well together.  In (Doyle & Pennotti, 2005) 

their experiment showed that using UML/SySML Use Case Diagrams made it difficult to 

grasp the initial view of how a system would accomplish its task.  The Use Case 

Diagrams show what the system might be expected to do but fails at easing the 

understanding on how.  The approach that worked well in their experiment was the 

combination of functional decomposition and IDEF0.  Remember the functional 

decomposition was the first step in the IDEF0 process so as mentioned earlier IDEF0 and 

functional decomposition go hand in hand.  This format leads the experiment to better 

communication from a project management viewpoint. 
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In the article by (Kim et al., 2002), the combined use of UML and IDEF0 

provided multiple views of requirements.  Redundancy of the models is less desired since 

the result would likely lead to additional development cost.  However, from their 

experience and others (Langford, 2008) it is believed that the increased quality of the 

modeling out weighs the additional cost.  In fact, the hierarchical functional 

decomposition process (in process-orientated models) has shown in both these papers that 

it works much better than a single approach. 

The practice of hierarchical functional decomposition is most often easier and 

takes less time than trying to force the hierarchy structure into Use Cases or considered as 

a hack functional decomposition (Langford, 2008).  “Hack” functional decompositions 

are characterized by inattention to defined terms and mixing functions, with processes, 

with performance and with quality.  The result is a mishmash of ill-defined states, 

modules, and entities which results in poorly defined inputs and outputs and 

dependencies that are either undiscovered or intentionally disregarded.  Hierarchy and 

modularity permit reuse and replacement and therefore adaptability, standardization, 

scalability, and understanding.  Decomposition can be valuable to present a simple view 

of the parts of a function (assuming that the top-level function can be broken into parts).  

If the structure of sub functions permits modularization, then the decomposition can be 

scaled and generally used more adaptively through interfaces with other modules.  

Simplicity is a way of gaining understanding about the nature of the top-level function, 

its relationships, its components, and how it can be used.  Fundamentally, functional 

decomposition is the basis for all science, all structure, all thought.  If done properly, 

logic is defined. 

A. FUTURE WORK 

In consideration of future work, a different approach to performing functional 

decomposition is discussed.  The combination of multiple approaches to give different 

views of system functionality was shown to be best, but the functional decomposition 

must be good in order to be complete.  It was mentioned that coupling and cohesion play 

an important role in good decompositions. The question is what else? 
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Systems Engineering Value Equation with Risk (SEVER) (Langford, 2008) is 

another way of performing an interrogation of the functional decomposition with good 

coupling and cohesion.  It is a way to determine the gap that can exist between an 

existing product and a desired product.  In terms of cohesion, it is important to position 

the functions within the system hierarchy so if changes are required, i.e., function is re-

structured, it will not significantly affect the totality of design.  The coupling and 

cohesion interrogation is conducted first, and then in the more detailed levels in the 

functional hierarchy, SEVER can be used to improve the functional decomposition.  Now 

consider that a problem is discovered that exposes lifecycle inconsistencies with the 

product’s requirements or proposed architecture.  In effect, there are conflicts between 

the design objectives and the impacts of lifecycle considerations.  The issue could be with 

part of the problem that will require an upgrade but at a high impact, i.e., redesign, then a 

simple way is to design this part of the product to be replaced earlier.  The quality may be 

reduced driving the need to replace sooner but this will reduce the cost of the function.  

This situation makes sense for products are impacted by rapid technology changes when 

an east upgrade is required. 

SEVER provides a way to analyze the value of each function.  The fundamental 

equation from value engineering, F
PV
I

= , where the value of the function is defined as 

the performance divided by the investment.  For example, looking at three 

functions 1.1F , 2.1F  and 3.1F , let’s say that 1.1F  has high value to the customer, but 3.1F  has 

high risk, and therefore not much value or performance.  The customer indicates interest 

in 3.1F  but not at the high cost and risk.  Combining 2.1F  and 3.1F  in a way that cost could 

be shared and performance improved is leveling the load of both functions.  This is a 

means of using the value portion of SEVER to investigate the load leveling portion in the 

functional domain.  

This moving of functions into the functional domain is a way of quantifying the 

coupling and cohesion within the functional decomposition.  In some circumstances, 

coupling and cohesion will not provide any improvement in the decomposition.  Value is 

another way of viewing the functional decomposition.  It is a powerful tool that can be 
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used in the first order to view the predominate value of the system.  For example the 

function 1.1F  is most valuable to the system and function 3.1F could essentially be 

eliminated, but the customer is willing to pay for 3.1F  functionality because it has some 

value to them but not worth as much as the cost of fielding 3.1F  alone.  So at the first 

level of the functional decomposition one could design the interface so it fits with 2.1F  

and 3.1F  but as a modular upgrade to the system.  If an improvement in technology or a 

reduction in cost occurs then investment of the function 3.1F  goes down and value goes 

up. 

There appears to be no easy way to address value in UML or SySML, but it can 

be done with IDEF0.  IDEF0 has inputs, outputs, mechanisms and controls, as shown in 

Figure 17.  SEVER can be incorporated as in input into the IDEF0 function block as a 

worth equation, where * *
F

P Q LOCR
I

=  (see Figure 19) where R is the risk, F is the 

function, P is the performance, Q is the quality, LOC is the likelihood of occurrence, and 

I is the investment (Langford, 2008). Worth is defined as Value (measured in units of 

performance) multiplied by Quality (measured in units of I). Worth multiplied by LOC is 

equal to R, risk.  
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Figure 19 IDEF0 Modified with Risk Attributes (From Langford, 2008) 

 

Looking at each function, and determining the risk of each function, defines the 

loss that may occur by using the initial functional decomposition.  Moving around the 

value and risk of a function will increase the performance and reduce the cost thereby 

resulting in an improvement to the architecture/design.  Whether IDEF0 structure is used 

or just a straight functional decomposition these tools, value of function and risk of 

function can be used further to refine the architecture /design. Worth presents another 

view of the impacts of functional decomposition.  It is defined as 
P
Q

T
PPW tc **//=   

where P is the performance, T is the total time in hours, Q is loss function (minimum loss 

- )(XLn and n
n mxkXL )()( −= (standard loss function)) (Langford, 2008).  The 

function 3.1F , which is of high risk, is going to cost a lot of money, which we knew when 

we looked at the value of the function.  At the next level of detail, the cost is related to 

the number of people working the function, which could be for discussion, lines of code 

in software development.  A further refinement using SEVER can be conducted on the 

* *
F

P Q LOCR
I

=
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functional decomposition to isolate problems that should be fixed by means of load 

leveling the functions.  For example a module of code that could de defined as high risk 

could be moved from 3.1F  to 2.1F .  Function 2.1F may have a different skill set that would 

reduce the risk of developing the high risk module and reduce the cost of rework when 

kept in 3.1F .  This is an improvement of the functional decomposition from a management 

point of view.  Looking at the management of functional decomposition first from a top 

level of negotiation, a second level for design, and a third level for life cycle issues, is a 

way to look at the entire business process to see if the right thing will be done with the 

product. 
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