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ABSTRACT

MULTIBIOMETRIC SYSTEMS: FUSION STRATEGIES AND TEMPLATE
SECURITY

By

Karthik Nandakumar

Multibiometric systems, which consolidate information from multiple biometric
sources, are gaining popularity because they are able to overcome limitations such as
non-universality, noisy sensor data, large intra-user variations and susceptibility to
spoof attacks that are commonly encountered in unibiometric systems. In this thesis,
we address two critical issues in the design of a multibiometric system, namely, fusion

methodology and template security.

First, we propose a fusion methodology based on the Neyman-Pearson theorem for
combination of match scores provided by multiple biometric matchers. The likeli-
hood ratio (LR) test used in the Neyman-Pearson theorem directly maximizes the
genuine accept rate (GAR) at any desired false accept rate (FAR). The densities of
genuine and impostor match scores needed for the LR test are estimated using finite
Gaussian mixture models. We also extend the likelihood ratio based fusion scheme
to incorporate the quality of the biometric samples. Further, we also show that the
LR framework can be used for designing sequential multibiometric systems by con-
structing a binary decision tree classifier based on the marginal likelihood ratios of the

individual matchers. The LR framework achieves consistently high recognition rates



across three different multibiometric databases without the need for any parameter
tuning. For instance, on the WVU-Multimodal database, the GAR of the LR fusion
rule is 85.3% at a FAR of 0.001%, which is significantly higher than the corresponding
GAR of 66.7% provided by the best single modality (iris). The use of image quality
information further improves the GAR to 90% at a FAR of 0.001%.

Next, we show that the proposed likelthood ratio based fusion framework is also
applicable to a multibiometric system operating in the identification mode. We further
investigate rank level fusion strategies and propose a hybrid scheme that utilizes both
ranks and scores to perform fusion in the identification scenario.

While fusion of multiple biometric sources significantly improves the recognition
accuracy, it requires storage of multiple templates for the same user corresponding to
the individual biometric sources. Template security is an important issue in biomet-
ric systems because unlike passwords, stolen biometric templates cannot be revoked.
Hence, we propose a scheme for securing multibiometric templates as a single entity
using the fuzzy vault framework. We have developed fully automatic implementa-
tions of a fingerprint-based fuzzy vault that secures minutiae templates and an iris
cryptosystem that secures iriscode templates. We also demonstrate that a multibio-
metric vault achieves better recognition performance and higher security compared
to a unibiometric vault. For example, our multibiometric vault implementation based
on fingerprint and iris achieves a GAR of 98.2% at a FAR of less than 0.01% and
provides approximately 49 bits of security. The corresponding GAR values of the
individual iris and fingerprint vaults are 88% and 78.8%, respectively. When the iris

and fingerprint vaults are stored separately, the security of the system is only 41 bits.
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Chapter 1

Introduction

Personal identity refers to a set of attributes (e.g., name, social security number, etc.)
that are associated with a person. Identity management is the process of creating,
maintaining and destroying identities of individuals in a population. A reliable iden-
tity management system is urgently needed in order to combat the epidemic growth
in identity theft and to meet the increased security requirements in a variety of appli-
cations ranging from international border crossing to accessing personal information.
Establishing (determining or verifying) the identity of a person is called person recog-
nition or authentication and it is a critical task in any identity management system.
The three basic ways to establish the identity of a person are “something you know”
(e.g., password, personal identification number), “something you carry” (e.g., physical
key, ID card) and “something you are” (e.g., face, voice) [44].

Surrogate representations of identity such as passwords and ID cards can be eas-
ily misplaced, shared or stolen. Passwords can also be easily guessed using social

engineering [136] and dictionary attacks [110]. Hence, the effective security provided



by passwords is significantly less than the expected security. Studies by the National
Institute of Standards and Technology (NIST) [18] have estimated that on average,
an 8-character ASCII (7 bits/character) password effectively provides only 18 bits of
entropy, which is much less than the expected 56 bits of security. Moreover, passwords
and ID cards cannot provide vital authentication functions like non-repudiation and
detecting multiple enrollments. For example, users can easily deny using a service
by claiming that their password has been stolen or guessed. Individuals can also
conceal their true identity by presenting forged or duplicate identification documents.
Therefore, it is becoming increasingly apparent that knowledge-based and token-based
mechanisms alone are not sufficient for reliable identity determination and stronger

authentication schemes based on “something you are”, namely biometrics, are needed.

1.1 Biometric Systems

Biometric authentication, or simply biometrics, offers a natural and reliable solution
to the problem of identity determination by establishing the identity of a person based
on “who he is”, rather than “what he knows” or “what he carries” [84]. Biometric
systems automatically determine or verify a person’s identity based on his anatomical
and behavioral characteristics such as fingerprint, face, iris, voice and gait. Biometric
traits constitute a strong and permanent “link” between a person and his identity
and these traits cannot be easily lost or forgotten or shared or forged. Since biometric
systems require the user to be present at the time of authentication, it can also deter

users from making false repudiation claims. Moreover, only biometrics can provide



negative identification functionality where the goal is to establish whether a certain
individual is indeed enrolled in the system although the individual might deny it.
Due to these reasons, biometric systems are being increasingly adopted in a number
of government and civilian applications either as a replacement for or to complement
existing knowledge and token-based mechanisms. Some of the large scale biometric
systems include the Integrated Automated Fingerprint Identification System (IAFIS)
of the FBI [150], the US-VISIT IDENT program [149], the Schiphol Privium scheme
at Amsterdam’s Schiphol airport [176] and the finger scanning system at Disney
World, Orlando [77].

A number of anatomical and behavioral body traits can be used for biometric
recognition (see Figure 1.1). Examples of anatomical traits include face, fingerprint,
iris, palmprint, hand geometry and ear shape. Gait, signature and keystroke dynamics
are some of the behavioral characteristics that can be used for person authentication.
Voice can be considered either as an anatomical or as a behavioral trait because
certain characteristics of a person’s voice such as pitch, bass/tenor and nasality are
due to physical factors like vocal tract shape, and other characteristics such as word
or phoneme pronunciation (e.g., dialect), use of characteristic words or phrases and
conversational styles are mostly learned. Ancillary characteristics such as gender,
ethnicity, age, eye color, skin color, scars and tatoos also provide some information
about the identity of a person. However, since these ancillary attributes do not pro-
vide sufficient evidence to precisely determine the identity, they are usually referred
to as soft biometric traits [89]. Each biometric trait has its advantages and limita-

tions, and no single trait is expected to effectively meet all the requirements such as



accuracy, practicality and cost imposed by all applications [99]. Therefore, there is
no universally best biometric trait and the choice of biometric depends on the nature

and requirements of the application.

A typical biometric system consists of four main components, namely, sensor,
feature extractor, matcher and decision modules. A sensor is used to acquire the
biometric data from an individual. A quality estimation algorithm is sometimes used
to ascertain whether the acquired biometric data is good enough to be processed
by the subsequent components. When the data is not of sufficiently high quality, it
is usually re-acquired from the user. The feature extractor gleans only the salient
information from the acquired biometric sample to form a new representation of the
biometric trait, called the feature set. Ideally, the feature set should be unique for
each person (eztremely small inter-user similarity) and also invariant with respect
to changes in the different samples of the same biometric trait collected from the
same person (extremely small intra-user variability). The feature set obtained during
enrollment is stored in the system database as a template. During authentication,
the feature set extracted from the biometric sample (known as query or input or
probe) is compared to the template by the matcher, which determines the degree of
similarity (dissimilarity) between the two feature sets. The decision module decides
on the identity of the user based on the degree of similarity between the template

and the query.



Iris

Voice

N4

Fingerprint

Signature

Gait

Hand geometry
/ \ s ; X

Palmprint

Figure 1.1: Examples of body traits that can be used for biometric recognition.
Anatomical traits include face, fingerprint, iris, palmprint, hand geometry and ear
shape, while gait, signature and keystroke dynamics are some of the behavioral char-
acteristics. Voice can be considered either as an anatomical or as a behavioral char-
acteristic.



1.2 Biometric Functionalities

The functionalities provided by a biometric system can be Categorized1 as verification
and identification. Figure 1.2 shows the enrollment and authentication stages of a bio-
metric system operating in the verification and identification modes. In verification,
the user claims an identity and the system verifies whether the claim is genuine, i.e.,
the system answers the question “Are you who you say you are?”. In this scenario,
the query is compared only to the template corresponding to the claimed identity.
If the user’s input and the template of the claimed identity have a high degree of
similarity, then the claim is accepted as “genuine”. Otherwise, the claim is rejected
and the user is considered an “impostor”. Formally, verification can be posed as the
following two-category classification problem: given a claimed identity I and a query
feature set XQ, we need to decide if (I ,XQ) belongs to “genuine” or “impostor”
class. Let X be the stored template corresponding to identity I. Typically, X is
compared with X and a match score S, which measures the similarity between XQ

and X7, is computed. The decision rule is given by

genuine, if S >,
(1, XQ) c (1.1)
impostor, if S <n,
where 7 is a pre-defined threshold. In this formulation, the match score S is assumed

to measure the similarity between XQ and Xy, i.e., a large score indicates a good

match. It is also possible for the match score to be a dissimilarity or distance measure

I'Throughout this dissertation, the terms recognition or authentication will be used interchange-
ably when we do not wish to make a distinction between the verification and identification
functionalities.



(i.e., a large score indicates a poor match) and in this case, the inequalities in the
decision rule shown in equation (1.1) should be reversed.

Identification functionality can be classified into positive and negative identifica-
tion. In positive identification, the user attempts to positively identify himself to
the system without explicitly claiming an identity. A positive identification system
answers the question “Are you someone who is known to the system?” by determin-
ing the identity of the user from a known set of identities. In contrast, the user in
a negative identification application is considered to be concealing his true identity
from the system. Negative identification is also known as screening and the objec-
tive of such systems is to find out “Are you who you say you are not?”. Screening
is often used at airports to verify whether a passenger’s identity matches with any
person on a “watch-list”. Screening can also be used to prevent the issue of multi-
ple credential records (e.g., driver’s licence, passport) to the same person. Negative
identification is also critical in applications such as welfare disbursement to prevent
a person from claiming multiple benefits (i.e., double dipping) under different names.
In both positive and negative identification, the user’s biometric input is compared
with the templates of all the persons enrolled in the database and the system outputs
either the identity of the person whose template has the highest degree of similarity
with the user’s input or a decision indicating that the user presenting the input is not
an enrolled user.

Formally, the problem of identification can be stated as follows: given a
query feature set XQ, we need to decide the identity I of the user, where [ €
{I1,I3,--- , In,Iny1}. Here, Iy, 19, - Iy correspond to the identities of the N
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Figure 1.2: Enrollment and recognition stages in a biometric system. Here, T' rep-
resents the biometric sample obtained during enrollment, () is the query biometric
sample obtained during recognition, X7 and X, Q are the template and query feature
sets, respectively, S represents the match score and N is the number of users enrolled
in the database.



users enrolled in the system and Iy 1 indicates the case where no suitable identity
can be determined for the given query. If X I, 18 the stored template correspond-
ing to identity I, and Sy, is the match (similarity) score between XQ and Xy, for

n=1,2---, N, the decision rule for identification is,

Iny, it ng = arg max Sp and Spy > 0,

XQ S (1.2)

In41, otherwise,

where 7 is a pre-defined threshold. In some practical biometric identification systems
such as FBI-IAFIS, identification is semi-automated, i.e., the biometric system out-
puts the identities of the t