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                                                             Abstract 

 Transformed flux-form semi-Lagrangian (TFSL) scheme provides stable and accurate 

algorithm to solve the advection-diffusion equation. Different from the existing flux-form semi-

Lagrangian schemes, the flux at boundary of grid cell is treated as the temporal mean between 

present and next time steps. After the temporal-spatial transformation using the characteristic-line 

concept, the temporal integration of the flux from present to next time step becomes the spatial 

integration of the flux at the present time step. This scheme is always stable even for large Courant 

numbers (> 20) with the second order accuracy in both time and space. For the Courant number not 

larger than 0.5, the TFSL scheme reduces to the Lax-Wendroff scheme. The capability of the TFSL 

scheme is demonstrated by the simulation of the   equatorial Rossby-soliton propagation.  

 

Key Words: TFSL scheme, flux-form semi-Lagrangian scheme, characteristic line, advection-

diffusion equation, finite volume, conservative finite difference, Courant number, equatorial 

Rossby soliton. 

 

 

 

 

 

 

                                                   

 

 



 3

                                                    1. Introduction 

 Numerical approaches in atmospheric and oceanic modeling inevitably introduce diffusion 

(or dissipation) and dispersion into the approximate solution. From a physical point of view, 

advection of a passive tracer is the simple transition of a quantity. Therefore, dispersion, the 

propagation of different spatial scales at different phase speed, and diffusion are processes that are 

aliens to the process that is being modeled (Chu and Fan 1998, 1999). As applied to constituent 

advection problem, these numerical artifacts manifest themselves as nonphysical mixing by 

numerical diffusion, nonphysical highs and lows in the constituent field caused by dispersion, and 

nonphysical tracer spectra caused by the trapping of tracer in nonpropagating small spatial scales 

(Rood 1987).  The less the numerical diffusion and dispersion errors, the better the model 

performance is.  

 Propagation of a Rossby soliton on an equatorial beta-plane is treated as an asymptotic 

solution, which exists to the inviscid, nonlinear shallow water equations. In principle, the soliton 

propagates to the west at fixed phase speed, without change of shape. Since the uniform 

propagation and shape preservation of the soliton are achieved through a delicate balance between 

linear wave dynamics and nonlinearity. In other words, the Rossby soliton is non-diffusive and 

non-dispersive (Boyd 1980), which makes it  a perfect test case for verification of numerical 

schemes in ocean models since any diffusion and dispersion in the numerical solution of the 

Rossby soliton are computational errors. Interested readers are referred to the website:  

http://marine.rutgers.edu/po/index.php?model=test-problems.   

In this study, we first show instability and large diffusion and dispersion errors in numerical 

solution of the Rossby soliton using the existing schemes such as the upwind, central, and Lax-

Wendroff schemes. Then, we present a transformed flux-form semi-Lagrangian (TFSL) scheme, 
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which has explicit form and much less diffusion and dispersion errors. The numerical solution of 

the Rossby soliton exists even for large Courant numbers.  

The rest of paper is organized as follows. Section 2 describes the equatorial Rossby soliton 

and its usefulness for the ocean model verification. Section 3 shows the failure of the three existing 

schemes (upwind, central, and Lax-Wendroff) in simulating the equatorial Rossby soliton. Section 

4 introduces  the TFSL scheme.  Section 5 derives the analytical form of the amplification factor of 

the TFSL-scheme and shows that this factor does not larger than 1 for large Courant number such 

as 20. Section 6 shows the capability of the TFSL-scheme in simulating the equatorial Rossby 

soliton.  Section 7 presents the conclusions. 

                                           2.  Rossby Soliton  

 Let Ω be the angular frequency of earth’s rotation and R be the earth radius, and let (x, y) be 

the spatial coordinates with unit vectors (i, j) and t be the time.  Consider a single layer of 

homogeneous ocean layer with depth of H. The Lamb’s parameter  is defined by 

                                                         
2 24 RE

gH
Ω

= ,                                                         (1) 

where g is the gravitational acceleration. The length and time are nondimensionalized by 

                                                   
1/ 4

1/ 4 ,    
2

R EL T
E

= =
Ω

.                                                 (2) 

Let (x, y) be the non-dimensional Cartesian coordinates, (u, v) be the non-dimensional velocity 

components in the meridional and latitudinal directions, and φ  be the non-dimensional surface 

elevation.  After defining 

                                               s x ct≡ − ,                                                                     (3) 

and transforming the nonlinear shallow water wave equations into a frame of reference moving 

with the linear wave, the flow variables ( , ,u v φ )  for the mode-1 can be represented by (Boyd 1980) 
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2 2(6 9)( , , ) ( , ) exp
4 2

y yu s y t s tη
⎡ ⎤−

= −⎢ ⎥
⎣ ⎦

,                                                        (4a) 

                          
2( , )( , , ) 2 exp

2
s t yv s y t y
s

η ⎡ ⎤∂
= −⎢ ⎥∂ ⎣ ⎦

,                                                         (4b) 

                       
2 2(6 3)( , , ) ( , ) exp
4 2

y ys y t s tφ η
⎡ ⎤+

= −⎢ ⎥
⎣ ⎦

,                                                     (4c) 

and the variable ( , )s tη  satisfies  

   
3

1 2 1 23 0,    1.5366,      0.098765f f f f
t s s
η η ηη∂ ∂ ∂
− − = = =

∂ ∂ ∂
,                                            (5) 

which is  the Korteweg-de Vries (KDV) equation with the exact solution,   
   
           ( ) ( )2 2, sechs t A B s B tη μ⎡ ⎤= +⎣ ⎦ ,  20.772 ,  0.394,   0.395A B B μ= = = .                           (6) 

Substitution of the exact solution (6) into the third term in the lefthand side of (5) leads to  
 

                                            1 ,f S
t s
η ηη∂ ∂
− =

∂ ∂
                                                                   (7)                  

                            
3 4 2 2

2
2 2 2

( , ) 8 {3sec h [ ( )] tanh[ ( )]

       sec h [ ( )] tanh[ ( )]},

S s t AB f B s B t B s B t

B s B t B s B t

μ μ

μ μ

= + +

− + +
                                 (8) 

where S is treated as a source/sink term. Evidently equation (7) has the analytical solution (6), and 

therefore it can be used to verify the stability of the numerical schemes since the diffusion term has 

been changed into the given source/sink term.    

                                3.  Several Existing Schemes  

 To solve equation (7) numerically, the fluid is assumed to occupy equatorial region around 

the earth. The zonal direction is discretized into 120 cells (i.e., resolution at 3o longitude). The 

depth of fluid is set up as 100 m. The increment sΔ is given by   
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                                               2 0.256
120

Rs
L

π
Δ = ≈ .                                                                    (9) 

The time step is denoted by tΔ . Equation (7) can be discretized by the commonly used upwind 

scheme,  

                            1
1( )n n n n n n

i i i i i iC S tη η η η+
+= + − + Δ ,                                                      (10)  

the central  scheme,  

                         1 1 1

2

n n
n n n ni i
i i i iC S tη ηη η+ + −−

= + + Δ ,                                                       (11) 

and the Lax-Wendroff scheme,  

                          ( )
2

1
1 1 1 1

( )( ) 2
2 2

n n
n n n n n n n ni i
i i i i i i i i

C C S tη η η η η η η+
+ − + −= − − + − + + Δ ,                        (12) 

 
where the superscript and subscript denote the time step and the horizontal grid,  

                                                     ( , )n
i i nx tη η≡ ,                                                                     (13) 

 and  

                                      1
n

n i
i

f tC
s

η Δ
≡

Δ
.                                                                        (14) 

In order to compare the difference between numerical and exact solutions (westward 

propagating Rossby soliton), the zonal equatorial strip is assumed infinitely long. When the Rossby 

soliton travels over n×120 cells, it goes around the earth once n times (called n cycles).  The exact 

solution at t = 0 is taken as the initial condition,  

                                             ( ) 2,0 sec ( )s A h Bsη = ,                                                              (15) 

with s = 0 denoting 0o longitude.  
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The three difference equations (10)-(12) are solved numerically from the initial condition 

(15) representing the upwind, central, and Lax-Wendroff schemes (Lax and Wendroff 1960) with 

varying  tΔ  at each time step for a given Courant number (C = 0.75),  

 
1 max( )n

i

C st
f η

Δ
Δ ≡ . 

After obtaining the numerical solution, ( , )i nx tη , substituting it into (4c) yields ( , , )i j ns y tφ .  The 

accuracy of the schemes can be verified through their capability in predicting the westward 

propagation of the Rossby soliton. To do so,  the surface elevation  ( , , )i j ns y tφ  is plotted with  

contour values of  2.13,  4.26,  6.4, 8.53, 10.66, 12,79, 14.93, and 17.06 cm. All the numerical 

schemes greatly distort the Rossby soliton (Fig. 1). The numerical solution diverges at 60o45’W 

using the upwind scheme, and 38o45’W using the central scheme. The numerical solution does not 

diverge using the Lax-Wendroff scheme, however, the solution is totally different from the 

analytical solution after propagating one cycle around the earth (comparing Fig. 1d to Fig. 1a).  

                                                  4. TFSL-Scheme 

4.1. Semi-Lagrangian Method 

Consider the advection of a passive scalar ( , )tφ x  by the velocity u(x, t). The Eulerian 

formulation of this is 

                                              ,D S
Dt t
φ φ φ∂
≡ + ∇ =
∂

ui                                                            (16) 

where x is the position vector, D/Dt denotes the material derivative, while the Lagrangian 

counterpart is  

                                   ,pd
S

dt
φ

=     ( , )p
p

d
t

dt
=

x
u x ,                                                  (17) 
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where the subscript ‘p’ shows the fluid particle in Lagrangian sense. Although (16) and (17) carry 

the same physical information, their discretization and numerical implementation is different: (16) 

is discretized on an Eulerian grid with a finite number of grid points and then time-advanced, while 

(17) is integrated for a finite number of fluid particles. 

Semi-Lagrangian methods combine both Eulerian and Lagrangian points of view: the scalar 

field is discretized on an Eulerian grid, but is advanced in time using (17). The key element in 

accomplishing this is the identification of each grid point xi as the arrival point, for instance, at 

t t+ Δ , of a particle originating from *
ix  at time t. The algorithm has three steps: (a) The particle 

associated with each grid point xi at time t t+ Δ  is traced back to its location *
ix  at time t,  

                                 * ( )
t t

i i t
dτ τ

+Δ
= − ∫x x u ;                                                                (18) 

(b) The scalar value at ( *
ix , t) is obtained by interpolating the known values at neighboring grid 

points,  

                                     [ ]* ˆ( , ) {( },i ikx t P tφ φ= x ,                                                           (19) 

where P is any interpolation operator and { ˆ ikx } denotes the set of interpolation points associated 

with *
ix , for example, the nodes of the cell containing *

ix ; (c) Finally, the scalar is updated,  

                                     *( , ) ( , )i i it t t S tφ φ+ Δ = + Δx x .                                                    (20) 

Thus, the main issues of the semi-Lagrangian method are the backward integration in step (a) and 

the interpolation in step (b).  

4.2. Flux Form 

 Equation (16) can be rewritten in the flux form with inclusion of diffusion,   

                   ,     S
t
φ φ κ φ∂
= ∇ + = − + ∇

∂
F F ui ,                            (21) 
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where κ is the diffusion coefficient. Let the dependent variable ( , )tφ x   be defined on the space Ω   

                           0 ,    0 ,    0x y zx L y L z L≤ ≤ ≤ ≤ ≤ ≤ . 

with (Lx, Ly, Lz) the lengths  in (x, y, z) directions. Let  

                                    ,   ,yx z

x y z

LL Lx y z
N N N

Δ = Δ = Δ =  

be the uniform spatial increments with (Nx + 1, Ny + 1, Nz +1) the grid numbers.  Integrating (21) 

for the finite volume, 

                      1/ 2 1/ 2 1/ 2 1/ 2 1/ 2 1/ 2[ ,   ,   ]ijk i i j j k kx x x y y y z z z− + − + − +ΔΩ = ≤ ≤ ≤ ≤ ≤ ≤ ,   

                        1/ 2 1/ 2 1/ 2,   ,   
2 2 2i i j j k k
x y zx x y x z z± ± ±

Δ Δ Δ
≡ ± ≡ ± ≡ ± , 

from nt  to 1n nt t t+ = + Δ , we obtain  the finite difference equation of the flux-averaged transport,  

      
( , 1) ( , 1)( , 1) ( , 1) ( , 1) ( , 1)1

, , 1/ 2 , , 1/ 2, , , ,
, ,

1/2, , 1/2, , , 1/2, , 1/2, ˆ ,
n n n nn n n n n n n nn n

i j k i j ki j k i j k
i j k

i j k i j k i j k i j kG GF F H H S
t x y z

φ φ
+ ++ + + ++

+ −+ − + −−−− −
= + + +

Δ Δ Δ Δ

� �
(22)     

where (F, G, H) are components of the vector F, and  

                                           
1

( , 1) 1 n

n

n n
t

t
dt

t

+
+ =

Δ ∫F F ,                                                                 (23) 

represents the temporal average (from tn to tn+1). The tilde represents the volume average over ijkΩ ,    

                                            1

ijk

ijk dxdydz
x y z

φ φ
Ω

=
Δ Δ Δ ∫∫∫� .                                                   (24a) 

The hat represents the combined volume (over ijkΩ ) and  temporal average (from tn to tn+1), 

                                              
11ˆ

ijk

ijk

n

n

t

t
S Sdxdydzdt

t x y z

+

Ω

=
Δ Δ Δ Δ ∫ ∫∫∫ .                                               (24b) 

For the finite volume ijkΔΩ , the flux at x =  1/ 2ix − and t = tn  is calculated by   
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                 1/ 2 1/ 2

1/ 2 1/ 21/2, ,
1/2

1 k j

k j

n
n

i j k
i

z y

z y

t t

x x
F u dydz

y z x
φκ φ+ +

− −−
−

=

=

∂⎛ ⎞= −⎜ ⎟Δ Δ ∂⎝ ⎠∫ ∫ .                                      (25) 

To solve equation (22) numerically, we need to compute the temporally integrated fluxes,  

    ( , 1) ( , 1) ( , 1) ( , 1) ( , 1) ( , 1)
, , 1/ 2 , , 1/ 21/2, , 1/2, , , 1/2, , 1/2,

,   ,  ,  ,  ,   n n n n n n n n n n n n
i j k i j ki j k i j k i j k i j k

F F G G H H+ + + + + +
+ −+ − + −

 .   

If these fluxes are computed using the semi-Lagrangian method, it is called the flux-form semi-

Lagrangian scheme (Lin and Rood 1996). 

 4.3. Transformation of Temporal into Spatial Mean   

For simplicity and no loss of generality, we consider one dimensional problem of (22) 

without source/sink term (i.e., ˆ
ijkS  = 0), 

                                     
( , 1)1 ( , 1)

1/ 21/ 2

n nn n n n
ii i iF F

t x
φ φ

++ +
−+− −

=
Δ Δ

� �
.                                                     (26)       

From the semi-Lagrangain consideration, we have  

                                           
( , 1)( , 1)

1/ 2* 1/ 2[ ]( , ) ( , )
n nn n

ii
i n i n

F F tx t x t
x

φ φ
++

−+ − Δ
= +

Δ
� � .                                     (27) 

Using the characteristic-line concept, the flux at time step tn+1 and location xi-1/2 can be transformed 

into the flux at time step tn and location xi-1/2-C (Fig. 2),   

                                                       1
1/ 2 1/ 2

n n
i i CF F+
− − −= ,                                                                    (28) 

and the temporally averaged flux 
( , 1)

1/ 2
n n

iF
+

−  [similar for 
( , 1)

1/ 2
n n

iF
+

+ ] can be transformed into spatial 

averaged flux,  

                ( ) ( )1/ 2

1/2

( , 1)
1/ 2 1/ 2

1 1, , .

 

n i

n i

n n
i i n

t t x

t x c t
F F x t dt F x t dx

t C t
−

−

+
− −

+Δ

− Δ
≡ =
Δ Δ∫ ∫                            (29) 

where   
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                                                            u tC
x
Δ

=
Δ

,                                                                        (30) 

is the Courant number.  Substitution of (30) into (29) leads to  

( ) ( ) ( )

1/ 2 1/ 2

( , 1)
11/ 2

1/ 2 1/ 2 1 1 1/ 2
1

1                                                                     if 
2 2

 
1    if 

2 2

n n
i i C

n n
mi n n n n n n

i i k i k i k m i m i C
k

F F C

F
F F F F F F

C
δ δ δ

− − −

+
−−

− − − − − − − −
=

⎧ +
≤⎪

⎪
≈ ⎨

+ + + + +⎪
⎪ >
⎩

∑
    (31) 

where  

                         1
2

m C⎡ ⎤= −⎢ ⎥⎣ ⎦
 , 

1

1/ 2 1/ 2
1

1 1,   ,   1
2

m

k m k
kC C

δ δ δ δ δ
−

=

= = = − −∑ .                                (32) 

The bracket [ ]  represents the round-off integer. Similarly, the temporally averaged flux at the 

right boundary (x = 1/ 2ix + ) 

    ( ) ( ) ( )

1/ 2 1/ 2

( , 1)
11/ 2

1/ 2 1/ 2 1 1 1/ 2
1

1                                                                           if 
2 2

 
1    if 

2 2

n n
i i C

n n
mi n n n n n n

i i k i k i k m i m i C
k

F F C

F
F F F F F F

C
δ δ δ

+ + −

+
−+

+ − + − + − + −
=

⎧ +
≤⎪

⎪
≈ ⎨

+ + + + +⎪
⎪ >
⎩

∑
   (33) 

The temporally averaged fluxes ( , 1)
1/ 2
n n

iF +
−  and ( , 1)

1/ 2
n n

iF +
+  (from tn to nt t+ Δ ) is transformed into the 

spatially averaged ones over multiple grids  at time step  tn with weights of  1/ 2 1, ,..., mδ δ δ .  If the 

characteristic line at nt  is beyond the boundary, the boundary condition can be used to calculate 

( , 1)
1/ 2
n n

iF +
−  (Fig. 3),  

                                      
( ) ( )1 3/ 2 1( , 1)

3/ 2

1 1
2 2

2

n n n n
bn n

F F C F F
F

C
+

⎛ ⎞+ + − +⎜ ⎟
⎝ ⎠= ,                                      (34) 

where n
bF  is the boundary value between 1

nF  and 1
1
nF + ,   and is  interpolated by 
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                                                1
1 1

1 11
2 2

n n n
bF F F

C C
+⎛ ⎞= − +⎜ ⎟

⎝ ⎠
.                                                 (35) 

 Substitution of (31) and (33) into the difference equation (26) leads to  

( ) ( )

( ) ( ) ( )

( ) ( )

2

1 1 1 1

2

1 1 1 1 1

2

1 2 1 1

1

12 ,                                           
2 2 2

1 1
4 2 2

1 2 ,      
2 8

n n n n n
i i i i i

n n n n n n n n
i i i i i m i m i m i m

n n n n n
i m i m i i i

n n
i i

C C C

DD

D

φ φ φ φ φ

φ φ φ φ φ φ φ φφ φ

φ φ φ φ φ

+ − + −

+ − − − − − − − −

− − − − + −

+

− − + − + ≤

⎛ ⎞
− − − + − − − − −= + ⎜ ⎟

⎝ ⎠

− − + − +
1                                  
2

C

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪ >
⎩

     (36)              

which is  called the Transformed Flux-formed Semi-Lagrangian (TFSL) scheme for the advection-

diffusion equation (21). Here,  

                                                         1
2

D C m= − − .  

For  1C ≤ /2, the TFSL scheme is the same as the Lax-Wendroff  scheme.  Comparing to the 

central difference (CED), the TFSL-scheme has an extra positive term,   

                            ( )
2

1 1TSF-CED 2
2

n n n
i i i

C φ φ φ+ −= − + ,                                                    (37) 

for 1/ 2C ≤ .   This term can be regarded as the numerical (positive) diffusion which leads to 

computational stability. Different schemes have different algorithms to compute the temporally 

averaged fluxes ( , 1)
1/ 2
n n

iF +
−  and ( , 1)

1/ 2
n n

iF +
+  (from tn to nt t+ Δ ).  The TFSL scheme has second order 

accuracy in both time and space.   

                     5. Stability of the TFSL Scheme 

Stability of numerical schemes is an important issue in solving the advection equation (16).  

In Section 3, we showed the instability of the existing schemes (upwind, central, and Lax-

Wendroff). To determine the stability of the TFSL scheme (36), the Fourier series expansion is 

used. Decay or growth of an amplification factor indicates whether or not the numerical algorithm 
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is stable (von Neumann and Richtmyer 1950). Assuming that at any time step tn, the compute 

solution n
iφ  is the sum of the exact solution ( )n ex

iφ  and error n
iε ,        

                                              ( )n n ex n
i i iφ φ ε= + ,                                                             (38) 

and substituting (38) into (36), we obtain 

   

( ) ( )

( ) ( ) ( )

( ) ( )

2

1 1 1 1

2

1 1 1 1 1

2

1 2 1 1

1

12 ,                                           
2 2 2

1 1
4 2 2

1 2 ,      
2 8

n n n n n
i i i i i

n n n n n n n n
i i i i i m i m i m i m

n n n n n
i m i m i i i

n n
i i

C C C

DD

D

ε ε ε ε ε

ε ε ε ε ε ε ε εε ε

ε ε ε ε ε

+ − + −

+ − − − − − − − −

− − − − + −

+

− − + − + ≤

⎛ ⎞
− − − + − − − − −= + ⎜ ⎟

⎝ ⎠

− − + − +
1                                  
2

C

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪ >
⎩

   (39) 

The finite mesh function, n
iε , can be decomposed into a Fourier series,  

                             exp( ),    /
x

x

N
n n
i j x

j N

a Ii j Nε θ θ π
=−

= =∑                                              (40) 

with   1I ≡ − , ( ,n
ja θ ) being the amplitude and phase angle of the jth harmonic. Substituting (40) 

into (39) yields  

                                     1 ( , )n na g C aθ+ = ,                                                                  (41) 

where  
 

( )

( )

( ) ( ) ( ) ( )

2

2 2
2

11 1 cos sin                                                                                                       
2

1 1 11 cos cos cos 1 cos 2, 4 2 2 2 2

    

C IC C

D DD m D D m mg C

θ θ

θ θ θ θθ

− − − ≤

⎛ ⎞ ⎛ ⎞− + − + + + − − + −⎡ ⎤ ⎡ ⎤⎜ ⎟⎜ ⎟= ⎣ ⎦ ⎣ ⎦⎝ ⎠⎝ ⎠

( ) ( ) ( )
2 2

21 1 1     - sin sin 1 sin 2              
2 2 2 2 2

D DI D m D D m m Cθ θ θ

⎧
⎪
⎪
⎪⎪
⎨
⎪
⎪ ⎧ ⎫⎛ ⎞ ⎛ ⎞− + + + − − + − >⎡ ⎤ ⎡ ⎤⎪ ⎨ ⎬⎜ ⎟⎜ ⎟ ⎣ ⎦ ⎣ ⎦⎝ ⎠⎝ ⎠⎪ ⎩ ⎭⎩

     (42) 

                                                                                                                              
is called the amplification factor, whose magnitude is given by   
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1 1 11 2 2 cos cos 2                                 
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DD D D D D D C
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θ θ

⎧
⎪
⎪
⎪
⎪
⎪
⎨ ⎧ ⎫⎞⎪ − + −⎡ ⎤ ⎡ ⎤⎨ ⎬⎜ ⎟ ⎣ ⎦ ⎣ ⎦⎪ ⎠⎩ ⎭⎪

⎛ ⎞⎪ ⎛ ⎞+ − + + − + − + >⎜ ⎟ ⎜ ⎟⎪ ⎝ ⎠ ⎝ ⎠⎩

   (43) 

The TFSL-scheme is computationally stable if ( , ) 1g Cθ ≤  and computationally unstable if 

( , ) 1g Cθ > . Fig. 4 shows that  ( ), 1g Cθ ≤   for all θ  and C (larger than 20), which implies that 

the TFSL-scheme (36) is very stable.   

             6.  Simulating the Rossby Soliton Using the TFSL Scheme  

The TFSL-scheme (36) is only for spatially variant and temporally invariant u.  When u [or 

1fη−  in (7)] at xi-1/2 varies with time from tn to tn+1, concept of variant characteristic lines can be 

used to determine u(xi-1/2, t) with sub time-steps ( 1/ 2 ,tδ 1,tδ ..., mtδ ) (between tn and tn+1) from u(x, tn) 

at grid points (xi-1, …, xi-m, xi*), and for  u > 0 the time  from  the left neighboring grid x i-[k+1]  to xi-k 

is given by  (Fig. 5), 

 
[ 1]

1 2

0

ln(1 ) (1 ...),  
( , ) 1 2 3

0.5,  1,  2,..., .

i k

i k

x
i k i k i k

k n
n i k i k i k i kx

dx x dz t tt
u x t u z C C

k m

ζ ζ ζδ
ζ ζ

−

− +

− − −

− − − −

Δ Δ − Δ
= = = − = + + +

−

=

∫ ∫        (44) 

where  

     [ 1]
[ 1] -,    ,    

n n n
i k i k i k

i k i k i k i kn
i k

u u u tx x x C
u x

ζ − − + −
− − + −

−

− Δ
Δ = − = =

Δ
.                                                  (45) 

The parameter Ci-k is the Courant number for sub time steps. A formula similar to (44) can be 

obtained for u < 0 (using the right neighboring grid).   The temporally averaged fluxes from tn to 

nt t+ Δ   can be calculated by (taking ( , 1)
1/ 2
n n

iF +
−  [see (31)] as the example) 
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( ) ( ) ( ) ( )*
11/ 2 1 1 2 1

1/ 2 1 1
( , 1)

1 / 2

1 ...
2 2 2 2

i m i mi i i i i m i m
m m

n n
i

F
F FF F F F F F

t t t t
t
δ δ δ δ − − −− − − − − + −

−
+

−
=

⎡ ⎤++ + +
+ + + +⎢ ⎥

Δ ⎢ ⎥⎣ ⎦
 (46)   

 Equation (7) for the Rossby soliton is discretized using the flux form, 

                                  
1 ( , 1) ( , 1)

1/ 2 1/ 2 ˆ
n n n n n n
i i i i

i
F F S

t s
η η+ + +

+ −− −
= +

Δ Δ
,                                                     (47) 

where ˆ
iS  is the temporally-spatially averaged source term   

                                        
1 1/ 2

1/ 2

1ˆ ( , )
n i

n i

t s

i
t s

S S s t dsdt
t s

+ +

−

≡
Δ Δ ∫ ∫ .                                                      (48) 

with S(s, t) given by (8).  The difference equation (47) is solved numerically from the initial 

condition (15) using the TFSL-scheme. To compare with the existing schemes (upwind, central, 

and Lax-Wendroff schemes), the Courant number is set to 0.75.   After the numerical solution 

( , )i nx tη  is obtained, substituting it into (4c) yields ( , , )i j ns y tφ , as shown in Fig. 6. Note that the 

three existing schemes (upwind, central, and Lax-Wendroff) are all unstable (Fig. 1), but the TFSL-

scheme is stable. After propagating westward around the earth the numerical Rossby soliton (using 

the TFSL scheme) shows almost non-difussive and non-dispersive.  

 To show the quality of the TFSL-scheme, the difference equation (47) is integrated for C = 

1.5 for a long time period corresponding to the Rossby soliton propagates westward around the 

earth 5 times. The solution ( , , )i j ns y tφ  is stable all the time (Fig. 7). The relative root-mean-square 

error (rrmse),   

                        

2( ) ( )

1 1

( )

1 ( , , ) ( , , )
rrmse( )

max ( , , )

ys NN
num ex

i j i j
i js y

ex
i j

s y t s y t
N N

t
s y t

φ φ

φ
= =

⎡ ⎤−⎣ ⎦
=

∑∑
,                      (49) 
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is calculated to  illustrate  the accuracy of the TFSL scheme. Table 1 shows RRMSE at the end of 

first five cycles around the earth. The error varies from 2.66% for the first cycle to 3.53% for the 

fifth cycle.   

                                                       7. Conclusions 

 (1) This study shows that TFSL scheme is a promising stable and accurate scheme for 

solving the advection-diffusion equation. Magnitude of the amplification factor does not exceed 1 

for large Courant number (e.g., for C = 20). The Fourier analysis shows that the TFSL scheme has 

second-order accuracy in time and space. Computational stability and higher accuracy than the 

widely used schemes (central, upwind, and Lax-Wendroff) makes this scheme useful in ocean 

modeling, computational fluid dynamics, and numerical weather prediction.  

 (2) Several major features distinguish the TFSL scheme from the existing schemes, both 

Eulerian and semi-Lagrangian. First, the flux (F) at the boundary of each grid cell is computed not 

from a single time step (present or next) but from temporal integration from present to next time 

step. Second, this temporal integration is transformed into spatial integration at the present time 

step using the characteristic line method.  

(3) The equatorial Rossby soliton is used to test the capability of the TFSL scheme since it 

has exact solution.  The equation is solved numerically from the soliton initially located at the 

equator and 0o longitude with the overall Courant number of 0.75.   The existing numerical 

schemes greatly distort the Rossby soliton and diverge as it propagates:  60o45’W (upwind), 

38o45’W (central), and totally distorted after one cycle around the earth (Lax-Wendroff). However, 

the TFSL scheme does not distort the Rossby soliton and converge as it propagates many cycles 

around the earth.  
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  (4) Future studies include applying TFSL scheme to non-uniform grid systems as well as 

designing higher order TFSL schemes. 
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Table 1.  RRMSE of the surface elevation predicted using the TFSL-scheme after the first five 
cycles around the earth. 

Cycle     1      2        3       4       5 
RRMSE (%)  2.66  2.86   3.00   3.22   3.53 
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Fig. 1. Surface elevation ( , , )s y tφ of the Rossby solitons obtained from (a) exact solution, and 
numerical integration with C = 0.75 using (b) upwind scheme, (c) central scheme, and (d) Lax-
Wendroff  scheme.  Note that the numerical solution diverges at 60o45’W using the upwind scheme 
and 38o45’W using the central scheme. The numerical solution does not diverge using the Lax-
Wendroff scheme, however, the solution is totally distorted from the analytical solution after 
propagating one cycle around the earth. 
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Fig. 2.  Temporally varying flux at the boundary xi-1/2 from tn to tn + tΔ is transformed into spatially 
varying flux at t n from xi-1/2 -C tΔ  to xi-1/2 using the characteristic-line concept.  
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Fig. 3.   Same as Fig. 2 except at the left boundary of the integration domain.  
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Fig. 4.   Dependence of the amplification factor  ( ),g Cθ   of the TSFL scheme on θ  and C. 
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              Fig. 5.  Same as Fig. 2 except  for temporally varying u.  
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Fig. 6. Surface elevation ( , , )s y tφ of the Rossby soliton obtained from (a) exact solution, and 
numerical integration with C = 0.75 using (b) TFSL-scheme. The solutions ( , , )s y tφ  are plotted at 
four time instances for the Rossby soliton (exact solution) westward propagating   90o, 180 o, 270o, 
and 360o (return to the initial location). 
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Fig. 7.  Surface elevation ( , , )s y tφ of the Rossby soliton after 1-5 cycles around the earth obtained 
from numerical integration with C = 1.5 using the TFSL scheme.   
 
 

 


