If you would like your presentation included in the 75th MORSS Final Report CD it must:

1. Be unclassified, approved for public release, distribution unlimited, and is exempt from U.S. export licensing and other export approvals including the International Traffic in Arms Regulations (22CFR120 et seq.);
2. Include MORS Form 712CD as the first page of the presentation;
3. Have an approved MORS form 712 A/B and
4. Be turned into the MORS office no later than: DEADLINE: 14 June 2007 (Late submissions will not be included.)

Author Request (To be completed by applicant) - The following author(s) request authority to disclose the following presentation in the MORSS Final Report, for inclusion on the MORSS CD and/or posting on the MORS web site.

Name of Principal Author and all other author(s):
Valerie Peters
Daniel Briand

Principal Author's Organization and address:
Sandia National Laboratories
PO Box 5800, MS 1011
Albuquerque, NM 87185
Phone: (505) 844-9490
Fax: (505) 844-3321
Email: vapeter@sandia.gov

Please use the same title listed on the 75th MORSS Disclosure Form 712 A/B. If the title of the presentation has changed please list both.

Original title on 712 A/B:
From Field Data to Reliability Optimization, a Navy LCAC Application

If the title was revised please list the original title above and the revised title here:

Presented in:

<table>
<thead>
<tr>
<th>WORKING GROUP:</th>
<th>DEMONSTRATION:</th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>COMPOSITE GROUP:</th>
<th>POSTER:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SPECIAL SESSION 1:</th>
<th>TUTORIAL:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SPECIAL SESSION 2:</th>
<th>OTHER:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SPECIAL SESSION 3:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

This presentation is believed to be: Unclassified, approved for public release, distribution unlimited, and is exempt from U.S. export licensing and other export approvals including the International Traffic in Arms Regulations (22CFR120 et seq.)
From Field Data to Reliability Optimization, a Navy LCAC Application

1. REPORT DATE
 01 JUN 2007

2. REPORT TYPE
 N/A

3. DATES COVERED
 -

4. TITLE AND SUBTITLE
 From Field Data to Reliability Optimization, a Navy LCAC Application

5. AUTHOR(S)
 -

6. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
 Sandia National Laboratories PO Box 5800, MS 1011 Albuquerque, NM 87185

7. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
 -

8. SPONSOR/MONITOR’S ACRONYM(S)
 -

9. DISTRIBUTION/AVAILABILITY STATEMENT
 Approved for public release, distribution unlimited

10. SUPPLEMENTARY NOTES
From Field Data to Reliability Optimization: Navy LCAC Application

MORS Symposium
June 2007

Valerie Peters
vapeter@sandia.gov
(505) 844-9490

Daniel Briand
dbriand@sandia.gov
(505) 844-7230

Systems Sustainment and Readiness Technologies
Sandia National Laboratories
Outline

- Navy’s Needs

- Approach: Overview & Details
 - 1) Analyze Field Data
 - 2) Create Baseline Model
 - 3) Optimize Over Improvements

- Summary

Disclaimer: Data and logic used in this presentation are for example purposes only. They are not, and should not be treated as, real LCAC data and information.
Navy Needs

- Navy needs “a model to perform analyses of current and future LCAC maintenance and support operations”
 - How will funding changes (up or down) impact fleet readiness?
 - How will planned upgrades improve fleet readiness?

- Navy will run what-if scenarios to optimize over
 - Budget
 - Maintenance
 - Operations & Support

Translate $$$ into Readiness
Approach – Overview

Maintenance Records (Unscheduled, Inspections, …)
Cost Information
Operating Hours

Craft Configurations
Updated Data

Planned Upgrades

Performance Objectives
Constraints/Requirements

Analyze
Field Data

Create Baseline
Model

Predict
Impact

Optimize Over
Improvements

RESULTS & DECISIONS

Annual Cost Reduction

$700
$600
$500
$400
0 50 100 150 200 250 300
Estimated RECAP Cost
Millions

Sandia National Laboratories
Approach – Overview

- **Analyze Field Data**
 - Investigate existing failure & maintenance data sources
 - Recommend improved data collection process

- **Create Baseline Model**
 - Populate with existing failure & maintenance data (updated data, if necessary)
 - Capture component redundancy for various craft configurations
 - Analyze current system performance (Readiness, Annual Costs, …)

- **Predict Impact**

- **Optimize Over Improvements**
Approach - Overview

- Predict Impact (optional)
 - Predict impacts of current planned changes in maintenance, supply, and budget policies
 - Evaluate other cost and availability drivers identified by the baseline model

- Optimize Over Improvements ("best bang for the buck")
 - Examine improvement options
 - Optimize to select best improvements
 - Incorporate user-defined constraints
Analyze Field Data

● Goal

 − Assessment of “As-Is” Performance

● Inputs

 − Basic Maintenance and Logistical Data
 ● Machine ID
 ● Failure Mode: Code & Name
 ● Failure Date & Time
 ● Total Downtime
 ● Event Type (Failure, Preventative Maintenance, ...)
 ● Costs
 ● Operating Hours

<table>
<thead>
<tr>
<th>Assigned Names</th>
<th>Linked</th>
<th>Pro-Opta Fields</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
<td><=<></td>
<td>FailureCode</td>
</tr>
<tr>
<td>Date</td>
<td><=<></td>
<td>FailureDate</td>
</tr>
<tr>
<td>Name</td>
<td><=<></td>
<td>FailureName</td>
</tr>
<tr>
<td>Time</td>
<td><=<></td>
<td>FailureTime</td>
</tr>
<tr>
<td>Machine ID</td>
<td><=<></td>
<td>MachineID</td>
</tr>
<tr>
<td>Downtime</td>
<td><=<></td>
<td>TotalDowntime</td>
</tr>
</tbody>
</table>
Analyze Field Data: Data Analysis Process

1. Collect Field Failure Data / Maintenance Records
2. Clean Data Records – Interact with Data Provider
3. Analyze Data – Generate Results
4. Validate Results
5. Report Results
Analyze Field Data

● Description
 – Calculates “Nominal” Output
 ◆ Calculated directly from data
 ◆ Example Questions Answered:
 » What was our largest Downtime driver last year?
 » Which craft had the best Availability this quarter?
 – Calculates “Statistical” Output
 ◆ Uses randomness from raw data to provide distributional assessments
 » Information about variability is gathered from the deterministic historic data
 ◆ Example Question Answered:
 » Which failure modes contributed the most to variability in Maintenance Cost over the past 2 years?
Analyze Field Data: Sample Output

- **Availability: Numerical Summary**
 - Nominal Value, Mean, Median, Percentiles, Standard Deviation

![Summary Statistics Table]

<table>
<thead>
<tr>
<th>Statistic</th>
<th>Availability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>0.61088</td>
</tr>
<tr>
<td>Nominal</td>
<td>0.62979</td>
</tr>
<tr>
<td>Std. Deviation</td>
<td>0.1493</td>
</tr>
<tr>
<td>1st Percentile</td>
<td>0.17621</td>
</tr>
<tr>
<td>5th Percentile</td>
<td>0.30478</td>
</tr>
<tr>
<td>10th Percentile</td>
<td>0.38984</td>
</tr>
<tr>
<td>20th Percentile</td>
<td>0.50066</td>
</tr>
<tr>
<td>30th Percentile</td>
<td>0.55182</td>
</tr>
<tr>
<td>40th Percentile</td>
<td>0.61445</td>
</tr>
<tr>
<td>50th Percentile</td>
<td>0.64925</td>
</tr>
<tr>
<td>60th Percentile</td>
<td>0.68435</td>
</tr>
<tr>
<td>70th Percentile</td>
<td>0.71263</td>
</tr>
<tr>
<td>80th Percentile</td>
<td>0.73729</td>
</tr>
<tr>
<td>90th Percentile</td>
<td>0.76401</td>
</tr>
<tr>
<td>95th Percentile</td>
<td>0.78787</td>
</tr>
<tr>
<td>99th Percentile</td>
<td>0.80895</td>
</tr>
</tbody>
</table>
Analyze Field Data: Sample Output

- **Downtime: Failure Mode Pareto**
 - Failure Types Driving Downtime

![Graph showing contributors to mean downtime with bars for each failure mode and a list of failure modes driving downtime.](image-url)
Cost: Variability Quantification

- Failure Types Driving Cost Variability
Analyze Field Data: Sample Output

- **Cost: Craft Details**
 - Monthly Costs for a single Craft
Analyze Field Data

- **Output Metrics/Values**
 - Availability
 - MTBF
 - Downtime
 - Cost
 - *Both Built-in and User-defined version of the above*
 - *Example: Readiness*
 - Failure Mode Summary
 - Downtime Distributions
 - Failure Rate Distributions

- **Output Types/Formats**
 - Numerical Summary
 - Nominal Value
 - Mean, Median, Percentiles, Standard Deviation
 - Paretos of Failure Modes with the most impact
 - Variability Quantification
 - Data by Fleet or by Craft
Create Baseline Model

● Goals
 – Create sophisticated model of fleet and craft configurations
 – Ability to assess planned component & design changes
 ✦ Ability to answer “What If …” questions
 – Update Failure Mode Data, if necessary

● Inputs
 – Failure Modes: Failure Rate, Downtime, and Cost Distributions
 ✦ Combination of field data and info from other sources
 – Craft configurations with component redundancy
 – Sub-system hierarchy
Create Baseline Model

● Description
 - Fault Tree solver
 - Capability to model a family of Fault Trees
 - Multiple Configurations
 - Some shared failure modes
 - Different redundancy structures
Create Baseline Model

Outputs

- A set of output for each Configuration
- Very similar to “Analyze Field Data” output
Optimize Over Improvements

- **Goal**
 - Select Improvements for max Availability, min Costs
 - While incorporating user-defined constraints

- **Inputs**
 - Baseline Model: Single configuration OR *multiple* configurations
 - Potential Improvements
 - Benefits to Failure Rate, Downtime. Impact to Constraints.
 - Goals & Limitations
 - Acceptance criteria for “good” solutions
 - User-Defined constraints (Development Cost, Weight, Firepower, ...)

- **Flow**
 - Analyze Field Data
 - Create Baseline Model
 - Predict Impact
 - Optimize Over Improvements
Optimize Over Improvements

- **Description**
 - Optimization – can choose between
 - Weighted-Objective Genetic Algorithm
 - Multi-Objective Genetic Algorithm
 - Full Enumeration (no heuristic or algorithm)
 - Simultaneously Maximizes Availability, Maximizes MTBF, Minimizes Annual Cost, and/or Minimizes Annual Downtime
 - All while incorporating user-defined constraints

- **Sample Input: Improvement Tradeoffs**

<table>
<thead>
<tr>
<th>Component</th>
<th>Observed MTBF</th>
<th>% MTBF Improvement</th>
<th>Development Cost</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skirt System</td>
<td>2103</td>
<td>10%</td>
<td>$30M</td>
<td>+500lbs</td>
</tr>
<tr>
<td>Skirt System</td>
<td>2103</td>
<td>15%</td>
<td>$35M</td>
<td>+1000lbs</td>
</tr>
<tr>
<td>Skirt System</td>
<td>2103</td>
<td>20%</td>
<td>$42M</td>
<td>+2500lbs</td>
</tr>
<tr>
<td>Skirt System</td>
<td>2103</td>
<td>25%</td>
<td>$59M</td>
<td>+4000lbs</td>
</tr>
<tr>
<td>Radio / Communications</td>
<td>982</td>
<td>5%</td>
<td>$3M</td>
<td>+0lbs</td>
</tr>
<tr>
<td>Radio / Communications</td>
<td>982</td>
<td>10%</td>
<td>$7M</td>
<td>+100lbs</td>
</tr>
<tr>
<td>Radio / Communications</td>
<td>982</td>
<td>18%</td>
<td>$20M</td>
<td>+500lbs</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
Optimize Over Improvements: Output

- Value attained for each Performance Measurement & Constraint
 - Values available for top 25 solutions

Summary Information

<table>
<thead>
<tr>
<th>Performance Measure/Constraint</th>
<th>Baseline</th>
<th>Limit</th>
<th>Objective</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fitness</td>
<td>0.000146</td>
<td></td>
<td></td>
<td>0.108</td>
</tr>
<tr>
<td>Availability</td>
<td>0.616</td>
<td>0.650</td>
<td>0.750</td>
<td>0.661</td>
</tr>
<tr>
<td>Annual Cost</td>
<td>1.61E+06</td>
<td>1.61E+06</td>
<td>1.58E+06</td>
<td>1.59E+06</td>
</tr>
<tr>
<td>Development Cost</td>
<td>0</td>
<td>250,000</td>
<td>100,000</td>
<td>204,000</td>
</tr>
<tr>
<td>Strength</td>
<td>0</td>
<td>15.00</td>
<td>30.00</td>
<td>20.40</td>
</tr>
</tbody>
</table>
Optimize Over Improvements: Output

- Improvement Options to Implement

<table>
<thead>
<tr>
<th>Option</th>
<th>Level</th>
<th>Development Cost</th>
<th>Strength</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Supply Overhaul</td>
<td>0</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Hull Structure Improvements</td>
<td>10</td>
<td>50,000.00</td>
<td>5.00</td>
</tr>
<tr>
<td>Propeller Changes</td>
<td>5</td>
<td>9,000.00</td>
<td>0.90</td>
</tr>
<tr>
<td>Rudder Upgrade</td>
<td>9</td>
<td>45,000.00</td>
<td>4.50</td>
</tr>
<tr>
<td>Scheduled Maintenance Streamline</td>
<td>2</td>
<td>100,000.00</td>
<td>10.00</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>204,000.00</td>
<td>20.40</td>
</tr>
</tbody>
</table>
Optimize Over Improvements: Output

- Graphical Histories of Optimal Solution
Summary

- **Analyze Field Data**
 - Assess current conditions for components, craft, fleet

- **Baseline Model**
 - Understand craft design & configurations
 - Examine planned changes
 - Mix of historical field data and info from other sources

- **Optimize Over Improvements**
 - Consider multiple configurations together
 - Select best improvements for Availability, Cost, User Requirements simultaneously
 - Incorporate additional feedback and “fuzzy” constraints by selecting among top solutions